
The Atari™ Compendium
©1992 Software Development Systems

Written by Scott Sanders

Not for Public Distribution

Introduction
The following pages are a work in progress. The Atari™ Compendium (working title) is designed to be a
comprehensive reference manual for Atari software and hardware designers of all levels of expertise. At the
very least, it will (hopefully) be the first book available that documents all operating system functions,
including any modifications or bugs that were associated with them, from TOS 1.00 to whatever the final
release version of Falcon TOS ends up being. GEMDOS, BIOS, XBIOS (including sound and DSP calls),
VDI , GDOS, LINE-A, FSM , AES, MetaDOS, AHDI and MiNT will be documented. Hardware
information to the extent that information is useful to a software programmer will also be covered. This
volume will not include hardware specifications used in the creation of hardware add-ons, a programming
introduction designed for beginners, or an application style guide. All of the aforementioned exclusions will
be created separately as demand for them arise. In addition, I also plan to market a comprehensive spiral-
bound mini-reference book to complement this volume.

By providing early copies of the text of this volume I hope to accomplish several goals:

1. Present a complete, error-free, professionally written and typeset document of reference.

2. Encourage compatible and endorsed programming practices.

3. Clear up any misunderstandings or erroneous information I may have regarding the information
contained within.

4. Avoid any legal problems stemming from non-disclosure or copyright questions.

A comprehensive Bibliograpy will be a part of this volume. For now you should know that I have mainly
relied on five major sources of information:

1. Atari Developer Documentation, including, but not limited to, original OS docs, release notes,
newsletters, and technical support.

2. Compute’s AES/TOS/VDI series. This series seems to be the most complete English reference
available, however, its usage is limited by the fact it is only current as of TOS 1.02

3. Lattice C Atari Library Manual and Addendum

4. Atari Profibuch - Excellent German text.

5. Developer Roundtable on GEnie and Compuserve.

How to Edit...

Below are some simple suggestions as to how to notate any changes you would like to see made. I understand
you are probably just as busy as I usually am so if you can’t take the time to follow these steps, ragged
handwriting in the corner would be just as appreciated.

Included in your package should be seven items:

1. This introduction letter.
2. A binder.
3. Revision notes
4. Looseleaf notebook paper.
5. Two highlighter pens
6. Dividers
7. The latest revision of the text

If you are missing any items, please contact me.

Each revision will be accompanied by a set of revision notes. These will highlight what to look for, what I
already know is wrong and am planning to change, and what has changed since last time.

The looseleaf notebook paper should be used to make general suggestions as to content, style
(writing/typesetting), and so on....

When proofing the text use the blue highlighter to circle spelling, grammar, or style errors (any typo). The
green highlighter is for blatant errors or misunderstandings where an explanation is necessary. Please notate
the error and correction in the margins. If it is a very large misunderstanding beyond simply writing it down,
please call me or E-Mail me.

Also, as a part of the volume will be a listing of standard conventions. The following is a brief listing of
conventions used in the book:

Typestyle Meaning
The quick brown fox.... Normal Text
WORD appl_init(VOID) Function Definitions
mode, flag, ap_id program/system variables
WORD, TOS, WM_CLOSED macros, typedef’s, define’s, OS components
typedef struct { Program listings/bindings
A basic explanation is listed... Text in tables
CTRL-G Keyboard keys
OPCODE Headings

Any questionable stray from the conventions should be notated as a possible error.

Revision Schedule
I would like to swap edited text with new revisions about every two weeks. The final revision should be
approved by November 15th to try for a release date of December 15th. This schedule is not fixed and I will
be in contact to find out what’s best for you.

Thank You...
Thank you for your time and effort. Your name will be credited if you desire and you should check for it in a
final revision.

SCOTT D. SANDERS, OWNER
SOFTWARE DEVELOPMENT SYSTEMS

i

T H E A T A R I C O M P E N D I U M

C O N T E N T S

Foreword vii

Chapter 1: Introduction to Atari Programming1.1
Atari Computer Hardware... 1.3
Atari Computer Software... 1.6
Atari GEM ... 1.7
Third-Party System Software... 1.8
Programming Languages... 1.9
Conventions.. 1.10

Chapter 2: GEMDOS..2.1
Overview .. 2.3
The TOS File System ... 2.3
Memory Management .. 2.8
GEMDOS Processes.. 2.9
GEMDOS Vectors ... 2.13
MiNT .. 2.14
MiNT Interprocess Communication.. 2.27
MiNT Debugging... 2.31
The MINT.CNF File... 2.33
GEMDOS Character Functions.. 2.34
GEMDOS Time & Date Functions.. 2.35
GEMDOS Function Calling Procedure.. 2.35
GEMDOS Function Reference.. 2.37

Chapter 3: BIOS...3.1
Overview .. 3.3
System Startup.. 3.3
OS-Header ... 3.4
Cookie Jar.. 3.8
BIOS Devices... 3.14
Media Change.. 3.15
BIOS Vectors ... 3.18

ii – Contents

T H E A T A R I C O M P E N D I U M

The XBRA Protocol ..3.20
BIOS Function Calling Procedure ..3.22
BIOS Function Reference..3.24

Chapter 4: XBIOS...4.1
Overview ...4.3
Video Control ...4.3
The Falcon030 Sound System...4.6
The DSP ..4.8
User/Supervisor Mode..4.12
MetaDOS...4.12
Keyboard and Mouse Control ..4.12
Disk Functions ..4.14
The Serial Port ...4.16
Printer Control...4.18
Other XBIOS Functions ...4.18
XBIOS Function Calling Procedure..4.19
XBIOS Function Reference...4.21

Chapter 5: Hardware..5.1
Overview ...5.3
The 680x0 Processor ..5.3
The 68881/882 Floating Point Coprocessor..5.4
Cartridges...5.7
Game Controllers ...5.8
The IKBD Controller..5.10
STe/TT DMA Sound...5.20
The MICROWIRE Interface ...5.22
Video Hardware..5.24

Chapter 6: AES...6.1
Overview ...6.3
Process Handling..6.3
Applications ..6.4
Desk Accessories...6.7
The Environment String..6.9
The Event Dispatcher ...6.9
Resources..6.13
Objects ..6.13

iii

T H E A T A R I C O M P E N D I U M

Dialogs ... 6.24
Menus ... 6.25
Windows ... 6.29
The Graphics Library .. 6.33
The File Selector Library .. 6.34
The Scrap Library.. 6.34
The Shell Library ... 6.35
The GEM.CNF File.. 6.36
AES Function Calling Procedure ... 6.37
AES Function Reference... 6.43

Chapter 7: VDI..7.1
Overview .. 7.3
VDI Workstations... 7.3
Workstation Specifics .. 7.5
Using Color.. 7.8
VDI Raster Forms.. 7.9
Vector Handling... 7.10
GDOS... 7.11
GDOS 1.x ... 7.12
FONTGDOS.. 7.13
FSM-GDOS... 7.13
SpeedoGDOS... 7.14
Device Drivers... 7.16
VDI Function Calling Procedure.. 7.18
VDI/GDOS Function Reference.. 7.21

Chapter 8: Line-A ..8.1
Overview .. 8.3
The Line-A Variable Table.. 8.3
Line-A Font Headers... 8.7
Line-A Function Calling Procedure... 8.8
Line-A Function Reference... 8.9

Chapter 9: The Desktop ..9.1
Overview .. 9.3
MultiTOS Considerations ... 9.3
Desktop Files ... 9.4

iv – Contents

T H E A T A R I C O M P E N D I U M

Chapter 10: XCONTROL..10.1
Overview ...10.3
XCONTROL Structures ...10.4
CPX Flavors ...10.6
CPX File Formats...10.12
XCONTROL Function Calling Procedure..10.13
XCONTROL Function Reference..10.15

Chapter 11: GEM User Interface Guidelines11.1
Overview ...11.3
The Basics ...11.3
Windows..11.4
Dialog Boxes...11.8
Alerts...11.10
The File Selector ..11.12
Progress Indicators ..11.12
Toolboxes ..11.13
Toolbars ..11.14
Menus..11.15
Keyboard Equivalents ..11.20
Device Independence..11.22
Globalization ..11.23
Colors..11.23
Sound...11.24
Application Software ..11.24
Installation Software ..11.25
Entertainment Software..11.25

Appendix A: Functions by Opcode........................... A.1
GEMDOS Functions by Opcode.. A.3
BIOS Functions by Opcode ... A.7
XBIOS Functions by Opcode... A.9
AES Functions by Opcode ... A.13
VDI Functions by Opcode ... A.15

Appendix B: Memory Map..B.1
Usage ...B.3
Memory Map..B.4

v

T H E A T A R I C O M P E N D I U M

Appendix C: Native File Formats C.1
The .GEM File Format ..C.3
The .IMG File Format ...C.5
The .FNT File Format..C.7
The .RSC File Format..C.9

Appendix D: Error Codes... D.1

Appendix E: Atari ASCII Table................................... E.1

Appendix F: IKBD Scan CodesF.1

Appendix G: Speedo FontsG.1
The Speedo Font Header ...G.3
The Bitstream International Character Set...G.7

Appendix H: The Drag & Drop Protocol H.1
Overview ..H.3
The Originator ...H.3
The Recipient ...H.5

Appendix I: The Programmable Sound Generator .. H.1

Bibliography

Index

vii

T H E A T A R I C O M P E N D I U M

FO R E WO R D

About eight months have passed since The Atari Compendium®
 was first released, and I must

admit to being amazed with the amount of attention the book has received from Atari developers
worldwide. When I started writing the first draft of the book I didn’t know enough about Atari
computers to write half of the 860 pages it eventually became. The learning process that I went
through to see the book to its completion was responsible for a great deal of personal growth
and a greater understanding of computer science in general.

It was inevitable, of course, that there would be errors in a book this big. I didn’t want to revise
the book simply to correct those errors, however. I was determined to add some missing topics
as well. This first revision now adds about 60 pages to the original and led me back to the
on-the-job learning process and several phone calls and E-mail letters to Sunnyvale.

The Compendium now covers almost every conceivable topic a software programmer needs to
know about Atari computers. You still won’t find timing diagrams, pinouts, and hardware
specifications simply because my level of competence in those matters is unfortunately minor.
The only other topics you won’t find discussed are those covered completely in separate
volumes (referenced in the Bibliography). These include hardware-direct ACSI/SCSI/IDE
programming, SCC programming, DSP programming, and direct BLiTTER chip usage. In every
case except for DSP programming, almost all functions of these devices may be accessed by the
average programmer through the use of OS calls, which are, of course, documented. The basics
of DSP programming, like assembly or ‘C’ is left to the reader to explore in other books
dedicated to their teaching.

New to this revision you will find an enhanced style guide and memory map (the two most
popular sections of the book, it seems), information on programming MiNT device drivers and
file systems, and a section documenting the XBRA protocol. Most importantly, though, almost
every conceivable parameter and return value has been listed with a corresponding definition
name. These names may be used with any language that supports constant naming, and, when
used, improve program readability dramatically. The TOS.H and TOSDEFS.H include files will
be available from SDS upon the release of this revision. To find out how to obtain them, be sure
to send in your registration card.

I owe thanks to Mike Fulton, Eric Smith, and Jay Patton were very helpful in ensuring that the
new material was correct and old errors were eliminated. Many independent readers of the book
also deserve thanks for taking the time to report errors and submit their comments.

In addition, my close friends Dennis, Mike, Keith, Cathryn, Shawn, Cathy, Shaun, and Kristýna
provided moral support and dragged me away from work when I needed a break badly. Also, as
always, my mom supported me tremendously and continues to proudly display a plastic-wrap’d
copy of the book to friends and relatives even though to her its about as useful as a phone book
for some remote city in Alaska.

viii

T H E A T A R I C O M P E N D I U M

Thanks to you, especially, the Atari developers and users who made this book a reality. Enjoy!

—Scott D. Sanders, April 1994

T H E A T A R I C O M P E N D I U M

— CHAPTER 1 —

INTRODUCTION TO

ATARI PROGRAMMING

Atari Computer Hardware – 1.3

T H E A T A R I C O M P E N D I U M

Atari Computer Hardware

The 260/520/1040 ST
The first Atari ST computers became available to the public in 1985. The new Atari models
were the first 16-bit computers well-suited for use in the home. The availability of these
computers signaled the end of the Atari 8-bit era of computers such as the 400, 800, 800XL,
1200XL, 1450XLD, 65XE, and 130XE computers.

The name ‘ST’ is derived from the capabilities of the Motorola 68000 processor upon which the
original Atari line was based. The 68000 uses a Sixteen-bit data bus with a Thirty-two bit
address bus.

16-bit computers introduced a new concept in computer technology called the operating system
(OS). Atari’s operating system, The Operating System (TOS), was loaded from a boot disk
originally, but is now almost always installed in ROM.

A primary subsystem of TOS is GEM (‘Graphics Environment Manager’), the graphical user
interface used by Atari computers. GEM , which was developed by Digital Research, Inc.,
manages the graphic interface to applications and provides access to popular computing features
with buzzwords such as windows, the mouse, menus, and the desktop.

GEM was originally designed for PC-compatible computers. PC-based GEM , however, is no
longer completely compatible with Atari GEM . Only components of GEM relative to its use on
the Atari will be covered in this guide. Some functions which were originally documented for
Atari GEM yet never implemented have been included for completeness.

Other TOS subsystems include GEMDOS, the BIOS, and the XBIOS. These subsystems
provide a hardware interface and management functions for the file system.

The original ST computers featured the following:

• Motorola 68000 32-bit processor running at 8MHz.

• Integrated GEM/TOS operating system.

• RAM memory storage of 256k, 512k, or 1 Mbyte (depending on model).

• Built-in MIDI, dual joystick, floppy drive, ACSI, serial, and parallel ports.

• Sophisticated DMA peripheral access.

• Yamaha 3-voice FM sound generator.

• External 128k cartridge port.

• Integrated video controller capable of generating (320x200x16), (640x200x4), and
(640x400x2) video modes from as many as 512 colors.

1.4 – Introduction to Atari Programming

T H E A T A R I C O M P E N D I U M

Mega ST 2/4
Two years after the release of the original ST series Atari released the Mega ST series of
computers. The Mega ST computers were shipped with TOS 1.02 and featured several new
features as follows:

• BLiTTER chip (for faster graphics).

• Internal expansion bus.

• Separate keyboard and CPU.

• Either two or four megabytes of RAM.

• Peripheral co-processor slot (for 68881 coprocessor, etc.).

STacy
The STacy was released shortly after the Mega ST to provide a portable means of Atari
computing. STacy computers were shipped with TOS 1.04. The STacy’s design supplemented
the basic features of an ST with the following:

• Integrated CPU/keyboard/carrying case.

• Monochrome LCD screen.

• Track ball for mouse control.

• Optional hard drive.

1040 STe
The 1040 STe, released in 1990, was designed to expand upon the capabilities of the 1040 ST.
Many of the features added were geared towards entertainment and multimedia applications. The
1040 STe was shipped originally with TOS 1.06. The following features were added to those of
the basic ST:

• Extended color palette to support up to 4096 colors.

• Support for horizontal and vertical fine scrolling.

• Video GENLOCK capability.

• Stereo 8-bit PCM sound.

• Two extra joystick ports with support for paddles and light pens.

• 256k Operating System in ROM.

• SIMM memory slots to upgrade memory to 4 Mb

Mega STe
Released in 1990, the Mega STe was designed to provide for more computing power than the
1040 STe and add several new hardware features. The Mega STe shipped with TOS 2.02, 2.05,
or 2.06. It adds features to that of a 1040 STe as follows:

• Motorola 68000 32-bit processor running at 8MHz or 16MHz.

Atari Computer Hardware – 1.5

T H E A T A R I C O M P E N D I U M

• Optional 68881 math coprocessor.

• One, two, or four megabytes of RAM memory.

• Optional internal hard drive.

• Modern case design with separate keyboard/CPU.

• Three serial ports.

• Localtalk compatible networking port.

• VME compatible expansion slot.

TT030
Also released in 1990, the TT030 computer was the first Atari computer workstation designed
for high-end computer users. The TT030 workstation was shipped with TOS 3.01, 3.05, or 3.06.
It adds the following features to that of the Mega STe:

• Motorola 68030 32-bit processor running at 32MHz with cache.

• Memory capacity of 32Mb with optional ‘fast’ RAM.

• Standard 68882 math coprocessor.

• Four serial ports.

• SCSI device port.

• Stereo RCA jacks for sound output.

• Extra video resolutions of (320x480x256), (640x480x16), and (1280x960x2).

ST Book
Designed to replace the STacy as the defacto portable ST computer, the ST Book brought the
basic computing power of an ST to a lightweight notebook computer. This machine was only
released in Europe and Atari only shipped a very small quantity. The ST Book was shipped with
TOS 2.06. Minus the internal floppy drive, it supported features beyond that of a STacy as
follows:

• Lightweight case design.

• Keyboard with integrated numeric keypad.

• Mouse ‘vector’ pad.

• Processor-direct expansion slot.

• External keypad port.

• Floppy drive connector.

Falcon030
The newest member of the Atari line, the Falcon030 is to become the new base model Atari
system. The Falcon030 is currently shipping with TOS 4.04. While remaining backwardly-
compatible, the Falcon030 adds many new features as follows:

1.6 – Introduction to Atari Programming

T H E A T A R I C O M P E N D I U M

• Integrated case and keyboard design.

• Motorola 68030 processor running at 16MHz with cache.

• Motorola 56001 DSP with 96k RAM.

• Standard configurations with 1, 4, or 14Mb RAM.

• Internal 2 ½” IDE hard drive optional.

• Video resolutions from 320x200 to 640x480 with a palette from 2 to 256 colors
and 16-bit true color.

• Adaptable to Atari monitors, standard VGA monitors, and composite video.

• GENLOCK-ready design.

• Ports include parallel, serial, external floppy, SCSI-2, LAN, 4 joystick, MIDI
in/out, microphone, headphone, and ST compatible cartridge port.

• Interior processor expansion port.

• Sound system includes standard Yamaha FM chip, connection matrix, and 8-track,
16-bit stereo record/playback.

Atari ‘Clone’ Computers
Atari ‘clone’ computers first became available in early 1994. These computers, while mostly
software compatible with Atari-produced computers, contain hardware enhancements and
modifications that may cause incompatibilities in software that relies on hardware access rather
than the recommended method of using standardized OS calls.

The recent availability of these computers as well as enhanced graphics and peripheral boards
emphasizes the value of programming using the OS whenever possible to allow software to be
run on the widest variety of machine configurations.

Atari Computer Software

GEMDOS
GEMDOS consists of file system management routines that provide access to all of the basic
devices supported by Atari computers. It bears resemblance to MS-DOS in its functions and
opcode numbering while still maintaining some differences and advantages.

MultiTOS
MultiTOS is the first truly multi-tasking extension to GEMDOS supported by Atari. Based on
MiNT , developed by Eric Smith, MultiTOS adds true pre-emptive multitasking, memory
protection, and process control. Its methods of job control and interprocess communication will
be familiar to UNIX users. With the ability to support loadable device drivers and file systems,
MultiTOS provides a complete range of functions to complement GEMDOS. In its current
incarnation, MultiTOS is an option and thus disk-based as opposed to burned in ROM.

Atari GEM – 1.7

T H E A T A R I C O M P E N D I U M

BIOS
The ST BIOS (‘Basic Input/Output System’) comprises the lowest-level of device
communication. GEMDOS uses the BIOS to accomplish many of its file system operations.

XBIOS
The XBIOS (‘eXtended Basic Input/Output System’) controls other hardware-specific features
such as the floppy drive, video controller, DSP, MFP, and sound system.

Atari GEM

AES
The AES is responsible for window and menu control, messaging services, and object rendering
and manipulation.

VDI
The VDI consists of a series of drivers which provide device-independent access to the display
screen and external output devices such as printers and plotters through GDOS. All graphic
primitive operations are accomplished with the VDI . The AES, for instance, uses the VDI to
render its objects on screen.

GDOS
GDOS is a disk-loadable subsystem of the VDI . The term GDOS can refer to original GDOS,
FONTGDOS, or SpeedoGDOS. It controls loadable device drivers and fonts. The original
GDOS was limited to bitmap fonts and did not have the bezier capabilities of FONTGDOS or
SpeedoGDOS.

FONTGDOS
FONTGDOS is essentially a newer, faster GDOS with bezier rendering functions present.
FONTGDOS is otherwise completely backwardly compatible with GDOS.

SpeedoGDOS
SpeedoGDOS, named for the Speedo™ font format created by Bitstream, Inc., adds outline font
rendering capability to the basic features of GDOS. SpeedoGDOS also includes a
sophisticated caching system to promote the fastest rendering possible.

Two versions of outline GDOS exist. The original version (referred to as Font Scaling Module
(FSMGDOS)), based on QMS/Imagen fonts, was never officially released. Nonetheless, a
small number of users still use FSMGDOS and differences between them are noted.

LINE-A
LINE-A is a special set of routines that provide an assembly language interface to routines and
variables belonging to the VDI and XBIOS. It is so named because instruction opcodes
beginning with the hexadecimal number $A utilize a special microprocessor exception which
point to the LINE-A routines in ROM.

1.8 – Introduction to Atari Programming

T H E A T A R I C O M P E N D I U M

LINE-A is the only operating system component that has become out of date and incompatible.
Atari recommends that software developers avoid using LINE-A as it will be supported less
and less as hardware advancements make its use more incompatible. LINE-A is documented
briefly in this reference for completeness.

Desktop
The ‘Desktop’ is a independent GEM application burned into ROM. It facilitates program
launching and file manipulation as well as providing a graphical shell for user-interaction.

XCONTROL
XCONTROL (Extensible Control Panel) is a desk accessory application that provides access
to multiple modules called CPX’s (Control Panel Extensions) which are used to control system
configuration and other related functions. A special section in this reference discusses the
creation of CPX’s and the utility functions provided by the XCONTROL shell accessory.

Third-Party System Software

Geneva
Geneva is an alternative, TOS-compatible operating system developed by Gribnif Software. It
functions mostly as an AES replacement although it supplements other areas of the OS to
provide cooperative multitasking (as opposed to MultiTOS ’s pre-emptive multitasking).

Programming for Geneva 1.0 is identical to programming for GEM with AES version 4.0.
Geneva does not currently support MiNT extensions though Gribnif has announced plans to
eliminate this incompatibility in a future version. You can detect Geneva by searching for the
cookie ‘Gnva’ in the system cookie jar. Likewise, the presence of MiNT extensions can be
determined by the ‘MiNT’ cookie.

Programmers should not rely specifically on the presence of these cookies to determine if the
current OS variety supports multitasking. The AES global array contains values to help
determine the possible number of concurrent processes and the AES version number. In
addition, the AES call appl_sysinfo(), available as of AES 4.0, can be used to determine the
presence of special AES features.

Geneva offers several system extensions not available under MultiTOS . Information on
programming the Geneva OS is available in the commercial package and direct from Gribnif
Software.

Programming Languages

‘C’
‘C’ has become the default standard for Atari computer programming. Most reference books and
materials illustrate OS functions using ‘C’ style bindings. This book is oriented towards ‘C’
without, hopefully, alienating developers who develop in other languages. Several different ‘C’

Conventions – 1.9

T H E A T A R I C O M P E N D I U M

compilers exist in the Atari domain. All have their various features and quirks which make it
necessary to be familiar enough with your implementation to modify the source contained in this
reference appropriately.

All ‘C’ bindings in this book were created for use with Lattice ‘C’ by Hisoft, Inc.. They should
be easily convertable to other major Atari ‘C’ compilers.

Luckily, most ‘C’ compilers agree with their function naming and in most cases you can simply
call the function as listed. If you have an older version compiler you may need to add some
bindings using the information provided in accordance with your compiler’s recommendations.

Assembly Language
For the convenience of assembly language programmers, all functions are listed with their
opcode and related binding. In addition, a section provided in front of the function reference will
explain the calling conventions for functions in that category.

All assembly listings in this book were created for use by the AS68 compiler included in the
Atari developer’s kit.

BASIC
 Depending on the type of BASIC you utilize, functions may be named identically or differently
from what is listed in this book. It is recommended that you seek a BASIC compiler that gives
you proper access to all of the functions of the machine or familiarize yourself with a more
robust language.

Other Languages
Various other languages exist in the Atari domain. Pascal, Forth, ‘C++’, and others have
implementations that are similar in design to ‘C’. You should refer to your language manual to
properly utilize information found in this reference.

Conventions

Typesetting
The following table displays a list of typesetting conventions used in this book:

Style Meaning

Normal Text Standard body text.

BOLD TEXT Bolded words include function names
like appl_init() , ‘C’ macros,
‘#defined’ data types like WORD,
and operating system components
such as GEM and TOS.

Italicized Text Italicized text is used to represent

1.10 – Introduction to Atari Programming

T H E A T A R I C O M P E N D I U M

variable names like handle. In
addition sections of this book like
AES Reference Manual will be in
capitalized italic text.

| Text between vertical bars | Vertical bars imply the absolute value
of the variable or expression within.
For instance:

| -2 | == | 2 |

(Number 1, Number 2) Two numbers contained within
parentheses and separated by a
comma indicate a coordinate point X
followed by Y. For instance,
(100, 100).

Number1 ^ Number 2 2 ^ 8 is the same as 28 or 2 to the
power of 8.

Fixed Width Text This style of text is used to present
bindings and computer listings.

Table Text This smaller style of text is used in
tables as body text.

Functions
The function references in this guide are designed in a compatible manner for ease of reading.
Each function is illustrated as follows (headings not applicable for a particular function will be
omitted):

objc_draw() ÕÕFunction Name

WORD objc_draw(tree, obj, depth, bx, by, bw, bh) ÕÕDefinition
OBJECT * tree; ÕÕData Types
WORD obj, depth, bx, by, bw, bh;

Immediately following the definition, a brief summary of the function will follow.

OPCODE The opcode related to the function will be listed in decimal and hexadecimal
where appropriate.

AVAILABILITY This section will indicate any special conditions that must exist for this function to
be present (i.e.: OS version, presence of GDOS, etc.).

PARAMETERS The meaning of each parameter to the function will be explained here. If any data

Conventions – 1.11

T H E A T A R I C O M P E N D I U M

pointed to by parameters is modified it will be noted here as well.

BINDING This section will list a binding for the function in either ‘C’ format or assembly
format, whichever is more appropriate. Please note bindings were written with
ease of reading, not necessarily optimized code, in mind.

RETURN VALUE This section explains the return value of the function. This covers only that value
returned on the left side of the function expression.

VERSION NOTES Under this heading, any features of a function which are only present under certain
conditions are discussed.

CAVEATS Known bugs or abnormalities of a function are listed next to this heading.

COMMENTS Other useful information or hints are listed here.

SEE ALSO Functions which bear a relation to the current function or which are codependent
on one another are listed here.

Data Types
Within function definitions, several data types are referenced that vary from compiler to
compiler. The following provides a key to the data type used and their actual definition. Other
data types will contain a structure definition or ‘typedef’ within the binding. Be aware that some
compilers default to 16-bit integers while others use 32-bit integers.

Usage Synonyms Meaning
WORD short, int, short int 16-bit signed integer
UWORD unsigned int, unsigned

short, unsigned short int
16-bit unsigned integer

LONG long, int, long int 32-bit signed integer
ULONG unsigned long, unsigned

int, unsigned long int
32-bit unsigned integer

VOID void This naming is used to denote a
function with no parameters or return
value.

BOOLEAN bool, boolean, short,
short int, int

16-bit signed integer valid only as
TRUE (non-zero) or FALSE (0)

WORD * short *, int *,
short int *

This is a pointer to a 16-bit signed
integer.

UWORD * unsigned short *,
unsigned int *, unsigned
short int *

This is a pointer to a 16-bit unsigned
integer.

LONG * long *, int *, long int * This is a pointer to a 32-bit signed
integer.

ULONG * unsigned long *,
unsigned int *, unsigned
long int *

This is a pointer to a 32-bit unsigned
integer.

VOIDP void *, char * This represents a pointer to an

1.12 – Introduction to Atari Programming

T H E A T A R I C O M P E N D I U M

undefined memory type.
VOIDPP void **, char ** This represents a pointer to a pointer

of an undefined memory type.
char * None 8-bit character string buffer
BYTE, CHAR signed byte, signed char 8-bit signed byte
UBYTE, UCHAR unsigned byte, unsigned

char
8-bit unsigned byte

fix31 None This type holds a 31-bit mantissa and
sign bit. The value represents the
number contained multiplied times
1/65536. For a complete explanation
see Chapter 7: VDI.

Numeric Values
Because different computer languages use different nomenclature to specify numbers in different
bases, you will come across numbers presented in a variety of different ways within this book as
follows:

Prefix
Decimal 23 as
an Example Meaning

None 22 This number is shown in decimal (base 10) format.
The majority of numbers shown will be in this format for
simplicity.

0x 0x16 This number is shown in hexadecimal (base 16)
format. Function opcodes in assembly language and
numbers used as mask values will appear mostly in
this format.

$ $16 Same as above.
0 026 This number is shown in octal (base 8) format. Only in

extremely specialized cases will numbers by
represented in this manner.

% %00010110 This number is shownn in binary (base 2) format. Only
when dealing with hardware registers and in a few
other circumstances will numbers be represented in
this manner.

Constant Definitions
Modern programming practices dictate the use of named constants wherever possible in place of
‘raw’ values. Take for example the following call to Devconnect():

In ‘C’:

Devconnect(3, 9, 0, 0, 1);

In assembly language:

move.w #1,-(sp)
move.w #0,-(sp)
move.w #0,-(sp)
move.w #9,-(sp)
move.w #3,-(sp)
move.w #$8B,-(sp)

Conventions – 1.13

T H E A T A R I C O M P E N D I U M

trap #14
lea 12(sp),sp

Calling the function in this format makes debugging and program maintenance more difficult
because the parameters’ meanings are concealed by the numeric assignments. The following
code illustrates the preferred method of coding:

In ‘C’:

/* Extracted from TOSDEFS.H, included by TOS.H */
#define ADC 3
#define DMAREC 0x01
#define DAC 0x08
#define CLK_25M 0
#define CLK_COMPAT 0
#define NO_SHAKE 1

/* Program segment */
#include <TOS.H>

Devconnect(ADC, DMAREC|DAC, CLK_25M, CLK_COMPAT, NO_SHAKE);

In assembly language:

; Extracted from TOSDEFS.I

ADC EQU 3
DMAREC EQU $01
DAC EQU $08
CLK_25M EQU 0
CLK_COMPAT EQU 0
NO_SHAKE EQU 1

Devconnect EQU $8B

; Program Segment
INCLUDE “TOSDEFS.I”

move.w #NO_SHAKE, -(sp)
move.w #CLK_COMPAT,-(sp)
move.w #CLK_25M,-(sp)
move.w #DMAREC!DAC,-(sp)
move.w #ADC,-(sp)
move.w #Devconnect,-(sp)
trap #14
lea 12(sp),sp

Unfortunately, because many function call parameters do not have standard definitions
associated with them, programmers have had to create their own, which in turn makes their
programs less portable, or use the ‘raw’ constants. In addition, some compilers do not use
standardized definitions at all.

To help alleviate these difficulties, this revision of the Compendium contains named definitions
for almost every possible function parameter. These definitions come from the ‘C’ header files
TOS.H and TOSDEFS.H or the assembly include file TOSDEFS.I, both available on disk from

1.14 – Introduction to Atari Programming

T H E A T A R I C O M P E N D I U M

SDS. Every attempt has been made to ensure that these files compile with development tools in
the Lattice ‘C’, Pure ‘C’, and Alcyon ‘C’ packages. Some modifications to these files may be
necessary, however, due to the peculiarities of some compilers.

The ‘C’ header files consist of two parts to improve portability between compiles. The TOS.H
file is a compiler dependent file used to bind the operating system calls to definitions. This file,
in turn, includes the file TOSDEFS.H which should remain portable between compilers.

When choosing definitions for inclusion in the TOSDEFS files, names given by Atari were given
highest precedence followed by those assigned (and kept consistent) by compiler manufacturers.
Other definitions were created with simplicity and consistency in mind.

Use of the given constants will increase program code readability and provide for a higher level
of portability between compilers.

T H E A T A R I C O M P E N D I U M

– CHAPTER 2 –

GEMDOS

Overview – 2.3

T H E A T A R I C O M P E N D I U M

Overview

GEMDOS contains functions which comprise the highest level of TOS. In many cases,
GEMDOS devolves into BIOS calls which handle lower level device access. GEMDOS is
responsible for file, device, process, and high-level input/output management. The current
revision number of GEMDOS is obtained by calling Sversion(). You should note that the
GEMDOS version number is independent of the TOS version number and you should not count
on any particular version of GEMDOS being present based on the TOS version present.

Much of GEMDOS closely resembles its CPM 68k and MS-DOS heritage. In fact, the file
system and function calls are mostly compatible with MS-DOS. MS-DOS format floppy disks
are readable by an Atari computer and vice-versa.

For the creation of MultiTOS , GEMDOS was merged with the MiNT operating environment
which derives many of its calls from the UNIX operating system.

The TOS File System

GEMDOS is responsible for interaction between applications and file-based devices. Floppy
and hard disk drives as well as CD-ROM, WORM, and Magneto-Optical drives are all
accessed using GEMDOS calls.

Prior to the advent of MultiTOS , Atari programmers were limited to the TOS file system for
file storage and manipulation. With the introduction of MultiTOS , it is now possible for
developers to create custom file systems so that almost any conceivable disk format becomes
accessible.

As a default, MultiTOS will manage files between the TOS file system and alternative file
systems to maintain backward compatibility. Applications which wish to support extra file
system features may do so. The Pdomain() call may be used to instruct MultiTOS to stop
performing translations on filenames, etc. Other calls such as Dpathconf() can be used to
determine the requirements of a particular file system.

The explanation of the file system contained herein will limit itself to the TOS file system.

Drive Identifiers
Each drive connected to an Atari system is given a unique alphabetic identifier which is used to
identify it. Drive ‘A’ is reserved for the first available floppy disk drive (usually internal) and
drive ‘B’ for the second floppy disk drive. If only one floppy drive exists, two letters will still
be reserved and GEMDOS will treat drive ‘B’ as a pseudo-drive and request disk swaps as
necessary. This feature is automatically handled by GEMDOS and is transparent to the
application.

2.4 – GEMDOS

T H E A T A R I C O M P E N D I U M

Drives ‘C’ through ‘P’ are available for use by hard disk drives. One letter is assigned per hard
drive partition so a multiple-partition drive will be assigned multiple letters. MultiTOS extends
drive letter assignments to ‘Z’ drive. Drive ‘U’ is a special drive reserved for MultiTOS and is
unavailable for assignment.

The amount of free storage space remaining on a drive along with a drive’s basic configuration
can be determined using the Dfree() call.

GEMDOS Filenames
Under GEMDOS, each file located on a device is given a filename upon its creation which
serves to provide identification for the file. The filename has two parts consisting of a name
from one to eight characters long and an optional file extension of up to three characters long. If
a file extension exists, the two components are separated by a period. The extension should
serve to identify the format of the data whereas the name itself should identify the data itself.

Filenames may be changed after creation with the function Frename(); however, under no
circumstances may two files with the same filename reside in the same directory.

All GEMDOS functions ignore the alphabetic case of file and pathnames. The following
characters are legal filename characters:

Legal GEMDOS Filename Characters
A-Z, a-z, 0-9

! @ # $ % ^ & ()
+ - = ~ ` ; ‘ “ ,

< > | [] () _

GEMDOS Directories
To further organize data, GEMDOS provides file directories (or folders). Each drive may
contain any number of directories which, in turn, may contain files and additional directories.
This organization creates a tree-like structure of files and folders. A file’s location in this tree is
called the path.

Directory names follow the same format as GEMDOS filenames with a maximum filename
length of 8 characters and an optional 3 character extension. The first directory of a disk which
contains all subdirectories and files is called the root directory.

The Dcreate() and Ddelete() system calls are used to create and delete subdirectories.

Two special, system-created subdirectories are present in some directories. A subdirectory with
the name ‘..’ (two periods) refers to the parent of the current directory. The ‘..’ subdirectory is
present in every subdirectory.

A subdirectory with the name ‘.’ refers to the current directory. There is a ‘.’ subdirectory in
every directory.

The TOS File System – 2.5

T H E A T A R I C O M P E N D I U M

GEMDOS Path Specifications
To access a file, a complete path specification must be composed of the drive letter, directory
name(s), and filename. A file named ‘TEST.PRG’ located in the ‘SYSTEM’ directory on drive
‘C’ would have a path specification like the following:

C:\SYSTEM\TEST.PRG

The drive letter is the first character followed by a colon. Each directory and subdirectory is
surrounded by backslashes. If ‘TEST.PRG’ were located in the root directory of ‘C’ the path
specification would be:

C:\TEST.PRG

The drive letter and colon may be omitted causing GEMDOS to reference the default drive as
follows:

\TEST.PRG

A filename by itself will be treated as the file in the default directory and drive. The current
GEMDOS directory and drive may be found with the functions Dgetpath() and Dgetdrv()
respectively. They may be changed with the functions Dsetpath() and Dsetdrv().

Wildcards
The GEMDOS functions Fsfirst() and Fsnext() are used together to enumerate files of a given
path specification. These two functions allow the use of wildcard characters to expand their
search parameters.

The ‘?’ character is used to represent exactly one unknown character. The ‘*’ character is used
to represent any number of unknown characters. The following table gives some examples of the
uses of these characters.

Filename Found Not Found
. All files None
*.GEM TEST.GEM

ATARI.GEM
TEST.G
ATARI.IMG

A?ARI.? ATARI.O
ADARI.C

ADARI.IMG
ATARI.GEM

ATARI.??? ATARI.GEM
ATARI.IMG

ATARI.O
ATARI.C

Disk Transfer Address (DTA)
When using Fsfirst() and Fsnext() to build a list of files, TOS uses the Disk Transfer Address
(DTA) to store information about each file found. The format for the DTA structure is as
follows:

2.6 – GEMDOS

T H E A T A R I C O M P E N D I U M

typedef struct
{

BYTE d_reserved[21]; /* Reserved - Do Not Change */
BYTE d_attrib; /* GEMDOS File Attributes */
UWORD d_time; /* GEMDOS Time */
UWORD d_date; /* GEMDOS Date */
LONG d_length; /* File Length */
char d_fname[14]; /* Filename */

} DTA;

When a process is started, its DTA is located at a point where it could overlay potentially
important system structures. To avoid overwriting memory a process wishing to use Fsfirst()
and Fsnext() should allocate space for a new DTA and use Fsetdta() to instruct the OS to use it.
The original location of the DTA should be saved first, however. Its location can be found with
the call Fgetdta(). At the completion of the operation the old address should be replaced with
Fsetdta().

File Attributes
Every TOS file contains several attributes which define it more specifically. File attributes are
specified when a file is created with Fcreate() and can be altered later with Fattrib() .

The ‘read-only’ attribute bit is set to prevent modification of a file. This bit should be set at the
user’s discretion and not cleared unless the user explicitly requests it.

If the ‘hidden’ attribute is set, the file will not be listed by the desktop or file selector. These
files may still be accessed in a normal manner but will not be present in an Fsfirst() or Fsnext()
search unless the correct Fsfirst() bits are present.

The ‘system’ attribute is unused by TOS but remains for MS-DOS compatibility.

The ‘volume label’ attribute should be present on a maximum of one file per drive. The file
which has it set should be in the root directory and have a length of 0. The filename indicates the
volume name of the drive.

The ‘archive’ attribute is a special bit managed by TOS which indicates whether a file has been
written to since it was last backed up. Any time a Fcreate() call creates a file or Fwrite() is
used on a file, the Archive bit is set. This enables file backup applications to know which files
have been modified since the last backup. They are responsible for clearing this bit when
backing up the file.

File Time/Date Stamp
When a file is first created a special field in its directory entry is updated to contain the date and
time of creation. Fdatime() can be used to access or modify this information as necessary.

File Maintenance
New files should be created with Fcreate(). When a file is successfully created a positive file
handle is returned by the call. That handle is what is used to identify the file for all future
operations until the file is closed. After a file is closed its handle is invalidated.

The TOS File System – 2.7

T H E A T A R I C O M P E N D I U M

Files which are already in existence should be opened with Fopen(). As with Fcreate(), this
call returns a positive file handle upon success which is used in all subsequent GEMDOS calls
to reference the file.

Each process is allocated an OS dependent number of file handles. If an application attempts to
open more files than this limit allows, the open or create call will fail with an appropriate error
code. File handles may be returned to the system by closing the open file with Fclose().

Fopen() may be used in read, write, or read/write mode. In read mode, Fread() may be used to
access existing file contents. In write mode, any original information in the file is not cleared but
the data may be overwritten with Fwrite() . In read/write mode, either call may be used
interchangeably.

Every file has an associated file position pointer. This pointer is used to determine the location
for the next read or write operation. This pointer is expressed as a positive offset from the
beginning of the file (position 0) which is set upon first creating or opening a file. The pointer
may be read or modified with the function Fseek().

Existing files may be deleted with the GEMDOS call Fdelete().

File/Record Locking
File and record locking allow portions or all of a file to be locked against access from another
computer over a network or another process in the same system.

All versions of TOS have the ability to support file and record locking but not all have the
feature installed. If the ‘_FLK’ cookie is present in the system cookie jar then the Flock() call is
present. This call is used to create locks on individual sections (usually records) in a file.

Locking a file in use, when possible, is recommended to prevent other processes from modifying
the file at the same time.

Special File Handles
Several special file handles are available for access through the standard
Fopen()/Fread()/Fwrite() calls. They are as follows:

Name Handle Filename Device
GSH_BIOSCON 0xFFFF CON: Console (screen). Special characters

such as the carriage return, etc. are
interpreted.

GSH_BIOSAUX 0xFFFE AUX: Modem (serial port). This is the ST-
compatible port for machines with more
than one.

GSH_BIOSPRN 0xFFFD PRN: Printer (attached to the Centronics
Parallel port).

GSH_BIOSMIDIIN 0xFFFC Midi In
GSH_BIOSMIDIOUT 0xFFFB Midi Out

2.8 – GEMDOS

T H E A T A R I C O M P E N D I U M

GSH_CONIN 0x00 — Standard Input (usually directed to
GSH_BIOSCON)

GSH_CONOUT 0x01 — Standard Output (usually directed to
GSH_BIOSCON)

GSH_AUX 0x02 — Auxillary (usually directed to
GSH_BIOSAUX)

GSH_PRN 0x03 — Printer (usually directed to
GSH_BIOSPRN)

None 0x04 — Unused
None 0x05 — Unused
None 0x06 and up User-Specified User Process File Handles

These files may be treated like any other GEMDOS files for input/output and locking. Access to
these devices is also provided with GEMDOS character calls (see later in this chapter).

File Redirection
Input and output to a file may be redirected to an alternate file handle. For instance you may
redirect the console output of a TOS process to the printer.

File redirection is handled by the use of the Fforce() call. Generally you will want to make a
copy of the file handle with Fdup() prior to redirecting the file so that it may be restored to
normal operation when complete.

Memory Management

Atari systems support two kinds of memory. Standard RAM (sometimes referred to as ‘ST
RAM’) is general purpose RAM that can be used for any purpose including video and DMA.
Current Atari architecture limits the amount of standard RAM a system may have to 14MB.

Alternative RAM (sometimes referred to as ‘TT RAM’) can be accessed faster than standard
RAM but is not suitable for video memory or DMA transfers.

The Malloc() and Mxalloc() calls allocate memory blocks from the system heap. Malloc()
chooses the type of memory it allocates based on fields in the program header (see later in this
chapter). Mxalloc() allows the application to choose the memory type at run-time.

MultiTOS uses memory protection to prevent an errant process from damaging another. It is
possible with Mxalloc() to dynamically set the protection level of an allocated block.

Memory allocated with either Malloc() or Mxalloc() may be returned to the system with
Mfree(). Memory allocated by a process is automatically freed when the process calls Pterm().

GEMDOS Processes

The GEMDOS call Pexec() is responsible for launching executable files. The process which
calls Pexec() is called the parent and the file launched becomes the child. Each process may

GEMDOS Processes – 2.9

T H E A T A R I C O M P E N D I U M

have more than one child process. Depending on the mode used with Pexec(), the child may
share data and address space and/or run concurrently (under MultiTOS) with the parent.
GEMDOS executable files (GEM and TOS applications or desk accessories) contain the
following file header:

Name Offset Contents
PRG_magic 0x00 This WORD contains the magic value

(0x601A).
PRG_tsize 0x02 This LONG contains the size of the TEXT

segment in bytes.
PRG_dsize 0x06 This LONG contains the size of the

DATA segment in bytes.
PRG_bsize 0x0A This LONG contains the size of the BSS

segment in bytes.
PRG_ssize 0x0E This LONG contains the size of the

symbol table in bytes.
PRG_res1 0x12 This LONG is unused and is currently

reserved.
PRGFLAGS 0x16 This LONG contains flags which define

certain process characteristics (as
defined below).

ABSFLAG 0x1A This WORD flag should be non-zero to
indicate that the program has no fixups or
0 to indicate it does.

Since some versions of TOS handle files
with this value being non-zero incorrectly,
it is better to represent a program having
no fixups with 0 here and placing a 0
longword as the fixup offset.

Text Segment 0x1C This area contains the program’s TEXT
segment. A process is started by
JMP’ing to BYTE 0 of this segment with
the address of your processes basepage
at 4(sp).

Data Segment PRG_tsize +
0x1C

This area contains the program’s DATA
segment (if one exists).

Symbol Segment PRG_tsize +
PRG_dsize +

0x1C

This area contains the program’s symbol
table (if there is one). The symbol table
area is used differently by different
compiler vendors. Consult them for the
format.

Fixup Offset PRG_tsize +
PRG_dsize +
PRG_ssize +

0x1C

This LONG indicates the first location in
the executable (as an offset from the
beginning) containing a longword
needing a fixup. A 0 means there are no
fixups.

2.10 – GEMDOS

T H E A T A R I C O M P E N D I U M

Fixup
Information

PRG_tsize +
PRG_dsize +
PRG_ssize +

0x20

This area contains a stream of BYTEs
containing fixup information. Each byte
has a significance as follows:

Value Meaning
0 End of list.
1 Advance 254 bytes.

2-254 (even) Advance this many
bytes and fixup the
longword there.

PRGFLAGS is a bit field defined as follows:

Definition Bit(s) Meaning
PF_FASTLOAD 0 If set, clear only the BSS area on program

load, otherwise clear the entire heap.
PF_TTRAMLOAD 1 If set, the program may be loaded into

alternative RAM, otherwise it must be
loaded into standard RAM.

PF_TTRAMMEM 2 If set, the program’s Malloc() requests may
be satisfied from alternative RAM, otherwise
they must be satisfied from standard RAM.

— 3 Currently unused.
See left. 4 & 5 If these bits are set to 0 (PF_PRIVATE), the

processes’ entire memory space will be
considered private (when memory
protection is enabled).

If these bits are set to 1 (PF_GLOBAL), the
processes’ entire memory space will be
readable and writable by any process (i.e.
global).

If these bits are set to 2
(PF_SUPERVISOR), the processes’ entire
memory space will only be readable and
writable by itself and any other process in
supervisor mode.

If these bits are set to 3 (PF_READABLE),
the processes’ entire memory space will be
readable by any application but only writable
by itself.

— 6-15 Currently unused.

When a process is started by GEMDOS, it allocates all remaining memory, loads the process
into that memory, and JMP’s to the first byte of the application’s TEXT segment with the address
of the program’s basepage at 4(sp). An application should use the basepage information to
decide upon the amount of memory it actually needs and Mshrink() to return the rest to the
system. The exception to this is that desk accessories are only given as much space as they need
(as indicated by their program header) and their stack space is pre-assigned.

GEMDOS Processes – 2.11

T H E A T A R I C O M P E N D I U M

The following code illustrates the proper way to release system memory and allocate your stack
(most ‘C’ startup routines do this for you):

stacksize = $2000 ; 8K

.text

_start:
move.l 4(sp),a0 ; Obtain pointer to basepage
move.l a0,basepage ; Save a copy
move.l $18(a0),a1 ; BSS Base address
adda.l $1C(a0),a1 ; Add BSS size
adda.l #stacksize,a1 ; Add stack size

move.l a1,sp ; Move your stack pointer to
; your new stack.

suba.l basepage,a1 ; TPA size
move.l a1,-(sp)
move.l basepage,-(sp)
clr.w -(sp)
move.w #$4a,-(sp) ; Mshrink()
trap #1
lea 12(sp),sp ; Fix up stack

; and fall through to main
_main:

...

.bss

basepage: ds.l 1

.end

The GEMDOS BASEPAGE structure has the following members:

Name Offset Meaning
p_lowtpa 0x00 This LONG contains a pointer to the Transient

Program Area (TPA).
p_hitpa 0x04 This LONG contains a pointer to the top of the

TPA + 1.
p_tbase 0x08 This LONG contains a pointer to the base of

the text segment
p_tlen 0x0C This LONG contains the length of the text

segment.
p_dbase 0x10 This LONG contains a pointer to the base of

the data segment.
p_dlen 0x14 This LONG contains the length of the data

segment.
p_bbase 0x18 This LONG contains a pointer to the base of

the BSS segment.
p_blen 0x1C This LONG contains the length of the BSS

segment.
p_dta 0x20 This LONG contains a pointer to the

processes’ DTA.

2.12 – GEMDOS

T H E A T A R I C O M P E N D I U M

p_parent 0x24 This LONG contains a pointer to the
processes’ parent’s basepage.

p_reserved 0x28 This LONG is currently unused and is
reserved.

p_env 0x2C This LONG contains a pointer to the
processes’ environment string.

p_undef 0x30 This area contains 80 unused, reserved bytes.
p_cmdlin 0x80 This area contains a copy of the 128 byte

command line image.

Processes terminate themselves with either Pterm0(), Pterm(), or Ptermres(). Ptermres()
allows a segment of a file to remain behind in memory after the file itself terminates (this is
mainly useful for TSR utilities).

The Atari Extended Argument Specification
When a process calls Pexec() to launch a child, the child may receive a command line up to 125
characters in length. The command line does not normally contain information about the process
itself (what goes in argv[0] in ‘C’). The Atari Extended Argument Specification (ARGV) allows
command lines of any length and correctly passes the child the command that started it. The
ARGV specification works by passing the command tail in the child’s environment rather than in
the command line buffer.

Both the parent and child have responsibilities when wanting to correctly handle the ARGV
specification. If a process wishes to launch a child with a command line of greater than 125
characters it should follow these steps:

1. Allocate a block of memory large enough to hold the existing environment, the
string ‘ARGV=’ and its terminating NULL , a string containing the complete path
and filename of the child process and its terminating NULL , and a string
containing the child’s command line arguments and its terminating NULL .

2. Next, copy these elements into the reserved block in the order given above.

3. Finally, call Pexec() with this environment string and a command line containing a
length byte of 127 and the first 125 characters of the command line with a
terminating NULL .

For a child to correctly establish that a parent process is using ARGV it should check for the
length byte of 127 and the ARGV variable. Some parents may assign a value to ARGV (found
between the ‘ARGV=’ and the terminating NULL byte). It should be skipped over and ignored.
If a child detects that its parent is using ARGV, it then has the responsibility of breaking down
the environment into its components to properly obtain its command line elements.

It should be noted that many compilers include ARGV parsing in their basic startup stubs. In
addition, applications running under MultiTOS should use the AES call shel_write() as it
automatically creates an ARGV environment string.

GEMDOS Vectors – 2.13

T H E A T A R I C O M P E N D I U M

GEMDOS Vectors

GEMDOS reserves eight system interrupt vectors (of which only three are used) for various
system housekeeping. The BIOS function Setexc() should be used to redirect these vectors
when necessary. The GEMDOS vectors are as follows:

Name
Setexc()

Vector Number Usage
VEC_TIMER 0x0100 Timer Tick Vector: This vector is jumped through 50 times

per second to maintain the time-of-day clock and accomplish
other system housekeeping. A process intercepting this
vector does not have to preserve any registers but should
jump through the old vector when completed. Heavy use of
this vector can severly affect system performance. Return
from this handler with RTS.

VEC_CRITICALERR 0x0101 Critical Error Handler: This vector is used by the BIOS to
service critical alerts (an Rwabs() disk error or media
change request). When called, the WORD at 4(sp) is a
GEMDOS error number. On return, D0.L should contain
0x0001000 to retry the operation, 0 to ignore the error, or
0xFFFFFFxx to return an error code (xx). D3-D7 and A3-A6
must be preserved by the handler. Return from this handler
with RTS.

VEC_PROCTERM 0x0102 Process Terminate Vector: This vector is called just prior to
the termination of a process ended with CTRL-C. Return from
this handler with RTS.

— 0x103-0x0107 Currently unused.

MiNT

MiNT is Now TOS (MiNT) is the extension to GEMDOS that allows GEMDOS to multitask
under MultiTOS . MiNT also provides memory protection (on a 68030 or higher) to protect an
errant process from disturbing another.

Processes
MiNT assigns each process a process identifier and a process priority value. The identifier is
used to distinguish the process from others in the multitasking environment. Pgetpid() is used to
obtain the MiNT ID of the process and Pgetppid() can be used to obtain the ID of the processes’
parent.

MiNT also supports networking file systems that support the concept of user and process group
control. The Pgetpgrp(), Psetpgrp(), Pgetuid(), Psetuid(), Pgeteuid(), and Pseteuid() get and
set the process, user, and effective user ID for a process.

MiNT has complete control over the amount of time allocated to individual processes. It is
possible, however, to set a process ‘delta’ value with Pnice() or Prenice() which will be used
by MiNT to decide the amount of processor time a process will get per timeslice. Syield() can
be used to surrender the remaining portion of a timeslice.

2.14 – GEMDOS

T H E A T A R I C O M P E N D I U M

Information about a processes’ resource usage can be obtained by calling Prusage(). These
values can be modified with Psetlimit(). System configuration capabilities may be obtained with
Sysconf().

Each process can have a user-defined longword value assigned to itself with Pusrval().

The functions Pwait(), Pwait3(), and Pwaitpid() attempt to determine the exit codes of stopped
child processes.

Threads
It is possible under MiNT to split a single process into ‘threads’. These threads continue
execution independently as unique processes. The Pfork() and Pvfork() calls are used to split a
process into threads.

The original process that calls Pfork() or Pvfork() is considered the parent and the newly
created process is considered the child.

Child processes created with Pfork() share the TEXT segment of the parent, however they are
given a copy of the DATA and BSS segments. Both the parent and child execute concurrently.

Child processes created with Pvfork() share the entire program code and data space including
the processor stack. The parent process is suspended until the child exits or calls Pexec()’s
mode 200.

Child processes started with either call may make GEM calls but a child process started with
Pfork() must call appl_init() to force GEM to uniquely recognize it as an independent process.
This is not necessary with Pvfork() because all program variables are shared.

The following is a simple example of using a thread in a GEM application:

VOID
UserSelectedPrint(VOID)
{

/* Prevent the user from editing buffer being printed. */
LockBufferFromEdits();

if(Pfork() == 0)
{

/* Child enters here */

appl_init(); /* Required for GEM threads. */

DisplayPrintingWindow(); /* Do our task. */
PrintBuffer();

/* Send an AES message to the parent telling it to unlock buffer. */
SendCompletedMessageToParent();

/* Cleanup and exit thread. */
appl_exit();

MiNT – 2.15

T H E A T A R I C O M P E N D I U M

Pterm(0);
}

/* Parent returns and continues normal execution. */
}

File System Extensions
MiNT provides several new file and directory manipulation functions that work with TOS and
other loadable file systems. The Fcntl() function performs a large number of file-based tasks
many of which apply to special files like terminal emulators and ‘U:\’ files. Fxattr() is used to
obtain a file’s extended attributes. Some extended attributes are not relevant to the TOS file
system and will not return meaningful values (see the Function Reference for details).

Fgetchar() and Fputchar() can be used to get and put single characters to a file. Finstat() and
Foutstat() are used to determine the input or output status of a file. Fselect() is used to select
from a group of file handles those ready to be read from or written to (often used for pipes).

Flink() , Fsymlink(), and Freadlink() are used to create hard and symbolic links to another file.
Links are not supported by all file systems (see the entries for these functions for more details).

Some file systems may support the concept of file ownership and access permissions (TOS does
not). The Fchown() and Fchmod() calls are used to adjust the ownership flags and access
permissions of a file. Pumask() can be used to set the minimum access permissions assigned to
each subsequently created file.

Fmidipipe() is used to redirect the file handles used for MIDI input and output.

MiNT provides four new functions for directory enumeration (they provide similar functionality
to Fsfirst() and Fsnext() with a slightly easier interface). Dopendir() is used to open a directory
for enumeration. Dreaddir() steps through each entry in a directory. Drewinddir() resets the file
pointer to the beginning of the directory. Dclosedir() closes a directory.

Dlock() allows disk-formatters and other utilities which require exclusive access to a drive the
ability to lock a physical device from other processes.

Dgetcwd() allows a process to obtain the current GEMDOS working directory for any process
in the system (including itself).

Dcntl() performs device and file-system specific operations (consult the Function Reference
for more details).

Pseudo Drives
MiNT creates a pseudo drive ‘U:’ which provides access to device drivers, processes, and
other system resources. In addition to creating a directory on drive U: for each system drive,
MiNT may create any of the following directories at the ROOT of the drive:

Folder Name Contents

2.16 – GEMDOS

T H E A T A R I C O M P E N D I U M

\DEV Loaded devices
\PIPE System pipes

\PROC System processes
\SHM Shared memory blocks

Drive directories on ‘U:’ act as if they were accessed by their own drive letter. Folder ‘U:\C\’
contains the same files and folders as ‘C:\’.

The ‘U:\PROC’ Directory
Each system process has a file entry in the ‘U:\PROC’ directory. The filename given a process
in this directory is the basename for the file (without extension) with an extension consisting of
the MiNT process identifier. The MINIWIN.PRG application might have an entry named
‘MINIWIN.003’.

The file size listed corresponds to the amount of memory the process is using. The time and date
stamp contains the length of time the process has been executing as if it were started on Jan. 1st,
1980 at midnight. The file attribute bits tell special information about a process as follows:

Name
Attribute

Byte Meaning
PROC_RUN 0x00 The process is currently running.
PROC_READY 0x01 The process is ready to run.
PROC_TSR 0x02 The process is a TSR.
PROC_WAITEVENT 0x20 The process is waiting for an event.
PROC_WAITIO 0x21 The process is waiting for I/O.
PROC_EXITED 0x22 The process has been exited but not

yet released.
PROC_STOPPED 0x24 The process was stopped by a

signal.

Loadable Devices
MiNT contains a number of built-in devices and also supports loadable device drivers. Current
versions of MiNT may contain any of the following devices:

Device
Filename Device
CENTR Centronics Parallel Port
MODEM1 Modem Port 1
MODEM2 Modem Port 2
SERIAL1 Serial Port 1
SERIAL2 Serial Port 2
MIDI MIDI ports
PRN PRN: device (usually the Centronics Parallel Port)
AUX AUX: device (usually the RS232 Port)
CON Current Terminal
TTY Current Terminal (same as CON)
STDIN Current File Handle 0 (standard input)
STDOUT Current File Handle 1 (standard output)
STDERR Current File Handle 2 (standard error)
CONSOLE Physical Console (keyboard/screen)

MiNT – 2.17

T H E A T A R I C O M P E N D I U M

MOUSE Mouse (system use only)
NULL NULL device
AES_BIOS AES BIOS Device (system use only)
AES_MT AES Multitasking Device (system use only)

Each of these devices is represented by a filename (as shown in the table above) in the
‘U:\DEV\’ directory. Using standard GEMDOS calls (ex: Fread() and Fwrite()) on these files
yields the same results as accessing the device directly. New devices, including those directly
accessible by the BIOS, may be added to the system with the Dcntl() call using a parameter of
DEV_INSTALL , DEV_NEWBIOS, or DEV_NEWTTY . See the Dcntl() call for details.

MiNT versions 1.08 and above will automatically load device drivers with an extension of
‘.XDD’ found in the root or ‘\MULTITOS’ directory. ‘.XDD’ files are special device driver
executables which are responsible for installing one (or more) new devices. MiNT will load the
file and JSR to the first instruction in the TEXT segment (no parameters are passed). The device
driver executable should not attempt to Mshrink() or create a stack (one has already been
created).

The ‘.XDD’ may then either install its device itself with Dcntl() and return DEV_SELFINST
(1L) in register D0 or return a pointer to a DEVDRV structure to have the MiNT kernel install it
(the ‘U:\DEV\’ filename will be the same as the first eight characters of the ‘.XDD’ file). If for
some reason, the device can not be initialized, 0L should be returned in D0.

When creating a new MiNT device with Dcntl(DEV_INSTALL , devname, &dev_descr) the
structure dev_descr contains a pointer to your DEVDRV structure defined as follows:

typedef struct devdrv
{

LONG (*open)(FILEPTR *f);
LONG (*write)(FILEPTR *f, char *buf, LONG bytes);
LONG (*read)(FILEPTR *f, char *buf, LONG bytes);
LONG (*lseek)(FILEPTR *f, LONG where, LONG whence);
LONG (*ioctl)(FILEPTR *f, WORD mode, VOIDP buf);
LONG (*datime)(FILEPTR *f, WORD *timeptr, WORD rwflag);
LONG (*close)(FILEPTR *f, WORD pid);
LONG (*select)(FILEPTR *f, LONG proc, WORD mode);
LONG (*unselect)(FILEPTR *f, LONG proc, WORD mode);
LONG reserved[3];

} DEVDRV;

Each of the assigned members of this structure should point to a valid routine that provides the
named operation on the device. The routine must preserve registers D2-D7 and A2-A7 returning
its completion code in D0. No operating system TRAPs should be called from within these
routines, however, using the vector tables provided in the kerinfo structure returned from the
Dcntl() call, GEMDOS and BIOS calls may be used. The specific function that each routine is
responsible for is as follows:

2.18 – GEMDOS

T H E A T A R I C O M P E N D I U M

Member Meaning
open This routine is called by the MiNT kernel after a FILEPTR structure has been created for a file

determined to be associated with the device. The routine should perform whatever initialization
is necessary and exit with a standard GEMDOS completion code.

This routine is responsible for validating the sharing mode and other file flags to verify that the file
may be legally opened and should respond with an appropriate error code if necessary.

write This routine should write bytes number of BYTEs from buf to the file specified in FILEPTR. If the
file pointer has the O_APPEND bit set, the kernel will perform an lseek() call to the end of the file
prior to calling this function. If the lseek()/write() series of calls does not guarantee that data will
be written at the end of a file associated with your device, this function must ensure that the data
specified is actually written at the end of the file.

This function should return with a standard GEMDOS error code or the actual number of BYTEs
written to the file when complete.

read This routine should read bytes number of BYTEs from the file specified in FILEPTR and place
them in the buffer buf. This function should return with a standard GEMDOS error code or the
actual number of bytes read by the routine.

lseek This routine should move the file position pointer to the appropriate location in the file as
specified by the parameter where in relation to the seek mode whence. Seek modes are the
same as with Fseek() . The routine should return a GEMDOS error code or the absolute new
position from the start of the file if successful.

ioctl This routine is called from the system’s perspective as Fcntl() and is used to perform file
system/device specific functions. At the very least, your device should support FIONREAD,
FIONWRITE, and the file/record locking modes of Fcntl() . The arg parameter of Fcntl() is
passed as buf.

datime This routine is used to read or modify the date/time attributes of a file. timeptr is a pointer to two
LONGs containing the time and date of the file respectively. These LONGs should be used to
set the file date and time if rwflag is non-zero or filled in with the file’s creation date and time if
rwflag is 0.

This function should return with a standard GEMDOS error code or E_OK (0) if successful.
close This routine is used by the kernel to close an open file. Be aware that if f->links is non-zero,

additional processes still have valid handles to the file. If f->links is 0 then the file is really being
closed. pid specifies the process closing the file and may not necessarily be the same as the
process that opened it.

Device drivers should set the O_LOCK bit on f->flag when the F_SETLK or F_SETLKW ioctl()
call is made. This bit can be tested for when a file is closed and all locks on all files associated
with the same physical file owned by process pid should be removed. If the file did not have any
locks created on it by process pid, then no locks should be removed.

This routine should return with a standard GEMDOS error code or E_OK (0) if successful.
select This routine is called when a call to Fselect() names a file handled by this device. If mode is

O_RDONLY then the select is for reading, otherwise, if mode is O_WRONLY then it is for
writing. If the user Fselect() ’s for both reading and writing then two calls to this function will be
made.

The routine should return 1L if the device is ready for reading or writing (as appropriate) or it
should return 0L and arrange to ‘wake up’ process proc when I/O becomes possible. This is
usually accomplished by calling the wakeselect() member function of the kernel structure. Note
that the value in proc is not the same as a PID and is actually a pointer to a PROC structure
private to the MiNT kernel.

unselect This routine is called when a device waiting for I/O should no longer be waited for. The mode and

MiNT – 2.19

T H E A T A R I C O M P E N D I U M

proc parameters are the same as with select() . As with select() , if neither reading nor writing is
to be waited for, two calls to this function will be made.

This routine should return a standard GEMDOS error code or E_OK (0) if successful.

The FILEPTR structure pointed to by a parameter of each of the above calls is defined as
follows:

typedef struct fileptr
{

WORD links;
UWORD flags;
LONG pos;
LONG devinfo;
fcookie fc;
struct devdrv *dev;
struct fileptr *next;

} FILEPTR;

The members of FILEPTR have significance as follows:

Member Meaning
links This member contains a value indicating the number of copies of this file descriptor currently in

existence.
flags This member contains a bit mask which indicates several attributes (logically OR’ed together) of

the file as follows:

Name Mask Meaning
O_RDONLY 0x0000 File is read-only.
O_WRONLY 0x0001 File is write-only.
O_RDWR 0x0002 File may be read or written.
O_EXEC 0x0003 File was opened to be executed.
O_APPEND 0x0008 Writes start at the end of the file.
O_COMPAT 0x0000 File-sharing compatibility mode.
O_DENYRW 0x0010 Deny read and write access.
O_DENYW 0x0020 Deny write access.
O_DENYR 0x0030 Deny read access.
O_DENYNONE 0x0040 Allow reads and writes.
O_NOINHERIT 0x0080 Children cannot use this file.
O_NDELAY 0x0100 Device should not block for I/O on this file.
O_CREAT 0x0200 File should be created if it doesn’t exist.
O_TRUNC 0x0400 File should be truncated to 0 BYTEs if it already exists.
O_EXCL 0x0800 Open should fail if file already exists.
O_TTY 0x2000 File is a terminal.
O_HEAD 0x4000 File is a pseudo-terminal “master.”
O_LOCK 0x8000 File has been locked.

pos This field is initialized to 0 when a file is created and should be used by the device driver to store
the file position pointer.

devinfo This field is reserved for use between the file system and the device driver and may be used as
desired. The exception to this is if the file is a TTY, in which case devinfo must be a pointer to a
tty structure.

fc This is the file cookie for the file as follows:

typedef struct f_cookie

2.20 – GEMDOS

T H E A T A R I C O M P E N D I U M

{
FILESYS *fs;
UWORD dev;
UWORD aux;
LONG index;

} fcookie;

fs is a pointer to the file system structure responsible for this device. dev is a UWORD giving a
useful device ID (such as the Rwabs() device number). The meaning of aux is file system
dependent. index should be used by file systems to provide a unique means of identifying a file.

dev This is a pointer to the DEVDRV structure of the device driver responsible for this file.
next This pointer may be used by device drivers to link copies of duplicate file descriptors to

implement file locking or sharing code.

Upon successful return from the Dcntl() call, a pointer to a kerinfo structure will be returned.
The kerinfo structure is defined below:

typedef LONG (*Func)();

struct kerinfo
{

WORD maj_version;
WORD min_version;
UWORD default_mode;
WORD reserved1;

Func *bios_tab;
Func *dos_tab;

VOID (*drvchng)(UWORD dev);

VOID (*trace)(char *, ...);
VOID (*debug)(char *, ...);
VOID (*alert)(char *, ...);
VOID (*fatal)(char *, ...);

VOIDP (*kmalloc)(LONG size);
VOID (*kfree)(VOIDP memptr);
VOIDP (*umalloc)(LONG size);
VOID (*ufree)(LONG memptr);

WORD (*strnicmp)(char *str1, char *str2, WORD maxsrch);
WORD (*stricmp)(char *str1, char *str2);
char * (*strlwr)(char *str);
char * (*strupr)(char *str);
WORD (*sprintf)(char *strbuf, const char *fmtstr, ...);

VOID (*millis_time)(ULONG ms, WORD *td);
LONG (*unixtim)(UWORD time, UWORD date);
LONG (*dostim)(LONG unixtime);

VOID (*nap)(UWORD n);
VOID (*sleep)(WORD que, WORD cond);
VOID (*wake)(WORD que, WORD cond);
VOID (*wakeselect)(LONG proc);

WORD (*denyshare)(FILEPTR *list, FILEPTR *f);
LOCK * (*denylock)(LOCK *list, LOCK *new);

MiNT – 2.21

T H E A T A R I C O M P E N D I U M

LONG res2[9];
};

The members of the kerinfo structure are defined as follows:

Member Meaning
maj_version This WORD contains the kernel version number.
min_version This WORD contains the minor kernel version number.
default_mode This UWORD contains the default access permissions for a file.
reserved1 Reserved.
bios_tab This is a pointer to the BIOS function jump table. Calling bios_tab[0x00]() is equivalent to

calling Getmpb() and is the only safe way from within a device driver or file system.
dos_tab This is a pointer to the GEMDOS function jump table. Calling dos_tab[0x3D]() is equivalent

to calling Fopen() and is the only safe way from within a device driver or file system.
drvchng This function should be called by a device driver if a media change was detected on the

device during an operation. The parameter dev is the BIOS device number of the device.
trace This function is used to send information messages to the kernel for debugging purposes.
debug This function is used to send error messages to the kernel for debugging purposes.
alert This function is used to send serious error messages to the kernel for debugging purposes.
fatal This function is used to send fatal error messages to the kernel for debugging purposes.
kmalloc Use this internal heap memory management function to allocate memory.
kfree Use this internal heap memory management function to free memory allocated with

kmalloc().
umalloc Use this internal heap memory management function to allocate memory and attach it to the

current process. The memory will be released automatically when the current process exits.
ufree Use this internal heap memory management function to allocate memory allocated with

ufree().
strnicmp This function compares maxsrch characters of str1 to str2 and returns a negative value if

str1 is lower than str2, a positive value if str1 is higher than str2, or 0 if they are equal.
stricmp This function compares two NULL terminated strings, str1 to str2, and returns a negative

value if str1 is lower than str2, a positive value if str1 is higher than str2, or 0 if they are
equal.

strlwr This function converts all alphabetic characters in str to lower case.
strupr This function converts all alphabetic characters in str to upper case.
sprintf This function is the same as the ‘C’ library sprintf() function except that it will only convert

SPRINTF_MAX characters (defined in TOSDEFS.H).
millis_time This function converts the millisecond time value in ms to a GEMDOS time in td[0] and date

in td[1].
unixtim This function converts a GEMDOS time and date in a UNIX format LONG.
dostim This function converts a UNIX format LONG time/date value into a GEMDOS time/date

value. The return value contains the time in the upper WORD and the date in the lower
WORD.

nap This function causes a delay of n milliseconds.
sleep This function causes the current process to sleep, placing it on the system que que until

condition cond is met.
wake This function causes all processes in que que, waiting for condition cond, to be woken.
wakeselect This function wakes a process named by the code proc currently doing a select operation.
denyshare This function determines whether the sharing mode of f conflicts with any of the files given in

the linked list list.
denylock This function determines whether a new lock new conflicts with any existing lock in the

linked list list. The LOCK structure is used internally by the kernel and is defined as follows:

2.22 – GEMDOS

T H E A T A R I C O M P E N D I U M

typedef struct ilock
{

FLOCK l;
struct ilock *next;
LONG reserved[4];

} LOCK;

l is the structure actually containing the lock data (as defined in Fcntl()). next is a pointer to
the next LOCK structure in the linked list or NULL if this is the last lock. reserved is a
pointer to four LONGs currently reserved.

res2 These longwords are reserved for future expansion.

Loadable File Systems
MiNT supports loadable file systems to provide support for those other than TOS (such as
POSIX, HPFS, ISO 9660 CD-ROM, etc.) The MiNT kernel will automatically load file system
‘.XFS’ executables found in the \MULTITOS or root directory. As of MiNT version 1.08, it is
also possible to have a TSR program install a file system with the Dcntl() call.

When the file system is executed by MiNT (i.e. not via Dcntl()), MiNT creates an 8K stack and
shrinks the TPA so a call to Mshrink() is not necessary. The first instruction of the code segment
of the file is JSR’ed to with a pointer to a kerinfo (as defined above) structure at 4(sp). The file
system should use this entry point to ensure that it is running on the minimum version of MiNT
needed and that any other aspects of the system are what is required for the file system to
operate.

It is not necessary to scan existing drives to determine if they are compatible with the file system
as that is accomplished with the file system root() function (defined below). If the file system
needs to make MiNT aware of drives that would not be automatically recognized by the system,
it should update the longword variable _drvbits at location 0x04F2 appropriately.

If the file system was unable to initialize itself or the host system is incapable of supporting it,
the entry stub should return with a value of 0L in d0. If the file system installs successfully, it
should return a pointer to a FILESYS (defined below) structure in d0. A file system should
never call Pterm() or Ptermres().

All file system functions, including the entry stub, must preserve registers d2-d7 and a2-a7. Any
return values should be returned in d0. Function arguments are passed on the stack. The
following listing defines the FILESYS structure:

typedef struct filesys
{

struct filesys *next;
LONG fsflags;
LONG (*root)(WORD drv, fcookie *fc);
LONG (*lookup)(fcookie *dir, char *name, fcookie *fc);
LONG (*creat)(fcookie *dir, char *name, UWORD mode, WORD
attrib,

fcookie *fc);
DEVDRV *(*getdev)(fcookie *fc, LONG *devspecial);

MiNT – 2.23

T H E A T A R I C O M P E N D I U M

LONG (*getxattr)(fcookie *file, XATTR *xattr);
LONG (*chattr)(fcookie *file, WORD attr);
LONG (*chown)(fcookie *file, WORD uid, WORD gid);
LONG (*chmode)(fcookie *file, WORD mode);
LONG (*mkdir)(fcookie *dir, char *name, UWORD mode);
LONG (*rmdir)(fcookie *dir, char *name);
LONG (*remove)(fcookie *dir, char *name);
LONG (*getname)(fcookie *relto, fcookie *dir, char *pathname
);
LONG (*rename)(fcookie *olddir, fcookie *oldname,

fcookie *newdir, fcookie *newname);
LONG (*opendir)(DIR *dirh, WORD tosflag);
LONG (*readdir)(DIR *dirh, char *name, WORD namelen,

fcookie *fc);
LONG (*rewinddir)(DIR *dirh);
LONG (*closedir)(DIR *dirh);
LONG (*pathconf)(fcookie *dir, WORD which);
LONG (*dfree)(fcookie *dir, long *buf);
LONG (*writelabel)(fcookie *dir, char *name);
LONG (*readlabel)(fcookie *dir, char *name);
LONG (*symlink)(fcookie *dir, char *name, char *to);
LONG (*readlink)(fcookie *file, char *buf, short buflen);
LONG (*hardlink)(fcookie *fromdir, char *fromname,

fcookie *todir, char *toname);
LONG (*fscntl)(fcookie *dir, char *name, WORD cmd, LONG arg
);
LONG (*dskchng)(WORD dev);
LONG zero;

} FILESYS;

The members of the FILESYS structure are interpreted by MiNT as follows:

Member Meaning
next This member is a pointer to the next FILESYS structure in the kernel’s linked list. It should be

left as NULL .
fsflags This is a bit mask of flags which define attributes of the file system as follows:

Name Mask Meaning
FS_KNOPARSE 0x01 Kernel shouldn’t do directory parsing (common for

networked file systems).
FS_CASESENSITIVE 0x02 File system names are case-sensitive (common for

Unix compatible file systems).
FS_NOXBIT 0x04 Files capable of being read are capable of being

executed (present in most file systems).
root This function is called by the kernel to retrieve a file cookie for the root directory of the drive

associated with BIOS device dev. When initializing, the kernel will query each file system, in
turn, to determine which file system should handle a particular drive. If your file system
recognizes the drive specified by dev it should fill in the fcookie structure as appropriate and
return E_OK. If the drive is not compatible with your file system, return an appropriate negative
GEMDOS error code (usually EDRIVE).

2.24 – GEMDOS

T H E A T A R I C O M P E N D I U M

lookup This function should translate a file name into a cookie. If the FS_KNOPARSE bit of fsflags is
not set, name will be the name of a file in the directory specified by the fcookie dir. If the
FS_KNOPARSE bit was set, name will be a path name relative to the specified directory dir.

If the file is found, the fcookie structure fc should be filled in with appropriate details and either
E_OK or EMOUNT (if name is ‘..’ and dir specifies the root directory) should be returned,
otherwise an appropriate error code (like EFILNF) should be returned.

A lookup() call with a NULL name or with a name of ‘.’ should always succeed and return a
cookie representing the current directory. When creating a file cookie, symbolic links should
never be followed.

creat This function is used by the kernel to instruct the file system to create a file named name in the
directory specified by dir with attrib attributes (as defined by Fattrib()) and mode permissions
as follows:

Name Mask Permission
S_IXOTH 0x0001 Execute permission for all others.
S_IWOTH 0x0002 Write permission for all others.
S_IROTH 0x0004 Read permission for all others.
S_IXGRP 0x0008 Execute permission for processes with same group ID.
S_IWGRP 0x0010 Write permission for processes with same group ID.
S_IRGRP 0x0020 Read permission for processes with same group ID.
S_IXUSR 0x0040 Execute permission for processes with same user ID.
S_IWUSR 0x0080 Write permission for processes with same user ID.
S_IRUSR 0x0100 Read permission for processes with same user ID.
S_ISVTX 0x0200 Unused
S_ISGID 0x0400 Alter effective group ID when executing this file.
S_ISUID 0x0800 Alter effective user ID when executing this file.
S_IFCHR 0x2000 File is a BIOS special file.
S_IFDIR 0x4000 File is a directory.
S_IFREG 0x8000 File is a regular file.
S_IFIFO 0xA000 File is a FIFO.
S_IMEM 0xC000 File is a memory region.
S_IFLNK 0xE000 File is a symbolic link.

If the file is created successfully, the fcookie structure fc should be filled in to represent the
newly created file and E_OK should be returned. On an error, an appropriate GEMDOS error
code should be returned.

getdev This function is used by the kernel to identify the device driver that should be used to do file I/O
on the file named by fc. The function should return a pointer to the device driver and place a
user-defined value in the longword pointed to by devspecial. If the function fails, the function
should return and place a negative GEMDOS error code in the longword pointed to by
devspecial.

getxattr This function should fill in the XATTR structure pointed to by xattr with the extended attributes of
file fc. If the function succeeds, the routine should return E_OK, otherwise a negative GEMDOS
error code should be returned.

chattr This function is called by the kernel to instruct the file system to change the attributes of file fc to
those in attr (with only the low eight bits being signifigant). The function should return a standard
GEMDOS error code on exit.

chown This function is called by the kernel to instruct the file system to change the file fc’s group and
user ownership to gid and uid respectively. The kernel checks access permissions prior to
calling this function so the file system does not have to.

MiNT – 2.25

T H E A T A R I C O M P E N D I U M

chmode This function is called by the kernel to instruct the file system to change the access permissions
of file fc to those in mode. The mode parameter passed to this function will never contain
anything but access permission information (i.e. no file type information will be contained in
mode). The call should return a standard GEMDOS error code on exit.

mkdir This function should create a new subdirectory called name in directory dir with access
permissions of mode. The file system should ensure that directories such as ‘.’ and ‘..’ are
created and that a standard GEMDOS error code is returned.

rmdir This function should remove the directory whose name is name and whose cookie is pointed to
by dir. This call should allow the removal of symbolic links to directories and return a standard
GEMDOS error code.

remove This function should delete the file named name that resides in directory dir. If more than one
‘hard’ link to this file exists, then only this link should be destroyed and the file contents should
be left untouched. Symbolic links to file fc, however, should be removed. This function should
not allow the deletion of directories and should return with a standard GEMDOS error code.

getname This function should fill in the buffer pointed to by pathname with as many as PATH_MAX (128)
characters of the path name of directory dir expressed relatively to directory relto. If relto and dir
point to the same directory, a NULL string should be returned.

For example, if relto points to directory “\FOO” and dir points to directory “\FOO\BAR\SUB”
then pathname should be filled in with “\BAR\SUB”.

rename This function should rename the file oldname which resides in directory olddir to the new name
newname which resides in newdir. The file system may choose to support or not support cross-
directory renames. The function should return a standard GEMDOS error code. If no renames
at all are supported then EINVFN should be returned.

opendir This function opens directory dirh for reading. The parameter tosflag is a copy of the flags
member of the DIR structure as defined below:

typedef struct dirstruct
{

fcookie fc; /* Directory cookie */
UWORD index; /* Index of current entry */
UWORD flags; /* TOS_SEARCH (1) or 0 */
char fsstuff[60]; /* File system dependent */

} DIR;

If tosflags (dirstruct.flags) is contains the mask TOS_SEARCH the file system is responsible
for parsing the names into something readable by TOS domain applications. The file system
should initialize the index and fsstuff members of dirh and return an appropriate GEMDOS
error code.

readdir This function should read the next filename from directory dirh. The fcookie structure fc should
be filled in with the details of this file. If dirh->flags does not contain the mask TOS_SEARCH
then the filename should be copied into the buffer pointed to by name. If dirh->flags does
contain the mask TOS_SEARCH then the first four bytes of name should be treated as a
longword and filled in with an index value uniquely identifying the file and the filename should be
copied starting at &name[4].

In either case, if the filename is longer than namelen, rather than filling in the buffer name, the
function should return with ENAMETOOLONG . If this is the last file in the directory, ENMFIL
should be returned, otherwise return E_OK.

rewinddir This function should reset the members of dirh so that any internal pointers point at the first file
of directory dirh. This function should return a standard GEMDOS error code.

closedir This function should clear any allocated memory and clean up any structures used by the search
on dirh. This function should return a standard GEMDOS error code.

2.26 – GEMDOS

T H E A T A R I C O M P E N D I U M

pathconf This function should return information about the directory dir based on mode mode. For mode
values and return values, see Dpathconf() .

dfree This function should return free space information about the drive directory dir is located on.
The format of the buffer pointed to by buf is the same as is used by Dfree() .This function should
return a standard GEMDOS error code.

writelabel This function is used to change the volume name of a drive which contains the directory dir. The
new name name should be used to write (or rename the volume label). If the write is actually an
attempt to rename the label and the file system does not support this function then EACCDN
should be returned. If the file system does not support the concept of volume labels then
EINVFN should be returned. Otherwise, a return value of E_OK is appropriate.

readlabel This function should copy the volume label name of the drive on which directory dir is contained
in the buffer name. If namelen is less than the size of the volume name, ENAMETOOLONG
should be returned. If the concept of volume names is not supported by the file system, EINVFN
should be returned. If no volume name was ever created, EFILNF should be returned. Upon
successful error of the call, E_OK should be returned.

symlink This function should create a symbolic link in directory dir named name. The symbolic link
should contain the NULL terminated string in to. If the file system does not support symbolic
links it should return EINVFN, otherwise a standard GEMDOS error code should be returned.

readlink This function should copy the contents of symbolic link file into buffer buf. If the length of the
contents of the symbolic link is greater than buflen, ENAMETOOLONG should be returned. If
the file system does not support symbolic links, EINVFN should be returned. In all other cases,
a standard GEMDOS error code should be returned.

hardlink This function should create a ‘hard’ link called toname residing in todir from the file named
fromname residing in fromdir. If the file system does not support hard links, EINVFN should be
returned. Otherwise, a standard GEMDOS error code should be returned.

fscntl This function performs a file system specific function on a file whose name is name that resides
in directory dir. The cmd and arg functions parallel those of Dcntl() . In most cases, this function
should simply return EINVFN. If your file system wishes to expose special features to the user
through Dcntrl() then your file system should handle them here as it sees fit.

dskchng This function is used by the kernel to confirm a ‘media change’ state reported by Mediach() . If
the file system agrees that a media change has taken place, it should invalidate any
appropriate buffers, free any allocated memory associated with the device, and return 1. The
kernel will then invalidate any open files and relog the drive with the root() functions of each
installed file system.

If a media change has not taken place, simply return a value of 0.
zero This member is reserved for future expansion and must be set to 0L.

MiNT Interprocess Communication

Pipelines
A pipeline is a special file used for data communication in which the data being read or written
is kept in memory. Pipes are created by Fcreate()’ing a file in the special directory ‘U:\PIPE’.
A process which initially opens a pipe is considered the ‘server.’ Processes writing to or
reading from the open pipe are called ‘clients.’ Both servers and clients may read to and write
from the pipe.

Fcreate()’s attr byte takes on a special meaning with pipes as follows:

MiNT Interprocess Communication – 2.27

T H E A T A R I C O M P E N D I U M

Name Bit Meaning
FA_UNIDIR 0x01 If this bit is set, the pipe will be unidirectional (the server

can only write, the client can only read).
FA_SOFTPIPE 0x02 Setting this bit causes reads when no one is writing to

return EOF and writes when no one is reading to raise the
signal SIGPIPE.

FA_TTY 0x04 Setting this bit will make the pipe a pseudo-TTY, i.e. any
characters written by the server will be interpreted (CTRL-C
will cause a SIGINT signal to be generated to all clients).

Fpipe() can also be used to create pipes quickly with the MiNT kernel resolving any name
conflicts. A pipe is deleted when all processes that had obtained a handle to it Fclose() it.

A single process may serve as both the client and the server if it maintains two handles (one
obtained from Fopen() and one from Fcreate()). In addition, child processes of the server may
inherit the file handle, and thus the server end of the pipe.

A special system call, Salert(), sends a string to a pipe called ‘U:\PIPE\ALERT’. If a handler is
present that reads from this pipe, an alert with the text string will be displayed.

Signals
Signals are messages sent to a process that interrupt normal program flow in a way that may be
defined by the receiving application. Signals are sent to a process with the function Pkill() . The
call is named Pkill() because the default action for most signals is the termination of the process.
If a process expects to receive signals it should use Psignal(), Psigsetmask(), Psigblock(), or
Psigaction() to modify that behavior by installing a handler routine, ignoring the signal, or
blocking the signal completely.

Signal handlers should return by executing a 680x0 RTS instruction or by calling Psigreturn().
Current signals sent and recognized by MiNT processes are as follows:

Signal Number Meaning
SIGNULL 0 This signal is actually a dead signal since it has no

effect and is never delivered. Its only purpose is to
determine if a child process has exited. A Pkill()
call with this signal number will return successfully if
the process is still running or fail if not.

SIGHUP 1 This signal indicates that the terminal connected to
the process is no longer valid. This signal is sent by
window managers to processes when the user has
closed your window. The default action for this
signal is to kill the process.

SIGINT 2 This signal indicates that the user has interrupted
the process with CTRL-C. The default action for this
signal is to kill the process.

SIGQUIT 3 This signal is sent when the user presses CTRL-\.
The default action for this signal is to kill the
process.

2.28 – GEMDOS

T H E A T A R I C O M P E N D I U M

SIGILL 4 This signal is sent after a 680x0 Illegal Instruction
Exception has occurred. The default action for this
signal is to kill the process. Catching this signal is
unrecommended.

SIGTRAP 5 This signal is sent after each instruction is executed
when the system is in single-step trace mode.
Debuggers should catch this signal, other
processes should not.

SIGABRT 6 This signal is sent when something has gone wrong
internally and the program should be aborted
immediately. The default action for this signal is to
kill the process. It is unrecommended that you catch
this signal.

SIGPRIV 7 This signal is sent to a process that attempts to
execute an instruction that may only be executed in
supervisor mode while in user mode. The default
action for this signal is to kill the process.

SIGFPE 8 This signal is sent when a division by 0 or floating-
point exception occurs. The default action for this
signal is to kill the process.

SIGKILL 9 This signal forcibly kills the process. There is no
way to catch or ignore this signal.

SIGBUS 10 This signal is sent when a 680x0 Bus Error
Exception occurs. The default action for this signal
is to kill the process.

SIGSEGV 11 This signal is sent when a 680x0 Address Error
Exception occurs. The default action for this signal
is to kill the process.

SIGSYS 12 This signal is sent when an argument to a system
call is bad or out of range and the call doesn’t have
a way to report errors. For instance, Super(0L) will
send this signal when already in supervisor mode.
The default action for this signal is to kill the
process.

SIGPIPE 13 This signal is sent when a pipe you were writing to
has no readers. The default action for this signal is
to kill the process.

SIGALRM 14 This signal is sent when an alarm sent by Talarm()
is triggered. The default action for this signal is to
kill the process.

SIGTERM 15 This signal indicates a ‘polite’ request for the
process to cleanup & exit. This signal is sent when
a process is dragged to the trashcan on the
desktop. The default action for this signal is to kill
the process.

SIGSTOP 17 This signal is sent to a process to suspend it. It
cannot be caught, blocked, or ignored. This signal
is usually used by debuggers.

SIGTSTP 18 This signal is sent when the user presses CTRL-Z
requesting that the process suspend itself. The
default action for this signal is to suspend the
process until a SIGCONT signal is caught.

SIGCONT 19 This signal is sent to restart a process stopped with
SIGSTOP or SIGTSTP. The default action for this
signal is to resume the process.

MiNT Interprocess Communication – 2.29

T H E A T A R I C O M P E N D I U M

SIGCHLD 20 This signal is sent when a child process has exited
or has been suspended. As a default, this signal
causes no action.

SIGTTIN 21 This signal is sent when a process attempts to read
from a terminal in a process group other than its
own. The default action is to suspend the process.

SIGTTOU 22 This signal is sent when a process attempts to write
to a terminal in a process group other than its own.
The default action is to suspend the process.

SIGIO 23 This signal is sent to indicate that I/O is possible on
a file descriptor. The default action for this signal is
to kill the process.

SIGXCPU 24 This signal is sent when the maximum CPU time
allocated to a process has been used. This signal
will continue to be sent to a process until it exits.
The default action for this signal is to kill the
process.

SIGXFSZ 25 This signal is sent to a process when it attempts to
modify a file in a way that causes it to exceed the
processes’ maximum file size limit. The default
action for this signal is to kill the process.

SIGVTALRM 26 This signal is sent to a process which has exceed
its maximum time limit. The default action for this
signal is to kill the process.

SIGPROF 27 This signal is sent to a process to indicate that its
profiling time has expired. The default action for this
signal is to kill the process.

SIGWINCH 28 This signal indicates that the size of the window in
which your process was running has changed. If the
process cares about window size it can use Fcntl()
to obtain the new size. The default action for this
signal is to do nothing.

SIGUSR1 29 This signal is one of two user-defined signals. The
default action for this signal is to kill the process.

SIGUSR2 30 This signal is one of two user-defined signals. The
default action for this signal is to kill the process.

Memory Sharing
With the enforcement of memory protection under MultiTOS , the availability of shared memory
blocks is important for applications wishing to share blocks of memory. A shared memory block
is opened by Fcreate()’ing a file in the directory ‘U:\SHM’. After that, a memory block
allocated with Malloc() or Mxalloc() may be attached to the file with Fcntl(handle, memptr,
SHMSETBLK) .

Any process which uses Fopen() and Fcntl() with a parameter of SHMGETBLK can now read
that memory as if it were a disk file. After a process obtains the address of a shared memory
block with SHMGETBLK the memory is guaranteed to be valid until it calls Mfree() on that
block even if it Fclose()’s the original file handle.

Note that the address returned by Fcntl() may be different in different processes. Because of this,
data in shared memory blocks should not contain absolute pointers.

2.30 – GEMDOS

T H E A T A R I C O M P E N D I U M

When a process is finished with a shared memory block, it should Mfree() the address returned
by the Fcntl() call. A shared memory block is also deleted by the Fdelete() call if the file is
currently unopened by any other processes.

Other Methods of Communication
Psemaphore() can be used to create named flags which can synchronize the behavior of multiple
applications (if adhered to). Pmsg() is used to send simple messages between two processes.

MiNT Debugging

MiNT allows a processes’ TEXT, DATA, and BSS space to be read and written to with
standard GEMDOS file commands by opening the process on ‘U:\PROC\’ A file named
“TEST” with a MiNT identification of 10 could be opened by specifying the name as
‘U:\PROC\TEST.10’ or ‘U:\PROC\.10’. Opening a file to ‘U:\PROC\.-1’ will open your own
process whereas opening a file to ‘U:\PROC\.-2’ will open your parent process.

Tracing
A process may be setup for tracing in a number of ways. A child process may be started in trace
mode by OR’ing 0x8000 with the Pexec() mode number in a Pexec() call. A process may also
trace another process by opening it as described above and using the Fcntl() call with a
parameter of PTRACESFLAGS. Processes may start tracing on themselves if their parent is
prepared for it.

When in trace mode, the process being traced halts and generates a SIGCHLD signal to its
tracer after every instruction (unless this action is modified). The example below shows how to
obtain the process ID of the stopped child and the signal that caused the child to stop.

#define WIFSTOPPED(x) (((int)((x) & 0xFF)==0x7F) && ((int)(((x)>>8)&0xFF)!=0))
#define WSTOPSIG(x) ((int)(((x)>>8) & 0xFF))

void
HandleSignal(LONG signo)
{

WORD pid;
WORD childsignal;
ULONG r;

if(signo == SIGCHLD)
{

r = Pwait3(0x2, 0L);
if(WIFSTOPPED(r))
{

pid = r >> 16;
childsignal = WSTOPSIG(r);

}
}

}

After reception of this signal, the child process may be restarted with Fcntl() using either the
PTRACEGO, PTRACEFLOW , or PTRACESTEP commands. Setting PTRACEFLOW or

MiNT Debugging – 2.31

T H E A T A R I C O M P E N D I U M

PTRACESTEP causes a SIGTRAP signal to be raised on the next program flow change (ex:
BRA or JMP) or the instruction respectively.

Modifying the Process Context
A processes’ registers may be modified during tracing using the method as illustrated in the
following example:

struct context
{

LONG regs[15]; // Registers d0-d7, a0-a6
LONG usp; // User stack pointer
WORD sr; // Status register
LONG pc; // Program counter
LONG ssp; // Supervisor stack pointer
LONG tvec; // GEMDOS terminate vector
char fstate[216]; // Internal FPU state
LONG fregs[3*8]; // Registers FP0-FP7
LONG fctrl[3] // Registers FPCR/FPSR/FPIAR

// More undocumented fields exist here
} c;

void
ModifyContext(LONG handle)
{

LONG curprocaddr, ctxtsize;

Fcntl(handle, &curprocaddr, PPROCADDR);
Fcntl(handle, &ctxtsize, PCTXTSIZE);

curprocaddr -= 2 * ctxtsize;

Fseek(curprocaddr, handle, SEEK_SET);
Fread(handle, (LONG)sizeof(struct context), &c);

/* Modify context c here */

Fseek(curprocaddr, handle, SEEK_SET);
Fwrite(handle, (LONG)sizeof(struct context), &c);

}

MiNT Debugging Keys
MiNT may be programmed to output special debugging messages to the debugging device
through the use of special system keys. The supported system keys are shown in the table below:

Key Combination Meaning
CTRL-ALT-F1 Increase the system debugging level by one.
CTRL-ALT-F2 Decrease the system debugging level by one.
CTRL-ALT-F3 Cycle the BIOS output device number used for system

debugging messages. This key cycles BIOS devices in
the order 1-6-7-8-9-2.

CTRL-ALT-F4 Restore debugging output to the console device.
CTRL-ALT-F5 Output a memory usage map to the debugging device.
CTRL-ALT-F6 Output a list of all system processes to the debugging

device.

2.32 – GEMDOS

T H E A T A R I C O M P E N D I U M

CTRL-ALT-F7 Toggles debug ‘logging’ off and on. When debug logging
is on, a 50-line buffer is maintained which contains recent
debugging messages. Each time a new debugging
message is output, the entire 50 line buffer is output as
well.

CTRL-ALT-F8 Outputs the 50-line debug log to the debugging device.
CTRL-ALT-F9 Outputs the system memory map to the debugging

device. The memory protection flags of each page are
shown.

CTRL-ALT-F10 Outputs an extended system memory map to the
debugging device. The memory protection status,
owner’s PID, and format of each memory block are output
to the debugging device.

CTRL-ALT-F1 and CTRL-ALT-F2 alter the current system debugging level. MiNT supports four
debugging levels as follows:

Level Meaning
0 Only fatal OS errors are reported to the debugging device

(this is the default mode).
1 Processor exceptions are output to the debugging

device.
2 Processor exceptions and failed system calls are output

to the debugging device.
3 Constant MiNT status reports, processor exceptions, and

failed system calls are output to the debugging device.

The MINT.CNF File

MultiTOS looks for an ASCII text file upon bootup called ‘MINT.CNF’ which may be used to
execute commands or set MiNT variables. The following table illustrates what commands are
recognized in the ‘MINT.CNF’ file:

Command Example Meaning
cd cd c:\multitos Change the GEMDOS

working directory.
echo echo “Atari Computer Booting...” Echo a string to the screen.
ren ren c:\test.prg c:\test.app Rename a file.
sln sln c:\level1\level2\level3 u:\deep Create a symbolic link on

drive ‘U:’.
alias alias x: u:\proc Create an alias drive.
exec exec c:\sam.prg Execute a program.

The following MiNT variables may be set in the ‘MINT.CNF’ file:

GEMDOS Character Functions – 2.33

T H E A T A R I C O M P E N D I U M

Variable Meaning
INIT Execute the named TOS program. For example:

INIT=c:\multitos\sam.prg

GEM Execute the named GEM program. For example:

GEM=c:\multitos\miniwin.app

CON Redirect console input and output to the named file.
For example:

CON=u:\dev\modem1

PRN Redirect printer output to the named file. For
example:

PRN=c:\spool.txt

DEBUG_LEVEL Set the MiNT debugging level (default is 0). For
example:

DEBUG_LEVEL=1

DEBUG_DEVNO Set the BIOS device number that MiNT will send
debugging messages to. For example:

DEBUG_DEVNO=1

SLICES Set the number of 20ms time slices given to an
application at a time (the default is 2). For example:

SLICES=3

MAXMEM Set the maximum amount of memory (in kilobytes)
any application can be allocated (the default is
unlimited). For example:

MAXMEM=8192

BIOSBUF Enable/Disable Bconout() optimizations. The
parameter should be ‘Y’ to enable or ‘N’ to disable
these optimizations. For example:

BIOSBUF=Y

GEMDOS Character Functions

GEMDOS provides a number of functions to communicate on a character basis with the default
system devices. Because of irregularities with these calls in some TOS versions, usage of the
BIOS functions is usually recommended instead (the BIOS does not support redirection,
however).

The GEMDOS character functions are illustrated in the table below:

Device: Input Output Status
con: Cconin() - Character

Cnecin() - No Echo
Cconrs() - String

Cconout() - Character
Cconws() - String

Cconis() - Input
Cconos() - Output

prn: None Cprnout() Cprnos()

2.34 – GEMDOS

T H E A T A R I C O M P E N D I U M

aux: Cauxin() Cauxout() Cauxis() - Input
Cauxos() - Output

N/A Crawio() and Crawcin() Crawio() Cconis() - Input
Cconos() - Output

GEMDOS Time & Date Functions

GEMDOS provides four functions for the manipulation of time. Tsetdate() and Tsettime() set
the date and time respectively. Tgetdate() and Tgettime() get the date and time respectively.

As of TOS 1.02, the GEMDOS time functions also update the BIOS time.

GEMDOS Function Calling Procedure

GEMDOS system functions are called via the TRAP #1 exception. Function arguments are
pushed onto the current stack in reverse order followed by the function opcode. The calling
application is responsible for correctly resetting the stack pointer after the call.

GEMDOS may utilize registers D0-D2 and A0-A2 as scratch registers and their contents should
not be depended upon at the completion of a call. In addition, the function opcode placed on the
stack will be modified.

The following example for Super() illustrates calling GEMDOS from assembly language:

clr.l -(sp)
move.w #$20,-(sp)
trap #1
addq.l #4,sp

‘C’ compilers often provide a reusable interface to GEMDOS that allows new GEMDOS calls
to be added with a macro as in the following example:

#define Super(a) gemdos(0x20, a)

The gemdos() function used in the above macro can be written in assembly language as follows:

.globl _gemdos

.text
_gemdos:

move.l (sp)+, t1sav ; Save return address
trap #1 ; Call GEMDOS
move.l t1sav,-(sp) ; Restore return address
rts

.bss

t1sav: ds.l 1 ; Return address storage

.end

GEMDOS Function Calling Procedure – 2.35

T H E A T A R I C O M P E N D I U M

GEMDOS is not guaranteed to be re-entrant and therefore should not be called from an interrupt
handler.

T H E A T A R I C O M P E N D I U M

GEMDOS Function Reference

Cauxin() - 2.39

T H E A T A R I C O M P E N D I U M

Cauxin()
WORD Cauxin(VOID)

Cauxin() waits for the next available data byte from GEMDOS handle 2
(normally device ‘aux:’) and when available, returns it in the low byte of the
returned WORD.

OPCODE 3 (0x03)

AVAILABILITY All GEMDOS versions.

BINDING move.w #$3,-(sp)
trap #1
addq.l #2,sp

RETURN VALUE The WORD value contains the retrieved byte in the lower eight bits. The contents
of the upper 8 bits are currently undefined.

CAVEATS This function can cause flow control problems.

When using this function while its handle is redirected, an end-of-file condition
will hang the system. GEMDOS version 0.30 and all MiNT versions correct this
bug. MiNT returns MINT_EOF (0xFF1A) when the end-of-file is reached.

In addition, if this handle is redirected to something other than ‘aux:’, an end-of-
file will hang the system. Besides these known bugs, this function is used by many
‘C’ compilers to redirect standard error messages. It is therefore advisable to use
Bconin() instead.

SEE ALSO Cauxis(), Cauxout(), Bconin()

Cauxis()
WORD Cauxis(VOID)

Cauxis() indicates whether GEMDOS handle 2 (normally device ‘aux:’) has at
least one character waiting.

OPCODE 18 (0x12)

AVAILABILITY All GEMDOS versions.

BINDING move.w #$12,-(sp)

2.40 – GEMDOS Function Reference

T H E A T A R I C O M P E N D I U M

trap #1
addq.l #2,sp

RETURN VALUE The return value will be DEV_READY (-1) if at least one character is available
for reading or DEV_BUSY (0) if not.

CAVEATS When using this function while its handle is redirected, an end-of-file condition
will hang the system. GEMDOS version 0.30 and all MiNT versions correct this
bug. MiNT returns MINT_EOF (0xFF1A) when the end-of-file is reached.

In addition, some ‘C’ compilers use this handle as a standard error device. It is
therefore advisable to use Bconstat().

SEE ALSO Cauxin(), Cauxout(), Cauxos(), Bconstat()

Cauxos()
WORD Cauxos(VOID)

Cauxos() indicated whether GEMDOS handle 2 (normally device ‘aux:’) is
ready to receive characters.

OPCODE 19 (0x13)

AVAILABILITY All GEMDOS versions

BINDING move.w #$13,-(sp)
trap #1
addq.l #2,sp

RETURN VALUE A value of DEV_READY (-1) is returned if the output device is ready to receive
characters or DEV_BUSY (0) if it is not.

CAVEATS This function actually returns the status of whatever device GEMDOS handle 2 is
redirected to. In addition, some ‘C’ compilers use this handle as a standard error
device. It is therefore recommended that Bcostat() be used instead.

SEE ALSO Cauxin(), Cauxis(), Cauxout(), Bcostat().

Cauxout() - 2.41

T H E A T A R I C O M P E N D I U M

Cauxout()
VOID Cauxout(ch)
WORD ch;

Cauxout() outputs a character to GEMDOS handle 2, normally the ‘aux:’ device.

OPCODE 4 (0x04)

AVAILABILITY All GEMDOS versions.

PARAMETERS ch is a WORD value, however, only the lower eight bits are sent. The upper eight
bits must be 0.

BINDING move.w #ch,-(sp)
move.w #4,-(sp)
trap #1
addq.l #4,sp

CAVEATS This function can cause flow control to fail when GEMDOS handle 2 is directed
to ‘aux:’.

In addition, some ‘C’ compilers use this function as a standard error device. It is
therefore recommended that Bconout() be used in place of this function.

SEE ALSO Cauxin(), Cauxis(), Cauxos(), Bconout()

Cconin()
LONG Cconin(VOID)

Cconin() reads a character (waiting until one is available) from GEMDOS handle
0 (normally ‘con:’).

OPCODE 1 (0x01)

AVAILABILITY All GEMDOS versions.

BINDING move.w #1,-(sp)
trap #1
addq.l #2,sp

RETURN VALUE The LONG value returned is a bit array arranged as follows:

2.42 – GEMDOS Function Reference

T H E A T A R I C O M P E N D I U M

Bits 31-24 Bits 23-16 Bits 15-8 Bits 7-0
Shift key status

(see below)
Keyboard
scancode

Unused
(0)

ASCII code of
character

The ASCII code of the character will be 0 if a non-ascii keyboard key is struck.

CAVEATS When using this function while its handle is redirected, an end-of-file condition
will hang the system. GEMDOS version 0.30 and all MiNT versions correct this
bug. MiNT returns MINT_EOF (0xFF1A) when the end-of-file is reached.

COMMENTS The shift key status will only be returned when bit 3 of the system variable
conterm (char *(0x484)) is set. This is normally not enabled.

If the handle has been redirected, the inputted character will appear in the lower 8
bits of the return value.

SEE ALSO Cconis(), Cconout(), Cconrs(), Cnecin(), Crawin(), Bconin()

Cconis()
WORD Cconis(VOID)

Cconis() verifies that a character is waiting to be read from GEMDOS handle 0
(normally ‘con:’).

OPCODE 11 (0xB)

AVAILABILITY All GEMDOS versions.

BINDING move.w #$0B,-(sp)
trap #1
addq.l #2,sp

RETURN VALUE Cconis() returns a DEV_READY (-1) if a character is available or DEV_BUSY
(0) if not.

SEE ALSO Cconin(), Bconstat()

Cconos() - 2.43

T H E A T A R I C O M P E N D I U M

Cconos()
WORD Cconos(VOID)

Cconos() checks to see whether a character may be output to GEMDOS handle 1
(normally ‘con:’).

OPCODE 16 (0x10)

AVAILABILITY All GEMDOS versions.

BINDING move.w #$10,-(sp)
trap #1
addq.l #2,sp

RETURN VALUE This function returns DEV_READY (-1) if at least one character may be sent or
DEV_BUSY (0) if not.

SEE ALSO Cconout(), Bcostat()

Cconout()
VOID Cconout(ch)
WORD ch;

Cconout() outputs one character via GEMDOS handle 1 (normally ‘con:’).

OPCODE 2 (0x02)

AVAILABILITY All GEMDOS versions.

PARAMETERS ch is a WORD value, however, only the lower eight bits are sent through the
output stream. The upper eight bits must be 0.

BINDING move.w ch,-(sp)
move.w #2,-(sp)
trap #1
addq.l #4,sp

CAVEATS With GEMDOS versions below 0.15, this handle should not be redirected to a
write-only device as the call attempts to read from the output stream to process
special keys.

COMMENTS No line feed translation is done at the time of output. To start a new line, ASCII 13

2.44 – GEMDOS Function Reference

T H E A T A R I C O M P E N D I U M

and ASCII 10 must both be sent.

SEE ALSO Cconin(), Bconout()

Cconrs()
VOID Cconrs(str)
char *str;

Cconrs() reads a string from the standard input stream (GEMDOS handle 0) and
echoes it to the standard output stream (GEMDOS handle 1).

OPCODE 10 (0x0A)

AVAILABILITY All GEMDOS versions.

PARAMETERS str should be a character pointer large enough to hold the inputted string. On
function entry, str[0] should be equal to the maximum number of characters to
read.

BINDING pea str
move.w #$0A,-(sp)
trap #1
addq.l #6,sp

RETURN VALUE On return, the string buffer passed as a parameter will be filled in with the inputted
characters. str[1] will contain the actual number of characters in the buffer.
(char *) &str[2] is the pointer to the start of the actual string in memory.

Cconrs() will not terminate unless CTRL-C is pressed, the buffer is full or either
RETURN or CTRL-J is pressed.

CAVEATS GEMDOS versions below 0.15 echoes the input to the console even if output has
been redirected elsewhere.

COMMENTS The string Cconrs() creates is not null-terminated. The following keys are
processed by the function:

Key Translation

RETURN End of input. Do not place RETURN in in buffer.

CTRL-J End of line. Do not place CTRL-J in buffer.

CTRL-H Kill last character.

DELETE Kill last character.

CTRL-U Echo input line and start over.

Cconws() - 2.45

T H E A T A R I C O M P E N D I U M

CTRL-X Kill input line and start over.

CTRL-R Echo input line and continue.

CTRL-C Exit program.

When the input stream is redirected, Cconrs() returns 0 in str[1] when the end-of-
file marker is reached.

SEE ALSO Cconin(), Cconws()

Cconws()
VOID Cconws(str)
char *str;

Cconws() writes a string to GEMDOS handle 1 (normally ‘con:’).

OPCODE 9 (0x09)

AVAILABILITY All GEMDOS versions.

PARAMETERS str is a pointer to a null-terminated character string to be written to the output
stream.

BINDING pea str
move.w #$09,-(sp)
trap #1
addq.l #6,sp

CAVEATS With GEMDOS versions below 0.15, this handle should not be redirected to a
write-only device as the call attempts to read from the output stream to process
special keys.

COMMENTS No line feed translation is performed on outputted characters so both an ASCII 13
and ASCII 10 must be sent to force a new line. In addition, the system checks for
special keys so a CTRL-C embedded in the string will terminate the process.

SEE ALSO Cconout(), Cconrs()

2.46 – GEMDOS Function Reference

T H E A T A R I C O M P E N D I U M

Cnecin()
WORD Cnecin(VOID)

Cnecin() is exactly the same as Cconin() except that the character fetched from the
input stream is not echoed.

OPCODE 8 (0x08)

AVAILABILITY All GEMDOS versions.

PARAMETERS None.

BINDING move.w #8,-(sp)
trap #1
addq.l #2,sp

RETURN VALUE The LONG value returned is a bit array arranged as follows:

Bits 31-24 Bits 23-16 Bits 15-8 Bits 7-0
Shift key status

(see below)
Keyboard
scancode

Unused
(0)

ASCII code of
character

The ASCII code of the character will be 0 if a non-ascii keyboard key is struck.

CAVEATS When using this function while its handle is redirected, an end-of-file condition
will hang the system. GEMDOS version 0.30 and all MiNT versions correct this
bug. MiNT returns MINT_EOF (0xFF1A) when the end-of-file is reached.

COMMENTS The shift key status will only be returned when bit 3 of the system variable
conterm (char *(0x484)) is set. This is normally not enabled.

If the handle has been redirected, the inputted character will appear in the lower 8
bits of the return value.

SEE ALSO Cconin(), Bconin()

Cprnos()
WORD Cprnos(VOID)

Cprnos() returns the status of GEMDOS handle 3 (normally ‘prn:’).

OPCODE 17 (0x11)

Cprnout() - 2.47

T H E A T A R I C O M P E N D I U M

AVAILABILITY All GEMDOS versions.

PARAMETERS None.

BINDING move.w #$11,-(sp)
trap #1
addq.l #2,sp

RETURN VALUE Cprnos() returns a DEV_READY (-1) if the output stream is ready to receive a
character or DEV_BUSY (0) if not.

SEE ALSO Cprnout() , Bcostat()

Cprnout()
WORD Cprnout(ch)
WORD ch;

Cprnout() sends one character to GEMDOS handle 3 (normally ‘prn:’).

OPCODE 5 (0x05)

AVAILABILITY All GEMDOS versions.

PARAMETERS ch is a WORD value, however, only the lower 8 bits are sent to the output stream.
The upper eight bits should be 0.

BINDING move.w ch,-(sp)
move.w #$5,-(sp)
trap #1
addq.l #4,sp

RETURN VALUE Cprnout() returns a non-zero value if the function successfully wrote the character
to the printer or 0 otherwise.

COMMENTS No input translation is performed with this call. Therefore, you must send an
ASCII 13 and ASCII 10 to force a new line.

SEE ALSO Bconout()

2.48 – GEMDOS Function Reference

T H E A T A R I C O M P E N D I U M

Crawcin()
LONG Crawcin(VOID)

Crawcin() is similar to Cconout(), however it does not process any special keys
and does not echo the inputted character.

OPCODE 7 (0x07)

AVAILABILITY All GEMDOS versions.

BINDING move.w #$07,-(sp)
trap #1
addq.l #2,sp

RETURN VALUE The LONG value returned is a bit array arranged as follows:

Bits 31-24 Bits 23-16 Bits 15-8 Bits 7-0
Shift key status

(see below)
Keyboard
scancode

Unused
(0)

ASCII code of
character

The ASCII code of the character will be 0 if a non-ascii keyboard key is struck.

CAVEATS When using this function while its handle is redirected, an end-of-file condition
will hang the system. GEMDOS version 0.30 and all MiNT versions correct this
bug. MiNT returns MINT_EOF (0xFF1A) when the end-of-file is reached.

COMMENTS The shift key status will only be returned when bit 3 of the system variable
conterm (char *(0x484)) is set. This is normally not enabled.

If the handle has been redirected, the inputted character will appear in the lower 8
bits of the return value.

Under normal circumstances, when GEMDOS handle 0 is being read from, no
special system keys, including CTRL-C, are checked.

SEE ALSO Cconin(), Crawio(), Bconin()

Crawio() - 2.49

T H E A T A R I C O M P E N D I U M

Crawio()
LONG Crawio(ch)
WORD ch;

Crawio() combines console input and output in one function.

OPCODE 6 (0x06)

AVAILABILITY All GEMDOS versions.

PARAMETERS ch is a WORD value, however, only the lower eight bits are meaningful and the
upper eight bits should be set to 0. If ch is 0x00FF on input, Crawio() returns the
character read from GEMDOS handle 0 (normally ‘con:’).

BINDING move.w ch,-(sp)
move.w #6,-(sp)
trap #1
addq.l #4,sp

RETURN VALUE If ch is 0x00FF upon entry, Crawio() returns a bit array arranged as follows:

Bits 31-24 Bits 23-16 Bits 15-8 Bits 7-0
Shift key status

(see below)
Keyboard
scancode

Unused
(0)

ASCII code of
character

The ASCII code of the character will be 0 if a non-ascii keyboard key is struck.

If no character was waiting in the input stream, Crawio() returns a 0.

CAVEATS When using this function while its handle is redirected, an end-of-file condition
will hang the system. GEMDOS version 0.30 and all MiNT versions correct this
bug. MiNT returns MINT_EOF (0xFF1A) when the end-of-file is reached.

Due to the definition of this call it is impossible to write 0x00FF to the output
stream or read a zero from this call.

COMMENTS The shift key status will only be returned when bit 3 of the system variable
conterm (char *(0x484)) is set. This is normally not enabled.

If the handle has been redirected, the inputted character will appear in the lower 8
bits of the return value.

Under normal circumstances, when GEMDOS handle 0 is being read from, no
special system keys, including CTRL-C, are checked.

2.50 – GEMDOS Function Reference

T H E A T A R I C O M P E N D I U M

SEE ALSO Cconout(), Cconin(), Bconout(), Bconin()

Dclosedir()
LONG Dclosedir(dirhandle)
LONG dirhandle;

Dclosedir() closes the specified directory.

OPCODE 299 (0x12B)

AVAILABILITY Available when a ‘MiNT ’ cookie with a version of at least 0.90 exists.

PARAMETERS dirhandle is a valid directory handle which specifies the directory to close.

BINDING move.l dirhandle,-(sp)
move.w #$12B,-(sp)
trap #1
addq.l #6,sp

RETURN VALUE Dclosedir() returns E_OK (0) if successful or EIHNDL (-37) if the directory
handle was invalid.

SEE ALSO Dopendir(), Dreaddir(), Drewinddir()

Dcntl()
LONG Dcntl(cmd, name, arg)
WORD cmd;
char *name;
LONG arg;

Dcntl() performs file system specific operations on directories or files.

OPCODE 304 (0x130)

AVAILABILITY Available when a ‘MiNT ’ cookie with a version of at least 0.90 exists.

PARAMETERS The only two built-in file systems that support Dcntl() calls are ‘U:\’ and
‘U:\DEV.’ cmd specifies what operation to perform and affects the meaning of
name and arg. Valid cmd arguments for ‘U:\’ are

Dcntl() - 2.51

T H E A T A R I C O M P E N D I U M

cmd Meaning

FS_INSTALL
(0xF001)

This mode installs a new file system. name must be ‘U:\’ and arg should
point to a fs_descr structure as follows:

struct fs_descr
{

FILESYS *file_system;
WORD dev_no;
LONG flags;
LONG reserved[4];

};

If this call is successful, a pointer to a kerinfo structure is returned,
otherwise the return value is NULL . The file system itself is not accessible
until this call is made and it is mounted with FS_MOUNT.

FS_MOUNT
(0xF002)

This mode mounts an instance of an installed file system. name should be
in the format ‘U:\???’ where ‘???’ is the name which the file system will be
accessed by. arg should point to the fs_descr structure as above. If the file
system is mounted correctly, the dev_no field will be updated to reflect the
instance number of the mount (file systems may be mounted multiple
times).

FS_UNMOUNT
(0xF003)

This mode unmounts an instance of a file system. name is the name of the
file system in the form ‘U:\???’ where ‘???’ is the name of the file system
instance. arg should point to the file system fs_descr structure.

FS_UNINSTALL
(0xF004)

This mode uninstalls a file system identified by the fs_descr structure
passed in arg. A file system can only be sucessfully uninstalled after all
instances of it have been unmounted. name should be ‘U:\’.

Valid cmd arguments for ‘U:\DEV’ are:

2.52 – GEMDOS Function Reference

T H E A T A R I C O M P E N D I U M

cmd Meaning

DEV_INSTALL
(0xDE02)

This command attempts to install a device driver. name should be in the
format ‘U:\DEV\???’ where ‘???’ is the name of the device to install. arg is
a pointer to a dev_descr structure as follows:

struct dev_descr
{

/* Pointer to a device driver structure */
DEVDRV *driver;
/* Placed in aux field of file cookies */
WORD dinfo;
/* 0 or O_TTY (0x2000) for TTY */
WORD flags;
/* If O_TTY is set, points to tty struct */
struct tty *tty;
/* Reserved for future expansion */
LONG reserved[4];

}

If the device is successfully installed, Dcntl() will return a pointer to a
kerinfo structure which contains information about the kernel. On failure,
Dcntl() will return NULL . See the section on loadable file systems earlier
in this chapter for more information.

DEV_NEWTTY
(0xDE00)

This command identifies a BIOS terminal device whose name is name (in
the form ‘U:\DEV\DEVNAME’ and whose device number is arg. This call
simply makes the MiNT kernel aware of the device. It should have been
previously installed by Bconmap() . Any attempt to access the device
prior to installing it with the BIOS will result in an EUNDEV (-15) unknown
device error. If the device is installed, Dcntl() returns a 0 or positive value.
A negative return code signifies failure.

DEV_NEWBIOS
(0xDE01)

This command is the same as DEV_NEWTTY except that it is designed
for devices which must have their data transmitted raw (SCSI devices, for
example).

BINDING move.l arg,-(sp)
pea name
move.w cmd,-(sp)
move.w #$130,-(sp)
trap #1
lea 12(sp),sp

VERSION NOTES The FS_ group of cmd arguments are only available as of MiNT version 1.08.

Due to a bug in MiNT versions 1.08 and below, calling this function with a
parameter of DEV_NEWBIOS will not have any effect.

RETURN VALUE See above.

SEE ALSO Bconmap(), Fcntl()

Dcreate() - 2.53

T H E A T A R I C O M P E N D I U M

Dcreate()
LONG Dcreate(path)
char *path;

Dcreate() creates a GEMDOS directory on the specified drive.

OPCODE 57 (0x39)

AVAILABILITY All GEMDOS versions.

PARAMETERS path is a pointer to a string containing the directory specification of the directory
to create. path should not contain a trailing backslash. Below are some examples
and their results.

path Result

C:\ONE\ATARI Creates a folder named “ATARI” as a subdirectory of “ONE” on
drive ‘C:’.

\ONE\ATARI Creates a folder named “ATARI” as a subdirectory of “ONE” on
the current GEMDOS drive.

ATARI Creates a folder named “ATARI” as a subdirectory of the current
GEMDOS path on the current GEMDOS drive.

BINDING pea path
move.w #$39,-(sp)
trap #1
addq.l #6,sp

RETURN VALUE Upon return one of three codes may result:

E_OK (0) : Operation successful
EPTHNF (-34): Path not found
EACCDN (-36): Access denied

CAVEATS Prior to GEMDOS version 0.15 GEMDOS did not detect if the creation of a
subdirectory failed and could therefore leave partially created directories on disk.

SEE ALSO Ddelete()

2.54 – GEMDOS Function Reference

T H E A T A R I C O M P E N D I U M

Ddelete()
LONG Ddelete(path)
char *path;

Ddelete() removes a directory on the specified drive.

OPCODE 58 (0x3A)

AVAILABILITY All GEMDOS versions.

PARAMETERS path contains the directory specification of the directory you wish to remove. path
should not contain a trailing backslash. For valid examples of path, see the entry
for Dcreate().

BINDING pea path
move.w #$3A,-(sp)
trap #1
addq.l #6,sp

RETURN VALUE Upon return one of four codes may result:

E_OK (0) : Operation successful
EPTHNF (-34): Path not found
EACCDN (-36): Access denied
EINTRN (-65): Internal error

CAVEATS Prior to GEMDOS version 0.15 a Ddelete() on a directory recently created will
fail but a second attempt will not.

COMMENTS The directory being deleted must be empty or the call will fail.

SEE ALSO Dcreate()

Dfree()
LONG Dfree(buf, drive)
DISKINFO * buf;
WORD drive;

Dfree() returns information regarding the storage capacity/current usage of the
specified drive.

OPCODE 54 (0x36)

Dfree() - 2.55

T H E A T A R I C O M P E N D I U M

AVAILABILITY All GEMDOS versions.

PARAMETERS buf is a DISKINFO pointer which will be filled in on function exit. DISKINFO is
defined as:

typedef struct
{

/* No. of Free Clusters */
ULONG b_free;

/* Clusters per Drive */
ULONG b_total;

/* Bytes per Sector */
ULONG b_secsize;

/* Sectors per Cluster */
ULONG b_clsize;

} DISKINFO;

drive is a WORD which indicates the drive to perform the operation on. A value
of DEFAULT_DRIVE (0) indicates the current GEMDOS drive. A value of 1
indicates drive ‘A:’, a 2 indicates ‘B:’, etc...

BINDING move.w drive,-(sp)
pea info
move.w #$36,-(sp)
trap #1
addq.l #8,sp

RETURN VALUE Upon return, a value of 0 indicates success. Otherwise, a negative GEMDOS
error code is returned.

CAVEATS Prior to GEMDOS version 0.15 this function is very slow when used on a hard
disk.

COMMENTS To obtain the free number of bytes on a disk, use the formula (info.b_free *
info.b_secsize * info.b_clsize). To obtain the total number of bytes available on a
disk, use the formula (info.b_total * info.b_secsize * info.b_clsize).

2.56 – GEMDOS Function Reference

T H E A T A R I C O M P E N D I U M

Dgetcwd()
LONG Dgetcwd(path, drv, size)
char *path;
WORD drv, size;

Dgetcwd() returns the processes’ current working directory for the specified
drive.

OPCODE 315 (0x13B)

AVAILABILITY Available when a ‘MiNT ’ cookie with a version of at least 0.96 exists.

PARAMETERS path is a pointer to a buffer with room for at least size characters into which will
be copied the complete working path of drive drv.

BINDING pea path
move.w size,-(sp)
move.w drv,-(sp)
move.w #$13B,-(sp)
trap #1
add.l #10,sp

RETURN VALUE Dgetcwd() returns 0 if successful or a GEMDOS error code otherwise.

SEE ALSO Dgetpath(), Dgetdrv()

Dgetdrv()
WORD Dgetdrv(VOID)

Dgetdrv() returns the current GEMDOS drive code.

OPCODE 25 (0x19)

AVAILABILITY All GEMDOS versions.

BINDING move.w #$19,-(sp)
trap #1
addq.l #2,sp

RETURN VALUE Dgetdrv() returns the current GEMDOS drive code. Drive ‘A:’ is represented by
a return value of 0, ‘B:’ by a return value of 1, and so on.

SEE ALSO Dsetdrv()

Dgetpath() - 2.57

T H E A T A R I C O M P E N D I U M

Dgetpath()
LONG Dgetpath(buf, drive)
char *buf;
WORD drive;

Dgetpath() returns the current GEMDOS path specification.

OPCODE 71 (0x47)

AVAILABILITY All GEMDOS versions.

PARAMETERS buf is a pointer to a character buffer which will contain the current GEMDOS
path specification on function exit. drive is the number of the drive whose path you
want returned. drive should be DEFAULT_DRIVE (0) for the current GEMDOS
drive, 1 for drive ‘A:’, 2 for drive ‘B:’, and so on.

BINDING move.w drive,-(sp)
pea buf
trap #1
addq.l #6,sp

RETURN VALUE Dgetpath() will return one of two errors on function exit:

E_OK (0): Operation successful
EDRIVE (-49): Invalid drive specification

COMMENTS As there is no way to specify the buffer size to this function you should allow at
least 128 bytes of buffer space. This will allow for up to 8 folders deep. Newer
file systems (CD-ROM drives) may demand up to 200 bytes.

SEE ALSO Dsetpath()

Dlock()
LONG Dlock(mode, drv)
WORD mode, drv;

Dlock() locks a BIOS disk device against GEMDOS usage.

OPCODE 309 (0x135)

2.58 – GEMDOS Function Reference

T H E A T A R I C O M P E N D I U M

AVAILABILITY Available when a ‘MiNT ’ cookie with a version of at least 0.93 exists.

PARAMETERS Setting mode to DRV_LOCK (1) places a lock on BIOS device drv whereas a
mode setting of DRV_UNLOCK (0) unlocks drv.

BINDING move.w drv,-(sp)
move.w move,-(sp)
move.w #$135,-(sp)
trap #1
addq.l #6,sp

RETURN VALUE Dlock() returns 0 if successful or a negative GEMDOS error code otherwise.

COMMENTS Locking a device provides a method for device formatters to prevent other
processes from simultaneously attempting to access a drive. If a process which
locked a device terminates, that device is automatically unlocked.

BIOS device numbers and GEMDOS drive letters do not necessarily have a one
to one correspondence. To lock a GEMDOS drive use Fxattr() to determine the
device number of the drive you wish to lock.

SEE ALSO Fxattr()

Dopendir()
LONG Dopendir(name, flag)
char *name;
WORD flag;

Dopendir() opens the specified directory for reading.

OPCODE 296 (0x128)

AVAILABILITY Available when a ‘MiNT ’ cookie with a version of at least 0.90 exists.

PARAMETERS name is a pointer to a null-terminated directory specification of the directory to
open. name should not be contain a trailing backslash.

flag determines whether to open the file in normal or compatibility mode. A value
of MODE_NORMAL (0) for flag signifies normal mode whereas a value of
MODE_COMPAT (1) signifies compatibility mode.

Compatibility mode forces directory searches to be performed much like Fsfirst()
and Fsnext() (restricting filenames to the DOS 8 + 3 standard in uppercase). In
normal mode, filenames returned by Dreaddir() will be in the format native to the

Dpathconf() - 2.59

T H E A T A R I C O M P E N D I U M

file system and a UNIX style file index will be returned.

BINDING move.w flag,-(sp)
pea name
move.w #$128,-(sp)
trap #1
addq.l #8,sp

RETURN VALUE Dopendir() returns a LONG directory handle (which may be positive or negative)
if successful. A negative GEMDOS error code will be returned if the call fails.

CAVEATS Failure to properly close directory handles may cause the system to eventually run
out of handles which will cause the OS to fail.

COMMENTS Negative directory handles and negative GEMDOS error codes may be
differentiated by checking for 0xFF in the high byte. Returned values with 0xFF in
the high byte are errors.

SEE ALSO Dclosedir(), Dreaddir(), Drewinddir()

Dpathconf()
LONG Dpathconf(name, mode)
char *name;
WORD mode;

Dpathconf() returns information regarding limits and capabilities of an installed
file system.

OPCODE 292 (0x124)

AVAILABILITY This function is available under all MiNT versions integrated with MultiTOS .

PARAMETERS name specifies the file system you wish information about. mode dictates the
return value as follows:

Name mode Return Value

DP_INQUIRE -1 Returns the maximum legal value for the mode
parameter in Dpathconf() .

DP_IOPEN 0 Retuns the possible maximum number of open files at
one time. If UNLIMITED (0x7FFFFFFF) is returned, then
the number of open files is limited only by available
memory.

DP_MAXLINKS 1 Returns the maximum number of links to a file. If
UNLIMITED (0x7FFFFFFF) is returned, then the number
of links to a file is limited only by available memory.

2.60 – GEMDOS Function Reference

T H E A T A R I C O M P E N D I U M

DP_PATHMAX 2 Returns the maximum length of a full path name in bytes.
If UNLIMITED (0x7FFFFFFF) is returned, then the
maximum size of a pathname is unlimited.

DP_NAMEMAX 3 Returns the maximum length of a file name in bytes. If
UNLIMITED (0x7FFFFFFF) is returned, then the
maximum length of a filename is unlimited.

DP_ATOMIC 4 Returns the number of bytes that can be written per write
operation. If UNLIMITED (0x7FFFFFFF) is returned,
then the number of bytes that can be written at once is
limited only by available memory.

DP_TRUNC 5 Returns a code indicating the type of filename truncation
as follows:

DP_NOTRUNC (0)
File names are not truncated. If a file name in any system
call exceeds the filename size limit then an ERANGE (-
64) range error is returned.

DP_AUTOTRUNC (1)
File names are truncated automatically to the maximum
allowable length.

DP_DOSTRUNC (2)
File names are truncated to the DOS standard
(maximum 8 character node with 3 character extension).

DP_CASE 6 Returns a code which indicates case sensitivity as
follows:

DP_SENSITIVE (0)
File system is case-sensitive.

DP_NOSENSITIVE (1)
File system is not case-sensitive (file and path names
are always converted to upper-case).

DP_SAVEONLY (2)
File system is not case-sensitive, however, file and path
names are saved in their original case. Ex: A file called
‘Compendi.um’ will appear as ‘Compendi.um’ but may
be referenced as ‘compendi.um’ or ‘COMPENDI.UM’.

BINDING move.w mode,-(sp)
pea name
move.w #$124,-(sp)
trap #1
addq.l #8,sp

RETURN VALUE See above.

SEE ALSO Sysconf()

Dreaddir() - 2.61

T H E A T A R I C O M P E N D I U M

Dreaddir()
LONG Dreaddir(len, dirhandle, buf)
WORD len;
LONG dirhandle;
char *buf;

Dreaddir() enumerates the contents of the specified directory.

OPCODE 297 (0x129)

AVAILABILITY Available when a ‘MiNT ’ cookie with a version of at least 0.90 exists.

PARAMETERS Dreaddir() fetches information about the next file contained in the directory
specified by dirhandle. len specifies the length of the buffer pointed to by buf
which should be enough to hold the size of the filename, NULL byte, and index (if
in normal mode).

BINDING pea buf
move.l dirhandle
move.w len
move.w #$129,-(sp)
trap #1
lea 12(sp),sp

RETURN VALUE Dreaddir() returns a 0 if the operation was successful, ERANGE (-64) if the
buffer was not large enough to hold the index and name, or ENMFIL (-47) if there
were no more files to read.

COMMENTS In normal mode, Dreaddir() returns a 4-byte file index in the first four bytes of
buf. The filename then follows starting at the fifth byte of buf. The file index is
present to prevent confusion under some file systems when two files of the same
name exist. In some file systems this is legal, however, in all file systems, the 4-
byte index will be unique.

When in compatibility mode, the filename begins at &buf[0].

SEE ALSO Dopendir(), Dclosedir(), Drewinddir()

2.62 – GEMDOS Function Reference

T H E A T A R I C O M P E N D I U M

Drewinddir()
LONG Drewinddir(handle)
LONG handle;

Drewinddir() rewinds the specified directory pointer to its first file.

OPCODE 298 (0x12A)

AVAILABILITY Available when a ‘MiNT ’ cookie with a version of at least 0.90 exists.

PARAMETERS handle specifies the directory handle of the directory to rewind.

BINDING move.l handle,-(sp)
move.w #$12A,-(sp)
trap #1
addq.l #6,sp

RETURN VALUE Drewinddir() returns a 0 if successful or a negative GEMDOS error code
otherwise.

SEE ALSO Dopendir(), Dreaddir(), Drewinddir()

Dsetdrv()
LONG Dsetdrv(drive)
WORD drive;

Dsetdrv() sets the current GEMDOS drive and returns a bitmap of mounted
drives.

OPCODE 14 (0x0E)

AVAILABILITY All GEMDOS versions.

PARAMETERS drive is the code of the drive to set as the default GEMDOS disk drive. Calling
the function as:

bmap = Dsetdrv(Dgetdrv());

will return the bitmap of mounted drives without changing the current GEMDOS
drive.

BINDING move.w drive,-(sp)

Dsetpath() - 2.63

T H E A T A R I C O M P E N D I U M

move.w #$0E,-(sp)
trap #1
addq.l #4,sp

RETURN VALUE Dsetdrv() returns a LONG bit array that indicates which drives are mounted on
the system. Bit 0 indicates drive ‘A:’, bit 1 drive ‘B:’, etc.

SEE ALSO Dgetdrv()

Dsetpath()
LONG Dsetpath(path)
char *path;

Dsetpath() sets the path of the current GEMDOS drive.

OPCODE 59 (0x3B)

AVAILABILITY All GEMDOS versions.

PARAMETERS path is a pointer to a character buffer containing the new path specification for the
current GEMDOS drive.

BINDING pea path
move.w #$3B,-(sp)
trap #1
addq.l #6,sp

RETURN VALUE Dsetpath() returns one of two return codes on function exit:

E_OK (0): Operation successful
EPTHNF (-34): Path not found

CAVEATS You may specify a drive letter and colon in the input path specification to set the
path of a particular drive but this feature is unstable in all versions of GEMDOS
and may confuse drive assignments. It is therefore advised that this feature be
avoided.

SEE ALSO Dgetpath()

2.64 – GEMDOS Function Reference

T H E A T A R I C O M P E N D I U M

Fattrib()
LONG Fattrib(fname, flag, attr)
char *fname;
WORD flag, attr;

Fattrib() reads or modifies the attribute bits of a GEMDOS file.

OPCODE 67 (0x43)

AVAILABILITY All GEMDOS versions.

PARAMETERS fname is a pointer to a null-terminated string which contains the GEMDOS
filename of the file to manipulate. flag should be set to FA_INQUIRE (0) to read
the file’s attributes and FA_SET (1) to set them. If you are setting attributes, attr
contains the file’s new attributes.

BINDING move.w attr,-(sp)
move.w flag,-(sp)
pea fname
move.w #$43,-(sp)
trap #1
lea 10(sp),sp

RETURN VALUE If reading the attributes, Fattrib() returns a bit array of attributes as defined
below. If setting the attributes, Fattrib() returns the file’s old attributes. In any
case, a negative return code indicates that a GEMDOS error occurred.

Name Bit Meaning

FA_READONLY 0 Read-only flag

FA_HIDDEN 1 Hidden file flag

FA_SYSTEM 2 System file flag

FA_VOLUME 3 Volume label flag

FA_DIR 4 Subdirectory

FA_ARCHIVE 5 Archive flag

— 6... Currently reserved

CAVEATS GEMDOS versions below 0.15 did not set the archive bit correctly. The archive
bit is now correctly set by TOS when a file is created or written to.

Fchmod() - 2.65

T H E A T A R I C O M P E N D I U M

Fchmod()
LONG Fchmod(name, mode)
char *name;
WORD mode;

Fchmod() alters file access permissions of the named file.

OPCODE 306 (0x132)

AVAILABILITY Available when a ‘MiNT ’ cookie with a version of at least 0.90 exists.

PARAMETERS name specifies a valid GEMDOS file specification of the file whose access
permissions you wish to modify. mode is a bit mask composed by OR’ing together
values defined as follows:

Name Mask Meaning

S_IRUSR 0x100 Read permission for the owner of the file.

S_IWUSR 0x80 Write permission for the owner of the file.

S_IXUSR 0x40 Execute permission for the owner of the file.

S_IRGRP 0x20 Read permission for members of the same group the file
belongs to.

S_IWGRP 0x10 Write permission for members of the same group the file
belongs to.

S_IXGRP 0x08 Execute permission for members of the same group the file
belongs to.

S_IROTH 0x04 Read permission for all others.

S_IWOTH 0x02 Write permission for all others.

S_IXOTH 0x01 Execute permission for all others.

BINDING move.w mode,-(sp)
pea name
move.w #$132,-(sp)
trap #1
addq.l #8,sp

RETURN VALUE Fchmod() returns E_OK (0) if successful or a negative GEMDOS error code
otherwise.

CAVEATS Not all file systems support all bits. Unrecognized bits will be ignored.

COMMENTS Only the owner of a file may change a file’s permission status.

‘Execute’ status refers to the permission to search the named directory for a file
name or component.

2.66 – GEMDOS Function Reference

T H E A T A R I C O M P E N D I U M

SEE ALSO Fattrib(), Fxattr()

Fchown()
LONG Fchown(name, uid, gid)
char *name;
WORD uid, gid;

Fchown() changes a file’s ownership.

OPCODE 305 (0x131)

AVAILABILITY Available when a ‘MiNT ’ cookie with a version of at least 0.90 exists.

PARAMETERS name specifies the file whose ownership status you wish to change. uid sets the
new owner and gid sets the new group.

BINDING move.w gid,-(sp)
move.w uid,-(sp)
pea name
move.w #$131,-(sp)
trap #1
lea 10(sp),sp

RETURN VALUE Fchown() returns 0 if the operation was successful or a negative GEMDOS error
code otherwise.

CAVEATS Most file systems don’t understand the concept of file ownership (including TOS).

COMMENTS uid may only be modifies if the caller’s uid is 0. gid may only be changed to the
group id of a group the caller belongs to.

SEE ALSO Fchmod(), Fxattr()

Fclose()
LONG Fclose(handle)
WORD handle;

Fclose() closes the file specified.

OPCODE 62 (0x3E)

Fcntl() - 2.67

T H E A T A R I C O M P E N D I U M

AVAILABILITY All GEMDOS versions.

PARAMETERS handle is a valid WORD file handle which will be closed as a result of this call.

BINDING move.w handle,-(sp)
move.w #$3E,-(sp)
trap #1
addq.l #4,sp

RETURN VALUE Fclose() returns E_OK (0) if the file was closed successfully or EIHNDL (-37) if
the handle given was invalid.

CAVEATS Calling this function with an invalid file handle will crash the system on
GEMDOS versions below 0.15. In addition, GEMDOS versions below 0.15 will
become confused if you close a standard GEMDOS handle (0-5).

COMMENTS As of GEMDOS version 0.15, closing a standard GEMDOS handle (0-5) will
simply reset it to its default BIOS state.

SEE ALSO Fcreate(), Fopen()

Fcntl()
LONG Fcntl(handle, arg, cmd)
WORD handle;
LONG arg;
WORD cmd;

Fcntl() performs a command on the specified file.

OPCODE 260 (0x104)

AVAILABILITY This function is available under all MiNT versions integrated with MultiTOS .

PARAMETERS handle specifies the GEMDOS file handle of the file on which the operation
specified by cmd will affect. arg varies with each command. Valid commands are:

cmd Meaning

F_DUPFD
(0x0000)

Duplicate the given file handle. Fcntl() will return a file handle in the
range arg – 32. If no file handles exist within that range, an error will be
returned.

F_GETFD
(0x0001)

Return the inheritance flag for the specified file. A value of 1 indicates
that child processes started with Pexec() will inherit this file handle,
otherwise a value of 0 is returned. arg is ignored.

2.68 – GEMDOS Function Reference

T H E A T A R I C O M P E N D I U M

F_SETFD
(0x0002)

Set the inheritance flag for the named file. arg specifies if child
processes started with Pexec() will inherit the file handle. A value of 0
indicates that they will not. A value of 1 indicates that they will.
GEMDOS handles 0-5 default to a value of 1whereas other handles
default to a value of 0.

F_GETFL
(0x0003)

Return the file descriptor flags for the specified file. These are the
same flags passed to Fopen() . arg is ignored.

F_SETFL
(0x0004)

Set the file decriptor flags for the specified file to arg. Only user-
modifyable bits are considered. All others should be 0. It is not
possible to change a file’s read/write mode or sharing modes with this
call. Attempts to do this will fail without returning an error code.

F_GETLK
(0x0004)

Test for the presence of a lock on the specified file. arg is a pointer to
a FLOCK structure defined as follows:

typedef struct flock
{

/* Type of lock
 0 = Read-only lock
 1 = Write-only lock
 2 = Read/Write lock */
WORD l_type;
/* 0 = offset from beginning of file
 1 = offset from current position
 2 = offset from end of file */
WORD l_whence;
/* Offset to start of lock */
LONG l_start;
/* Length of lock (0 for rest of file) */
LONG l_len;
/* Process ID maybe filled in by call */
WORD l_pid;

} FLOCK;

If a prior lock exists which would prevent the specified lock from being
applied, the interfering lock is copied into the structure with the
process ID of the locking process. Otherwise, Fcntl() returns
F_UNLCK (3).

F_SETLK
(0x0005)

Set or remove an advisory lock on the specified file. arg points to a
FLOCK structure as defined above.

Setting l_type to F_RDLOCK or F_WRLCK will cause a lock to be
set. Setting l_type to F_UNLCK wil attempt to remove the specified
lock.

When locking and unlocking FIFO’s, l_whence, l_start, and l_len
should be 0.

The command returns 0 if successful or a negative GEMDOS error
code otherwise.

F_SETLKW
(0x0007)

The calling procedure is the same as above, however, if other
processes already have a conflicting lock set, it will suspend the
calling process until the lock is freed.

FSTAT
(0x4600)

Get the extended attributes for a file. arg points to a XATTR structure
which is filled in with the file’s extended attributes. If successful, the
function returns 0, otherwise a negative GEMDOS error code is
returned. See Fxattr() for an explanation of the XATTR structure.

Fcntl() - 2.69

T H E A T A R I C O M P E N D I U M

FIONREAD
(0x4601)

Return an estimate of the number of bytes available for reading from
the specified file without causing the process to block (wait for more
input) in the LONG pointed to by arg.

FIONWRITE
(0x4602)

Return an estimate of the number of bytes that may be written from the
specified file without causing the process to block in the LONG
pointed to by arg.

SHMGETBLK
(0x4D00)

Returns the address of a memory block associated with the file. arg
should be NULL for future compatibility.

Note: Different processes may receive different addresses for a
shared block.

SHMSETBLK
(0x4D01)

arg points to a block of memory (previously allocated) which is to be
associated with the file. The file must have been created at ‘U:\SHM\’
or the call will fail.

PPROCADDR
(0x5001)

Return the address of the specified processes’ control structure
(opened as a file) in arg. See the discussion of MiNT processes for
information about this structure.

PBASEADDR
(0x5002)

Return the address of the specified processes’ GEMDOS basepage
(opened as a file) in arg,

PCTXTSIZE
(0x5003)

Return the length of the specified processes’ context structure
(opened as a file) in arg. Seeking to the offset returned by
PPROCADDR minus this number and reading this many bytes will
yield the current user context of the process. Seeking back this many
bytes more and reading will yield the last system context of the
process. This structure is volatile and is likely to change from one
MiNT version to the next.

PSETFLAGS
(0x5004)

arg is a pointer to a LONG from which the processes’ memory
allocation flags (PRGFLAGS) will be set.

PGETFLAGS
(0x5005)

arg is a pointer to a LONG into which the processes’ memory
allocation flags (PRGFLAGS) will be placed.

PTRACEGFLAGS
(0x5006)

arg points to a WORD which will be filled in with the trace flags of a
process.

Setting bit #0 of arg causes the parent process to receive signals
destined for the child. See the discussion on program debugging for
more information.

PTRACESFLAGS
(0x5007)

arg points to a WORD which will be used to set the trace flags of a
process.

See the discussion on program debugging for more information.
PTRACEGO

(0x5008)
This call restarts a process which was stopped because of a signal.
arg points to a WORD which contains 0 to clear all of the child
processes’ pending signals or the signal value to send to the process.

PTRACEFLOW
(0x5009)

This call restarts a process in a special tracing mode in which the
process is stopped and a SIGTRACE signal is generated whenever
program flow changes (ex: JSR/BSR/JMP/BEQ). arg should be set to
0 to clear all of the pending signals of the process being traced or a
signal value which is to be sent to the child.

PTRACESTEP
(0x500A)

This call restarts a process and allows it to execute one instruction
before a SIGTRAP instruction is generated.

2.70 – GEMDOS Function Reference

T H E A T A R I C O M P E N D I U M

PLOADINFO
(0x500C)

arg points to a structure as follows:

struct ploadinfo
{

WORD fnamelen;
char * cmdlin;
char * fname;

};

cmdlin should point to a 128 byte character buffer into which the
processes’ command line will be copied.

fname should point to a buffer fnamelen bytes long into which the
complete path and filename of the process’ parent will be copied. If
the buffer is too short the call will return ENAMETOOLONG .

TIOCGETP
(0x5400)

Get terminal parameters from the TTY device with the specified file
handle. arg is a pointer to an sgttyb structure which is filled in by this
command.

struct sgttyb
{

/* Reserved */
char sg_ispeed;
/* Reserved */
char sg_ospeed;
/* Erase character */
char sg_erase;
/* Line kill character */
char sg_kill;
/* Terminal control flags */
WORD sg_flags;

};

TIOCSETP
(0x5401)

Set the terminal parameters of the TTY device specified. arg is a
pointer to an sgyttb structure as defined above. You should first get
the terminal control parameters, modify what you wish to change, and
then set them with this call.

TIOCGETC
(0x5402)

Get the terminal control characters of the TTY device specified. arg is
a pointer to a tchars structure filled in by this call which is defined as
follows:

struct tchars
{

/* Raises SIGINT */
char t_intrc;
/* Raises SIGKILL */
char t_quitc;
/* Starts terminal output */
char t_startc;
/* Stops terminal output */
char t_stopc;
/* Marks end of file */
char t_eofc;
/* Marks end of line */
char t_brkc;

};

TIOCSETC
(0x5403)

Set the terminal control characters of the TTY device specified. arg is
a pointer to a tchars structure as defined above. Setting any structure
element to 0 disables that feature.

Fcntl() - 2.71

T H E A T A R I C O M P E N D I U M

TIOCGLTC
 (0x5404)

Get the extended terminal control characters from the TTY device
specified. arg is a pointer to a ltchars structure which is filled in by
this call defined as follows:

struct ltchars
{

/* Raise SIGTSTP now */
char t_suspc;
/* Raise SIGTSTP when read */
char t_dsuspc;
/* Redraws the input line */
char t_rprntc;
/* Flushes output */
char t_flushc;
/* Erases a word */
char t_werasc;
/* Quotes a character */
char t_lnextc;

};

TIOCSLTC
(0x5405)

Set the extended terminal control characters for the TTY device
specified from the ltchars structure pointed to by arg.

TIOCGPGRP
(0x5406)

Return the process group ID for the TTY specified in the LONG
pointed to by arg.

TIOCSPGRP
(0x5407)

Set the process group ID of the TTY specified in the LONG pointed to
by arg.

TIOCSTOP
(0x5409)

Stop terminal output (as if the user had pressed CTRL-S). arg is
ignored.

TIOCSTART
(0x540A)

Restart output to the terminal (as if the user had pressed CTRL-Q) if it
had been previously stopped with CTRL-S or a TIOCSTOP command.
arg is ignored.

TIOCGWINSZ
(0x540B)

Get information regarding the window for this terminal. arg points to a
winsize structure which is filled in by this command.

struct winsize
{

/* # of Text Rows */
WORD ws_row;
/* # of Text Columns */
WORD ws_column;
/* Width of window in pixels */
WORD ws_xpixel;
/* Height of window in pixels */

}

TIOCSWINSZ
(0x540C)

Change the extents of the terminal window for the specified TTY. arg
points to a winsize structure which contains the new window
information. It is up to the window manager to modify the window
extents and raise the SIGWINCH signal if necessary.

2.72 – GEMDOS Function Reference

T H E A T A R I C O M P E N D I U M

TIOCGXKEY
(0x540D)

Return the current definition of a system key. arg points to a structure
xkey as follows:

struct xkey
{

WORD xk_num;
char xk_def[8];

};

xk_def will be filled in with the NULL terminated name associated
with the key specified in xk_num as follows:

xk_num Key
0-9 F1-F10

10-19 F11-F20
20 Cursor up
21 Cursor down
22 Cursor right
23 Cursor left
24 Help
25 Undo
26 Insert
27 Clr/Home
28 Shift+Cursor up
29 Shift+Cursor down
30 Shift+Cursor right
31 Shift+Cursor left

TIOCSXKEY
(0x540E)

Set the current definition of a system key. arg must point to an xkey
structure (as defined above). xk_num and xk_def are used to set the
text associated with a system key.

If a terminal recognizes special keys (by having its XKEY bit set in the
sg_flags field of its sgttyb structure) then setting a system key will
cause the text specified by xk_def to be sent to a process whenever
the key is struck. Note: this works only if the terminal is reading
characters using Fread() .

TIOCIBAUD
(0x5412)

Read/Write the input baud rate for the specified terminal device. If arg
points to a LONG then the input baud rate will be set to that value. If
arg is 0, the DTR on the terminal will be dropped (if this feature is
supported). If arg is negative, the baud rate will not be changed. The
old baud rate is returned in the value pointed to by arg.

If the terminal does not support separate input and output baud rates
then this call will set both rates.

TIOCOBAUD
(0x5413)

Read/Write the output baud rate for the specified terminal device. If
arg points to a LONG then the output baud rate will be set to that
value. If arg is 0, the DTR on the terminal will be dropped (if this
feature is supported). If arg is negative, the baud rate will not be
changed. The old baud rate is returned in the value pointed to by arg.

If the terminal does not support separate input and output baud rates
then this call will set both rates.

TIOCCBRK
(0x5414)

Clear the break condition on the specified device. arg is ignored.

TIOCSBRK
(0x5415)

Set the break condition on the specified device. arg is ignored.

Fcreate() - 2.73

T H E A T A R I C O M P E N D I U M

TIOCGFLAGS
(0x5416)

Return the current stop bit/data bit configuration for the terminal device
in the lower 16 bits of the LONG pointed to by arg. See the entry for
TIOCSFLAGS for the flags required to parse arg.

TIOCSFLAGS
(0x5417)

Set the current stop bit/data bit configuration for the terminal device.
The new configuration is contained in arg. Valid mask values for arg
are as follows:

Name Mask Meaning
TF_1STOP 0x0001 1 stop bit
TF_15STOP 0x0002 1.5 stop bits
TF_2STOP 0x0003 2 stop bits
TF_8BIT 0x0000 8 data bits
TF_7BIT 0x0004 7 data bits
TF_6BIT 0x0008 6 data bits
TF_5BIT 0x000C 5 data bits

TCURSOFF
(0x6300)

Hide the cursor on the selected terminal device. arg is ignored.

TCURSON
(0x6301)

Show the cursor on the selected terminal device. arg is ignored.

TCURSBLINK
(0x6302)

Enable cursor blinking on the selected terminal device. arg is ignored.

TCURSSTEADY
(0x6303)

Disable cursor blinking on the selected terminal device. arg is
ignored.

TCURSSRATE
(0x6304)

Set the cursor blink rate to the WORD pointed to by arg.

TCURSGRATE
(0x6305)

Return the current cursor blink rate in the WORD pointed to by arg.

BINDING move.w cmd,-(sp)
move.l arg,-(sp)
move.w handle,-(sp)
move.w #$260,-(sp)
trap #1
lea 10(sp),sp

RETURN VALUE Unless otherwise noted, Fcntl() returns a 0 if the operation was successful or a
negative GEMDOS error code otherwise.

SEE ALSO Flock(), Fopen(), Fxattr(), Pgetpgrp(), Psetpgrp()

Fcreate()
LONG Fcreate(fname, attr)
char *fname;
WORD attr;

Fcreate() creates a new file (or truncates an existing one) with the specified name
and attributes.

OPCODE 60 (0x3C)

2.74 – GEMDOS Function Reference

T H E A T A R I C O M P E N D I U M

AVAILABILITY All GEMDOS versions.

PARAMETERS fname is a character pointer to the GEMDOS file specification of the file to
create or truncate. attr is a bit array which specifies the attributes of the new file.
Valid mask values are given below:

Name Bit Meaning

FA_READONLY 0 Read-only file

FA_HIDDEN 1 Hidden file

FA_SYSTEM 2 System file

FA_VOLUME 3 Volume label

— 4 Reserved

FA_ARCHIVE 5 Archive bit

BINDING move.w attr,-(sp)
pea fname,-(sp)
move.w #$3C,-(sp)
trap #1
addq.l #8,sp

RETURN VALUE Fcreate() returns a LONG value. If the LONG is negative, it should be
interpreted as a GEMDOS error. Possible errors are EPTHNF (-34), ENHNDL
(-35) , or EACCDN (-36).

If positive, the WORD portion of the returned LONG should be regarded as the
file handle.

CAVEATS With GEMDOS version 0.13, creating a read-only file returns a read-only file
handle which is of little use. GEMDOS versions below 0.15 incorrectly allow
more than one volume label per disk.

COMMENTS GEMDOS versions 0.15 and above automatically set the archive bit. You may set
it yourself on versions below 0.15.

SEE ALSO Fopen(), Fclose()

Fdatime() - 2.75

T H E A T A R I C O M P E N D I U M

Fdatime()
LONG Fdatime(timeptr, handle, flag)
DATETIME * timeptr;
WORD handle, flag;

Fdatime() reads or modifies a file’s time and date stamp.

OPCODE 87 (0x57)

AVAILABILITY All GEMDOS versions.

PARAMETERS timeptr is a pointer to a DATETIME structure which is represented below.
handle is a valid GEMDOS file handle to the file to modify. flag is
FD_INQUIRE (0) to fill timeptr with the file’s date/timestamp and FD_SET (1)
to change the file’s date/timestamp to the contents of timeptr.

typedef struct
{

unsigned hour:5;
unsigned minute:6;
unsigned second:5;
unsigned year:7;
unsigned month:4;
unsigned day:5;

} DATETIME;

BINDING move.w flag,-(sp)
move.w handle,-(sp)
pea timeptr
move.w #$57,-(sp)
trap #1
lea 10(sp),sp

RETURN VALUE Fdatime() returns a 0 if the date/time was successfully read/modified. Otherwise,
it returns a negative GEMDOS error code.

CAVEATS GEMDOS versions below 0.15 yielded very unpredictable results with this call
and should therefore be avoided.

COMMENTS timeptr.second should be multiplied times two to obtain the actual value.
timeptr.year is expressed as an offset from 1980.

2.76 – GEMDOS Function Reference

T H E A T A R I C O M P E N D I U M

Fdelete()
LONG Fdelete(fname)
char *fname;

Fdelete() deletes the specified file.

OPCODE 65 (0x41)

AVAILABILITY All GEMDOS versions.

PARAMETERS fname is the GEMDOS file specification of the file to be deleted.

BINDING pea fname
move.w #$41,-(sp)
trap #1
addq.l #6,sp

RETURN VALUE Fdelete() returns E_OK (0) if the operation was successful or a negative
GEMDOS error code if it fails.

CAVEATS Do not attempt to delete a file that is currently open or unpredictable results will
occur.

COMMENTS Ddelete() must be used to delete subdirectories.

SEE ALSO Ddelete()

Fdup()
LONG Fdup(shandle)
WORD shandle;

Fdup() duplicates a standard file handle (0-5) and assigns it a new handle (>6).

OPCODE 69 (0x45)

AVAILABILITY All GEMDOS versions.

PARAMETERS shandle is the standard GEMDOS handle to be duplicated.

BINDING move.w shandle,-(sp)
move.w #$45,-(sp)
trap #1

Fforce() - 2.77

T H E A T A R I C O M P E N D I U M

addq.l #4,sp

RETURN VALUE Fdup() returns a normal GEMDOS file handle in the lower WORD of the
returned LONG . If the LONG return value is negative then it should be treated as
a GEMDOS error code.

COMMENTS This function is generally used to save a standard file handle so that an Fforce()
operation may be undone.

SEE ALSO Fforce()

Fforce()
LONG Fforce(shandle, nhandle)
WORD shandle, nhandle;

Fforce() is used to redirect the standard input or output from a GEMDOS
standard handle to a specific handle created by the application.

OPCODE 70 (0x46)

AVAILABILITY All GEMDOS versions.

PARAMETERS shandle is a standard GEMDOS handle to be redirected. nhandle is the new
handle you wish to direct it to. Valid values for shandle and nhandle are as
follows:

Name Handle
GEMDOS
Filename Meaning

GSH_CONIN 0 con: Standard input (defaults to whichever
BIOS device is mapped to GEMDOS
handle -1)

GSH_CONOUT 1 con: Standard output (defaults to whichever
BIOS device is mapped to GEMDOS
handle -1)

GSH_AUX 2 aux: Currently mapped serial device (defaults
to whichever BIOS device is mapped to
GEMDOS handle -2)

GSH_PRN 3 prn: Printer port (defaults to whichever BIOS
device is currently mapped to GEMDOS
handle -3).

— 4 None Reserved

— 5 None Reserved

GSH_BIOSCON -1 None Refers to BIOS handle 2. This handle
may only be redirected under the
presence of MiNT. Doing so redirects
output of the BIOS.

2.78 – GEMDOS Function Reference

T H E A T A R I C O M P E N D I U M

GSH_BIOSAUX -2 None Refers to BIOS handle 1. This handle
may only be redirected under the
presence of MiNT. Doing so redirects
output of the BIOS.

GSH_BIOSPRN -3 None Refers to BIOS handle 0. This handle
may only be redirected under the
presence of MiNT. Doing so redirects
output of the BIOS.

GSH_MIDIIN
GSH_MIDIOUT

-4
-5

None GEMDOS handles -4 and -5 refer to
MIDI input and output respectively.
Redirecting these handles will affect
BIOS handle 3. These special handles
exist only with the presence of MiNT.

BINDING move.w nhandle,-(sp)
move.w shandle,-(sp)
move.w #$46,-(sp)
trap #1
addq.l #6,sp

RETURN VALUE Fforce() returns E_OK (0) if no error occurred or EIHNDL (-37) if a bad handle
is given.

CAVEATS Prior to GEMDOS versions 0.15, handles forced to the printer would not work
properly.

COMMENTS This function is often used to redirect the input or output of a child process. It
should be used in conjunction with Fdup() to restore the standard handle before
process termination. In addition, you should be aware that any file handle
redirected to a standard handle (‘con:’ for example) will be closed when the child
exits and should not be closed by the parent.

Standard GEMDOS file handles which have been redirected will revert to their
original mapping upon Fclose().

SEE ALSO Fdup()

Fgetchar()
LONG Fgetchar(handle, mode)
WORD handle, mode;

Fgetchar() reads a character from the specified handle.

OPCODE 263 (0x107)

AVAILABILITY This function is available under all MiNT versions integrated with MultiTOS .

Fgetdta() - 2.79

T H E A T A R I C O M P E N D I U M

PARAMETERS handle is a valid GEMDOS handle to read from. If handle is a TTY then mode (a
bit mask) has meaning as follows:

Name mode Meaning

TTY_COOKED 0x01 Cooked mode. Special control characters such as CTRL-C
and CTRL-Z are checked and acted upon. In addition, flow
control with CTRL-S and CTRL-Q is activated.

TTY_ECHO 0x02 Echo mode. Characters read are echoed back to the TTY.

BINDING move.w mode,-(sp)
move.w handle,-(sp)
move.w #$107,-(sp)
trap #1
addq.l #6,sp

RETURN VALUE Fgetchar() returns the character read in the low byte of the returned LONG . If the
device is a terminal where scan codes are available, the LONG will be mapped
in the same manner as Bconin(). If an end-of-file is reached, the value 0xFF1A
will be returned.

SEE ALSO Bconin(), Fputchar(), Fread()

Fgetdta()
DTA *Fgetdta(VOID)

Fgetdta() returns current DTA (Disk Transfer Address)

OPCODE 47 (0x2F)

AVAILABILITY All GEMDOS versions.

PARAMETERS None.

BINDING move.w #$2F,-(sp)
trap #1
addq.l #2,sp

RETURN VALUE Fgetdta() returns a pointer to the current Disk Transfer Address. The structure
DTA is defined as:

typedef struct
{

BYTE d_reserved[21];
BYTE d_attrib;
UWORD d_time;

2.80 – GEMDOS Function Reference

T H E A T A R I C O M P E N D I U M

UWORD d_date;
LONG d_length;
char d_fname[14];

} DTA;

COMMENTS When an application starts, its DTA overlaps the command line string in the
processes’ basepage. Any use of the Fsfirst() or Fsnext() call without first
reallocating a new DTA will cause the processes’ command line to be corrupted.

To prevent this, you should use Fsetdta() to define a new DTA structure for your
process prior to using Fsfirst() or Fsnext(). Be careful to avoid assigning your
DTA to a local or automatic variable without setting it to its original value before
the variable goes out of scope.

SEE ALSO Fsetdta(), Fsfirst(), Fsnext()

Finstat()
LONG Finstat(handle)
WORD handle;

Finstat() determines the input status of a file.

OPCODE 261 (0x105)

AVAILABILITY This function is available under all MiNT versions integrated with MultiTOS .

PARAMETERS handle specifies the GEMDOS file handle of the file to return information about.

BINDING move.w handle,-(sp)
move.w #$105,-(sp)
trap #1
addq.l #4,sp

RETURN VALUE Finstat() returns 0 or a positive number of characters waiting to be read if
successful. A negative GEMDOS error code is returned otherwise.

CAVEATS Currently Finstat() always returns 0 for disk files.

SEE ALSO Cauxis(), Cconis(), Fcntl(), Foutstat()

Flink() - 2.81

T H E A T A R I C O M P E N D I U M

Flink()
LONG Flink(oldname, newname)
char *oldname, *newname;

Flink() creates a new name for the specified file. After the call the file may be
referred to by either name. An Fdelete() call on one filename will not affect the
other.

OPCODE 301 (0x12D)

AVAILABILITY Available when a ‘MiNT ’ cookie with a version of at least 0.90 exists.

PARAMETERS oldname points to the GEMDOS path specification of the currently existing file
and newname specifies the name of the alias to create.

BINDING pea newname
pea oldname
move.w #$12D,-(sp)
trap #1
lea 10(sp),sp

RETURN VALUE Flink() returns a 0 if successful or a negative GEMDOS error code otherwise.

CAVEATS Not all file systems support ‘hard links’.

COMMENTS The filenames given must reside on the same physical device.

SEE ALSO Frename(), Fsymlink()

Flock()
LONG Flock(handle, mode, start, length)
WORD handle,mode;
LONG start,length;

Flock() sets or removes a lock on a portion of a file which prevents other
processes from accessing it.

OPCODE 92 ($5C)

AVAILABILITY Only present when ‘_FLK ’ cookie exists.

2.82 – GEMDOS Function Reference

T H E A T A R I C O M P E N D I U M

PARAMETERS handle specifies the GEMDOS handle of the file. mode is FLK_LOCK (0) to
create a lock and FLK_UNLOCK (1) to remove it. start specifies the byte offset
from the beginning of the file which indicates where the lock starts. length
specifies the length of the lock in bytes.

BINDING move.l length,-(sp)
move.l start,-(sp)
move.w mode,-(sp)
move.w handle,-(sp)
trap #1
lea 12(sp),sp

RETURN VALUE Flock() returns E_OK (0) if the call was successful, ELOCKED (-58) if an
overlapping section of the file was already locked, ENSLOCK (-59) if a matching
lock was not found for removal, or another GEMDOS error code as appropriate.

COMMENTS To remove a lock, you must specify identical start and length parameters as you
originally set.

MiNT allows locks to be set on devices by locking their entry in ‘U:\DEV\’ as
shown in the example below:

handle = Fopen(“U:\DEV\MODEM1”, 3);
if(handle < 0)

return ERR_CODE; /* Unable to open. */

retcode = Flock((WORD)handle, 0, 0, 0); /* Lock
*/
if(retcode != E_OK)

return FILE_IN_USE; /* File is already locked */

/*
 * Now do device input/output.
 */

Flock((WORD)handle, 1, 0, 0); /* Unlock */
Fclose((WORD)handle);

SEE ALSO Fopen(), Fwrite(), Fread()

Fmidipipe()
LONG Fmidipipe(pid, in, out)
WORD pid, in, out;

Fmidipipe() is used to change the file handles used for MIDI input and output.

OPCODE 294 (0x126)

Fopen() - 2.83

T H E A T A R I C O M P E N D I U M

AVAILABILITY Available when a ‘MiNT ’ cookie with a version of at least 0.90 exists.

PARAMETERS pid is the process id of the process whose MIDI devices you wish to alter. If pid
is 0, then the current process will be modified. in specifies the GEMDOS file
handle of the device to handle MIDI input. out specifies the GEMDOS file handle
of the device to handle MIDI output.

BINDING move.w out,-(sp)
move.w in,-(sp)
move.w pid,-(sp)
move.w #$126,-(sp)
trap #1
addq.l #8,sp

RETURN VALUE Fmidipipe() returns a 0 if successful or a negative GEMDOS error code
otherwise.

COMMENTS An Fmidipipe(0, in, out) call is essentially the same as:

Fforce(-4, in);
Fforce(-5, out);

After this call, any Bconin() calls to MIDI device 5 will translate to a one
character read from handle in. Likewise any Bconout() calls to MIDI device 5
will translate to a one character write to handle out.

SEE ALSO Fdup(), Fforce()

Fopen()
LONG Fopen(fname, mode)
char *fname;
WORD mode;

Fopen() opens the GEMDOS file specified.

OPCODE 61 ($3D)

AVAILABILITY All GEMDOS versions. mode bits pertaining to file sharing/record locking are
only valid when the ‘_FLK ’ cookie is present.

PARAMETERS fname is the GEMDOS file specification of the file to be opened. mode specifies
the mode the file is to be placed into once opened. mode is a bit array which may
be formed by using the bit masks given as follows:

2.84 – GEMDOS Function Reference

T H E A T A R I C O M P E N D I U M

Bit 7 Bits 6-4 Bit 3 Bits 2-0

Inheritance flag Sharing
mode

Reserved Access code

Bits 0-2 specify the file access code as follows:

Bit 2 Bit 1 Bit 0 File Access Codes

0 0 0 Read only access (S_READ)

0 0 1 Write only access (S_WRITE)

0 1 0 Read/Write access (S_READWRITE)

Bit 3 is reserved and should always be 0. Bits 4-6 specify the file sharing mode of
the file to be opened as follows:

Bit 6 Bit 5 Bit 4 File Sharing Codes

0 0 0 Compatibility Mode (S_COMPAT).

If the file’s read-only bit is set, then this
is the same as Deny Writes, otherwise
it is the same as Deny Read/Writes.

0 0 1 Deny Read/Writes
(S_DENYREADWRITE)

0 1 0 Deny Writes (S_DENYWRITE)

0 1 1 Deny Reads (S_DENYREAD)

1 0 0 Deny None (S_DENYNONE)

Bit 7 (S_INHERIT) is the file’s inheritance flag. If this flag is not set, a child
process will inherit any open file handles and has the same access as the parent. If
this flag is set, a child must re-open any files it wishes to use and must face the
same sharing restrictions other processes must share.

BINDING move.w mode,-(sp)
pea fname
move.w #$3D,-(sp)
trap #1
addq.l #8,sp

RETURN VALUE Upon return, if the longword is positive, the lower WORD contains the new
handle of the open file, otherwise the negative LONG should be regarded as a
GEMDOS error code.

COMMENTS Bits 7-3 of mode should be set to 0 unless the ‘_FLK ’ cookie is present indicating
the presence of the file sharing/record locking extensions to GEMDOS.

SEE ALSO Fclose(), Fcreate()

Foutstat() - 2.85

T H E A T A R I C O M P E N D I U M

Foutstat()
LONG Foutstat(handle)
WORD handle;

Foutstat() determines the output status of a file.

OPCODE 262 (0x106)

AVAILABILITY This function is available under all MiNT versions integrated with MultiTOS .

PARAMETERS handle specifies the GEMDOS file handle of the file to return information about.

BINDING move.w handle,-(sp)
move.w #$106,-(sp)
trap #1
addq.l #4,sp

RETURN VALUE Foutstat() returns a 0 or positive number indicating the number of characters
which may be written to the specified file without blocking. If an error occurred,
Foutstat() returns a negative GEMDOS error code.

CAVEATS Currently this function always returns 1 for disk files.

SEE ALSO Cconos(), Cauxos(), Cprnos(), Fcntl(), Finstat()

Fpipe()
LONG Fpipe(fhandle)
WORD fhandle[2];

Fpipe() creates a pipe named ‘SYS$PIPE.xxx’ (where ‘xxx’ is a three digit
integer) on ‘U:\PIPE\’ and returns two file handles to it, one for reading and one
for writing.

OPCODE 256 (0x100)

AVAILABILITY Available when a ‘MiNT ’ cookie with a version of at least 0.90 exists.

PARAMETERS fhandle is a pointer to an array of two WORDs. If the functions is successful,
fhandle[0] will contain an open GEMDOS file handle to the pipe which may be
used for reading only. fhandle[1] will contain an open GEMDOS file handle to
the pipe which may be used for writing only.

2.86 – GEMDOS Function Reference

T H E A T A R I C O M P E N D I U M

BINDING pea fhandle
move.w #$100,-(sp)
trap #1
addq.l #6,sp

RETURN VALUE Fpipe() returns E_OK (0) if successful or a negative GEMDOS error code
otherwise.

CAVEATS No more than 999 pipes created with Fpipe() may be in use at once.

COMMENTS This function is normally used by shells who wish to redirect the input and output
of their child processes. Prior to lauching a child process, the shell redirects its
input and output (as necessary) to the read and write ends of the newly created
pipe.

Fputchar()
LONG Fputchar(handle, lchar, mode)
WORD handle;
LONG lchar;
WORD mode;

Fputchar() writes a character to the specified file.

OPCODE 264 (0x108)

AVAILABILITY This function is available under all MiNT versions integrated with MultiTOS .

PARAMETERS handle specifies the handle of the file to write a character to.

If the file specified by handle is a pseudo-terminal then all four bytes of lchar are
written (it should be formatted as a character read from Bconin()), otherwise only
the low byte of lchar is transmitted.

mode is only valid if handle refers to a terminal device. If mode is
TTY_COOKED (0x0001) then control characters (which could cause SIGINT or
SIGTSTP signals to be raised) passed through this function will be interpreted
and acted upon. Setting mode to 0 will cause control characters to have no special
effect.

BINDING move.w mode,-(sp)
move.l lchar,-(sp)
move.w handle,-(sp)
move.w #$108,-(sp)
trap #1

Fread() - 2.87

T H E A T A R I C O M P E N D I U M

lea 10(sp),sp

RETURN VALUE Fputchar() returns 4L if the character was output to a terminal, 1L if the character
was output to a non-terminal, 0L if the character could not be written (possibly
because of flow control), EIHNDL (-37) if the handle was invalid, or a negative
BIOS error code if an error occurred during I/O.

SEE ALSO Cconout(), Cauxout(), Crawio(), Cprnout(), Bconout(), Fgetchar(), Fwrite()

Fread()
LONG Fread(handle, length, buf)
WORD handle;
LONG length;
VOIDP buf;

Fread() reads binary data from a specified file from the current file pointer.

OPCODE 63 (0x3F)

AVAILABILITY All GEMDOS versions.

PARAMETERS handle is the GEMDOS file handle of the file to read from. length specifies the
number of bytes of data to read. buf is a pointer to a buffer (at least length bytes
long) where the read data will be stored.

BINDING pea buf
move.l length,-(sp)
move.w handle,-(sp)
move.w #$3F,-(sp)
trap #1
lea 12(sp),sp

RETURN VALUE Fread() returns either a positive amount indicating the number of bytes actually
read (this number may be smaller than length if an EOF is hit) or a negative
GEMDOS error code.

CAVEATS Fread() will crash the system if given a parameter of 0 for length on GEMDOS
versions lower than 0.15.

SEE ALSO Fwrite(), Fopen(), Fclose()

2.88 – GEMDOS Function Reference

T H E A T A R I C O M P E N D I U M

Freadlink()
LONG Freadlink(bufsiz, buf, name)
WORD bufsiz;
char *buf, *name;

Freadlink() determines what file the specified symbolic link refers to.

OPCODE 303 (0x12F)

AVAILABILITY Available when a ‘MiNT ’ cookie with a version of at least 0.90 exists.

PARAMETERS bufsiz specifies the length of buffer buf into which the original file pointed to by
the symbolic link name is written.

BINDING pea name
pea buf
move.w bufsiz,-(sp)
move.w #$12F,-(sp)
trap #1
lea 12(sp),sp

RETURN VALUE Freadlink() returns 0 if successful or a negative GEMDOS error code otherwise.

SEE ALSO Fsymlink()

Frename()
LONG Frename(reserved, oldname, newname)
WORD reserved;
char *oldname,*newname;

Frename() renames a standard GEMDOS file. It may also be used to move a file
in the tree structure of a physical drive.

OPCODE 86 (0x56)

AVAILABILITY All GEMDOS versions.

PARAMETERS reserved is not currently used and should be 0. oldname is the GEMDOS file
specification of the file’s current name/location. newname is the GEMDOS file
specification of the new name/location of the file.

BINDING pea newname

Fseek() - 2.89

T H E A T A R I C O M P E N D I U M

pea oldname
move.w #0,-(sp)
trap #1
lea 10(sp),sp

RETURN VALUE Frename() returns E_OK (0) if the operation was successful or a negative
GEMDOS error code if not.

CAVEATS Prior to GEMDOS version 0.15, this command may not be used to rename
folders. Also, do not attempt to rename a file that is currently open under any
version of GEMDOS.

Fseek()
LONG Fseek(offset, handle, mode)
LONG offset;
WORD handle,mode;

Fseek() moves the file position pointer within a GEMDOS file.

OPCODE 66 (0x42)

AVAILABILITY All GEMDOS versions.

PARAMETERS handle specifies the GEMDOS file handle of the file pointer to modify. The
meaning of offset varies with mode as follows:

Name mode Meaning

SEEK_SET 0 offset specifies the positive number of bytes from the
beginning of the file.

SEEK_CUR 1 offset specifies the negative or positive number of bytes from
the current file position.

SEEK_END 2 offset specifies the positive number of bytes from the end of
the file.

BINDING move.w mode,-(sp)
move.w handle,-(sp)
move.l offset,-(sp)
move.w #$42,-(sp)
trap #1
lea 10(sp),sp

RETURN VALUE Fseek() returns a positive value representing the new absolute location of the file
pointer from the beginning of the file or a negative GEMDOS error code.

2.90 – GEMDOS Function Reference

T H E A T A R I C O M P E N D I U M

Fselect()
WORD Fselect(timeout, rfds, wfds, reserved)
WORD timeout;
LONG * rfds, *wfds;
LONG reserved;

Fselect() enumerates file descriptors which are ready for reading and/or writing.

OPCODE 285 (0x11D)

AVAILABILITY This function is available under all MiNT versions integrated with MultiTOS .

PARAMETERS timeout specifies the maximum amount of time (in milliseconds) to wait for at
least one of the specified file descriptors to become unblocked. If timeout is 0
then the process will wait indefinitely.

rfds and wfds each point to a LONG bitmap describing the read and write file
descriptors to wait for. Setting bit #10 of the LONG pointed to by rfds, for
example, will cause Fselect() to return when GEMDOS handle 10 is available
for reading.

As many read or write file descriptors can be specified per call as desired.
Specifying NULL for either rfds or wfds is the same as passing a pointer to a
LONG with no bits set.

Upon return the LONGs pointed to by rfds and wfds will be filled in with a
similar bitmap indicating which handles are ready to be read/written. reserved
should always be set to 0L.

BINDING move.l reserved,-(sp)
pea wfds
pea rfds
move.w timeout,-(sp)
move.w #$11D,-(sp)
trap #1
lea 16(sp),sp

RETURN VALUE Fselect() returns the sum of bits set in both rfds and wfds. A return value of 0
indicates that the function timed out before any of the specified file handles
became available. A negative GEMDOS error code is returned if the function
failed.

CAVEATS Fselect() does not currently work on any BIOS device except the keyboard.

COMMENTS Fselect(0L, 0L, 0L, 0L) will block the calling process forever.

Fsetdta() - 2.91

T H E A T A R I C O M P E N D I U M

SEE ALSO Finstat(), Foutstat()

Fsetdta()
VOID Fsetdta(ndta)
DTA * ndta;

Fsetdta() sets the location of a new DTA (Disk Transfer Address) in memory.

OPCODE 26 (0x1A)

AVAILABILITY All GEMDOS versions.

PARAMETERS ndta is a pointer to a valid memory area which will be used as the new DTA . The
DTA structure is defined under the entry for Fgetdta().

BINDING pea ndta
move.w #$1A,-(sp)
trap #1
addq.l #6,sp

COMMENTS When an application starts, its DTA overlaps the command line string in the
processes’ basepage. Any use of the Fsfirst() or Fsnext() call without first
reallocating a new DTA will cause the processes’ command line to be corrupted.

To prevent this, you should use Fsetdta() to define a new DTA structure for your
process prior to using Fsfirst() or Fsnext(). Be careful to avoid assigning your
DTA to a local or automatic variable without setting it to its original value before
the variable goes out of scope.

SEE ALSO Fgetdta(), Fsfirst(), Fsnext()

Fsfirst()
WORD Fsfirst(fspec, attribs)
char *fspec;
WORD attribs;

Fsfirst() searches the file/pathspec given for the first occurrence of a file or
subdirectory with named attributes and if found, fill in the current DTA with that
file’s information.

2.92 – GEMDOS Function Reference

T H E A T A R I C O M P E N D I U M

OPCODE 78 (0x4E)

AVAILABILITY All GEMDOS versions.

PARAMETERS fspec is the GEMDOS file specification of the file or subdirectory to search for.
This specification may use wildcard characters (? or *) within the filename,
however they may not be used within the pathname. This function is the only
GEMDOS function which accepts wildcard characters in the path specification.

attribs is a bit mask which can combine several file characteristics that further
narrows the search as follows:

Name Bit Mask Meaning

FA_READONLY 0x01 Include files which are read-only.

FA_HIDDEN 0x02 Include hidden files.

FA_SYSTEM 0x04 Include system files.

FA_VOLUME 0x08 Include volume labels.

FA_DIR 0x10 Include subdirectories.

FA_ARCHIVE 0x20 Include files with archive bit set.

BINDING move.w attribs,-(sp)
pea fspec
move.w #$4E,-(sp)
trap #1
addq.l #8,sp

RETURN VALUE Fsfirst() returns E_OK (0) if a file was found and the DTA was successfully
filled in with the file information. Otherwise, it returns a negative GEMDOS
error code.

The DTA structure is defined as:

typedef struct
{

BYTE d_reserved[21];
BYTE d_attrib;
UWORD d_time;
UWORD d_date;
LONG d_length;
char d_fname[14];

} DTA;

COMMENTS This function uses the application’s DTA which is initially located in the same
memory location as the processes’ command line. Using this function without first
assigning a new DTA will corrupt the command line.

When running in the MiNT domain (see Pdomain()), Fsfirst() and Fsnext() will
fill in the DTA with lowercase filenames rather than the standard TOS uppercase.

Fsnext() - 2.93

T H E A T A R I C O M P E N D I U M

SEE ALSO Fsnext(), Fgetdta(), Fsetdta()

Fsnext()
WORD Fsnext(VOID)

Fsnext() should be called as many times as necessary after a corresponding
Fsfirst() call to reveal all files which match the search criteria.

OPCODE 79 (0x4F)

AVAILABILITY All GEMDOS versions.

BINDING move.w #$4F,-(sp)
trap #1
addq.l #2,sp

RETURN VALUE Fsnext() returns E_OK (0) if another file matching the search criteria given in
Fsfirst() is found and the DTA has been properly filled in with the file’s
information. Otherwise, a negative GEMDOS error code is returned.

COMMENTS This function uses the application’s DTA which is initially located in the same
memory location as the processes’ command line. Using this function without first
assigning a new DTA will corrupt the command line.

This call should only be used after Fsfirst() and the contents of the DTA should
not be modifed between the calls.

SEE ALSO Fsfirst()

Fsymlink()
LONG Fsymlink(oldname, newname)
char *oldname, *newname;

Fsymlink() creates a symbolic link to a file.

OPCODE 302 (0x12E)

AVAILABILITY Available when a ‘MiNT ’ cookie with a version of at least 0.90 exists.

PARAMETERS oldname points to the file specification of the file to create a link to. newname

2.94 – GEMDOS Function Reference

T H E A T A R I C O M P E N D I U M

points to the file specification of the link to create.

BINDING pea newname
pea oldname
move.w #$12E,-(sp)
trap #1
lea 10(sp),sp

RETURN VALUE Fsymlink() returns 0 if successful or a negative GEMDOS error code otherwise.

COMMENTS Fsymlink(), unlike Flink() , creates symbolic links, which, unlike hard links, can
be setup between physical devices and file systems.

An Fdelete() call to a symbolic link will delete the link, not the file. A call to
Fdelete() on the original file will cause future references to the created symbolic
link to fail.

SEE ALSO Flink(), Freadlink()

Fwrite()
LONG Fwrite(handle, count, buf)
WORD handle;
LONG count;
VOIDP buf;

Fwrite() writes the contents of a buffer to the specified GEMDOS file.

OPCODE 64 (0x40)

AVAILABILITY All GEMDOS versions.

PARAMETERS handle is the handle of the file to write to. count specifies the number of bytes to
write. buf indicates the starting address of the data to write.

BINDING pea buf
move.l count,-(sp)
move.w handle,-(sp)
trap #1
lea 10(sp),sp

RETURN VALUE Fwrite() returns the positive number of bytes actually written or a negative
GEMDOS error code if the operation failed.

CAVEATS Prior to GEMDOS version 0.15, calling Fwrite() with a count parameter of 0
will hang the system.

Fxattr() - 2.95

T H E A T A R I C O M P E N D I U M

SEE ALSO Fread()

Fxattr()
LONG Fxattr(flag, name, xattr)
WORD flag;
char *name;
XATTR * xattr;

Fxattr() returns extended information about the specified file.

OPCODE 300 (0x12C)

AVAILABILITY Available when a ‘MiNT ’ cookie with a version of at least 0.90 exists.

PARAMETERS flag specifies whether attributes returned by this call on symbolic links should be
those of the file to which the link points or the link itself. A value of FX_FILE (0)
causes the attributes to be those of the actual file whereas a value of FX_LINK (1)
returns the attributes of the link itself.

name specifies the name of the file from which attributes are to be read and placed
in the XATTR structure pointed to by xattr. XATTR is defined as follows:

typedef struct
{

UWORD mode;
LONG index;
UWORD dev;
UWORD reserved1;
UWORD nlink;
UWORD uid;
UWORD gid;
LONG size;
LONG blksize;
LONG nblocks;
WORD mtime;
WORD mdate;
WORD atime;
WORD adate;
WORD ctime;
WORD cdate;
WORD attr;
WORD reserved2;
LONG reserved3;
LONG reserved4;

} XATTR;

XATTR ’s members have the following meaning:

2.96 – GEMDOS Function Reference

T H E A T A R I C O M P E N D I U M

XATTR
Element Meaning

mode Masking mode with 0xF000 reveals the file type as one of the following:

S_IFCHR (0x2000)
S_IFDIR (0x4000)
S_IFREG (0x8000)
S_IFIFO (0xA000)
S_IMEM (0xC000)
S_IFLNK (0xE000)

The lower three nibbles of mode is a bit mask which specifies the legal file
access mode(s) as defined in Fchmod() .

index This member combined with the dev field are designed to provide a unique
identifier for a file under file systems which allow multiple files with the same
filename.

dev This value represents either a BIOS device number or an identifier created
by the file system to represent a remote device.

reserved1 This structure element is currently reserved for future implementations of
MiNT.

nlink This value specifies the current number of hard links attached to the file. On a
file system that does not support hard links and for most regular files, nlink is
1.

uid uid is the user ID of the owner of the file.

gid gid is the group ID of the owner of the file.

size size is the length of the file in bytes.

blksize blksize specifies the size of blocks (in bytes) in this file system.

nblocks nblocks is the actual number of blocks the file is using on the device. This
number may include data storage elements other used to keep track of the
file (aside from the actual data).

mtime, mdate Time and date of the last file modification in GEMDOS format.

atime, adate Time and date of the last file access in GEMDOS format.

ctime, cdate Time and date of the file’s creation in GEMDOS format.

attr Standard file attributes (same as read by Fattrib()).

reserved2 This structure element is currently reserved for future implementations of
MiNT.

reserved3 This structure element is currently reserved for future implementations of
MiNT.

reserved4 This structure element is currently reserved for future implementations of
MiNT.

BINDING pea xattr
pea name
move.w flag,-(sp)
move.w #$12C,-(sp)
trap #1
lea 12(sp),sp

RETURN VALUE Fxattr() returns 0 if successful or a negative GEMDOS error code otherwise.

SEE ALSO Fattrib()

Maddalt() - 2.97

T H E A T A R I C O M P E N D I U M

Maddalt()
LONG Maddalt(start, size)
VOIDP start;
LONG size;

Maddalt() informs GEMDOS of the existence of additional ‘alternative’ RAM
that would not normally have been identified by the system.

OPCODE 20 (0x14)

AVAILABILITY Available as of GEMDOS version 0.19 only.

PARAMETERS start indicates the starting address for the block of memory to be added to the
GEMDOS free list. size indicates the length of this block in bytes.

BINDING move.l size,-(sp)
pea start
move.w #$14,-(sp)
trap #1
lea 10(sp),sp

RETURN VALUE Maddalt() returns E_OK (0) if the call succeeds or a negative GEMDOS error
code otherwise.

COMMENTS This call should only be used to identify RAM not normally identified by the
BIOS at startup (added through a VME-card or hardware modification). Once this
RAM has been identified to the system it may not be removed and should only be
allocated and used via the standard system calls. In addition, programs wishing to
use this RAM must have their alternative RAM load bit set or use Mxalloc() to
specifically request alternative RAM.

See the discussion earlier in this chapter for more information about the types of
available RAM.

SEE ALSO Mxalloc()

2.98 – GEMDOS Function Reference

T H E A T A R I C O M P E N D I U M

Malloc()
VOIDP Malloc(amount)
LONG amount;

Malloc() requests a block of memory for use by an application.

OPCODE 72 (0x48)

AVAILABILITY All GEMDOS versions.

PARAMETERS amount specifies the amount of memory (in bytes) you wish to allocate. You may
pass a value of -1L in which case the function will return the size of the largest
free block of memory.

BINDING move.l amount,-(sp)
move.w #$48,-(sp)
trap #1
addq.l #6,sp

RETURN VALUE Malloc() returns NULL if there is no block large enough to fill the request or a
pointer to the block if the request was satisfied. The memory allocated will be
chosen based on the status of the processes’ load flags. To specify the memory
requirements in more detail, use Mxalloc().

CAVEATS Prior to GEMDOS version 0.15, Malloc(0L) will return a pointer to invalid
memory as opposed to failing as it should.

COMMENTS Because GEMDOS can only allocate a limited amount of blocks per process (as
few as 20 depending on the version of GEMDOS), applications should limit their
usage of this call by allocating a few large blocks instead of many small blocks or
use a ‘C’ memory manager (like malloc()) if possible.

SEE ALSO Mxalloc()

Mfree()
WORD Mfree(startadr)
VOIDP startadr;

Mfree() releases a block of memory previously reserved with Malloc() or
Mxalloc() back into the GEMDOS free list.

OPCODE 73 (0x49)

Mshrink() - 2.99

T H E A T A R I C O M P E N D I U M

AVAILABILITY All GEMDOS versions.

PARAMETERS startadr is the starting address of the block to be freed. This address must be the
same as that returned by the corresponding Malloc() or Mxalloc() call.

BINDING pea startadr
move.w #$49,-(sp)
trap #1
addq. #6,sp

RETURN VALUE Mfree() returns E_OK (0) if the block was freed successfully or a negative
GEMDOS error code otherwise.

SEE ALSO Malloc(), Mxalloc()

Mshrink()
WORD Mshrink(startadr, newsize)
VOIDP startadr;
LONG newsize;

Mshrink() releases a portion of a block’s memory to the GEMDOS free list.

OPCODE 74 (0x4A)

AVAILABILITY All GEMDOS versions.

PARAMETERS startadr is the address of the block whose size you wish to decrease. newsize is
the length you now desire for the block.

BINDING move.l newsize,-(sp)
pea startadr
clr.w -(sp) // Required/Reserved Value
move.w #$4A,-(sp)
trap #1
lea 12(sp),sp

RETURN VALUE Mshrink() returns E_OK (0) if the operation was successful or a negative
GEMDOS error code otherwise.

CAVEATS This call should be used only to ‘shrink’ a memory block, not to enlarge it.

SEE ALSO Malloc(), Mxalloc(), Mfree()

2.100 – GEMDOS Function Reference

T H E A T A R I C O M P E N D I U M

Mxalloc()
VOIDP Mxalloc(amount, mode)
LONG amount;
WORD mode;

Mxalloc() allocates a block of memory according to specified preferences.

OPCODE 68 (0x44)

AVAILABILITY Available from GEMDOS version 0.19.

PARAMETERS amount specifies the length (in bytes) of the block requested. As with Malloc(),
specifying -1L for amount will return the size of the largest block of memory
available. With modes 0 or 1, the size of the largest block of available RAM from
the specified type of RAM is returned. Modes 2 and 3 return the size of the largest
available block or whichever type of RAM had the largest block.

mode is a WORD bit array which specifies the type of memory requested as
follows:

Bit Meaning

0-1 Bits 0-1 represent a possible value of 0-3 representing the type of RAM to
allocate as follows:

Name Value Meaning
MX_STRAM 0 Allocate only ST-RAM
MX_TTRAM 1 Allocate only TT-RAM
MX_PREFSTRAM 2 Allocate either, preferring ST-RAM
MX_PREFTTRAM 3 Allocate either, preferring TT-RAM

2 Not used (should be set to 0).

3 If set, refer to bits 4-7 for memory protection advice, otherwise default to
protection specified in program header. This bit is only valid in the presence
of MiNT.

4-7 Bits 4-7 represent a possible value of 0-7 representing the memory
protection mode to place on the allocated block of memory. Currently valid
values are:

Name Value Meaning
MX_HEADER 0 Refer to Program Header
MX_PRIVATE 1 Private
MX_GLOBAL 2 Global
MX_SUPERVISOR 3 Supervisor Mode Only Access
MX_READABLE 4 Read Only Access

These bits are only consulted if bit 3 is set and MiNT is present.
8-15 Not used (should be set to 0).

Pause() - 2.101

T H E A T A R I C O M P E N D I U M

BINDING move.w mode,-(sp)
move.l amount,-(sp)
move.w #$44,-(sp)
trap #1
addq.l #8,sp

RETURN VALUE Mxalloc() returns NULL if the request could not be granted or a valid pointer to
the start of the block allocated otherwise.

COMMENTS Mxalloc() should be used instead of Malloc() whenever it is available.

SEE ALSO Malloc(), Mfree()

Pause()
VOID Pause(VOID)

Pause() suspends the process until a signal is received.

OPCODE 289 (0x121)

AVAILABILITY This function is available under all MiNT versions integrated with MultiTOS .

BINDING move.w #$121,-(sp)
trap #1
addq.l #2,sp

COMMENTS If the signal handler does a ‘C’ longjmp() to a different point in the process or if
the handler’s purpose is to exit the process, this call will never return.

SEE ALSO Psigblock(), Psignal(), Psigsetmask()

Pdomain()
WORD Pdomain(domain)
WORD domain;

Pdomain() determines/modifies the calling processes’ execution domain.

OPCODE 281 (0x119)

AVAILABILITY This function is available under all MiNT versions integrated with MultiTOS .

PARAMETERS domain contains the domain code of the new process domain. Currently the only

2.102 – GEMDOS Function Reference

T H E A T A R I C O M P E N D I U M

valid values are DOMAIN_TOS (0) for the TOS compatibility domain and
DOMAIN_MINT (1) for the MiNT domain. Passing a negative value for domain
will not change domains but it will return the current domain.

BINDING move.w domain,-(sp)
move.w #$119,-(sp)
trap #1
addq.l #4,sp

RETURN VALUE Pdomain() returns the domain in effect prior to the call.

COMMENTS Process domain affects system calls like Fread(), Fwrite() , Fsfirst(), and
Fsnext(). Processes behave as expected when under the TOS domain.

When processes run under the MiNT domain, however, the behavior of Fread()
and Fwrite() calls when dealing with terminals can be modified by Fcntl(). Also,
Fsfirst() and Fsnext() may not necessarily return the standard DOS 8 + 3 file
name format. MiNT domain processes must understand filenames formatted for
different file systems.

SEE ALSO Fcntl()

Pexec()
LONG Pexec(mode, fname, cmdline, envstr)
WORD mode;
char *fname,*cmdline,*envstr;

Pexec() has many functions designed to spawn child processes depending on the
selected mode.

OPCODE 75 (0x4B)

AVAILABILITY Pexec() modes 0, 3, 4, and 5, are available in all GEMDOS versions. Mode 6 is
available as of GEMDOS version 0.15. Mode 6 is available as of GEMDOS
version 0.19. Modes 100, 104, 106, and 200 are only available in the presence of
MiNT .

PARAMETERS mode defines the function of Pexec() and the meaning of its parameters and return
value as defined below. For modes which load a program, fname specifies the
GEMDOS file specification of the file to load. cmdline is pointer to a string
containg the command line which will be passed to the calling program. The first
byte of the string should indicate the length of the command line (maximum of 125
bytes). The actual command line starts at byte 2. envstr is a pointer to an
environment which is copied and assigned to the child process. If envstr is NULL ,

Pexec() - 2.103

T H E A T A R I C O M P E N D I U M

the child inherits a copy of the parent’s environment.

Name mode Meaning

PE_LOADGO 0 ‘LOAD AND GO’ - Load and execute named program file
and return a WORD exit code when the child terminates.

PE_LOAD 3 ‘LOAD, DON’T GO’ - Load named program. If successful,
the LONG return value is the starting address of the child
processes’ basepage. The parent owns the memory of the
child’s environment and basepage and must therefore free
them when completed with the child.

PE_GO 4 ‘JUST GO’ - Execute process with basepage at specified
address. With this mode, fname and envstr are NULL .
The starting address of the basepage of the process to
execute is given in the cmdline parameter.

PE_BASEPAGE 5 ‘CREATE BASEPAGE’ - This mode allocates the largest
block of free memory and creates a basepage in the first
256 bytes of it. fname should be set to NULL . It is the
responsibility of the parent to load or define the child’s
code, shrink the memory block as necessary, and initialize
the basepage pointers to the TEXT, DATA, and BSS
segments of the program.

With MiNT, use of this mode in conjunction with mode
PE_CGO can be used to emulate the Pvfork() call without
blocking the parent.

PE_GOTHENFREE 6 ‘JUST GO, THEN FREE’ - This mode is identical to mode
PE_GO except that memory ownership of the child’s
environment and basepage belong to the child rather than
the parent so that when the child Pterm() ’s, that memory is
automatically freed.

PE_CLOADGO 100 ‘LOAD, GO, DON’T WAIT’ - This mode is identical to
mode PE_LOADGO except that the parent process is
returned to immediately while the child continues to
execute. The positive process ID of the child is returned.
Environment and basepage memory blocks are freed
automatically when the child Pterm() ’s

PE_CGO 104 ‘JUST GO, DON’T WAIT’ - This mode is similar to mode
PE_GO except that the parent process is returned to
immediately while the child continues to execute
concurrently. The positive process ID of the child is
returned. Memory ownership of the environment and
basepage are shared by the parent and child (this sharing
extends to all memory owned by the parent).

fname may be used to supply a name for the child,
otherwise, if NULL is used, the name of the parent will be
used. cmdline should point to the process basepage.
envstr should be NULL .

PE_NOSHARE 106 ‘JUST GO, DON’T WAIT, NO SHARING’ - This mode is
exactly the same as mode PE_CGO except that the child
process owns its own environment and basepage sharing
no memory with the parent.

2.104 – GEMDOS Function Reference

T H E A T A R I C O M P E N D I U M

PE_REPLACE 200 ‘REPLACE PROGRAM AND GO’ - This mode works like
mode PE_CLOADGO except that the parent process is
terminated immediately and the child process completely
replaces the parent in memory retaining the same process
ID. fname, cmdline, and envstr, are all normally passed
and valid.

BINDING pea envstr
pea cmdline
pea fname
move.w word,-(sp)
move.w #$4B,-(sp)
trap #1
lea 16(sp),sp

RETURN VALUE The value returned by Pexec() is dependent on the mode value and is therefore
explained above. All Pexec() modes return a LONG negative GEMDOS error
code when the call fails. A WORD negative value indicates the child was
successfully run but it terminated returning a negative error code. In all cases, a
process returning after having been interrupted with CTRL-C returns 0x0000FFE0
(-32).

COMMENTS Command lines longer than 126 bytes may be passed to processes aware of the
Atari Extended Command Line Specification (see discussion earlier in this
chapter).

SEE ALSO shel_write()

Pfork()
WORD Pfork(VOID)

Pfork() creates a copy of the current process.

OPCODE 283 (0x11B)

AVAILABILITY This function is available under all MiNT versions integrated with MultiTOS .

BINDING move.w #$11B,-(sp)
trap #1
addq.l #2,sp

RETURN VALUE Pfork() returns the new process ID in the parent and a 0 in the child.

CAVEATS If the parent is in supervisor mode when this call is made, the child is started in
user mode anyway.

Pgetegid() - 2.105

T H E A T A R I C O M P E N D I U M

COMMENTS After a Pfork() call, two instances of one process will exist in memory. Program
execution in both processes continue at the same point in the TEXT segment
following this call. The parent’s DATA and BSS segments are physically copied
so that any variables that change in the child will not affect the parent and vice
versa.

New processes started with this call should not call Mshrink() but are required to
do any GEM initialization such as appl_init() and v_opnvwk() again (if GEM
usage is needed). Both the parent and child use Pterm() or Pterm0() to terminate
themselves.

SEE ALSO Pexec(), Pvfork()

Pgetegid()
WORD Pgetegid(VOID)

Pgetegid() returns the effective group ID of the process.

OPCODE 313 (0x139)

AVAILABILITY Available when a ‘MiNT ’ cookie with a version of at least 0.95 exists.

BINDING move.w #$139,-(sp)
trap #1
addq.l #2,sp

COMMENTS The effective group ID of a process will be different than its actual group ID if its
set gid bit is set. This mechanism allows users to grant file access to other users.

SEE ALSO Pgetgid(), Pgeteuid()

Pgeteuid()
WORD Pgeteuid(VOID)

Pgeteuid() returns the effective user ID of the process.

OPCODE 312 (0x138)

AVAILABILITY Available when a ‘MiNT ’ cookie with a version of at least 0.95 exists.

BINDING move.w #$138,-(sp)
trap #1

2.106 – GEMDOS Function Reference

T H E A T A R I C O M P E N D I U M

addq.l #2,sp

COMMENTS The effective group ID of a process will be different than its actual group ID if its
set gid bit is set. This mechanism allows users to grant file access to other users.

SEE ALSO Pgetuid(), Pgetegid()

Pgetgid()
WORD Pgetgid(VOID)

Pgetgid() returns the group ID (0-255) of the calling process.

OPCODE 271 (0x10F)

AVAILABILITY This function is available under all MiNT versions integrated with MultiTOS .

BINDING move.w #$10F,-(sp)
trap #1
addq.l #2,sp

SEE ALSO Psetgid()

Pgetpgrp()
WORD Pgetpgrp(VOID)

Pgetpgrp() returns the process group ID code for the calling process.

OPCODE 269 (0x10D)

AVAILABILITY This function is available under all MiNT versions integrated with MultiTOS .

BINDING move.w #$10D,-(sp)
trap #1
addq.l #2

COMMENTS Process groups are closely related processes which are used for job control and
signaling purposes. Process groups usually terminate together rather than one at a
time.

SEE ALSO Psetpgrp(), Pkill()

Pgetpid() - 2.107

T H E A T A R I C O M P E N D I U M

Pgetpid()
WORD Pgetpid(VOID)

Pgetpid() returns the positive WORD process ID code for the calling process.
This identifer uniquely identifies the process within the system.

OPCODE 267 (0x10B)

AVAILABILITY This function is available under all MiNT versions integrated with MultiTOS .

BINDING move.w #$10B,-(sp)
trap #1
addq.l #2,sp

Pgetppid()
WORD Pgetppid(VOID)

Pgetppid() returns the process ID for the calling processes’ parent.

OPCODE 268 (0x10C)

AVAILABILITY This function is available under all MiNT versions integrated with MultiTOS .

BINDING move.w #$10C,-(sp)
trap #1
addq.l #2,sp

RETURN VALUE Pgetppid() returns the process ID code for the parent of the calling process or 0 if
it was started by the kernel (not a child process).

Pgetuid()
WORD Pgetuid(VOID)

Pgetuid() returns the user ID code (0-255) of the calling process which
determines access permissions and can be used in a multi-user system to
differentiate users.

OPCODE 271 (0x10F)

AVAILABILITY This function is available under all MiNT versions integrated with MultiTOS .

2.108 – GEMDOS Function Reference

T H E A T A R I C O M P E N D I U M

BINDING move.w #$10F,-(sp)
trap #1
addq.l #2

SEE ALSO Psetuid()

Pkill()
WORD Pkill(pid, sig)
WORD pid, sig;

Pkill() sends a signal to one or more processes.

OPCODE 273 (0x111)

AVAILABILITY This function is available under all MiNT versions integrated with MultiTOS .

PARAMETERS Pkill() sends signal sig to certain processes based on the value of pid. If pid is
positive, the signal is sent the the process with process identifier pid. If pid is 0,
the signal is sent to all processes who belong to the same process group as the
caller as well as the caller itself. If pid is negative, the signal is sent to all
processes with process group number -pid.

BINDING move.w sig,-(sp)
move.w pid,-(sp)
move.w #$111,-(sp)
trap #1
addq.l #6,sp

RETURN VALUE Pkill() returns 0 if successful or a negative GEMDOS error code otherwise.

COMMENTS If the caller is also a recipient of a signal and that signal causes program
termination this call will never return.

SEE ALSO Psignal()

Pmsg() - 2.109

T H E A T A R I C O M P E N D I U M

Pmsg()
WORD Pmsg(mode, mboxid, msgptr)
WORD mode;
LONG mboxid;
PMSG *msgptr;

Pmsg() sends/receives a message to/from a ‘message box’.

OPCODE 293 (0x125)

AVAILABILITY Available when a ‘MiNT ’ cookie with a version of at least 0.90 exists.

PARAMETERS mode specifies the action to take as follows:

Name mode Operation

MSG_READ 0 Block the process and don’t return until a
message is read from the specified mailbox
ID mboxid and placed in the structure
pointed to by msgptr.

MSG_WRITE 1 Block the process and don’t return until a
process waiting for a message with mailbox
ID mboxid has received the message
contained in the structure pointed to by
msgptr.

MSG_READWRITE 2 Block the process until a process waiting for
a message with mailbox ID mboxid has
received the message contained in the
structure pointed to by msgptr and a return
message is received with mailbox ID
0xFFFFxxxx where ‘xxxx’ is the process ID
of the current process.

PMSG is defined as:

typedef struct
{

LONG userlong1;
LONG userlong2;
WORD pid;

} PMSG;

On return from writes, pmsg.pid contains the process ID of the process who read
your message, on return from reads, its the process ID of the writer. The contents
of userlong1 and userlong2 is completely up to the sender.

By OR’ing mode with MSG_NOWAIT (0x8000), you can prevent the call from
blocking the process and simply return -1 if another process wasn’t waiting to

2.110 – GEMDOS Function Reference

T H E A T A R I C O M P E N D I U M

read or send your process a message.

BINDING pea msgptr
move.l mboxid,-(sp)
move.w mode,-(sp)
move.w #$125,-(sp)
trap #1
lea 12(sp),sp

RETURN VALUE Pmsg() returns 0 if successful, -1 if bit 0x8000 is set and no process was ready to
receive/send the desired message, or a negative GEMDOS error code.

Pnice()
WORD Pnice(delta)
WORD delta;

Pnice() alters the process priority of the calling process.

OPCODE 266 (0x10A)

AVAILABILITY This function is available under all MiNT versions integrated with MultiTOS .

PARAMETERS delta is a signed number which is added to the current process priority value.
Positive values decrease process priority while negative values increase it.

BINDING move.w delta,-(sp)
move.w #$10A,-(sp)
trap #1
addq.l #4,sp

RETURN VALUE Pnice() returns the prior process priority.

COMMENTS The process priority value has no fixed formula so it is hard to be able to predict
the results of this call with any accuracy. This call is the same as
Prenice(Pgetpid(), delta).

SEE ALSO Prenice()

Prenice() - 2.111

T H E A T A R I C O M P E N D I U M

Prenice()
LONG Prenice(pid, delta)
WORD pid, delta;

Prenice() adjusts the process priority of the specified process.

OPCODE 295 (0x127)

AVAILABILITY Available when a ‘MiNT ’ cookie with a version of at least 0.90 exists.

PARAMETERS The process priority for the process with process ID pid is adjusted by signed
value delta. Positive values for delta decrease process priority while negative
values increase it.

BINDING move.w delta,-(sp)
move.w pid,-(sp)
move.w #$127,-(sp)
trap #1
addq.l #6

RETURN VALUE Prenice() returns a 32-bit negative GEMDOS error code if unsuccessful.
Otherwise, the lower 16-bit signed value can be interpreted as the previous
process priority code.

COMMENTS The exact effect adjusting process priorites will have is difficult to determine.

SEE ALSO Pnice()

Prusage()
VOID Prusage(rusg)
LONG * rusg;

Prusage() returns resource information about the current process.

OPCODE 286 (0x11E)

AVAILABILITY This function is available under all MiNT versions integrated with MultiTOS .

PARAMETERS rusg is a pointer to an array of 8 LONGs as follows:

2.112 – GEMDOS Function Reference

T H E A T A R I C O M P E N D I U M

Name rusg[x] Meaning

PRU_KERNELTIME 0 Time spent by process in MiNT kernel.

PRU_PROCESSTIME 1 Time spent by process in its own
code.

PRU_CHILDKERNALTIME 2 Total MiNT kernel time spent by
children of this process.

PRU_CHILDPROCESSTIME 3 Total user code time spent by children
of this process.

PRU_MEMORY 4 Total memory allocated by process (in
bytes).

— 5-7 Reserved for future use.

BINDING pea rusg
move.w #$11E,-(sp)
trap #1
addq.l #6,sp

COMMENTS All times given are in milliseconds.

SEE ALSO Psetlimit()

Psemaphore()
LONG Psemaphore(mode, id, timeout)
WORD mode;
LONG id;
LONG timeout;

Psemaphore() creates a semaphore which may only be accessed by one process at
a time.

OPCODE 308 (0x134)

AVAILABILITY Available when a ‘MiNT ’ cookie with a version of at least 0.92 exists.

PARAMETERS mode specifies the mode of the operation which affects the other two parameters
as follows:

Name mode Meaning

SEM_CREATE 0 Create a semaphore with called id and grant ownership
to the calling process. timeout is ignored.

SEM_DESTROY 1 Destroy the semaphore called id. This only succeeds if
the semaphore is owned by the caller. timeout is
ignored.

Psetgid() - 2.113

T H E A T A R I C O M P E N D I U M

SEM_LOCK 2 Request ownership of semaphore id. The process will
wait for the semaphore to become available for timeout
milliseconds and then return. If timeout value of 0 will
force the call to return immediately whether or not the
semaphore is available. A timeout value of -1 will cause
the call to wait indefinitely.

SEM_UNLOCK 3 Release ownership of semaphore id. The caller must be
the current owner of the semaphore to release control.
timeout is ignore.

BINDING move.l timeout,-(sp)
move.l id,-(sp)
move.w mode,-(sp)
move.w #$134,-(sp)
trap #1
lea 12(sp),sp

RETURN VALUE Psemaphore() returns a 0 if successful, ERROR (-1) if the process requested a
semaphore it already owned, or a negative GEMDOS error code.

COMMENTS If your process is waiting for ownership of a semaphore and it is destroyed by
another process, an ERANGE (-64) error will result. Any semaphores owned by
a process when it terminates are released but not deleted.

Psetgid()
WORD Psetgid(gid)
WORD gid;

Psetgid() sets the group ID of the calling process.

OPCODE 277 (0x115)

AVAILABILITY This function is available under all MiNT versions integrated with MultiTOS .

PARAMETERS gid is the group ID code to assign the calling process (0-255).

BINDING move.w gid,-(sp)
move.w #$115,-(sp)
trap #1
addq.l #4,sp

RETURN VALUE Psetgid() returns gid if successful or EACCDN (-36) if the process did not have
the authority to change the group ID.

COMMENTS The group ID of a process may only be changed when it is currently 0. Therefore,
once the group ID has been set, it is fixed and unchangeable. Further attempts to
modify it will result in an EACCDN error.

2.114 – GEMDOS Function Reference

T H E A T A R I C O M P E N D I U M

SEE ALSO Pgetgid()

Psetlimit()
LONG Psetlimit(limit , value)
WORD limit ;
LONG value;

Psetlimit() reads/modifies resource allocation limits for the calling process and
all of its children.

OPCODE 287 (0x11F)

AVAILABILITY This function is available under all MiNT versions integrated with MultiTOS .

PARAMETERS limit defines the resource to read or modify as follows:

Name limit Meaning

LIM_MAXTIME 1 Maximum CPU time in milliseconds. If value is positive,
value determines the new maximum. If value is 0, then
the limit is set at ‘unlimited’. If value is negative, the
current value is returned but not modified.

LIM_MAXMEM 2 Maximum total memory allowed for process. If value is
positive, value determines the new maximum. If value
is 0, then the limit is set at ‘unlimited’. If value is
negative, the current value is returned but not modified.

LIM_MAXMALLOC 3 Maximum total size of each Malloc (Mxalloc). If value is
positive, value determines the new maximum. If value
is 0, then the limit is set at ‘unlimited’. If value is
negative, the current value is returned but not modified.

BINDING move.l value,-(sp)
move.w limit,-(sp)
move.w #$11F,-(sp)
trap #1
addq.l #8,sp

RETURN VALUE Psetlimit() returns the previous value or ERANGE (-64) if the value for limit
was out of range.

COMMENTS The limits imposed by Psetlimit() are inherited from the parent by child
processes.

SEE ALSO Prusage()

Psetpgrp() - 2.115

T H E A T A R I C O M P E N D I U M

Psetpgrp()
LONG Psetpgrp(pid, newgrp)
WORD pid, newgrp;

Psetpgrp() sets the process group ID of the specified process.

OPCODE 270 (0x10E)

AVAILABILITY This function is available under all MiNT versions integrated with MultiTOS .

PARAMETERS The process group ID of the process with process ID pid will have its process
group ID changed to newgrp if the calling process has the same user ID or is the
parent of the specified process. If pid is 0, the process group ID of the current
process is sent. If newgrp is 0, the process group ID is set to equal the processes’
(not the callers’ unless pid is also set to 0) process ID.

BINDING move.w newgrp,-(sp)
move.w pid,-(sp)
move.w #$10E,-(sp)
trap #1
addq.l #6,sp

RETURN VALUE Psetpgrp() returns newgrp if successful or a negative GEMDOS error code
otherwise.

SEE ALSO Pgetpgrp()

Psetuid()
WORD Psetuid(uid)
WORD uid;

Psetuid() sets the user ID of the calling process.

OPCODE 272 (0x110)

AVAILABILITY This function is available under all MiNT versions integrated with MultiTOS .

PARAMETERS uid is the user ID to assign to the calling process.

BINDING move.w uid,-(sp)
move.w #$110,-(sp)
trap #1
addq.l #4,sp

2.116 – GEMDOS Function Reference

T H E A T A R I C O M P E N D I U M

RETURN VALUE Psetuid() returns uid if successful or a negative GEMDOS error code otherwise.

COMMENTS As with the process group ID, the user ID of a process may only be set if it is
currently 0. This means that once the user ID is set, it may not be changed.

SEE ALSO Pgetuid()

Psigaction()
LONG Psigaction(sig, act, oact)
WORD sig;
SIGACTION * act, *oact;

Psigaction() specifies a default action for the specified signal.

OPCODE 311 (0x137)

AVAILABILITY Available when a ‘MiNT ’ cookie with a version of at least 0.95 exists.

PARAMETERS sig specifies the signal whose action you wish to change. act points to a
SIGACTION structure (as defined below) which defines the handling of future
signals of type sig. oact points to a SIGACTION structure which defines the
handling of pending signals of type sig.

typedef struct
{

LONG sa_handler;
WORD sa_mask;
WORD sa_flags;

} SIGACTION;

Setting sa_hander to SIG_DFL (0) wll cause the default action to take place for
the signal. A value of SIG_IGN (1) will cause the signal to be ignored. Any other
value specifies the address of a signal handler.

The signal handler should expect one LONG argument on its stack which contains
the signal number being delivered. During execution of the handler, all signals
specified in sa_mask are blocked.

sa_flags is a signal-specific flag. When sig is SIGCHLD , setting Bit #0
(SA_NOCLDSTOP) will cause the SIGCHLD signal to be delivered only when
the child process terminated (not when stopped).

BINDING move.w sig,-(sp)
pea act

Psigblock() - 2.117

T H E A T A R I C O M P E N D I U M

pea oact
move.w #$137,-(sp)
trap #1
add.l #12,sp

RETURN VALUE Psigaction() returns 0 if successful or a negative GEMDOS error code otherwise.

COMMENTS Calling Psigaction() automatically unmasks the specified signal for delivery.

SEE ALSO Psignal

Psigblock()
LONG Psigblock(mask)
LONG mask;

Psigblock() blocks selected signals from delivery.

OPCODE 278 (0x116)

AVAILABILITY This function is available under all MiNT versions integrated with MultiTOS .

PARAMETERS mask is a bit mask of signals block. For each bit n set, signal n is added to the
‘blocked’ list.

BINDING move.l mask,-(sp)
move.w #$116,-(sp)
trap #1
addq.l #6,sp

RETURN VALUE Psigblock() returns the original set of blocked signals in effect prior to the call.

COMMENTS Blocked signals are preserved with Pfork() and Pvfork() calls, however,
children started with Pexec() start with an empty list of blocked signals.

SIGKILL may not be blocked and will be reset by the system.

SEE ALSO Pkill(), Psignal(), Psigpending()

2.118 – GEMDOS Function Reference

T H E A T A R I C O M P E N D I U M

Psignal()
LONG Psignal(sig, handler)
WORD sig;
VOID (* handler)(LONG);

Psignal() determines the action taken when a signal is received by the process.

OPCODE 274 (0x112)

AVAILABILITY This function is available under all MiNT versions integrated with MultiTOS .

PARAMETERS sig specifies the signal whose response you wish to modify. If handler is cast to
SIG_DFL (0) then the default action for the signal will occur when received. If
handler is cast to SIG_IGN (1) then the signal will be ignored by the process.
Otherwise, handler points to a user function which is designed to take action on a
signal. This function is called when a signal is received with a LONG signal
number on the stack.

BINDING pea handler
move.w sig,-(sp)
move.w #$112,-(sp)
trap #1
addq.l #8,sp

RETURN VALUE Psignal() returns the old value of the signal handler if successful or a negative
GEMDOS error code otherwise.

COMMENTS Signal handler functions may make any GEMDOS, BIOS, or XBIOS calls
desired but must not make any AES or VDI calls. Signal handlers must either
return with a 680x0 RTS instruction to resume program execution or call
Psigreturn() to clean the stack if it intends to do a ‘C’ longjmp().

Signal handling is preserved across Pfork() and Pvfork() calls. Child processes
started with Pexec() ignore and follow the default action the same as their parents.
Signals which have user functions assigned to them are reset to the default action
for child processes.

SEE ALSO Psigreturn(), Psigblock(), Pkill()

Psigpause() - 2.119

T H E A T A R I C O M P E N D I U M

Psigpause()
LONG Psigpause(mask)
LONG mask;

Psigpause() sets a new signal mask and then suspends the process until a signal is
received.

OPCODE 310 (0x136)

AVAILABILITY Available when a ‘MiNT ’ cookie with a version of at least 0.95 exists.

PARAMETERS mask specifies the signal mask to wait for.

BINDING move.l mask,-(sp)
move.w #$136,-(sp)
trap #1
addq.l #6,sp

RETURN VALUE Psigpause() returns 0 if successful or non-zero otherwise.

COMMENTS Depending on the state of the signal handler, this call may never return.

SEE ALSO Psigaction(), Pause()

Psigpending()
LONG Psigpending(VOID)

Psigpending() indicates which signals have been sent but not yet delivered to the
calling process.

OPCODE 291 (0x123)

AVAILABILITY This function is available under all MiNT versions integrated with MultiTOS .

BINDING move.w #123,-(sp)
trap #1
addq.l #2,sp

RETURN VALUE Psigpending() returns a bit mask of which signals have been sent but not yet
delivered to the calling process because they are being blocked. For each bit n set
in the returned LONG , signal n is waiting for reception.

2.120 – GEMDOS Function Reference

T H E A T A R I C O M P E N D I U M

SEE ALSO Psigblock(), Psignal(), Psigsetmask()

Psigreturn()
VOID Psigreturn(VOID)

Psigreturn() prepares exit from a signal handler not planning to return via a 680x0
RTS.

OPCODE 282 (0x11A)

AVAILABILITY This function is available under all MiNT versions integrated with MultiTOS .

BINDING move.w #$11A,-(sp)
trap #1
addq.l #2,sp

CAVEATS Calling this function and then calling the 680x0 RTS opcode to return will produce
undesired results.

COMMENTS Psigreturn() is only needed by ‘C’ programs which intend to exit the signal
handler by doing a ‘C’ longjmp() rather than simply using the 680x0 RTS.

SEE ALSO Psignal()

Psigsetmask()
LONG Psigsetmask(mask)
LONG mask;

Psigsetmask() defines which signals are to be blocked before being delivered to
the calling application.

OPCODE 279 (0x117)

AVAILABILITY This function is available under all MiNT versions integrated with MultiTOS .

PARAMETERS mask is a LONG bit mask which defines which signals to block and which signals
to allow. For each bit n set, signal n will be blocked. For each bit n clear, signal n
will be delivered.

BINDING move.l mask,-(sp)
move.w #$117,-(sp)
trap #1

Pterm() - 2.121

T H E A T A R I C O M P E N D I U M

addq.l #6,sp

RETURN VALUE Psigsetmask() returns the original mask of blocked/unblocked signals prior to the
call or a negative GEMDOS error code.

COMMENTS Unlike Psigblock(), mask completely replaces the old mask rather than simply
OR’ing it.

SEE ALSO Pkill(), Psignal(), Psigpending()

Pterm()
VOID Pterm(retcode)
WORD retcode;

Pterm() terminates an application returning the specified error code.

OPCODE 76 (0x4C)

AVAILABILITY All GEMDOS versions.

PARAMETERS retcode indicates the error status upon termination. Some recommended return
values are:

Name retcode Meaning

TERM_OK 0 Program completion without errors

TERM_ERROR 1 Generic Error

TERM_BADPARAMS 2 Bad parameters

TERM_CRASH -1 Process crashed (returned by GEMDOS versions
from 0.15.)

TERM_CTRLC -32 Process terminated by CTRL-C

BINDING move.w retcode,-(sp)
move.w #$4C,-(sp)
trap #1
addq.l #4,sp

RETURN VALUE Pterm() never returns.

COMMENTS GEMDOS jumps through the etv_term (0x102) vector when this call is made
prior to process termination to allow the process one last chance to clean up. In
addition, all files opened by the process are closed and all memory blocks
allocated by the process are freed.

2.122 – GEMDOS Function Reference

T H E A T A R I C O M P E N D I U M

SEE ALSO Pexec(), Pterm0()

PtermØ()
VOID PtermØ(VOID)

PtermØ() terminates the application returning an exit code of 0 indicating no
errors.

OPCODE 0 (0x00)

AVAILABILITY All GEMDOS versions.

BINDING clr.w -(sp)
trap #1

RETURN VALUE PtermØ() never returns.

COMMENTS Same as Pterm(0).

SEE ALSO Pterm()

Ptermres()
VOID Ptermres(keep, retcode)
LONG keep;
WORD retcode;

Ptermres() terminates a process leaving a portion of the program’s TPA intact
and removing the memory left from GEMDOS’s memory list.

OPCODE 49 (0x31)

AVAILABILITY All GEMDOS versions.

PARAMETERS keep is the length (in bytes) of the processes’ TPA to retain in memory after exit.
retcode is the code returned on exit.

BINDING move.w retcode,-(sp)
move.l keep,-(sp)
move.w #$31,-(sp)
trap #1
addq.l #8,sp

Pumask() - 2.123

T H E A T A R I C O M P E N D I U M

RETURN VALUE Ptermres() never returns.

COMMENTS This function is normally used by TSR’s to stay resident in memory. Any files
opened by the process are closed. Any memory allocated is, however, retained.

The value for keep is usually the sum of the length of the basepage (0x100), the
length of the text, data, and bss segments of the application, and the length of the
stack. It is important to note that the memory retained by this call may not be freed
at a later point as it is removed from the GEMDOS memory list altogether.

SEE ALSO Pterm0(), Pterm()

Pumask()
WORD Pumask(mode)
WORD mode;

Pumask() defines an inital file and directory creation mask.

OPCODE 307 (0x133)

AVAILABILITY Available when a ‘MiNT ’ cookie with a version of at least 0.92 exists.

PARAMETERS mode specifies the new file access permission mask to apply to all future files
created with Fcreate() and Dcreate(). mode is a WORD bit mask of various
access permission flags as defined in Fchmod().

BINDING move.w mode,-(sp)
move.w #$133,-(sp)
trap #1
addq.l #4,sp

RETURN VALUE Pumask() returns the original mask in effect prior to the call.

SEE ALSO Dcreate(), Fcreate(), Fchmod()

Pusrval()
LONG Pursval(val)
LONG val;

Pusrval() reads/modifies a user defined value associated with a process.

2.124 – GEMDOS Function Reference

T H E A T A R I C O M P E N D I U M

OPCODE 280 (0x118)

AVAILABILITY This function is available under all MiNT versions integrated with MultiTOS .

PARAMETERS val specifies the new value of the LONG associated with this process. If val is -1
then this value is not changed but still returned.

BINDING move.w #$118,-(sp)
trap #1
addq.l #2,sp

RETURN VALUE Pusrval() returns the original value of the user LONG prior to the call.

COMMENTS The user-defined longword set by this call is inherited by child processes and may
be utilized as desired.

Pvfork()
WORD Pvfork(VOID)

Pvfork() creates a duplicate of the current process which shares address and data
space with the parent.

OPCODE 275 (0x113)

AVAILABILITY This function is available under all MiNT versions integrated with MultiTOS .

BINDING move.w #$113,-(sp)
trap #1
addq.l #2,sp

RETURN VALUE Pvfork() returns the new process ID to the parent and 0 to the child. If an error
occurs the parent receives a negative GEMDOS error code.

CAVEATS If the parent is in supervisor mode when this call is made the child is placed in
user mode anyway.

COMMENTS The child process spawned by this function shares all address and data space with
the parent. In other words, any variables altered by the parent will also be altered
by the child and vice versa. The child process should not call Mshrink() as its
TPA is already correctly sized.

The two processes do not execute concurrently. The parent is blocked until either
the child terminates or calls Pexec()’s mode 200.

Pwait() - 2.125

T H E A T A R I C O M P E N D I U M

SEE ALSO Pexec(), Pfork()

Pwait()
LONG Pwait(VOID)

Pwait() attempts to determine the exit code of a stopped or terminated child
process.

OPCODE 265 (0x109)

AVAILABILITY This function is available under all MiNT versions integrated with MultiTOS .

BINDING move.w #$109,-(sp)
trap #1
addq.l #2,sp

RETURN VALUE Pwait() returns 0 if no child processes have terminated or a 32-bit return code for
a child process which has been terminated or stopped.

The process ID of the child process is placed in the upper 16 bits. A process
which returned an exit status (via Pterm(), Ptermres(), or Pterm0()) returns the
exit code in the lower 16 bits.

A process which was stopped as the result of a signal returns 0xnn7F where nn is
the signal number which stopped it. A process which was terminated as the result
of a signal returns 0xnn00 where nn is the signal number which killed the process.

COMMENTS Pwait() will block the calling process until at least one child has been stopped or
terminated. Once the exit code of a process has been returned with this call it will
be not be returned again with this call (unless it had been stopped and is restarted
and stopped again). This call is identical to Pwait3(2, NULL);

SEE ALSO Pexec(), Pterm(), Ptermres(), Pterm0()

Pwait3()
LONG Pwait3(flag, rusage)
WORD flag;
LONG * rusage;

Pwait3() determines the exit code of any children of the calling process which
were stopped and/or terminated.

2.126 – GEMDOS Function Reference

T H E A T A R I C O M P E N D I U M

OPCODE 284 (0x11C)

AVAILABILITY This function is available under all MiNT versions integrated with MultiTOS .

PARAMETERS flag is a bit mask which specifies the specifics of this call as follows:

Name Mask Meaning

PW_NOBLOCK 0x01 If set, the function will not block the calling process if
no child has been stopped or terminated, rather it
will simply return 0. If clear, the process will be
blocked until a child of the process has terminated
or is stopped.

PW_STOPPED 0x02 If set, return exit codes for processes which have
been terminated as well as stopped. If clear, only
return exit codes for processes which have actually
terminated.

rusage points to an array of two LONGs which are filled in with resource usage
information of the stopped or terminated process. The first LONG contains the
number of milliseconds used by the child in user code. The second LONG
indicates the number of milliseconds spent by the process in the kernel. rusage
may be set to NULL if this information is undesired.

BINDING pea rusage
move.w flag,-(sp)
trap #1
addq.l #6,sp

RETURN VALUE Pwait3() returns 0 if no child processes have been stopped and/or terminated
(depending on flag) or a 32-bit return code for a child process which has been
terminated or stopped.

The process ID of the child process is placed in the upper 16 bits. A process
which returned an exit status (via Pterm(), Ptermres(), or Pterm0()) returns the
exit code in the lower 16 bits.

A process which was stopped as the result of a signal returns 0xnn7F where nn is
the signal number which stopped it. A process which was terminated as the result
of a signal returns 0xnn00 where nn is the signal number which killed the process.

SEE ALSO Pwait(), Pexec(), Pterm(), Pterm0(), Ptermres(), Prusage()

Pwaitpid() - 2.127

T H E A T A R I C O M P E N D I U M

Pwaitpid()
LONG Pwaitpid(pid, flag, rusage)
WORD pid, flag;
LONG * rusage;

Pwaitpid() returns exit code information about one or more child processes.

OPCODE 314 (0x13A)

AVAILABILITY Available when a ‘MiNT ’ cookie with a version of at least 0.96 exists.

PARAMETERS pid specifies the children whose exit codes are of interest as follows.

A pid of PWP_ALL (-1) indicates that all children are of interest. A pid of less
than -1 indicates that any child whose process group is -pid is of interest. A pid of
PWP_GROUP (0) indicates that any child with the same process group ID of the
parent is of interest. A pid greater than 0 indicates that the child with the given
process ID is of interest.

For the usage of flag and rusage see Pwait3().

BINDING pea rusage
move.w flag,-(sp)
move.w #$13A,-(sp)
trap #1
addq.l #8,sp

RETURN VALUE See Pwait3().

SEE ALSO Pwait(), Pwait3()

Salert()
VOID Salert(str)
char *str;

Salert() sends an alert string to the alert pipe ‘U:\PIPE\ALERT\’.

OPCODE 316 (0x13C)

AVAILABILITY Available when a ‘MiNT ’ cookie with a version of at least 0.98 exists.

PARAMETERS str should point to a NULL terminated character string containing the alert

2.128 – GEMDOS Function Reference

T H E A T A R I C O M P E N D I U M

message to display. The message should not contain any carriage returns or escape
characters. The string should not be formatted as in form_alert() .

BINDING pea str
move.w #$13C,-(sp)
trap #1
addq.l #6,sp

CAVEATS Messages sent by Salert() are only delivered if a separate application is present
which was designed to listen to the alert pipe and post its contents.

SEE ALSO form_alert()

Super()
VOIDP Super(stack)
VOIDP stack;

Super() allows you to interrogate or alter the state of the 680x0.

OPCODE 32 (0x20)

AVAILABILITY All GEMDOS versions.

PARAMETERS stack defines the meaning of the call as follows:

Name stack Meaning

SUP_SET (VOIDP)0 The processor is placed in supervisor mode and the
old supervisor stack is returned.

SUP_INQUIRE (VOIDP)1 This interrogates the current mode of the processor.
If the processor is in user mode a SUP_USER (0) is
returned, otherwise a SUP_SUPER (1) is returned.

— >1 The processor is placed in user mode and the
supervisor stack is reset to stack.

BINDING pea stack
move.w #$20,-(sp)
trap #1
addq.l #6,sp

RETURN VALUE Super() returns a different value based on the stack parameter. The various return
values are explained above.

CAVEATS You should never call the AES in supervisor mode. In addition, supervisor mode
should be entered and left in the same stack context (same ‘C’ function) or stack
corruption can result.

Sversion() - 2.129

T H E A T A R I C O M P E N D I U M

COMMENTS To execute portion of a program in supervisor mode you normally call Super()
with a parameter of 0 and save the return value. When ready to return to user mode
you call Super() again with the saved return value as a parameter.

Supervisor mode should be used sparingly under MiNT as no task switching can
occur.

SEE ALSO Supexec()

Sversion()
UWORD Sversion(VOID)

Sversion() returns the current GEMDOS version number.

OPCODE 48 (0x30)

AVAILABILITY All GEMDOS versions.

BINDING move.w #$30,-(sp)
trap #1
addq.l #2,sp

RETURN VALUE Sversion() returns a UWORD containing the GEMDOS minor version number in
the upper word and the major version number in the lower word. Current values
returned by Atari TOS’s are:

Return Value TOS versions (normally) found in:

0x1300 (0.13) TOS 1.0, TOS 1.02

0x1500 (0.15) TOS 1.04, TOS 1.06

0x1700 (0.17) TOS 1.62

0x1900 (0.19) TOS 2.01, TOS 2.05, TOS 2.06, TOS 3.01, TOS 3.05, TOS 3.06

0x3000 (0.30) TOS 4.00, TOS 4.01, TOS 4.02, TOS 4.03, TOS 4.04,
MultiTOS 1.00, MultiTOS 1.08

COMMENTS The GEMDOS number is not associated with the TOS or AES version number.
You should check for GEMDOS or MiNT version numbers when trying to
determine the presence or properties of a GEMDOS function.

2.130 – GEMDOS Function Reference

T H E A T A R I C O M P E N D I U M

Syield()
VOID Syield(VOID)

Syield() surrenders the remainder of the callers’ current process timeslice.

OPCODE 255 (0xFF)

AVAILABILITY This function is available under all MiNT versions integrated with MultiTOS .

BINDING move.w #$FF,-(sp)
trap #1
addq.l #2,sp

SEE ALSO Pause(), Fselect()

Sysconf()
LONG Sysconf(inq)
WORD inq;

Sysconf() returns information about the limits or capabilities of the currently
running version of MiNT .

OPCODE 290 (0x122)

AVAILABILITY This function is available under all MiNT versions integrated with MultiTOS .

PARAMETERS inq determines the return value as follows:

Name inq Return Value

SYS_MAXINQ -1 Maximum legal value for inq.

SYS_MAXREGIONS 0 Maximum memory regions per process.

SYS_MAXCOMMAND 1 Maximum length of Pexec() command string.

SYS_MAXFILES 2 Maximum number of open files per process.

SYS_MAXGROUPS 3 Maximum number of supplementary group ID’s.

SYS_MAXPROCS 4 Maximum number of processes per user.

BINDING move.w inq,-(sp)
move.w #$122,-(sp)
trap #1
addq.l #4,sp

Talarm() - 2.131

T H E A T A R I C O M P E N D I U M

RETURN VALUE See above.

COMMENTS If the requested item returns UNLIMITED (0x7FFFFFFF) then that item is
unlimited.

SEE ALSO Dpathconf()

Talarm()
LONG Talarm(time)
LONG time;

Talarm() reads/sets a process alarm for the current process.

OPCODE 288 (0x120)

AVAILABILITY This function is available under all MiNT versions integrated with MultiTOS .

PARAMETERS time specifies the length of time (in milliseconds) to wait before a SIGALRM
signal is delivered. If time is 0 then any previously set alarm is cancelled. If time
is negative the function does not modify any alarm currently set.

BINDING move.l time,-(sp)
move.w #$120,-(sp)
trap #1
addq.l #6,sp

RETURN VALUE Talarm() returns 0 i f no alarm was scheduled prior to this call or the amount of
time remaining (in milliseconds) before the alarm is triggered.

CAVEATS An alarm with less than 1000 remaining milliseconds will return a value of 0.

COMMENTS If no SIGALRM signal handler has been set up when the alarm is triggered, the
process will be killed.

SEE ALSO Pause(), Psignal()

Tgetdate()
UWORD Tgetdate(VOID)

Tgetdate() returns the current GEMDOS date.

2.132 – GEMDOS Function Reference

T H E A T A R I C O M P E N D I U M

OPCODE 42 (0x2A)

AVAILABILITY All GEMDOS versions.

BINDING move.w #$2A,-(sp)
trap #1
addq.l #2,sp

RETURN VALUE Tgetdate() returns a bit array UWORD arranged as follows:

Bits 15-9 Bits 8-5 Bits 4-0

Years since 1980 Month (1-12) Date (0-31)

SEE ALSO Tgettime(), Tsetdate(), Gettime()

Tgettime()
UWORD Tgettime(VOID)

Tgettime() returns the GEMDOS system time.

OPCODE 44 (0x2C)

AVAILABILITY All GEMDOS versions.

BINDING move.w #$2C,-(sp)
trap #1
addq.l #2,sp

RETURN VALUE Tgettime() returns a bit array arranged as follows:

Bits 15-11 Bits 10-5 Bits 4-0

Hour (0-23) Minute (0 to 59) Secs/2 (0 to 29)

SEE ALSO Tgetdate(), Tsettime(), Gettime()

Tsetdate()
WORD Tsetdate(date)
UWORD date;

Tsetdate() sets the current GEMDOS date.

Tsettime() - 2.133

T H E A T A R I C O M P E N D I U M

OPCODE 43 (0x2B)

AVAILABILITY All GEMDOS versions.

PARAMETERS date is a bit array arranged as illustrated under Tgetdate().

BINDING move.w date,-(sp)
move.w #$2B,-(sp)
trap #1
addq.l #4,sp

RETURN VALUE Tsetdate() returns 0 if the operation was successful or non-zero if a bad date is
given.

CAVEATS GEMDOS version 0.13 did not inform the BIOS of the date change and hence
would not change the IKBD date or the date of a battery backed-up clock,

SEE ALSO Tgetdate(), Tsettime(), Settime()

Tsettime()
WORD Tsettime(time)
UWORD time;

Tsettime() sets the current GEMDOS time.

OPCODE 45 (0x2D)

AVAILABILITY All GEMDOS versions.

PARAMETERS time is a bit array arranged as illustrated under Tgettime().

BINDING move.w time,-(sp)
move.w #$2D,-(sp)
trap #1
addq.l #4,sp

RETURN VALUE Tsettime() returns 0 if the time was set or non-zero if the time given was invalid.

CAVEATS GEMDOS version 0.13 did not inform the BIOS of the date change and hence
would not change the IKBD date or the date of a battery backed-up clock.

SEE ALSO Tgettime(), Tsetdate(), Settime()

T H E A T A R I C O M P E N D I U M

– CHAPTER 3 –

BIOS

Overview – 3.3

T H E A T A R I C O M P E N D I U M

Overview

The Basic Input/Output System (BIOS) is responsible for the lowest level of communications
between the operating system and hardware devices. This chapter will document the operating
system functions of the BIOS and other system level operations.

System Startup

Upon a cold or warm boot1, microprocessors in the 680x0 series load the initial supervisor
stack pointer from the first longword in memory ($0) and begin execution at the PC found in the
second longword ($4). The location this points to is the base initialization point for Atari
computers.

Every Atari computer follows a predefined set of steps to accomplish system initialization. The
following illustrates these steps leaving out some hardware initialization which is specific to the
particular computer line (ST, TT, Falcon, etc.).

• The Interrupt Priority Level (IPL) is set to 7 and the OS switches to supervisor
mode.

• A RESET instruction is executed to reset external hardware devices.

• The presence of a diagnostic cartridge is determined. If one is inserted, it is
JMP’ed to with a return address in register A6.

• If running on a 68030, the CACR, VBR, TC, TT0, and TT1 registers are
initialized.

• If a floating-point coprocessor is present it is initialized.

• If the memvalid ($420), memval2 ($43A), and memval3 ($51A) system variables
are all valid, a warm boot is assumed and the memory controller is initialized with
the value from memcntrl ($424).

• The initial color palette registers are loaded and the screen base is initialized to
$100000.

• Memory is sized if it wasn’t from a previous reset.

• Magic numbers are stored in low memory to indicate the successful sizing and
initialization of memory.

• System variables and the cookie jar are initialized.

• The BIOS initialization point is executed.

• Installed cartridges of type 2 are executed.

1A cold boot occurs when the computer system experiences a total loss of power and no memory locations can be considered valid (this
can be done artificially by zeroing memory, as is the case with the CTRL-ALT-RSHIFT-DELETE reset). A warm boot is a manual restart of the
system which can be accomplished via software (like the CTRL-ALT-DELETE reset) or the external reset button found on some machines.

3.4 – BIOS

T H E A T A R I C O M P E N D I U M

• The screen resolution is programmed.

• Installed cartridges of type 0 are executed.

• Interrupts are enabled by lowering the IPL to 3.

• Installed cartridges of type 1 are executed.

• The GEMDOS initialization point is executed.

• On systems running TOS 2.06 or TOS 3.06 and above, the Fuji logo is displayed
and a memory test and hard disk spin-up sequence is executed.

• If at least one floppy drive is attached to the system, the first sector of the first
floppy drive is loaded, and if executable, it is called.

• If at least one hard disk or other media is attached to the system, the first sector of
each is loaded in succession until one with an executable sector is found or each
has been tried.

• If a hard disk sector was found that was executable, it is executed.

• The text cursor is enabled.

• All “\AUTO*.PRG” files found on the boot disk are executed.

• If _cmdload ($482) is 0 then an environment string is created and the AES is
launched, otherwise “\COMMAND.PRG” is loaded.

• If the AES ever terminates, the system is reset and system initialization begins
again.

OS Header

The address of the start of operating system is stored in the system variable _sysbase ($4F2).
The beginning of the operating system contains a table with contents as follows:

Offset
(_sysbase + $x) Size Contents

$0 WORD os_entry: BRA to reset hander (shadowed at $0).
$2 WORD os_version: TOS version number. The high byte is the major

revision number, and the low byte is the minor revision number.
$4 LONG reseth: Pointer to the system reset handler.
$8 LONG os_beg: Base address of the OS (same as _sysbase).
$C LONG os_end: Address of the first byte of RAM not used by the

operating system.
$10 LONG os_rsv1: Reserved
$14 LONG os_magic: Pointer to the GEM Memory Usage Parameter Block

(MUPB). See below for more information.
$18 LONG os_date: Date of system build ($YYYYMMDD).
$1C WORD os_conf: OS Configuration Bits. See below for more information.
$1E LONG os_dosdate: GEMDOS format date of system build.

OS Header – 3.5

T H E A T A R I C O M P E N D I U M

$20 LONG p_root: Pointer to a system variable containing the address of the
GEMDOS memory pool structure. This entry is available as of
TOS 1.2. The location pointed to by this value should never be
modified by an application.

$24 LONG p_kbshift: Pointer to a system variable which contains the address
of the system keyboard shift state variable. See below for more
information. This entry is available as of TOS 1.02. This location
should never be modified by an application.

$28 LONG p_run: Pointer to a system variable which contains the address of
the currently executing GEMDOS process. See below for more
information. This entry is available as of TOS 1.02. The
information pointed to by this variable should never be modified by
an application.

$2C LONG p_rsv2: Reserved

Some versions of AHDI (the Atari Hard Disk Interface) contain a bug which copies the system
header to RAM and then corrupts some portions of it. The following ‘C’ structure definition
defines the OSHEADER structure. The function GetROMSysbase() can be used to return an
OSHEADER pointer to the code in ROM. GetROMSysbase() will execute properly in either
user or supervisor mode.

typedef struct _osheader
{

UWORD os_entry;
UWORD os_version;
VOID *reseth;
struct _osheader *os_beg;
char *os_end;
char *os_rsv1;
char *os_magic;
LONG os_date;
UWORD os_conf;
UWORD os_dosdate;

/* Available as of TOS 1.02 */
char **p_root;
char **p_kbshift;
char **p_run;
char *p_rsv2;

} OSHEADER;

#define _sysbase ((OSHEADER **)0x4F2)

OSHEADER *
GetROMSysbase(VOID)
{

OSHEADER *osret;
char *savesp = (Super(SUP_INQUIRE) ? NULL : Super(SUP_SET));

osret = (*_sysbase)->os_beg;

if(savesp)
Super(savesp);

return osret;
}

3.6 – BIOS

T H E A T A R I C O M P E N D I U M

OS Configuration Bits
os_conf contains the country code and video sync mode that the operating system was compiled
for. Bit #0 of this variable is 0 to indicate NTSC video mode or 1 to indicate PAL. The
remaining bits, when shifted right by one bit, yield the country code as follows:

os_conf >> 1 Country
0 USA
1 Germany
2 France
3 United Kingdom
4 Spain
5 Italy
6 Sweden
7 Switzerland (French)
8 Switzerland (German)
9 Turkey

10 Finland
11 Norway
12 Denmark
13 Saudi Arabia
14 Holland
15 Czechoslovakia
16 Hungary
127 All countries are supported. As of TOS 4.0 the

OS is compiled with text for all languages and
switches between them based on the country
code stored in non-volatile RAM.

Use the ‘_AKP’ cookie to determine the actual
language in use.

GEM Memory Usage Parameter Block
The pointer at offset $14 in the OS header points to the GEM Memory Usage Parameter Block
which is defined as follows:

typedef struct
{

/* $87654321 if GEM present */
LONG gem_magic;

/* End address of OS RAM usage */
LONG gem_end;

/* Execution address of GEM */
LONG gem_entry;

} MUPB;

GEM is only launched at system startup if gem_magic is $87654321. The XBIOS call
Puntaes() also uses this information to restart the operating system after clearing GEM (only if
disk-based). It verifies that gem_magic was valid and that GEM was in RAM, then it modifies
gem_magic and restarts the operating system.

OS Header – 3.7

T H E A T A R I C O M P E N D I U M

Keyboard Shift State Variable
The OS header entry p_kbshift provides a method of reading the state of the keyboard shift state
variables more quickly than with Kbshift() . This header entry did not exist in TOS 1.0. The
following code provides an acceptable method for accessing this variable in all TOS versions:

#define Kbstate *p_kbshift

char *p_kbshift;

VOID
init_kbshift(VOID)
{

/* See above for GetROMSysbase() definition. */
OSHEADER *os = GetROMSysbase();

if (os->os_version == 0x0100)
p_kbshift = (char *)0xE1BL;

else
p_kbshift = *(char **)os->p_kbshift;

}

Currently Running Process
The OS header entry _p_run is used to locate the address of the basepage of the currently
running process. This entry has only existed as of TOS 1.02 and should never be modified. The
following routine returns the address of the basepage of the currently running process in all
versions of TOS:

#define SPAIN 4
typedef long PID

PID *
get_run()
{

OSHEADER *os = GetROMSysbase();

if(os->os_version < 0x0102)
{

if((os->os_conf >> 1) == SPAIN)
return (PID *)0x873C;

else
return (PID *)0x602C;

}
else

return (PID *)(os->p_run);
}

3.8 – BIOS

T H E A T A R I C O M P E N D I U M

The Cookie Jar

Overview
The ‘Cookie Jar’ is a structure in memory containing entries called ‘cookies’ which are placed
in the ‘jar’ by the operating system or Terminate and Stay Resident (TSR) applications.
Applications can test for the presence of a cookie to determine the presence of a hardware
device or system feature.

The location of the cookie jar is determined by the address contained in the system variable
_p_cookies ($5A0). If no cookie jar has been allocated yet, this entry will contain NULL (0).

Structure
The variable _p_cookies points to multiple COOKIE structures as defined below:

typedef struct
{

LONG cookie;
LONG value;

} COOKIE;

The structure member cookie contains a value that hopefully uniquely identifies the cookie.
cookie values are 4-byte packed longword identifiers (often a 4 letter ASCII code word).
Entries with the high byte equal to $5F, the underscore character, are reserved for use by Atari.

The structure member value may contain any value meaningful to an application or no value at
all. In some cases a cookie won’t have a meaningful value and its presence simply signals the
existence of another process or system feature. TSR’s often use value to store a pointer to an
internal structure. The operating system uses cookies to signal the availability of hardware
devices or system features.

The end of the cookie jar is signaled with a final entry with the value for cookie equaling
NULL . The value entry for this final cookie contains the number of entries possible without
reallocating the jar.

Searching for a Cookie
The following code may be used to find a cookie in the cookie jar. It returns 0 if an error
occurred or 1 if successful. If p_value is non-NULL on entry, the address it points to will be
filled in with the value of the cookie.

WORD
getcookie(target, p_value)
LONG target;
LONG *p_value;
{

char *oldssp;
COOKIE *cookie_ptr;

oldssp = (Super(SUP_INQUIRE) ? NULL : Super(1L));

The Cookie Jar – 3.9

T H E A T A R I C O M P E N D I U M

cookie_ptr = *(COOKIE **)0x5A0;

if(oldssp)
Super(oldssp);

if(cookie_ptr != NULL)
{

do
{

if(cookie_ptr->cookie == target)
{

if(p_value != NULL)
*p_value = cookie_ptr->value;

return 1;
}

} while((cookie_ptr++)->cookie != 0L);
}

return 0;
}

Placing a Cookie
Only TSR programs should place cookies in the cookie jar. The cookie these programs place
should either signal a function provided by the TSR or the presence of an expansion device. A
CPX, desk accessory, or standard application should not place cookies in the jar.

To place a cookie, the TSR must first locate the current location of the cookie jar. It is possible
that a cookie jar does not exist (_p_cookies == 0). In that case, a new jar should be allocated.

In most instances, the cookie jar should be allocated in increments of 8 slots (though it is not a
requirement). In addition, if the process installs a new cookie jar in a TOS version lower than
1.06 it is also the processes responsibility to remove it upon a warm reset. Calling the following
code after installing the cookie jar for the first time will ensure that the cookie jar pointer is
properly reset on a warm boot.

RESMAGIC equ $31415926
_resvalid equ $426
_resvector equ $42A
_p_cookies equ $5A0

.globl _unjar

_unjar: move.l _resvalid,valsave
move.l _resvector,vecsave
move.l #reshand,_resvector
move.l #RESMAGIC,_resvalid
rts

reshand: clr.l _p_cookies
move.l vecsave,_resvector
move.l valsave,_resvalid
jmp (a6)

.bss

3.10 – BIOS

T H E A T A R I C O M P E N D I U M

vecsave: .ds.l 1
valsave .ds.l 1

After determining the location of the cookie jar, the application should search for the first empty
slot in the jar by looking for a NULL in the cookie field of a slot. Next, the application must
determine if this is the last slot in the jar by comparing the entry in the value field of the current
cookie to the number of the actual slot you are comparing. For instance, if you have found NULL
as the value for cookie in slot 16 and value is equal to 16, the jar is full and must be reallocated.

If the slot found is not the last one, the application can simply copy the current slot to the next
slot and insert its own cookie.

If the jar must be reallocated, you should allocate enough memory to increase the size of the
cookie jar, copy the old entries to the new jar, insert your entry as the last cookie in the jar, and
finally terminate the jar with a cookie containing a NULL and the new number of slots you have
allocated.

Though not mentioned previously, it is also advisable to ensure that your cookie isn’t already in
the jar before placing it to avoid two cookies for multiple executions of the same application to
appear.

System Cookies
As of TOS 1.06, the operating system will place several cookies in the cookie jar to inform
applications of certain operating system and hardware capabilities as follows:

cookie value
_CPU The low WORD of the CPU cookie contains a number representing

the processor installed in the system as follows:
Value Processor

0 68000
10 68010
20 68020
30 68030

_VDO This cookie represents the revision of the video shifter present. The
low WORD represents the minor revision number and the high
WORD represents the major revision number. Currently valid values
are:

Major Minor Shifter
0 0 ST
1 0 STe
2 0 TT030
3 0 Falcon030

The Cookie Jar – 3.11

T H E A T A R I C O M P E N D I U M

_FPU This cookie identifies the presence of floating-point math capabilities
in the system. A non-zero low WORD indicates the presence of
software floating point support (no specific values have yet been
assigned). The high WORD indicates the type of coprocessor
currently connected to the system as follows:

Value Meaning
0 No FPU is installed.
1 SFP004
2 68881 or 68882
3 68881 or 68882 and SFP004
4 68881
5 68881 and SFP004
6 68882
7 68882 and SFP004
8 68040 Internal
9 68040 Internal and SFP004

_FDC This cookie indicates the capability of the currently connected floppy
drive. The lowest three bytes is a code indicating the origin of the unit
(‘ATC’ is an Atari unit). The upper byte is a value indicating the
highest density floppy present as follows:

Value Density
0 360 Kb/ 720 Kb
1 1.44 Mb
2 2.88 Mb

_SND This cookie contains a bitmap of sound features available to the
system as follows:

Bit Feature
0 GI Sound Chip (PSG)
1 Stereo 8-bit Playback
2 DMA Record (w/XBIOS)
3 16-bit CODEC
4 DSP

_MCH This cookie indicates the machine type with the major revision
number in the high WORD and the minor revision number in the low
WORD as follows:

Major Minor Shifter
0 0 ST
1 0 STe
1 8 ST Book
1 16 Mega STe
2 0 TT030
3 0 Falcon030

_SWI On machines that contain internal configuration dip switches, this
value specifies their positions as a bitmap. Dip switches are
generally used to indicate the presence of additional hardware which
will be represented by other cookies.

_FRB This cookie is present when alternative RAM is present. It points to a
64k buffer that may be used by DMA device drivers to transfer
memory between alternative RAM and ST RAM for DMA operations.

_FLK The presence of this cookie indicates that file and record locking
extensions to GEMDOS exist. The value field is a version number
currently undefined.

3.12 – BIOS

T H E A T A R I C O M P E N D I U M

_NET This cookie indicates the presence of networking software. The
cookie value points to a structure which gives manufacturer and
version information as follows:

struct netinfo
{

LONG publisher;
LONG version;

};

_IDT This cookie defines the currently configured date and time format,
Bits #0-7 contain the ASCII code of the date separator. Bits #8-11
contain a value indicating the date display format as follows:

Value Meaning
0 MM-DD-YY
1 DD-MM-YY
2 YY-MM-DD
3 YY-DD-MM

Bits #12-15 contain a value indicating the time format as follows:

Value Meaning
0 12 hour
1 24 hour

Note: The value of this cookie does not affect any of the internal time
functions. It is intended for informational use by applications only.

_AKP This cookie indicates the presence of an Advanced Keyboard
Processor. The high word of this cookie is currently reserved. The
low word indicates the language currently used by TOS for keyboard
interpretation and alerts. See the explanation for the country code in
the OS header earlier in this chapter for valid values.

If this cookie is present on TOS 5.0 and higher then the system
supports soft-loaded keyboard tables.

FSMC This cookie indicates the presence of FSM or SpeedoGDOS . Its
value field is a pointer to a structure as follows:

typedef struct
{

LONG gdos_type;
UWORD version;
WORD quality;

} GDOS_INFO;

The gdos_type field determines the variety of GDOS. ‘_FSM’
represents Imagen font-based FSM whereas ‘_SPD’ represents
Bitstream font-based FSM. version specifies the current GDOS
version.

quality determines the output quality of v_updwk() . The default
setting is QUAL_DEFAULT (0xFFFF) which causes the driver to
use the setting last set in the driver configuration accessory or CPX.
This default setting may be overridden by placing a value of
QUAL_DRAFT (0x0000) or QUAL_FINAL (0x0001) at this location.
The quality setting should be restored to QUAL_DEFAULT at the
end of each print job.

BIOS Devices – 3.13

T H E A T A R I C O M P E N D I U M

SAM\0 This cookie indicates the presence of System Audio Manager and
the XBIOS extensions it provides. The value field is currently
reserved for internal use.

MiNT This cookie indicates the presence of MiNT (MultiTOS) and its
value field is the current version number (ex: MiNT 1.02 has a value
field of 0x00000102).

BIOS Devices

The BIOS provides access to six default devices (numbered 0–5). In addition, TOS 2.00
provides the ability to add extra devices with the XBIOS Bconmap() function (see the XBIOS
overview for more information). Device assignments higher than device five are dependent upon
the machine and any third-party enhancements. The following list indicates the device
assignments which remain constant:

Name Device
Number

GEMDOS
Filename Meaning

DEV_PRINTER 0 PRN: Centronics Parallel Port
DEV_AUX 1 AUX: Default Serial Device (this device number could actually

refer to any serial device connected to the system
depending on which was mapped with Bconmap())

DEV_CON 2 CON: Console (screen device)
DEV_MIDI 3 N/A MIDI Ports
DEV_IKBD 4 N/A Intelligent Keyboard Controller
DEV_RAW 5 N/A Console (no interpretation)

The Console Device
Two methods are provided for outputting characters to the screen. Output via BIOS device #2
subjects character codes to interpretation. Codes such as a carriage return (ASCII 13), line feed
(ASCII 10), TAB (ASCII 9), CTRL-G (ASCII 7), and ESCAPE (ASCII 27) are interpreted as special
cases and handled specially.

Output via BIOS device #5 causes all characters to be output literally to the screen without
interpretation.

The VT-52 Emulator
The Atari console device contains emulation code compatible with the VT-52 standard. Special
escapes may be used to manipulate the cursor and create text effects.

To send an escape sequence, one of the following codes (and possibly additional characters)
must be sent following the ESCAPE character (ASCII 27):

Escape Code Effect
A 65 Move the cursor up one line. If the cursor is on the top line this does

nothing.
B 66 Move the cursor down one line. If the cursor is on the bottom line this

does nothing.

3.14 – BIOS

T H E A T A R I C O M P E N D I U M

C 67 Move the cursor right one line. If the cursor is on the far right of the
screen this does nothing.

D 68 Move the cursor left one line. If the cursor is on the far left of the screen
this does nothing.

E 69 Clear the screen and place the cursor at the upper-left corner.
H 72 Move the cursor to the upper-left corner of the screen.
I 73 Move the cursor up one line. If the cursor is on the top line, the screen

scrolls down one line.
J 74 Erase the screen downwards from the current position of the cursor.
K 75 Clear the current line to the right from the cursor position.
L 76 Insert a line by scrolling all lines at the cursor position down one line.
M 77 Delete the current line and scroll lines below the cursor position up

one line.
Y 89 Position the cursor at the coordinates given by the following two

codes. The screen starts with coordinates (32, 32) at the upper-left of
the screen. Coordinates should be presented in reverse order, Y and
then X.

b 98 This code is followed by a character from which the lowest four bits
determine a new text foreground color.

c 99 This code is followed by a character from which the lowest four bits
determine a new text background color.

d 100 Erase the screen from the upper-left to the current cursor position.
e 101 Enable the cursor.
f 102 Disable the cursor.
j 106 Save the current cursor position. (Only implemented as of TOS 1.02)
k 107 Restore the current cursor position. (Only implemented as of TOS

1.02)
l 108 Erase the current line and place the cursor at the far left.
o 111 Erase the current line from the far left to the current cursor position.
p 112 Enable inverse video.
q 113 Disable inverse video.
v 118 Enable line wrap.
w 119 Disable line wrap.

Media Change

The BIOS function Mediach() returns the current media-change status of the drive specified.
This state is used to determine if a disk has been changed in removable media drives (floppies,
removable hard drives, etc.

The Getbpb() incorrectly resets the media change state. Failure to properly reset this state after
calling Getbpb() can cause data loss. The function _mediach(), shown below, forces the
Mediach() function to return a ‘definitely changed’ state and should always be called after
calling Getbpb() on removable media drives.

/*
 * _mediach(): force the media ‘changed’ state on a removable drive.
 *
 * Usage: errcode = _mediach(devno) - returns 1 if an error occurs
 *
 * Inputs: devno - (0 = ‘A:’, 1 = ‘B:’, etc...)
 *

Media Change – 3.15

T H E A T A R I C O M P E N D I U M

 */

.globl _mediach

_mediach:
move.w 4(sp),d0
move.w d0,mydev
add.b #’A’,d0
move.b d0,fspec ; Set drive spec for search

loop:
clr.l -(sp) ; Get supervisor mode, leave old SSP
move.w #$20,-(sp) ; and “Super” function code on stack.
trap #1
addq.l #6,sp
move.l d0,-(sp)
move.w #$20,-(sp)

move.l $472,oldgetbpb
move.l $47e,oldmediach
move.l $476,oldrwabs

move.l #newgetbpb,$472
move.l #newmediach,$47e
move.l #newrwabs,$476

; Fopen a file on that drive
move.w #0,-(sp)
move.l #fspec,-(sp)
move.w #$3d,-(sp)
trap #1
addq.l #8,sp

; Fclose the handle
tst.l d0
bmi.s noclose

move.w d0,-(sp)
move.w #$3e,-(sp)
trap #1
addq.l #4,sp

noclose:
moveq #0,d7
cmp.l #newgetbpb,$472 ; still installed?
bne.s done

move.l oldgetbpb,$472 ; Error, restore vectors.
move.l oldmediach,$47e
move.l oldrwabs,$476

trap #1 ; go back to user mode
addq.l #6,sp ; restore sp

moveq.l #1,d0 ; 1 = Error
rts

done:
trap #1 ; go back to user mode
addq.l #6,sp ; from stack left above

clr.l d0 ; No Error

3.16 – BIOS

T H E A T A R I C O M P E N D I U M

rts

/*
 * New Getbpb()...if it’s the target device, uninstall vectors.
 * In any case, call normal Getbpb().
 */

newgetbpb:
move.w mydev,d0
cmp.w 4(sp),d0
bne.s dooldg

move.l oldgetbpb,$472 ; Got target device so uninstall.
move.l oldmediach,$47e
move.l oldrwabs,$476

dooldg: move.l oldgetbpb,a0 ; Go to real Getbpb()
jmp (a0)

/*
 * New Mediach()...if it’s the target device, return 2. Else call old.
 */

newmediach:
move.w mydev,d0
cmp.w 4(sp),d0
bne.s dooldm
moveq.l #2,d0 ; Target device, return 2

rts

dooldm:
move.l oldmediach,a0 ; Call old
jmp (a0)

/*
 * New Rwabs()...if it’s the target device, return E_CHG (-14)
 */

newrwabs:
move.w mydev,d0
cmp.w 4(sp),d0
bne.s dooldr
moveq.l #-14,d0
rts

dooldr:
move.l oldrwabs,a0
jmp (a0)

.data

fspec: dc.b “X:\\X”,0
mydev: ds.w 1
oldgetbpb: ds.l 1
oldmediach: ds.l 1
oldrwabs: ds.l 1

.end

BIOS Vectors – 3.17

T H E A T A R I C O M P E N D I U M

BIOS Vectors

Reset Vector
Shortly after a warm boot the OS will jump to the address contained in the system variable
resvector ($42A) if the value in the system variable resvalid ($426) contains the magic number
$31415926. The OS will supply a return address to this code segment in register A6 but the
subroutine must not utilize the stack as neither stack pointer will be valid.

 If your process needs to do cleanup in the event of a warm reset (see “Placing a Cookie” earlier
in this chapter) the following code installs a user routine to accomplish this.

_resvalid equ $426
_resvector equ $42A
RESMAGIC equ $31415926

.text

installres:
move.l _resvalid,oldvalid
move.l _resvector,oldvector
move.l #myresvec,_resvector
move.l #RESMAGIC,_resvalid
rts

myresvec:
*
* Insert user code here
*
move.l oldvector,_resvector
move.l oldvalid,_resvalid
jmp (a6)

.bss

oldvector: ds.l 1
oldvalid: ds.l 1

.end

3.18 – BIOS

T H E A T A R I C O M P E N D I U M

System Bell Vector
As of TOS 1.06, the OS jumps through the address contained in the system variable bell_hook
($5AC) to ring the system bell. It is possible for a custom routine to hook into this vector to alter
the bell sound. The user routine may modify registers D0-D2/A0-A2 and may chain to the old
bell handler if desired. It is also safe to make BIOS and XBIOS calls following the procedure
for calling from an interrupt (when not running under MultiTOS). The routine should either jump
to the old handler or execute an RTS statement.

System Keyclick Vector
Similar to the system bell vector, another vector is called each time a keyclick sound is
generated. This vector is stored in system variable kcl_hook ($5B0) and is entered with the
keycode (not the ASCII code) of the key struck in the low byte of D0. Registers D1-D2/A0-A2
may be modified, however, all other registers including D0 must be maintained. The
replacement handler may either chain to a new handler or RTS.

Deferred Vertical Blank Handlers
Applications may install custom routines which are called during every vertical blank (approx.
50-72 times per second). The OS performs several operations during the vertical blank as
follows:

• The system variable _frclock is incremented.

• The system variable vblsem is tested. If 0, the vertical blank handler exits
immediately.

• All registers are saved.

• The system variable _vbclock is incremented.

• If the system is currently in a high resolution video mode and a low-resolution
monitor is detected, the video resolution is adjusted and the vector found at system
variable swv_vec is called.

• The text cursor blink routine is called.

• If a new palette has been selected since the last vertical blank, it is loaded.

• If a new screen base address has been selected since the last vertical blank, it is
selected.

• Each of the “deferred” vertical blank routine handlers is called.

• If the system variable prt_cnt is greater than -1, the vector at system variable
scr_dump is called.

• Saved registers are restored and processing continues.

To install a routine to be called as a “deferred” vertical blank handler, you must inspect the list
of handler vectors at vblqueue for a NULL slot, replace it with your vector and initialize the
next slot to NULL . The system variable nvbls indicates the number of slots pointed to by

The XBRA Protocol – 3.19

T H E A T A R I C O M P E N D I U M

vblqueue. If the vertical blank handler list is filled, you may allocate a new area, copy the old
list of handlers with your handler, and update the pointer vblqueue and nvbls.

The XBRA Protocol

Many applications that add functionality to the system do so by ‘hooking’ themselves into one or
more interrupt or pass-through vectors (usually with Setexc()). Most vector handlers work by
executing the relevant code when the interrupt is called and then calling the original vector
handler. When several applications handle one vector, a vector ‘chain’ is created. This chain
makes it difficult for debuggers or the process itself to ‘unhook’ itself from the chain.

The XBRA protocol was designed so that processes that wish to be able to unhook themselves
may and so that debuggers can trace the ‘chain’ of vector handlers. Following the protocal is
simple. Prior to the first instruction of the vector handler, insert three longwords into the
application as follows:

• The longword ‘XBRA’ 0x58425241.

• Another longword containing the application ‘cookie’ ID (this is the same as that
put into the cookie jar if applicable).

• A longword into which should be placed the address of the original handler.

The following code example shows how to correctly use the XBRA protocol in a routine
designed to supplement the 680x0 TRAP #1 vector (GEMDOS):

instl_trap1:
move.l #my_trap1,-(sp)
move.w #VEC_GEMDOS,-(sp)
move.w #Setexc,-(sp)
trap #13
addq.l #8,sp
move.l d0,old_handler
rts

DC.L ‘XBRA’
DC.L ‘SDS1’ ; Put your cookie here

old_handler DC.L 0

my_trap1:
movem.l d2-d7/a2-a6,-(sp)

;
; Your TRAP #1 handler goes here.
;

movem.l (sp)+,d2-d7/a2-a6
move.l old_handler,-(sp) ; Fake a

return
rts ; to old code.

3.20 – BIOS

T H E A T A R I C O M P E N D I U M

The following ‘C’ function is an example of how to use the XBRA protocol to unhook a vector
handler from the XBRA chain. This function will only work if all installed vector handlers
follow the XBRA protocol. It takes a Setexc() vector number and an XBRA application id
cookie as a parameter. It returns the address of the routine that was unhooked or 0L if
unsuccessful.

typedef struct xbra
{

LONG xbra_id;
LONG app_id;
VOID (*oldvec)();

} XBRA;

LONG
unhook_xbra(WORD vecnum, LONG app_id)
{

XBRA *rx;
LONG vecadr, *stepadr, lret = 0L;
char *savessp;

vecadr = Setexc(vecnum, VEC_INQUIRE);
rx = (XBRA *)(vecadr - sizeof(XBRA));

/* Set supervisor mode for search just in case. */
savessp = Super(SUP_SET);

/* Special Case: Vector to remove is first in chain. */
if(rx->xbra_id == ‘XBRA’ && rx->app_id == app_id)
{

Setexc(vecnum, rx->oldvec);
return vecadr;

}

stepadr = (LONG *)&rx->oldvec;
rx = (XBRA *)((LONG)rx->oldvec - sizeof(XBRA));
while(rx->xbra_id == ‘XBRA’)
{

if(rx->app_id == app_id)
{

*stepadr = lret = (LONG)rx->oldvec;
break;

}

stepadr = (LONG *)&rx->oldvec;
rx = (XBRA *)((LONG)rx->oldvec - sizeof(XBRA));

}

Super(savessp);
return lret;

}

BIOS Function Calling Procedure – 3.21

T H E A T A R I C O M P E N D I U M

BIOS Function Calling Procedure

BIOS system functions are called via the TRAP #13 exception. Function arguments are pushed
onto the current stack (user or supervisor) in reverse order followed by the function opcode. The
calling application is responsible for correctly resetting the stack pointer after the call.

The BIOS may utilize registers D0-D2 and A0-A2 as scratch registers and their contents should
not be depended upon at the completion of a call. In addition, the function opcode placed on the
stack will be modified.

The following example for Bconout() illustrates calling the BIOS from assembly language:

move.w #char,-(sp)
move.w #dev,-(sp)
move.w #$03,-(sp)
trap #13
addq.l #6,sp

A ‘C’ binding for a generic BIOS handler would be as follows:

_bios:
; Save the return code from the stack
move.l (sp)+,trp13ret
trap #13
move.l trp13ret,-(sp)
rts

.bss
trp13ret:

.ds.l 1

With the above code, you could easily design a ‘C’ macro to add BIOS calls to your compiler
as in the following example for Bconout():

#define Bconout(a) bios(0x02, a)

The BIOS is re-entrant to three levels, however there is no error checking performed so
interrupt handlers should avoid intense BIOS usage. In addition, no disk or printer usage should
be attempted from the system timer interrupt, critical error, or process-terminate handlers.

Calling the BIOS from an Interrupt
The BIOS and XBIOS are the only two OS sub-systems which can be called from an interrupt
handler. Precisely one interrupt handler at a time may use the BIOS as shown in the following
code segment:

savptr equ $4A2
savamt equ $23*2

myhandler:
sub.l #savamt,savptr

3.22 – BIOS

T H E A T A R I C O M P E N D I U M

; BIOS calls may be performed here

add.l #savamt,savptr

rte ; (or rts?)

This method is not valid under MultiTOS .

T H E A T A R I C O M P E N D I U M

BIOS Function Reference

Bconin() – 3.27

T H E A T A R I C O M P E N D I U M

Bconin()
LONG Bconin(dev)
WORD dev;

Bconin() retrieves a character (if one is waiting) from the specified device.

OPCODE 2 (0x02)

AVAILABILITY All TOS versions.

PARAMETERS dev specifies the device to read from as follows:

Name dev Device

DEV_PRINTER 0 Parallel port

DEV_AUX 1 Auxillary device (normally the RS-232 port, however, TOS
versions with Bconmap() can map in other devices to this
handle)

DEV_CONSOLE 2 Console device (keyboard)

DEV_MIDI 3 MIDI Port

DEV_IKBD 4 IKBD Controller (not available as an input device)

DEV_RAW 5 Console device (keyboard)

See Overview 6 – Additional devices (as available)

BINDING move.w dev,-(sp)
move.w #$02,-(sp)
trap #13
addq.l #4,sp

RETURN VALUE Bconin() returns a bit array arranged as follows:

Bits 31-24 Bits 23-16 Bits 15-8 Bits 7-0

Shift key status
(see Kbshift())

Keyboard
Scan Code

Reserved
(0)

ASCII value

COMMENTS The shift key status is only returned if the system variable conterm (char *(0x484)
) has bit 3 set. This is normally disabled.

Non-ASCII keys return 0 in bits 7-0.

SEE ALSO Bconstat(), Cconin(), Cauxin()

3.28 – BIOS Function Reference

T H E A T A R I C O M P E N D I U M

Bconout()
LONG Bconout(dev, ch)
WORD dev, ch;

Bconout() outputs a character to a named device.

OPCODE 3 (0x03)

AVAILABILITY All TOS versions.

PARAMETERS dev specifies the output device as follows:

Name dev Device

DEV_PRINTER 0 Parallel port

DEV_AUX 1 Auxillary device (see note under Bconin())

DEV_CONSOLE 2 Console device (screen)

DEV_MIDI 3 MIDI port

DEV_IKBD 4 Keyboard (IKBD)

DEV_RAW 5 Raw screen device (control characters and escapes are
not processed)

See Overview 6 – Additional devices (as available)

BINDING move.w ch,-(sp)
move.w dev,-(sp)
move.w #$03,-(sp)
trap #13
addq.l #6,sp

RETURN VALUE Bconout() returns 0 if the character was sent successfully or non-zero otherwise.

SEE ALSO Bconin(), Cconout(), Cauxout(), Cprnout(), Bcostat()

Bconstat()
LONG Bconstat(dev)
WORD dev;

Bconstat() determines whether the specified device is prepared to transmit at
least one character.

OPCODE 1 (0x01)

Bcostat() – 3.29

T H E A T A R I C O M P E N D I U M

AVAILABILITY All TOS versions.

PARAMETERS dev specifies the device to check as listed under Bconin().

BINDING move.w dev,-(sp)
move.w #$01,-(sp)
trap #13
addq.l #4,sp

RETURN VALUE Bconstat() returns 0 if no characters are waiting or -1 if characters are waiting to
be received.

SEE ALSO Bconin(), Cconis(), Cauxis()

Bcostat()
LONG Bcostat(dev)
WORD dev;

Bcostat() determines if the specified device is prepared to receive a character.

OPCODE 8 (0x08)

AVAILABILITY All TOS versions.

PARAMETERS dev specifies the device to poll as listed under Bconout().

BINDING move.w dev,-(sp)
move.w #$08,-(sp)
trap #13
addq.l #4,sp

RETURN VALUE Bcostat() returns 0 if the device is not ready to receive characters or -1
otherwise.

CAVEATS A bug in TOS 1.0 existed that caused the IKBD and MIDI device numbers to
become swapped when being handled by the Bcostat() call, subsequently
returning data for the wrong device. To allow previously written programs to
continue operating correctly, this bug has been maintained on purpose in all
current versions of TOS. You should therefore specify a value of 3 for the IKBD
and 4 for MIDI for this call only.

SEE ALSO Bconout(), Cauxos(), Cconos(), Cprnos()

3.30 – BIOS Function Reference

T H E A T A R I C O M P E N D I U M

Drvmap()
ULONG Drvmap(VOID)

Drvmap() returns a list of mounted drives.

OPCODE 10 (0x0A)

AVAILABILITY All TOS versions.

PARAMETERS None.

BINDING move.w #$0A,-(sp)
trap #13
addq.l #2,sp

RETURN VALUE Drvmap() returns a ULONG bitmap of mounted drives. For each drive present,
its bit is enabled. Drive ‘A:’ is bit 0, drive ‘B:’ is bit 1, and so on.

COMMENTS Single floppy systems will indicate that two drives are available since both drives
can actually be addressed. A request for drive ‘B:’ will simply cause TOS to ask
the user to insert ‘Disk B’ and provide automatic handling routines for all disk
swapping.

SEE ALSO Dsetdrv()

Getbpb()
BPB *Getbpb(dev)
WORD dev;

Getbpb() returns the address of the current BPB (Bios Parameter Block) for a
mounted device.

OPCODE 7 (0x07)

AVAILABILITY All TOS versions.

PARAMETERS dev specifies the mounted device (‘A:’ = 0, ‘B:’ = 1) .

BINDING move.w dev,-(sp)
move.w #$07,-(sp)
trap #13
addq.l #4,sp

Getmpb() – 3.31

T H E A T A R I C O M P E N D I U M

RETURN VALUE Getbpb() returns a pointer to the device’s BPB. The BPB is defined as follows:

typedef struct
{

WORD recsiz; /* bytes per sector */
WORD clsiz; /* sectors per cluster */
WORD clsizb; /* bytes per cluster */
WORD rdlen; /* sector length of root directory */
WORD fsiz; /* sectors per FAT */
WORD fatrec; /* starting sector of second FAT */
WORD datrec; /* starting sector of data */
WORD numcl; /* clusters per disk */
WORD bflags; /* bit 0=1 - 16 bit FAT, else 12 bit */

} BPB;

CAVEATS A media change must be forced after calling this function prior to making any
GEMDOS calls. Failure to do so may cause GEMDOS to become unaware of a
disk change causing data loss. Refer to the discussion of forcing a media change
earlier in this chapter.

Getmpb()
VOID Getmpb(mpb)

Getmpb() returns information regarding GEMDOS free and allocated memory
blocks.

OPCODE 0 (0x00)

AVAILABILITY All TOS versions.

PARAMETERS mpb is a pointer to a MPB structure which is filled in by the function. The related
structures are defined as follows:

typedef struct md
{

struct md *m_link; /* pointer to next block */
VOIDP m_start; /* pointer to start of block */
LONG m_length; /* length of block */
BASEPAGE *m_own; /* pointer to basepage of owner */

} MD;

typedef struct mpb
{

MD *mp_mfl; /* free list */
MD *mp_mal; /* allocated list */
MD *mp_rover; /* roving pointer */

} MPB;

3.32 – BIOS Function Reference

T H E A T A R I C O M P E N D I U M

BINDING pea mpb
clr.w -(sp)
trap #13
addq.l #6,sp

CAVEATS MultiTOS uses a very different method of memory management which makes this
call useless.

COMMENTS An application should never attempt to modify any of the returned information nor
make any assumptions about memory allocation because of this function.

SEE ALSO Malloc(), Mfree()

Kbshift()
LONG Kbshift(mode)
WORD mode;

Kbshift() allows the user to interrogate or modify the state of the keyboard
‘special’ keys.

OPCODE 11 (0x0B)

AVAILABILITY All TOS versions.

PARAMETERS mode is -1 to read the state of the keys or a mask of the following values to change
the current state:

Name Mask Meaning

K_RSHIFT 0x01 Right shift key depressed

K_LSHIFT 0x02 Left shift key depressed

K_CTRL 0x04 Control key depressed

K_ALT 0x08 Alternate key depressed

K_CAPSLOCK 0x10 Caps-lock engaged

K_CLRHOME 0x20 Clr/Home key depressed

K_INSERT 0x40 Insert key depressed

BINDING move.w mode,-(sp)
move.w #$0B,-(sp)
trap #13
addq.l #4,sp

RETURN VALUE Kbshift() returns the state that the keyboard ‘special’ keys were in prior to the
call.

Mediach() – 3.33

T H E A T A R I C O M P E N D I U M

COMMENTS Kbshift() is not a particularly fast call. If you are only interested in reading the
state a documented macro follows that replaces Kbshift() and is much faster. Call
the kb_init() function, as shown below, before using:

char *p_kbshift;
#define Kbstate() *p_kbshift

VOID
kb_init(VOID)
{

/* GetROMSysbase is defined in the BIOS Overview */
OSHEADER *osheader = GetROMSysbase();

if (osheader->os_version == 0x0100)
p_kbshift = (char *)0xe1bL;

else
p_kbshift = *(char **)osheader->p_kbshift;

}

SEE ALSO evnt_keybd(), evnt_multi(), Cconin(), Bconin()

Mediach()
LONG Mediach(dev)
WORD dev;

Mediach() inquires as to whether the ‘media’ has been changed since the last disk
operation on a removable block device (floppy, removable hard drive, floptical,
etc...).

OPCODE 9 (0x09)

AVAILABILITY All TOS versions.

PARAMETERS dev specifies the mounted device number to inquire (‘A:’ = 0, ‘B:’ = 1, etc.).

BINDING move.w dev,-(sp)
move.w #$09,-(sp)
trap #13
addq.l #4,sp

RETURN VALUE Mediach() returns one of three values:

Name Value Meaning

MED_NOCHANGE 0 Media has not changed

MED_UNKNOWN 1 Media may have changed

MED_CHANGED 2 Media has changed

3.34 – BIOS Function Reference

T H E A T A R I C O M P E N D I U M

SEE ALSO Getbpb()

Rwabs()
LONG Rwabs(mode, buf, count, recno, dev, lrecno)
WORD mode;
VOIDP buf;
WORD count,recno,dev;
LONG lrecno;

Rwabs() reads and writes sectors to a mounted device.

OPCODE 4 (0x04)

AVAILABILITY All TOS versions. Hard disk access requires the use of a hard disk driver (such as
AHDI). The long sector offset version is only available as of AHDI 3.0. AHDI
version numbers can be inquired through system variable pun_ptr (see discussion
earlier in this chapter).

PARAMETERS mode is a bit mask which effects the operation to be performed as follows:

Name Bit Meaning

RW_READ
or
RW_WRITE

0 0 = Read, 1 = Write

RW_NOMEDIACH 1 Do not read or modify the media change status.

RW_NORETRIES 2 Disable retries

RW_NOTRANSLATE 3 Do not translate logical sectors into physical sectors
(recno specifies physical instead of logical sectors)

The read or write operation is performed at address buf. buf must be count * bytes
per logical sector in logical mode or count * 512 bytes in physical mode. count
specifies how many sectors will be transferred.

dev specifies the index of the mounted device. In logical mode, ‘C:’ is 2, ‘D:’ is 3,
etc... In physical mode, devices 2-9 are the ACSI devices and 10-17 are SCSI
devices.

recno specifies the first sector to read from. If you need to specify a long offset,
set recno to -1 and pass the long value in lrecno. When using a version of the
AHDI below 3.0, the parameter lrecno should not be passed.

BINDING /* If running AHDI <3.0 omit first parameter */

Setexc() – 3.35

T H E A T A R I C O M P E N D I U M

move.l lrecno,-(sp)
move.w dev,-(sp)
move.w recno,-(sp)
move.w count,-(sp)
pea buf,-(sp)
move.w mode,-(sp)
move.w #$04,-(sp)
trap #13
lea 18(sp),sp

RETURN VALUE Rwabs() returns E_OK (0) if successful or a negative BIOS error code
otherwise.

COMMENTS Some C compilers (Lattice C in particular) have a secondary binding called
Lrwabs() used to pass the additional parameter.

This function may invoke the critical error handler (etv_critic).

Setexc()
(VOIDP)() Setexc(num, newvec)
WORD num;
VOID (* newvec)();

Setexc() reads or modifies system exception vectors.

OPCODE 5 (0x05)

AVAILABILITY All TOS versions.

PARAMETERS num indicates the vector number you are interested in. To obtain the vector number
divide the address of the vector by 4. Some common vectors are:

Name num Vector

VEC_BUSERROR
VEC_ADDRESSERROR
VEC_ILLEGALINSTRUCTION

0x02 - 0x04 Bomb errors (Bus, Address,
Instruction)

VEC_GEMDOS 0x21 Trap #1 (GEMDOS)

VEC_GEM 0x22 Trap #2 (AES/VDI)

VEC_BIOS 0x2D Trap #13 (BIOS)

VEC_XBIOS 0x2E Trap #14 (XBIOS)

VEC_TIMER 0x100 System timer (etv_timer)

VEC_CRITICALERROR 0x101 Critical error handler (etv_critic)

VEC_TERMINATE 0x102 Process terminate handle (etv_term)

newvec should be the address of your new vector handler. Passing a value of

3.36 – BIOS Function Reference

T H E A T A R I C O M P E N D I U M

VEC_INQUIRE ((VOIDP)-1) will not modify the vector.

BINDING pea newvec
move.w num,-(sp)
move.w #$05,-(sp)
trap #13
addq.l #8,sp

RETURN VALUE The original value of the vector is returned by the call.

COMMENTS You must reinstate old vector handlers you changed prior to your process exiting.

Programs which modify replace system vector code should install themselves
following the conventions of the XBRA protocol. For details, consult the
overview portion of this chapter.

Tickcal()
LONG Tickcal(VOID)

Tickcal() returns the system timer calibration.

OPCODE 6 (0x06)

AVAILABILITY All TOS versions.

PARAMETERS None.

BINDING move.w #$06,-(sp)
trap #13
addq.l #2,sp

RETURN VALUE Tickcal() returns a LONG indicating the number of milliseconds between system
clock ticks.

T H E A T A R I C O M P E N D I U M

– CHAPTER 4 –

XBIOS

Overview – 4.3

T H E A T A R I C O M P E N D I U M

Overview

The eXtended Basic Input/Output System (XBIOS) is a software sub-system of TOS which
contains functions used to interact with and control Atari computer hardware. The availability of
many of these functions is dependent on hardware whose presence can be determined by the
current TOS version or by interrogating the system ‘cookie jar’ (see Chapter 3: BIOS for more
details).

Some functions (notably video hardware and storage device related functions) should only be
used by device drivers and system level software as they represent a non-portable method of
hardware interaction which may be unsupported in future Atari computers.

As a general rule, GEMDOS and VDI functions should be used, when possible, rather than
XBIOS calls. The GEMDOS and VDI provide a software abstraction layer which will make
software applications much more compatible across new computer releases.

Video Control

The video capabilities of Atari computer systems have varied greatly since their introduction.
Applications which use the VDI for their video displays will require little if any modifications
to run on new systems. The XBIOS is mostly required for device drivers and other applications
which require more direct control over the video hardware. When present, the ‘_VDO’ entry in
the system cookie jar will reveal information about the video hardware present.

The Physical/Logical Screen
Two separate video display pointers are maintained by the XBIOS at any time. The physical
screen address points to the memory location that the video shifter uses to update the display.
This memory must not be in fast RAM and must be WORD-aligned (original ST computers
expect screen memory to be aligned to a 256-byte boundary).

A second video memory pointer points to the ‘logical’ screen. This memory area is used by the
VDI to output graphics. Normally, the physical screen address is equal to the logical screen
address meaning that VDI output is shown immediately on screen. Software (most commonly
games) can allocate an additional memory block and use these two pointers to page-flip for
smooth animations.

Physbase() and Logbase() return these two addresses. Setscreen() can be used to reset these
addresses and change screen modes. As of TOS 4.0, Setscreen() reinitializes the VDI screen
driver (you must still call vq_extnd() to update your workstations) but will not reinitialize the
AES. This means that if you change resolution using Setscreen(), do not use the AES until the
screen is restored to its original resolution. On TOS versions prior to 4.0, you should not use
any GEM calls while the screen mode is altered.

4.4 – XBIOS

T H E A T A R I C O M P E N D I U M

The Falcon030 function VgetSize() is a utility function that will return the number of bytes that
must be allocated for the specified video mode. When not running on a Falcon030, you will have
to calculate this yourself.

Setting/Determining Screen Resolution
Getrez() was originally a safe method for determining the current video hardware
configuration. As new video modes became available, though, Getrez() became less and less
useful. Currently, Getrez() should be used for only one purpose. The formula Getrez() + 2
should be used to select the VDI physical device ID for the screen so that the proper screen fonts
can be selected. See the description of v_opnvwk() for more details.

In order to provide true screen independence, you should use the values returned by the VDI call
v_opnvwk() to determining the screen resolution your application is using. The XBIOS
provides calls that will determine the current video mode but they are hardware dependent and
will probably stop working as expected as new video hardware is released.

The Getrez() call can reliably determine the video mode of an ST, STe or Mega ST/e. Three
calls have since been added to determine the video mode of the TT030 and Falcon030
computers.

EgetShift() and EsetShift() can be used to interrogate and set the TT030 video mode.
VsetMode() can similarly be used to interrogate and set the Falcon030 video mode. The
Falcon030 call VgetMonitor() can be used to determine the type of attached monitor and,
therefore, the available video modes.

TT030 TOS also provides the calls EsetGray() and EsetSmear(). Together, these calls
duplicate some of the functionally contained in EsetShift() but can be used individually as
desired to configure the special gray-scale and smear modes present in the TT030.

EsetShift() and VsetMode() are designed to change the video modes of the TT030 and
Falcon030 respectively, however, they do not reinitialize the AES or VDI . It is also possible to
change TT030 and Falcon030 video modes using Setscreen(). TT030 modes are set by
supplying the appropriate resolution code (see Getrez() for a list of resolution codes).
Falcon030 modes are set by adding an extra parameter to the call with a special resolution code
of 3. See the explanation for Setscreen() later in this chapter for details.

Manipulating the Palette
Prior to the introduction of the TT, Setcolor() and Setpalette() were used to set the 16
available palette entries. Setpalette() sets the entire palette at once whereas Setcolor() sets
colors at an individual level and can also be used to interrogate palette entries.

The ST has 16 palette entries, each supporting any of 512 available colors. The ST specifies
color in components of red, green, and blue. Intensity settings of 0–7 are valid for each color
component. The following list contains the red, green, and blue values for the ST’s default 16
color palette.

Video Control – 4.5

T H E A T A R I C O M P E N D I U M

Index Color Red Green Blue
0 White 7 7 7
1 Red 7 0 0
2 Green 0 7 0
3 Yellow 7 7 0
4 Blue 0 0 7
5 Magenta 7 0 7
6 Cyan 0 7 7
7 Light Gray 5 5 5
8 Dark Gray 3 3 3
9 Light Red 7 3 3

10 Light Green 3 7 3
11 Light Yellow 7 7 3
12 Light Blue 3 3 7
13 Light Magenta 7 3 7
14 Light Cyan 3 7 7
15 Black 0 0 0

You might have noticed that these registers are not mapped the same as VDI color indexes. The
VDI re-maps color requests to its own needs. For a list of these re-mappings, see the entry for
vr_trnfm() . It is also possible to build a remapping table on the fly by plotting one pixel for
each VDI pen on the screen and using the VDI v_get_pixel() call on each to return the VDI and
hardware register index.

Each of the sixteen color registers is bitmapped into a WORD as follows (The first row
indicates color, the second is bit significance):

xxxx xRRR xGGG xBBB
xxxx x321 x321 x321

The STe series expanded the color depth to four bits instead of three which expanded the number
of available colors from 512 to 4096. This changed the layout of these color WORDs as
follows:

xxxx RRRR GGGG BBBB
xxxx 1432 1432 1432

This odd bit layout allowed for backward compatibility to the ST series.

The TT030 supports an expanded palette of 256 entries in 16 banks containing any of 4096
colors. The first bank of colors is still supported by Setcolor() and Setpalette(), however to
access the additional 240 colors, 4 additional palette support calls were added.

Esetpalette(), Egetpalette(), and Esetcolor() provide access to these colors in a similar
manner to Setpalette() and Setcolor(). Esetbank() switches between the 16 available banks of
colors in color modes that support less than 16 colors. You should note that the TT030 color
calls returned the color WORDs to normal bit ordering as follows:

4.6 – XBIOS

T H E A T A R I C O M P E N D I U M

xxxx RRRR GGGG BBBB
xxxx 4321 4321 4321

When using the TT’s special gray mode, the lower eight bits of each hardware register is used as
a gray value from 0–255.

The Falcon030 computer gives up the TT030 calls in favor of a more portable method of setting
the hardware palette (ST calls will remain as compatible as possible). VsetRGB() and
VgetRGB() set color palette entries based on 24-bit true color values. The XBIOS will scale
these values as appropriate for the screen mode.

Advanced Video
Vsync() halts all further processing by the application until a vertical blank interrupt occurs.
This interrupt signals that the video display gun has reached the bottom of the display and is
returning to the top. At this time, a brief period occurs where updates to the screen will not be
immediately apparent to the user. This time is usually used to present flicker-free animation and
redraws.

VsetSync() is used to enable external hardware video synchronization for devices such as
GENLOCK’s. Both the vertical and horizontal syncronizations may be set independent of each
other with this call.

VsetMask() provides easy access to the Falcon030’s overlay mode. This call allows you to
specify bits which will be added or removed to future color definitions created with the VDI
call vs_color(). When a GENLOCK hardware device is connected, pixels with their overlay bit
cleared will be replaceable by the device with external video.

The Falcon030 Sound System

XBIOS sound system calls are only present as of the Falcon030 computer (though their presence
should always be verified by the ‘_SND’ cookie). If you want to program digitized audio that
plays on an STe, TT, and Falcon030, see Chapter 5: Hardware.

The Falcon030 sound system consists of four stereo 16-bit DMA playback and record channels1,
an onboard ADC (microphone jack), DAC (speaker and headphone jack), connection matrix, and
digital signal processor.

When your application uses the sound system you should first lock it with Locksnd(). This
ensures that other system processes don’t try to access the sound system simultaneously.
Unlocksnd() should be used as soon as the sound system is free.

1Only one output track may be monitored at a time, though the DSP may be programmed as a mixer to combine more tracks while sound
is being output.

The Falcon030 Sound System – 4.7

T H E A T A R I C O M P E N D I U M

Each of four possible source devices can be connected to any or all of the four possible
destination devices using the connection matrix as follows:

External Input

DSP Transmit

DMA Playback

ADC (PSG/Mic)

DAC DSP
Receive

DMA
Record

Ext.
Output

The external input and output are accessible with a specially designed hardware device
connected to the DSP connector.

The Connection Matrix
The sound system call Devconnect() connects sound system components together. You must
specify the source device, destination device(s), source clock, prescaler setting, and
handshaking protocol.

The source clock can be set to either of two internal clocks (25.175 MHz and 32 MHz) or an
external clock. The internal DMA sound routines are only compatible with the 25.175 MHz
clock. Other clock sources are used in conjunction with external hardware devices.

The prescaler sets the actual sample playback and recording rate. A value of 0 will cause the
sound system to use a STe/ TT030 compatible prescaler for outputting sound recorded at
STe/TT030 frequencies. One STe/TT030 frequency, 6.258 kHz, is not supported on the
Falcon030. You can set the STe/TT030 prescaler with the Soundcmd() call. Using values other
than 0 will set the Falcon030 prescaler as documented under the Devconnect() call.

The last parameter you must pass to Devconnect() specifies whether to enable or disable
hardware handshaking. Enabling handshaking will produce data that is 100% error free but will
result in a variable transfer rate which may negatively affect digital sound. Handshaking is
generally only enabled when the data being transferred must be transferred without errors
(usually compressed audio or video data).

Recording/Playing Digital Audio
To record or playback an audio sample, use Setbuffer() to identify the location and length of
your playback/recording buffer. Also, any Devconnect(), Setmode(), and Soundcmd() calls
should be made prior to starting your playback/recording to set the sound hardware to the proper
frequency and mode.

4.8 – XBIOS

T H E A T A R I C O M P E N D I U M

The Falcon030 only supports the recording of 16-bit stereo audio. To generate 8-bit samples
you must scale the values in the buffer from WORDs to BYTEs after recording.

When processing either recording or playback through the DSP, the command Dsptristate() must
be used to connect the DSP to the matrix.

You may use the function Setinterrupt() , as desired, to cause a MFP or Timer A interrupt at the
end of every frame. This is most useful when you are playing or recording in repeat mode and
you wish to use multiple buffers.

Buffptr() may be used to determine the current playback or record buffer pointer as sounds are
being played/recorded.

Setmontracks() is used to define which track which will be output over the computer
speaker/headphones. Settracks() controls which tracks will be used to record/playback data.

Configuring Levels
The function Soundcmd() has four modes which allow the setting and interrogation of the current
levels of attenuation and gain. Gain affects input levels. The higher the value for gain, the louder
the microphone input will be. Attenuation affects output levels. The higher the attenuation setting,
the softer sounds will be output from the computer speaker/headphone jack.

Other Calls
Sndstatus() can be used to tell if a source clock rate was correctly set or if hardware clipping
has occurred on either channel.

Gpio() is used to communicate data over the three general purpose pins of the DSP connector.

The DSP

The Falcon030 comes standard with a Motorola 56001 digital signal processor (DSP). Digital
signal processors are useful for many different purposes such as audio/video compression,
filtering, encryption, modulation, and math functions.

The DSP is able to support both programs and subroutines. Both must be written in 56001
assembly language (or a language which outputs 56001 object code). A full treatment of 56001
assembly language is beyond the scope of this document. Consult the DSP56000/56001 Digital
Signal Processor’s User Manual published by Motorola, Inc. for more information.

The DSP is capable of having many subroutines resident in memory, however, only one program
may be loaded at any time.

When using the DSP you should call Dsp_Lock() to prevent other processes from modifying
your setup and to ensure that you do not modify the work of other processes. Call Dsp_Unlock()

The DSP – 4.9

T H E A T A R I C O M P E N D I U M

when done (the DSP’s MR and IPR registers should have been returned to their original state) to
release the DSP semaphore.

DSP Memory
The Falcon030’s DSP contains 96K bytes of RAM for system programs, user programs, and
subroutines. The DSP uses three distinct address spaces, X, Y, and P. Program memory (P)
overlaps both X and Y memory spaces. Because of this, DSP programs should be careful when
referencing memory. The following is a memory map of the DSP:

$FFFF

$7FFF

$3FFF

$01FF

$0000

X Memory Y Memory P Memory

16 K
Shadow

16 K
Shadow

32 K
Program RAM

16 K
External RAM

16 K
External RAM

Internal
RAM

Internal
RAM/ROM

Internal
RAM/ROM

Reserved

Overlaps

X Memory

Overlaps

Y Memory

DSP Word Size
The 56001 uses a 24-bit WORD. Future Atari computers may use different DSP’s with different
WORD sizes. Use the Dsp_GetWordSize() call prior to using the DSP to determine the proper
DSP WORD size.

DSP Subroutines
Subroutines are usually short programs (no longer than 1024 DSP WORDs) which transform
incoming data. Each subroutine must be written to be fully relocatable. When writing
subroutines, start instructions at location $0. All addresses in the subroutine must be relocatable
based on the original PC of $0 in order to function. An alternative to this is to include a stub
program at the start of your subroutine that performs a relocation based upon the start address
assigned by the XBIOS (which is available in X:HRX at subroutine start).

Subroutines should store initialized data within its program space. The memory area from
$3f00–$3fff is reserved for use as the BSS of subroutines. Subroutines must not rely on the
BSS’s data to remain constant between subroutine calls.

4.10 – XBIOS

T H E A T A R I C O M P E N D I U M

Each subroutine must be assigned a unique ability code either by using one predefined by Atari
(none have been published yet) or by using the Dsp_RequestUniqueAbility() call. Since
subroutines are only flushed from the DSP when necessary, an application may be able to use an
existing subroutine with the same ability left by another application by using the
Dsp_InqrSubrAbility() call.

Here is a sample of how to load a DSP subroutine with a non-unique ability code:

if(!DSP_Lock())
{

ability = DSP_RequestUniqueAbility();
handle = DSP_LoadSubroutine(subptr, length, ability);
if(!handle)
{

DSP_FlushSubroutines();
handle = DSP_LoadSubroutine(subptr, length, ability);
if(!handle)

error(“Unable to load DSP subroutine”);
}

if(handle)
{

if(!Dsp_RunSubroutine(handle))
DSP_DoBlock(data_in, size_in, data_out, size_out);

else
error(“Unable to run DSP subroutine!”);

}
}

DSP Programs
Only one DSP program may be resident in memory at once. Prior to loading a DSP program you
should ensure enough memory is available for your program by calling Dsp_Available(). If not
enough memory is available, you may have to flush resident subroutines to free enough memory.

After you have found that enough memory is available, you must reserve it with Dsp_Reserve().
This memory will be reserved until the next Dsp_Reserve() call so you should ensure that you
have called Dsp_Lock() to block other processes from writing over your program.

Programs can be stored in either binary or ASCII (‘.LOD’) format. The function
Dsp_LodToBinary() can be used to convert this data. DSP programs in binary form load much
faster than those in the ‘.LOD’ format.

Dsp_LoadProg() is used to execute programs stored on disk in the ‘.LOD’ format.
Dsp_ExecProg() is used to execute programs stored in memory in binary format.

As with subroutines, programs are assigned a unique ability code that can be determined with
Dsp_GetProgAbility().

Sending Data to the DSP
Several functions transfer data to and from DSP programs and subroutines as follows:

User/Supervisor Mode – 4.11

T H E A T A R I C O M P E N D I U M

• Dsp_DoBlock()

• Dsp_BlkHandshake()

• Dsp_BlkUnpacked()

• Dsp_BlkWords()

• Dsp_BlkBytes()

• Dsp_MultBlocks()

• Dsp_InStream()

• Dsp_OutStream()

You should read the description of each in the function reference and decide which is best suited
for your needs.

Dsp_SetVectors() installs special purpose routines that are called when the DSP sends an
interrupt indicating it is ready to send or receive data. Dsp_RemoveInterrupts() removes these
routines from the vector table in memory.

DSP State
The HFx bits of the HSR register can be read atomically with the four calls Dsp_Hf0(),
Dsp_Hf1(), Dsp_Hf2(), and Dsp_Hf3(). The current value of the ISR register may be read with
Dsp_Hstat().

DSP programs may also define special host commands at DSP vectors $13 and $14 to be
triggered by the command DSP_TriggerHC().

DSP Debugging
When full control over the DSP is necessary (such is the case for specialized debuggers), the
command Dsp_ExecBoot() can be used to download up to 512 DSP WORDs of bootstrap code.
The DSP will be reset before this happens. This call should only be used by advanced
applications as it will cause other DSP functions to stop working unless those functions are
properly supported.

User/Supervisor Mode

The XBIOS call Supexec() provides access to a special mode of the 680x0 processor called
supervisor mode. Normal programs always execute in user mode. Programs operating in user
mode, however, have less memory access privileges than those operating in supervisor mode.

Some special instructions of the 680x0 may only be executed in supervisor mode. In addition,
any memory reads or writes to locations $0–$7FF or memory-mapped I/O must be made in
supervisor mode.

4.12 – XBIOS

T H E A T A R I C O M P E N D I U M

To use Supexec(), simply pass it the address of a function to be called. When writing the
function in ‘C’, you should be careful to define the function in a way that is safe for your
compiler (see your compiler documentation for details).

While in supervisor mode, the AES should never be called.

MetaDOS

One special XBIOS opcode, Metainit() was reserved for a TOS extension called MetaDOS.
MetaDOS was designed to supplement the OS to allow for more than 16 drives and to provide
the extra support needed for CD-ROM drives. MetaDOS is no longer officially supported by
Atari because of the increased functionality of MultiTOS .

MultiTOS allows the use of all 26 drive letters as well as providing loadable device drivers
and file systems. See Chapter 2: GEMDOS for more information.

Keyboard and Mouse Control

The XBIOS has several functions that provide extended control over the keyboard and mouse.
These functions should be used with care, however, as the keyboard and mouse are ‘global’
devices shared by other processes.

Initmous() is used to change the way the keyboard controller reports mouse movements to the
system. Changing this mode will cause the AES and VDI to be unable to recognize mouse input.

Keytbl() allows you to read and manipulate the tables which translate IKBD scan codes into
ASCII codes. This is essential when you want your application to run on Atari machines with
foreign keyboards. Use Keytbl() to return a pointer to the internal table structure and then
convert keycodes into ASCII by looking codes up in the appropriate table.

Loadable XBIOS Keyboard Tables
TOS versions 5.0 and greater support the loading of external keyboard tables when the ‘_AKP’
cookie is present. In this case, if a file called ‘KEYTBL.TBL’ is found in the ‘\MULTITOS’
directory of the boot drive, it will be loaded upon bootup to provide keyboard mapping changes.
The format of the file is as follows:

Magic Table Identifier Word
This should be a WORD value of 0x2771.

Unshifted Keyboard Table
This is a 128 byte table of ASCII codes that are generated
when no keyboard shift keys are being held down. There is
one entry for each possible scan code.

Shifted Keyboard Table
This is a 128 byte table of ASCII codes that are generated
when the SHIFT key is being held down. There is one entry
for each possible scan code.

Disk Functions – 4.13

T H E A T A R I C O M P E N D I U M

CAPS-LOCK Keyboard Table
This is a 128 byte table of ASCII codes that are generated
when CAPS-LOCK is engaged and no shift keys are being
held. There is one entry for each possible scan code.

Alternate-Unshifted Keyboard Table
This is a variable length table consisting of two-byte
entries. Each entry consists of a scan code and the ASCII
code generated when that scan code occurs while the
ALTERNATE key (and no other) keyboard shift keys are
being held. The list is terminated by a single NULL byte.

Alternate-Shifted Keyboard Table
This is a variable length table consisting of two-byte
entries. Each entry consists of a scan code and the ASCII
code generated when that scan code occurs while the
ALTERNATE key and the SHIFT key is being held. The list is
terminated by a single NULL byte.

Alternate CAPS-LOCK Keyboard Table
This is a variable length table consisting of two-byte
entries. Each entry consists of a scan code and the ASCII
code generated when that scan code occurs while the
ALTERNATE key is being held with the CAPS-LOCK mode in
effect. The list is terminated by a single NULL byte.

Bioskeys() returns any mapping changes made by Keytbl() to their original state.

The configuration functions Cursconf() and Kbrate() set the cursor blink rate and keyboard
repeat rates respectively. These settings should only be changed by a CPX or other configuration
utility at the user’s request as they are global and affect all applications.

IKBD Intelligent Keyboard Controller
The IKBD Controller is an intelligent hardware device that handles communications between the
computer and the keyboard matrix. The XBIOS function Ikbdws() can be used to transmit
command strings to the IKBD controller. For further information about the IKBD, consult
Chapter 5: Hardware.

Disk Functions

Boot Sectors
Both floppy disks and hard disks share a similar format for boot sectors as follows:

Name Offset Contents
BRA 0x0000 This WORD contains a 680x0 BRA.S instruction to the

boot code in this sector if the disk is executable,
otherwise it is unused.

OEM 0x0002 These six bytes are reserved for use as any necessary
filler information. The disk-based TOS loader program
places the string ‘Loader’ here.

SERIAL 0x0008 The low 24-bits of this LONG represent a unique disk
serial number.

4.14 – XBIOS

T H E A T A R I C O M P E N D I U M

BPS 0x000B This is an Intel format WORD (low byte first) which
indicates the number of bytes per sector on the disk.

SPC 0x000D This is a BYTE which indicates the number of sectors
per cluster on the disk.

RES 0x000E This is an Intel format WORD which indicates the
number of reserved sectors at the beginning of the
media (usually one for floppies).

NFATS 0x0010 This is a BYTE indicating the number of File
Allocation Table’s (FAT’s) on the disk.

NDIRS 0x0011 This is an Intel format WORD indicating the number of
ROOT directory entries.

NSECTS 0x0013 This is an Intel format WORD indicating the number of
sectors on the disk (including those reserved).

MEDIA 0x0015 This BYTE is a media descriptor. Hard disks set this
value to 0xF8, otherwise it is unused.

SPF 0x0016 This is an Intel format WORD indicating the number of
sectors per FAT.

SPT 0x0018 This is an Intel format WORD indicating the number of
sectors per track.

NSIDES 0x001A This is an Intel format WORD indicating the number of
sides on the disk.

NHID 0x001C This is an Intel format WORD indicating the number of
hidden sectors on a disk (currently ignored).

BOOTCODE 0x001E This area is used by any executable boot code. The
code must be completely relocatable as its loaded
position in memory is not guaranteed.

CHECKSUM 0x01FE The entire boot sector WORD summed with this
Motorola format WORD will equal 0x1234 if the boot
sector is executable or some other value if not.

The boot sector may be found on side 0, track 0, sector 1 of each physical disk.

The Floppy Drive
The XBIOS provides several functions used for reading, writing, verifying, and formatting
sectors on the hard disk.

Floprd() and Flopwr() read and write from the floppy drive at the sector level rather than the
file level. For example, these functions could be used to create executable boot sectors on a
floppy disk. Flopver() can be used to verify written sectors against data still in memory.

Formatting a floppy disk is accomplished with Flopfmt() . After a floppy is completely formatted
use the function Protobt() to create a prototype boot sector (as shown above) which can then be
written to sector #1 to make the disk usable by TOS.

ASCI and SCSI DMA
The functions DMAread() and DMAwrite() were added as of TOS 2.00. These functions
provide a method of accessing ACSI and SCSI devices at the sector level.

Disk Functions – 4.15

T H E A T A R I C O M P E N D I U M

ASCI accesses must not use alternate RAM as a transfer buffer because they are performing
DMA. The TT030 uses handshaking for SCSI so alternate RAM transfers are safe. SCSI
transfers on the Falcon030 do, however, use DMA so alternate RAM must be avoided.

If you need to transfer data using these functions to an alternate RAM buffer, use the special
standard memory block pointed to by the cookie ‘_FRB’ as an intermediary point between the
two types of RAM. You must also use the ‘_flock’ system variable (at 0x43E) to lock out other
attempted uses of this buffer.

Each physical hard disk drive must contain a boot sector. The boot sector for hard disk drives is
the same as floppies except for the following locations:

Name Offset Contents
hd_siz 0x01C2 This is a Motorola format LONG that indicates the

number of physical 512-byte sectors on the device.
Partition
Header #0

0x01C6 This section contains a 12 BYTE partition information
block for the first logical partition.

Partition
Header #1

0x01D2 This section contains a 12 BYTE partition information
block for the second logical partition.

Partition
Header #2

0x1DE This section contains a 12 BYTE partition information
block for the third logical partition.

Partition
Header #3

0x1EA This section contains a 12 BYTE partition information
block for the fourth logical partition.

bst_st 0x1F6 This is a Motorola format LONG that indicates the
sector offset to the bad sector list (from the beginning
of the physical disk).

bst_cnt 0x01FA This is a Motorola format LONG that indicates the
number of 512-byte sectors reserved for the bad
sector list.

The partition information block is defined as follows:

Name Offset Contents
p_flg 0x00 This is a BYTE size bit field indicating the partition

state. If bit 0 is set, the partition exists, otherwise it
does not. If bit 7 is set, the partition is bootable,
otherwise it is not. Bits 1-6 are unused.

p_id 0x01 This is a three BYTE field that indicates the partition
type as follows:

Contents Meaning
‘GEM’ Regular Partition (<16MB)
‘BGM’ Big Partition (>=16MB)
‘XGM’ Extended Partition

p_st 0x04 This is a Motorola format LONG that indicates the
start of the partition as an offset specified in 512-byte
sectors.

p_size 0x08 This is a Motorola format LONG that indicates the size
of the partition in 512-byte sectors.

4.16 – XBIOS

T H E A T A R I C O M P E N D I U M

A hard disk may have up to four standard (GEM or BGM) partitions or three standard and one
extended (XGM) partition. The first partition of a hard disk must be a standard one.

Extended Partitions
The first sector of an extended partition contains a standard boot sector with hard disk
information except that the hd_siz, bst_st, and bst_cnt fields are unused. At least one, but no
more than two (not necessarily the first two), partition headers are used. The first partition
header is the same as described above except that p_st describes the offset from the beginning of
the extended partition rather than the beginning of the physical disk.

If another partition needs to be linked, the second partition block should contain ‘XGM’ in its
p_id field and an offset to the next extended partition in p_st.

The Bad Sector List
The bad sector list is a group of three-byte entries describing which physical sectors on the hard
disk are unusable. The first three-byte entry contains the number of bad sectors recorded. The
second three-byte entry is a checksum and when added to the entire bad sector list bytewise
should cause the list to BYTE sum to 0xA5. If this is not the case then the bad sector list is
considered bad itself.

The Serial Port

Application writers who develop communication programs will need to use some of the special
functions the XBIOS provides for control of the serial port(s). Older Atari computers support
only one serial port connected by the Multi-Function Peripheral (MFP) chip.

The Atari TT030 contains two MFP chips to provide two serial ports and one Serial
Communications Chip (SCC) which controls two more serial ports. One of the SCC ports,
however, can be switched over to control a Localtalk compatible network port as follows:

Switch to Serial 2 Connector:

Ongibit(0x80);

Switch to LAN connector:

Offgibit(0x7F);

The Mega STe is similar to the TT030, however, it has only one MFP chip to provide one less
serial device.

The Atari Falcon030 uses a SCC chip to drive its single serial port and networking port. The
Falcon030 does contain a MFP chip but it does not control any of the serial device hardware.
The MFP’s ring indicator has, however, been wired across the SCC to provide compatibility
with older applications.

Printer Control – 4.17

T H E A T A R I C O M P E N D I U M

Serial Port Mapping
BIOS input and output calls to device #1 and XBIOS calls which configure the serial port
always refer to the currently ‘mapped’ device as set with Bconmap(). The Modem CPX allows
a user to map any installed device as the default. A program which is aware of the extra ports on
newer machines can access them through their own BIOS device number as follows:

Device
Number Mega ST TT030 Falcon030

1 Currently mapped device.
DEV_AUX

Currently mapped device.
DEV_AUX

Currently mapped device.
DEV_AUX

6 Modem 1 (ST MFP)
DEV_MEGAMODEM1

Modem 1 (ST MFP)
DEV_TTMODEM1

—

7 Modem 2 (SCC B)
DEV_MEGAMODEM2

Modem 2 (SCC B)
DEV_TTMODEM2

Modem (SCC B)
DEV_FALCONMODEM

8 Serial/LAN (SCC A)
DEV_MEGALAN

Serial 1 (TT MFP)
DEV_TTSERIAL1

LAN (SCC A)
DEV_FALCONLAN

9 — Serial 2/LAN (SCC A)
DEV_TTLAN

—

Configuring the Serial Port
Rsconf() and Iorec() set the communication mode and input/output buffers of the currently
mapped serial port. You should note that while some ports support transfer rates of greater than
19200 baud, this is the limit of the Rsconf() call. Other rates must currently be set in hardware
(or with the Fcntl() when MiNT is present).

MFP Interrupts
Each MFP chip supports a number of interrupts used by the serial port and other system needs.
The function Mfpint() should be used to set define a function in your application that handles
one of these interrupts. Jenabint() and Jdisint() are used to enable/disable these interrupts
respectively.

All MFP interrupt calls only work on ST compatible MFP serial ports. The RS-232 ring
indicator is the only interrupt that has been wired through the MFP on a Falcon. Because of this,
the ring indicator interrupt is the only RS-232 interrupt that may be changed with Mfpint() on a
Falcon.

SCC Interrupts
The XBIOS functions used for setting MFP interrupts do not affect the SCC interrupts regardless
of the Bconmap() mapping. Refer to the memory map for the location of SCC interrupt registers.

Printer Control

The XBIOS contains two functions used for controlling printers. Both functions are very
outdated and should not be relied on in any ST.

4.18 – XBIOS

T H E A T A R I C O M P E N D I U M

Scrdmp() triggers the built-in ALT-HELP screen dump code. Prtblk() enables the built-in screen
dump routine of the ST printing only the desired block to an Atari or Epson dot-matrix printer.

Setprt() configures the built-in screen dump routine as to the basic configuration of the attached
printer.

Other XBIOS Functions

NVMaccess() accesses the non-volatile RAM present in the TT, Mega STe, and Falcon030.
You should not read or write to this area as all of its locations are currently reserved.

The functions Settime() and Gettime() set the BIOS time and date. As of TOS 1.02, they also
update the GEMDOS time as well.

Besides the sound capabilities of the XBIOS when running on a Falcon, the function Dosound()
generates music on any Atari computer using the FM sound generator. The function works at the
interrupt level processing a ‘sound command list’ you specify. It can be used to reproduce a
single tone or a complete song in as many as three parts of harmony.

Random() generates a pseudo-random number using a built-in algorithm whose seed comes from
the system 60kHz clock.

Ssbrk() is used by the operating system to reserve system RAM before GEMDOS is initialized.
It should not be used by application programmers.

Puntaes() is useful only when using a disk-loaded version of TOS. It clears the OS from RAM
and reboots the computer.

Midiws() is a similar function to Ikbdws() in that it writes to the MIDI controller. It is more
useful at transferring large amounts of MIDI data than Bconout().

The Dbmsg() XBIOS call is added by supporting debuggers as a method of transferring
debugging messages between the application and debugger. The Atari Debugger (DB) currently
supports this interface.

XBIOS Function Calling Procedure

XBIOS system functions are called via the TRAP #14 exception. Function arguments are pushed
onto the current stack (user or supervisor) in reverse order followed by the function opcode. The
calling application is responsible for correctly resetting the stack pointer after the call.

The XBIOS, like the BIOS may utilize registers D0-D2 and A0-A2 as scratch registers and their
contents should not be depended upon at the completion of a call. In addition, the function
opcode placed on the stack will be modified.

XBIOS Function Calling Procedure – 4.19

T H E A T A R I C O M P E N D I U M

The following example for Getrez() illustrates calling the XBIOS from assembly language:

move.w #$04,-(sp)
trap #14
addq.l #6,sp

A ‘C’ binding for a generic XBIOS handler would be as follows:

_xbios:
; Save the return code from the stack
move.l (sp)+,trp14ret
trap #14
move.l trp14ret,-(sp)
rts

.bss
trp14ret:

.ds.l 1

The XBIOS is re-entrant to three levels, however there is no depth checking performed so
interrupt handlers should avoid intense XBIOS usage. In addition, no disk or printer usage
should be attempted from the system timer interrupt, critical error, or process-terminate
handlers.

Calling the XBIOS from an Interrupt
The BIOS and XBIOS are the only two OS sub-systems which may be called from an interrupt
handler. Precisely one interrupt handler at a time may use the XBIOS as shown in the following
code segment:

savptr equ $4A2
savamt equ $23*2

myhandler:
sub.l #savamt,savptr

; BIOS calls may be performed here

add.l #savamt,savptr

rte ; (or rts?)

Certain XBIOS calls are not re-entrant because they call GEMDOS routines. The Setscreen()
function, and any DSP function which loads data from disk should not be attempted during an
interrupt.

It is not possible to use this method to call XBIOS functions during an interrupt when running
under MultiTOS .

T H E A T A R I C O M P E N D I U M

XBIOS Function Reference

Bconmap() – 4.23

T H E A T A R I C O M P E N D I U M

Bconmap()
LONG Bconmap(devno)
WORD devno;

Bconmap() maps a serial device to BIOS device #1. It is also used to add serial
device drivers to the system.

OPCODE 44 (0x2C)

AVAILABILITY To reliably check that Bconmap() is supported, the TOS version must be 1.02 or
higher and the following function should return a TRUE value.

#define BMAP_EXISTS 0

BOOL IsBconmap(VOID)
{

return (Bconmap(0) == BMAP_EXISTS);
}

PARAMETERS The value of devno has the following effect:

Name devno Meaning

BMAP_CHECK 0 Verify the existence of the call (systems without
Bconmap() will return the function opcode 44).

— 1-5 These are illegal values (will return 0).

See XBIOS Serial
Port Mapping for

constants.

6- Redefine BIOS device 1 (the GEMDOS ‘aux:’ device) to
map to the named serial device. All Bcon...(1,...) ,
Rsconf() , and Iorec() calls will return information for the
named device. Returns the old value.

BMAP_INQUIRE -1 Don’t change anything, simply return the old value.

BMAP_MAPTAB -2 Return a pointer to the serial device vector table (see
below).

BINDING move.w devno,-(sp)
move.w #$2C,-(sp)
trap #14
addq.l #4,sp

RETURN VALUE See above.

CAVEATS You should never install the 38th device (BIOS device number 44). It would be
indistinguishable from the case where Bconmap() was unavailable. In the unlikely
event that this case arises, you should install two new devices and assign your new
device to the second one.

All current versions of Falcon030 TOS (4.00 – 4.04) contain a bug that prevents

4.24 – XBIOS Reference

T H E A T A R I C O M P E N D I U M

the BIOS from accessing the extra available devices. A patch program named
FPATCH2.PRG is available from Atari Corporation to correct this bug in
software.

COMMENTS To add a serial device to the table, use Bconmap(-2) to return a pointer to a
BCONMAP structure. maptab points to a list of MAPTAB structures (the first
entry in MAPTAB is the table for device number 6). The list will contain
maptabsize devices. Allocate a block of memory large enough to store the old
table plus your new entry and copy the old table and your new device structure
there making sure to increment maptabsize. Finally, alter maptab to point to your
new structure.

typedef struct
{

WORD (*Bconstat)();
LONG (*Bconin)();
LONG (*Bcostat)();
VOID (*Bconout)();
ULONG (*Rsconf)();
IOREC *iorec; /* See Iorec() */

} MAPTAB;

typedef struct
{

MAPTAB *maptab;
WORD maptabsize;

} BCONMAP;

SEE ALSO Bconin(), Bconout(), Rsconf(), Iorec()

Bioskeys()
VOID Bioskeys(VOID)

Bioskeys() is used to reset to the power-up defaults of the keyboard configuration
tables.

OPCODE 24 (0x18)

AVAILABILITY All TOS versions.

BINDING move.w #$18,-(sp)
trap #14
addq.l #4,sp

COMMENTS This call is only necessary to restore changes made by modifying the tables given
by Keytbl() .

Blitmode() – 4.25

T H E A T A R I C O M P E N D I U M

SEE ALSO Keytbl()

Blitmode()
WORD Blitmode(mode)
WORD mode;

Blitmode() detects a hardware BLiTTER chip and can alter its configuration if
present.

OPCODE 64 (0x40)

AVAILABILITY This call is available as of TOS 1.02.

PARAMETERS mode is used to set the BLiTTER configuration. If mode is BLIT_INQUIRE (-1),
the call will return the current state of the BLiTTER without modifying its state.
To change the method of OS blit operations, call Blitmode() with one of the
following values:

Name mode Meaning

BLIT_SOFT 0 If set, use hardware BLiTTER chip, otherwise use
software routines.

BLIT_HARD 1 If set, hardware BLiTTER chip is available.

BINDING move.w mode,-(sp)
move.w #$40,-(sp)
trap #14
addq.l #4,sp

RETURN VALUE Blitmode() returns the old mode value. Bit #0 of mode contains the currently set
blitter mode as shown above. Bit #1 is set to indicate the presence of a hardware
blitter chip or clear if no blitter chip is installed.

COMMENTS You should use this call once to verify the existence of the BLiTTER prior to
attempting to change its configuration.

Buffoper()
LONG Buffoper(mode)
WORD mode;

Buffoper() sets/reads the state of the hardware sound system.

OPCODE 136 (0x88)

4.26 – XBIOS Reference

T H E A T A R I C O M P E N D I U M

AVAILABILITY Available if ‘_SND’ cookie has third bit set.

PARAMETERS mode is a bit array which may be composed of all or none of the following flags
indicating the desired sound system state as follows:

Name Bit Mask Meaning

PLAY_ENABLE 0x01 Enable DMA Sound Playback. The sound must have
been previously identified to the XBIOS with the
Buffptr() function.

PLAY_REPEAT 0x02 Setting this flag will cause any sound currently playing or
started as a result of this call to be looped indefinitely
(until Buffoper(0) is used).

RECORD_ENABLE 0x04 Enable DMA Sound Recording. The sound must have
been previously identified to the XBIOS with the
Buffptr() function.

RECORD_REPEAT 0x08 Setting this flag during a record will cause the recording
to continue indefinitely within the currently set recording
buffer (as set by Buffptr())

Alternately, calling this function with a mode parameter of SND_INQUIRE (-1)
will return a bit mask indicating the current sound system state as shown above.

BINDING move.w mode,-(sp)
move.w #$88,-(sp)
trap #14
addq.l #4,sp

RETURN VALUE Buffoper() normally returns 0 for no error or non-zero otherwise (except in
inquire mode as indicated above.

COMMENTS The sound system uses a 32 bit FIFO. The FIFO is only guaranteed to be clear
when the record enable bit is clear. When transferring new data to the record
buffers, the record enable bit should be cleared to flush the FIFO.

SEE ALSO Setbuffer()

Buffptr()
LONG Buffptr(sptr)
SBUFPTR *sptr;

Buffptr() returns the current position of the playback and record pointers.

OPCODE 141 (0x8D)

Cursconf() – 4.27

T H E A T A R I C O M P E N D I U M

AVAILABILITY Available if ‘_SND’ cookie has third bit set.

PARAMETER sptr is a pointer to a SBUFPTR structure which is filled in with the current
pointer values. SBUFPTR is defined as follows:

typedef struct
{

VOIDP playptr;
VOIDP recordptr;
VOIDP reserved1;
VOIDP reserved2;

} SBUFPTR;

BINDING pea sptr
move.w #$8d,-(sp)
trap #14
addq.l #6,sp

RETURN VALUE Buffptr() returns 0 if the operation was successful or non-zero otherwise.

SEE ALSO Setbuffer(), Buffoper()

Cursconf()
WORD Cursconf(mode, rate)
WORD mode, rate;

Cursconf() configures the VT-52 cursor.

OPCODE 21 (0x15)

AVAILABILITY All TOS versions.

PARAMETERS mode defines the operation as follows:

Name mode Meaning

CURS_HIDE 0 Hide cursor.

CURS_SHOW 1 Show cursor.

CURS_BLINK 2 Enable cursor blink.

CURS_NOBLINK 3 Disable cursor blink.

CURS_SETRATE 4 Set blink rate to rate.

CURS_GETRATE 5 Return current blink rate.

BINDING move.w rate,-(sp)
move.w mode,-(sp)
move.w #$15,-(sp)

4.28 – XBIOS Reference

T H E A T A R I C O M P E N D I U M

trap #14
addq.l #6,sp

RETURN VALUE Cursconf() only returns a meaningful value under mode 5 in which it returns the
current blink rate.

COMMENTS The blink rate is specified in number of vertical blanks per blink.

Dbmsg()
VOID Dbmsg(rsrvd, msg_num, msg_arg)
WORD rsrvd, msg_num;
LONG msg_arg;

Dbmsg() allows special debugging messages to be sent to a resident debugger
application.

OPCODE 11 (0x0B)

AVAILABILITY The only debugger that currently supports this call is the Atari Debugger.

PARAMETERS rsrvd is currently reserved and should always be 5. msg_num is the message
number which you want to send to the debugging host. Values of 0x0000 to
0xEFFF are reserved for applications to define. Values of 0xF000 to 0xFFFF are
reserved for special debugging messages.

If msg_num is in the application defined range, it and the LONG contained in
msg_arg will be displayed by the debugger and the application will be halted.

If msg_num is between 0xF001 and 0xF0FF inclusive then msg_arg is interpreted
as a character pointer pointing to a string to be output by the debugger and
debugging to halt. The string length is determined by the low byte of msg_num. If
msg_num is DB_NULLSTRING (0xF000), the string will be output until a
NULL is reached.

If msg_num is DB_COMMAND (0xF100), msg_arg is interpreted as a character
pointer to a string containing a debugger command. The command format is
specific to the debugger which you are running.

A useful example of this format when running under the Atari debugger allows a
string to be output to the debugger without terminating debugging as shown in the
following example:

Dbmsg(5, DB_COMMAND, “echo ‘Debugging Message’;g”);

Devconnect() – 4.29

T H E A T A R I C O M P E N D I U M

BINDING move.l msg_arg,-(sp)
move.w msg_num,-(sp)
move.w #$5,-(sp)
move.w #$0B,-(sp)
trap #14
lea 10(sp),sp

COMMENTS The Atari Debugger only understands the value DB_COMMAND (0xF100) for
msg_num as of version 3.

Though it is normally harmless to run an application with embedded debugging
messages when no debugger is present in the system, distribution versions of
applications should have these instructions removed.

Devconnect()
LONG Devconnect(source, dest, clk, prescale, protocol)
WORD source, dest, clk, prescale, protocol;

Devconnect() attaches a source device in the sound system to one or multiple
destination devices through the use of the connection matrix.

OPCODE 139 (0x8B)

AVAILABILITY Available if ‘_SND’ cookie has third bit set.

PARAMETERS source indicates the source device to connect as follows:

Name source Meaning

DMAPLAY 0 DMA Playback

DSPXMIT 1 DSP Transmit

EXTINP 2 External Input

ADC 3 Microphone/Yamaha PSG

dest is a bit mask which is used to choose which destination devices to connect as
follows:

Name Mask Meaning

DMAREC 0x01 DMA Record

DSPRECV 0x02 DSP Receive

EXTOUT 0x04 External Out

DAC 0x08 DAC (Headphone or Internal
Speaker)

clk is the clock the source device will use as follows:

4.30 – XBIOS Reference

T H E A T A R I C O M P E N D I U M

Name clk Meaning

CLK_25M 0 Internal 25.175 MHz clock

CLK_EXT 1 External clock

CLK_32M 2 Internal 32 MHz clock

prescale chooses the source clock prescaler. Sample rate is determined by the
formula:

rate
clockrate

prescale
=

+
/ 256

1

 Valid prescaler values for the internal CODEC using the 25.175 MHz clock are:

Name prescale Meaning/Sample Rate

CLK_COMPAT 0 TT030/STe compatiblity mode.
Use prescale value set with
Soundcmd() .

CLK_50K 1 49170 Hz

CLK_33K 2 32880 Hz

CLK_25K 3 24585 Hz

CLK_20K 4 19668 Hz

CLK_16K 5 16390 Hz

CLK_12K 7 12292 Hz

CLK_10K 9 9834 Hz

CLK_8K 11 8195 Hz

protocol sets the handshaking mode. A value of HANDSHAKE (0) enables
handshaking, NO_SHAKE (1) disables it. When transferring sound or video data
through the CODEC it is usually recommended that handshaking be disabled.
When incoming data must be 100% error free, however, handshaking should be
enabled.

BINDING move.w protocol,-(sp)
move.w prescale,-(sp)
move.w clk,-(sp)
move.w dest,-(sp)
move.w source,-(sp)
move.w #$8B,-(sp)
trap #14
lea 12(sp),sp

RETURN VALUE Devconnect() returns 0 if the operation was successful or non-zero otherwise.

CAVEATS Setting the prescaler to an invalid value will result in a mute condition.

DMAread() – 4.31

T H E A T A R I C O M P E N D I U M

SEE ALSO Soundcmd()

DMAread()
LONG DMAread(sector, count, buf, dev)
LONG sector;
WORD count;
VOIDP buf;
WORD dev;

DMAread() reads raw sectors from a ACSI or SCSI device.

OPCODE 42 (0x2A)

AVAILABILITY This call is available as of TOS version 2.00.

PARAMETERS sector specifies the sector number to begin reading at. count specifies the number
of sectors to read. buf is a pointer to the address where incoming data will be
stored. dev specifies the device to read from as follows:

dev Meaning

0-7 ACSI devices 0-7

8-15 SCSI devices 0-7

BINDING move.w dev,-(sp)
pea buf
move.w count,-(sp)
move.l sector,-(sp)
move.w #$2A,-(sp)
trap #14
lea 14(sp),sp

RETURN VALUE DMAread() returns 0 if the operation was successful or a negative BIOS error
code otherwise.

CAVEATS SCSI devices will write data until the device exits its data transfer phase. Since
this call is not dependent on sector size, you should ensure that the buffer is large
enough to hold sectors from devices with large sectors (CD-ROM = 2K, for
example).

COMMENTS ACSI transfers must be done to normal RAM. If you need to read sectors into
alternative RAM, use the 64KB pointer found with the ‘_FRB’ cookie as an
intermediate transfer point while correctly managing the ‘_flock’ system variable.

SCSI transfers on the TT030 do not actually use DMA. Handshaking is used to

4.32 – XBIOS Reference

T H E A T A R I C O M P E N D I U M

transfer bytes individually. This means that alternative RAM may be used. The
Falcon030 uses DMA for SCSI transfers making transfers to alternative RAM
illegal.

SEE ALSO DMAwrite(), Rwabs()

DMAwrite()
LONG DMAwrite(sector, count, buf, dev)
LONG sector;
WORD count;
VOIDP buf;
WORD dev;

DMAwrite() writes raw sectors to ACSI or SCSI devices.

OPCODE 43 (0x2B)

AVAILABILITY TOS versions >= 2.00

PARAMETERS sector is the starting sector number to write data to. count is the number of sectors
to write. buf defines the starting address of the data to write. dev is the device
number as specified in DMAread() .

BINDING move.w dev,-(sp)
pea buf
move.w count,-(sp)
move.l sector,-(sp)
move.w #$2B,-(sp)
trap #14
lea 14(sp),sp

RETURN VALUE DMAwrite() returns 0 if successful or a negative BIOS error code otherwise.

COMMENTS ACSI transfers must be done from normal RAM. If you need to read sectors into
alternative RAM, use the 64KB pointer found with the ‘_FRB’ cookie as an
intermediate transfer point while correctly managing the ‘_flock’ system variable.

SCSI transfers do not actually use DMA. Handshaking is used to transfer bytes
individually.

SEE ALSO DMAread(), Rwabs()

Dosound() – 4.33

T H E A T A R I C O M P E N D I U M

Dosound()
VOID Dosound(cmdlist)
char *cmdlist;

Dosound() initializes and starts an interrupt driven sound playback routine using
the PSG.

OPCODE 32 (0x20)

AVAILABILITY All TOS versions.

PARAMETERS If cmdlist is positive, it will be interpreted as a pointer to a character array
containing a sequential list of commands required for the sound playback. Each
command is executed in order and has a meaning as follows:

Command Byte Meaning

0x00 - 0x0F Select a PSG register (the register number is the command byte). The
next byte in the list will be loaded into this register. See Appendix I for a
detailed listing of registers, musical frequencies, and sound durations.

0x80 Store the next byte in a temporary register for use by command 0x81.

0x81 Three bytes follow this command. The first is the PSG register to load with
the value in the temporary register (set with command 0x80). The second
is a signed value to add to the temporary register until the value in the third
byte is met.

0x82 If a 0 follows this command, this signals the end of processing, otherwise
the value indicates the number of 50Hz ticks to wait until the processing of
the next command.

Passing the value DS_INQUIRE (-1) for cmdlist will cause the pointer to the
current sound buffer to be returned or NULL if no sound is currently playing.

BINDING pea cmdlist
move.w #$20,-(sp)
trap #14
addq.l #6,sp

CAVEATS This routine is driven by interrupts. Do not use an array created on the stack to
store the command list that may go out of scope before the sound is complete.

This function will cause the OS to crash under MultiTOS versions prior to 1.08 if
every running application is not set to ‘Supervisor’ or ‘Global’ memory
protection.

Dosound(DS_INQUIRE) will cause the OS to crash under MultiTOS versions
1.08 and below.

4.34 – XBIOS Reference

T H E A T A R I C O M P E N D I U M

Dsp_Available()
VOID Dsp_Available(xavail, yavail)
LONG * xavail, *yavail;

Dsp_Available() returns the amount of free program space in X and Y DSP
memory.

OPCODE 106 (0x6A)

AVAILABILITY This call is only available if the fifth bit of the ‘_SND’ cookie is set.

PARAMETERS Upon return, the longwords pointed to by xavail and yavail will contain the length
of memory (in bytes) available for DSP programs and subroutines.

BINDING pea yavail
pea xavail
move.w #$6A,-(sp)
trap #14
lea 10(sp),sp

SEE ALSO Dsp_Reserve()

Dsp_BlkBytes()
VOID Dsp_BlkBytes(data_in, size_in, data_out, size_out)
UBYTE * data_in;
LONG size_in;
UBYTE * data_out;
LONG size_out;

Dsp_BlkBytes() transfers a block of unsigned character data to the DSP and
returns the output from the running program or subroutine.

OPCODE 124 (0x7C)

AVAILABILITY This call is only available if the fifth bit of the ‘_SND’ cookie is set.

PARAMETERS data_in is a pointer to an unsigned character array which is transferred to the
DSP. size_in is the length (in bytes) of data to transfer.

data_out is a pointer to the unsigned character array to be filled in from the low
byte of the DSP’s transfer register. size_out is the length (in bytes) of the output
buffer array.

Dsp_BlkHandShake – 4.35

T H E A T A R I C O M P E N D I U M

BINDING move.l size_out,-(sp)
pea data_out
move.l size_in,-(sp)
pea data_in
move.w #$7C,-(sp)
trap #14
lea 18(sp),sp

CAVEATS No handshaking is performed with this call. Error sensitive data should be
transferred with Dsp_BlkHandShake().

COMMENTS Bytes are not sign extended before transfer. Also, due to the length of static
memory in the DSP, size_in and size_out should not exceed 65536.

SEE ALSO Dsp_BlkWords()

Dsp_BlkHandShake
VOID Dsp_BlkHandShake(data_in, size_in, data_out, size_out)
char *data_in;
LONG size_in;
char *data_out;
LONG size_out;

Dsp_BlkHandShake() handshakes a block of bytes to the DSP and returns the
output generated by the running subroutine or program.

OPCODE 97 (0x61)

AVAILABILITY This call is only available if the fifth bit of the ‘_SND’ cookie is set.

PARAMETERS data_in is a pointer to data being sent to the DSP. size_in specifies the number of
DSP words of data to be transferred. Dsp_GetWordSize() can be used to
determine the number of bytes that occur for a DSP word.

data_out is a pointer to the buffer to which processed data will be returned from
the DSP. size_out indicates the number of DSP words to transfer.

BINDING move.l size_out,-(sp)
pea data_out
move.l size_in,-(sp)
pea data_in
move.w #$61,-(sp)
trap #14
lea 18(sp),sp

4.36 – XBIOS Reference

T H E A T A R I C O M P E N D I U M

COMMENTS Dsp_BlkHandshake() is identical to Dsp_DoBlock(), however, this function
handshakes each byte to prevent errors in sensitive data.

SEE ALSO Dsp_DoBlock()

Dsp_BlkUnpacked()
VOID Dsp_BlkUnpacked(data_in, size_in, data_out, size_out)
LONG *da ta_in;
LONG size_in;
LONG * data_out;
LONG size_out;

Dsp_BlkUnpacked() transfers data to the DSP from a longword array. Data
processed by the running subroutine or program is returned.

OPCODE 98 (0x62)

AVAILABILITY This call is only available if the fifth bit of the ‘_SND’ cookie is set.

PARAMETERS data_in is a pointer to an array of LONGs from which data is transferred to the
DSP. As many bytes are transferred from each LONG as there are bytes in a DSP
WORD. For example, if Dsp_GetWordSize() returns 3, the lower three bytes of
each LONG are transferred into each DSP WORD.

size_in represents the number of LONGs in the array to transfer. data_out is a
pointer to an array of LONGs size_out in length in which data sent from the DSP
is returned.

BINDING move.l size_out,-(sp)
pea data_out
move.l size_in,-(sp)
pea data_in
move.w #$62,-(sp)
trap #14
lea 18(sp),sp

CAVEATS This function only works with DSP’s which return 4 or less from
Dsp_GetWordSize(). In addition, no handshaking is performed with this call.
Data which is sensitive to errors should use Dsp_BlkHandShake().

SEE ALSO Dsp_DoBlock()

Dsp_BlkWords() – 4.37

T H E A T A R I C O M P E N D I U M

Dsp_BlkWords()
VOID Dsp_BlkWords(data_in, size_in, data_out, size_out)
WORD *data_in;
LONG size_in;
WORD *data_out;
LONG size_out;

Dsp_BlkWords() transfers an array of WORDs to the DSP and returns the output
generated by the running subroutine or program.

OPCODE 123 (0x7B)

AVAILABILITY This call is only available if the fifth bit of the ‘_SND’ cookie is set.

PARAMETERS data_in is a pointer to the WORD array to be transferred to the DSP. size_in is
the length (in WORDs) of data to transfer.

data_out is a pointer to the WORD array to be filled in during the data output
phase of the DSP from the middle and low bytes of the transfer register. size_out
is the length (in WORDs) of the buffer for the output array.

BINDING move.l size_out,-(sp)
pea data_out
move.l size_in,-(sp)
pea data_in
move.w #$7B,-(sp)
trap #14
lea 18(sp),sp

CAVEATS No handshaking is performed with this call. Data which is sensitive to errors
should use Dsp_BlkHandShake().

COMMENTS WORDs are sign extended before transfer. Also, due to the length of static
memory in the DSP, size_in and size_out should not exceed 32768.

SEE ALSO Dsp_BlkBytes()

4.38 – XBIOS Reference

T H E A T A R I C O M P E N D I U M

Dsp_DoBlock()
VOID Dsp_DoBlock(data_in, size_in, data_out, size_out)
char *data_in;
LONG size_in;
char *data_out;
LONG size_out;

Dsp_DoBlock() transfers bytewise packed data to the DSP and returns the data
processed by the running subroutine or program.

OPCODE 96 (0x60)

AVAILABILITY This call is only available if the fifth bit of the ‘_SND’ cookie is set.

PARAMETERS data_in is a character array containing data to transfer to the DSP. size_in
specifies the number of DSP words to transfer. For example, if
Dsp_GetWordSize() returns 3, the first 3 bytes from data_in are stored in the
first DSP word, the next 3 bytes are stored in the next DSP word and so on.

data_out points to a character array where the output will be stored in a similar
manner. size_out represents the size of this array.

BINDING move.l size_out,-(sp)
pea data_out
move.l size_in,-(sp)
pea data_in
move.w #$60,-(sp)
trap #14
lea 18(sp),sp

CAVEATS No handshaking is performed with this call. Data which is sensitive to errors
should use Dsp_BlkHandShake().

SEE ALSO Dsp_BlkHandShake()

Dsp_ExecBoot() – 4.39

T H E A T A R I C O M P E N D I U M

Dsp_ExecBoot()
VOID Dsp_ExecBoot(codeptr, codesize, ability)
char *codeptr;
LONG codesize;
WORD ability;

Dsp_ExecBoot() completely resets the DSP and loads a new bootstrap program
into the first 512 DSP words of memory.

OPCODE 110 (0x6E)

AVAILABILITY This call is only available if the fifth bit of the ‘_SND’ cookie is set.

PARAMETERS codeptr points to the beginning of the DSP program data to be transferred.
codesize indicates the size (in DSP words) of program data to transfer. ability
indicates the bootstrapper’s unique ability code.

BINDING move.w ability,-(sp)
move.l codesize,-(sp)
pea codeptr
move.w #$6E,-(sp)
trap #14
lea 12(sp),sp

COMMENTS This call is only designed for special development and testing purposes. Use of
this call takes over control of the DSP system.

This call is limited to transferring up to 512 DSP words of code.

SEE ALSO Dsp_LoadProg(), Dsp_ExecProg()

Dsp_ExecProg()
VOID Dsp_ExecProg(codeptr, codesize, ability)
char *codeptr;
LONG codesize;
WORD ability;

Dsp_ExecProg() transfers a DSP program stored in binary format in memory to
the DSP and executes it.

OPCODE 109 (0x6D)

4.40 – XBIOS Reference

T H E A T A R I C O M P E N D I U M

AVAILABILITY This call is only available if the fifth bit of the ‘_SND’ cookie is set.

PARAMETERS codeptr points to the start of the binary program in memory. codesize indicates the
number of DSP words to transfer. ability indicates the program’s unique ability
code.

BINDING move.w ability,-(sp)
move.l codesize,-(sp)
pea codeptr
move.w #$6D,-(sp)
trap #14
lea 12(sp),sp

COMMENTS codesize should not exceed the amount of memory reserved by the Dsp_Reserve()
call.

SEE ALSO Dsp_LoadProg(), Dsp_Reserve()

Dsp_FlushSubroutines()
VOID Dsp_FlushSubroutines(VOID)

Dsp_FlushSubroutines() removes all subroutines from the DSP.

OPCODE 115 (0x73)

AVAILABILITY This call is only available if the fifth bit of the ‘_SND’ cookie is set.

BINDING move.w #$73,-(sp)
trap #14
addq.l #2,sp

COMMENTS This call should only be used when a program requires more memory than is
returned by Dsp_Available().

SEE ALSO Dsp_Available()

Dsp_GetProgAbility()
WORD Dsp_GetProgAbility(VOID)

Dsp_GetProgAbility() returns the current ability code for the program currently
residing in DSP memory.

OPCODE 114 (0x72)

Dsp_GetWordSize() – 4.41

T H E A T A R I C O M P E N D I U M

AVAILABILITY This call is only available if the fifth bit of the ‘_SND’ cookie is set.

BINDING move.w #$72,-(sp)
trap #14
addq.l #2,sp

RETURN VALUE Dsp_GetProgAbility() returns the WORD ability code for the current program
loaded in the DSP.

COMMENTS If you know the defined ability code of the program you wish to use, you can use
this call to see if the program already exists on the DSP and avoid reloading it.

SEE ALSO Dsp_InqSubrAbility()

Dsp_GetWordSize()
WORD Dsp_GetWordSize(VOID)

Dsp_GetWordSize() returns the size of a DSP word in the installed Digital
Signal Processor.

OPCODE 103 (0x67)

AVAILABILITY This call is only available if the fifth bit of the ‘_SND’ cookie is set.

BINDING move.w #$67,-(sp)
trap #14
addq.l #2,sp

RETURN VALUE Dsp_GetWordSize() returns the number of bytes per DSP word.

COMMENTS This value is useful with many DSP-related XBIOS calls to provide upward
compatibility as the DSP hardware is not guaranteed to remain the same.

Dsp_Hf0()
WORD Dsp_Hf0(flag)
WORD flag;

Dsp_Hf0() reads/writes to bit #3 of the HSR.

OPCODE 119 (0x77)

4.42 – XBIOS Reference

T H E A T A R I C O M P E N D I U M

AVAILABILITY This call is only available if the fifth bit of the ‘_SND’ cookie is set.

PARAMETERS flag has three legal values as follows:

Name flag Meaning

HF_CLEAR 0 Clear bit #3 of the DSP’s HSR.

HF_SET 1 Set bit #3 of the DSP’s HSR.

HF_INQUIRE -1 Return the current value of bit #3 of the DSP’s HSR.

BINDING move.w flag,-(sp)
move.w #$77,-(sp)
trap #14
addq.l #4,sp

RETURN VALUE If flag is HF_INQUIRE (-1), Dsp_Hf0() returns the current state of bit #3 of the
HSR register.

SEE ALSO Dsp_Hf1()

Dsp_Hf1()
WORD Dsp_Hf1(flag)
WORD flag;

Dsp_Hf1() reads/writes to bit #4 of the HSR.

OPCODE 120 (0x78)

AVAILABILITY This call is only available if the fifth bit of the ‘_SND’ cookie is set.

PARAMETERS flag has three legal values as follows:

Name flag Meaning

HF_CLEAR 0 Clear bit #4 of the DSP’s HSR.

HF_SET 1 Set bit #4 of the DSP’s HSR.

HF_INQUIRE -1 Return the current value of bit #4 of the DSP’s HSR.

BINDING move.w flag,-(sp)
move.w #$78,-(sp)
trap #14
addq.l #4,sp

RETURN VALUE If flag is HF_INQUIRE (-1), Dsp_Hf1() returns the current state of bit #4 of the
HSR register.

Dsp_Hf2() – 4.43

T H E A T A R I C O M P E N D I U M

SEE ALSO Dsp_Hf0()

Dsp_Hf2()
WORD Dsp_Hf2(VOID)

Dsp_Hf2() returns the current status of bit #3 of the DSP’s HCR.

OPCODE 121 (0x79)

AVAILABILITY This call is only available if the fifth bit of the ‘_SND’ cookie is set.

BINDING move.w #$79,-(sp)
trap #14
addq.l #2,sp

RETURN VALUE Dsp_Hf2() returns the current setting of bit #3 of the HCR register (valid values
are 0 or 1).

SEE ALSO Dsp_Hf3()

Dsp_Hf3()
WORD Dsp_Hf3(VOID)

Dsp_Hf3() returns the current status of bit #4 of the DSP’s HCR.

OPCODE 122 (0x7A)

AVAILABILITY This call is only available if the fifth bit of the ‘_SND’ cookie is set.

BINDING move.w #$7A,-(sp)
trap #14
addq.l #2,sp

RETURN VALUE Dsp_Hf3() returns the current setting of bit #4 of the HCR register (valid values
are 0 or 1).

SEE ALSO Dsp_Hf2()

4.44 – XBIOS Reference

T H E A T A R I C O M P E N D I U M

Dsp_HStat()
BYTE Dsp_Hstat(VOID)

Dsp_HStat() returns the value of the DSP’s ICR register.

OPCODE 125 (0x7D)

AVAILABILITY This call is only available if the fifth bit of the ‘_SND’ cookie is set.

BINDING move.w #$7D,-(sp)
trap #14
addq.l #2,sp

RETURN VALUE Dsp_Hstat() returns an 8-bit value representing the current state of the DSP’s ICR
register as follows:

Name Bit Meaning

ICR_RXDF 0 ISR Receive data register full (RXDF)

ICR_TXDE 1 ISR Transmit data register empty (TXDE)

ICR_TRDY 2 ISR Transmitter ready (TRDY)

ICR_HF2 3 ISR Host flag 2 (HF2)

ICR_HF3 4 ISR Host flag 3 (HF3)

— 5 Reserved

ICR_DMA 6 ISR DMA Status (DMA)

ICR_HREQ 7 ISR Host Request (HREQ)

Dsp_InqSubrAbility()
WORD Dsp_InqSubrAbility(ability)
WORD ability;

Dsp_InqSubrAbility() determines if a subroutine with the specified ability code
exists in the DSP.

OPCODE 117 (0x75)

AVAILABILITY This call is only available if the fifth bit of the ‘_SND’ cookie is set.

PARAMETERS ability is the ability code you wish to check.

BINDING move.w ability,-(sp)
move.w #$75,-(sp)

Dsp_InStream() – 4.45

T H E A T A R I C O M P E N D I U M

trap #14
addq.l #2,sp

RETURN VALUE Dsp_InqSubrAbility() returns a handle to the subroutine if found or 0 if not.

SEE ALSO Dsp_RunSubroutine()

Dsp_InStream()
VOID Dsp_InStream(data_in, block_size, num_blocks, blocks_done)
char *data_in;
LONG block_size;
LONG num_blocks;
LONG * blocks_done;

Dsp_InStream() passes data to the DSP via an interrupt handler.

OPCODE 99 (0x63)

AVAILABILITY This call is only available if the fifth bit of the ‘_SND’ cookie is set.

PARAMETERS data_in is a pointer to unsigned character data which should be transferred to the
DSP. block_size indicates the number of DSP WORDs that will be transferred at
each interrupt. num_blocks indicates the number of blocks to transfer.

The LONG pointed to by blocks_done will be constantly updated to let the
application know the progress of the transfer.

BINDING pea blocks_done
move.l num_blocks,-(sp)
move.l block_size,-(sp)
pea data_in
move.w #$63,-(sp)
trap #14
lea 18(sp),sp

CAVEATS No handshaking is performed with this call. If the data you are transmitting is error
sensitive, use Dsp_BlkHandShake().

COMMENTS This call is suited for transferring small blocks while other blocks are being
prepared for transfer. For larger blocks, Dsp_DoBlock() would be more suitable.

SEE ALSO Dsp_BlkHandShake(), Dsp_DoBlock()

4.46 – XBIOS Reference

T H E A T A R I C O M P E N D I U M

Dsp_IOStream()
VOID Dsp_IOStream(data_in, data_out, block_insize, block_outsize, num_blocks, blocks_done)
char *data_in, *data_out;
LONG block_insize, block_outsize, num_blocks;
LONG * blocks_done;

Dsp_IOStream() uses two interrupt handlers to transmit and receive data from the
DSP.

OPCODE 101 (0x65)

AVAILABILITY This call is only available if the fifth bit of the ‘_SND’ cookie is set.

PARAMETERS data_in is a pointer to a buffer in which each output block is placed. data_out is a
pointer to a buffer used to receive each data block from the DSP.

block_insize and block_outsize represent the size of the blocks to send and
receive, respectively, in DSP WORDs. num_blocks is the total number of blocks
to transfer.

The LONG pointed at by blocks_done is constantly updated to indicate the
number of blocks actually transferred.

BINDING pea blocks_done
move.l num_blocks,-(sp)
move.l block_outsize,-(sp)
move.l block_insize,-(sp)
pea data_out
pea data_in
move.w #$65,-(sp)
trap #14
lea 26(sp),sp

CAVEATS This call makes the assumption that the DSP will be ready to accept a new block
as input every time it finishes sending a block back to the host.

COMMENTS No handshaking is performed with this call. If your data is error-sensitive, you
should use Dsp_BlkHandShake().

SEE ALSO Dsp_InStream(), Dsp_OutStream()

Dsp_LoadProg() – 4.47

T H E A T A R I C O M P E N D I U M

Dsp_LoadProg()
WORD Dsp_LoadProg(file, ability, buf)
char *file;
WORD ability;
char *buf;

Dsp_LoadProg() loads a ‘.LOD’ file from disk, transmits it to the DSP, and
executes it.

OPCODE 108 (0x6C)

AVAILABILITY This call is only available if the fifth bit of the ‘_SND’ cookie is set.

PARAMETERS file is a pointer to a NULL -terminated string containing a valid GEMDOS file
specification. ability is the unique ability code that will be assigned to this
program. buf should point to a temporary buffer where the DSP will place the
binary code it generates. The minimum size of the buffer is determined by the
following formula:

3 * (#program/data words + (3 * #blocks in program))

BINDING pea buf
move.w ability,-(sp)
pea file
move.w #$6C,-(sp)
trap #14
lea 12(sp),sp

RETURN VALUE Dsp_LoadProg() returns a 0 is successful or -1 otherwise.

COMMENTS Before loading you should determine if a program already exists on the DSP with
your chosen ability with Dsp_GetProgAbility().

SEE ALSO Dsp_LoadSubroutine()

4.48 – XBIOS Reference

T H E A T A R I C O M P E N D I U M

Dsp_LoadSubroutine()
WORD Dsp_LoadSubroutine(ptr, size, ability)
char *ptr;
LONG size;
WORD ability;

Dsp_LoadSubroutine() transmits subroutine code to the DSP.

OPCODE 116 (0x74)

AVAILABILITY This call is only available if the fifth bit of the ‘_SND’ cookie is set.

PARAMETERS ptr points to a memory buffer which contains DSP binary subroutine code. size is
the length of code to transfer (specified in DSP words). ability is the WORD
identifier for the unique ability of this subroutine.

BINDING move.w ability,-(sp)
move.l size,-(sp)
pea ptr
move.w #$74,-(sp)
trap #14
lea 12(sp),sp

RETURN VALUE Dsp_LoadSubroutine() returns the handle assigned to the subroutine or 0 if an
error occurred.

COMMENTS DSP subroutines have many restrictions and you should see the previous
discussion of the DSP for more information.

SEE ALSO Dsp_RunSubroutine(), Dsp_InqSubrAbility()

Dsp_Lock()
WORD Dsp_Lock(VOID)

Dsp_Lock() locks the use of the DSP to the calling application.

OPCODE 104 (0x68)

AVAILABILITY This call is only available if the fifth bit of the ‘_SND’ cookie is set.

BINDING move.w #$68,-(sp)
trap #14
addq.l #2,sp

Dsp_LodToBinary() – 4.49

T H E A T A R I C O M P E N D I U M

RETURN VALUE Dsp_Lock() returns a 0 if successful or -1 if the DSP has been locked by another
application.

COMMENTS Dsp_Lock() should be performed before each use of the DSP to prevent other
applications from modifying DSP memory or flushing subroutines. A
corresponding Dsp_Unlock() should be issued at the end of each usage. You
should limit the amount of time the DSP is locked so other applications may utilize
it.

SEE ALSO Dsp_Unlock()

Dsp_LodToBinary()
LONG Dsp_LodToBinary(file, codeptr)
char *file,*codeptr;

Dsp_LodToBinary() reads a ‘.LOD’ file and converts the ASCII data to binary
program code ready to be sent to the DSP via Dsp_ExecProg() or
Dsp_ExecBoot().

OPCODE 111 (0x6F)

AVAILABILITY This call is only available if the fifth bit of the ‘_SND’ cookie is set.

PARAMETERS file is a character pointer to a null-terminated GEMDOS file specification.
codeptr should point to a large enough buffer to hold the resulting binary program
code.

BINDING pea codeptr
pea file
move.w #$6F,-(sp)
trap #14
lea 10(sp),sp

RETURN VALUE Dsp_LodToBinary() returns the size of the resulting program code in DSP words
or a negative error code.

SEE ALSO Dsp_ExecProg(), Dsp_LoadProg()

4.50 – XBIOS Reference

T H E A T A R I C O M P E N D I U M

Dsp_MultBlocks()
VOID Dsp_MultBlocks(numsend, numreceive, sendblks, receiveblks)
LONG numsend, numreceive;
DSPBLOCK *sendblks, *receiveblks;

Dsp_MultBlocks() transmit and receive multiple blocks of DSP data of varying
size.

OPCODE 127 (0x7F)

AVAILABILITY This call is only available if the fifth bit of the ‘_SND’ cookie is set.

PARAMETERS numsend and numreceive indicate the number of blocks of DSP data to send and
receive respectively. sendblks and receiveblks are both pointers to arrays of type
DSPBLOCK which contain information for each block. DSPBLOCK is defined
as follows:

typedef struct
{
#define BLOCK_LONG 0
#define BLOCK_WORD 1
#define BLOCK_UBYTE 2

/* 0 = LONGs, 1 = WORDs, 2 = UBYTEs */
WORD blocktype;

/* Num elements in block */
LONG blocksize;

/* Start address of block */
VOIDP blockaddr;

} DSPBLOCK;

BINDING pea receiveblks
pea sendblks
move.l numreceive,-(sp)
move.l numsend,-(sp)
move.w #$7F,-(sp)
trap #14
lea 20(sp),sp

CAVEATS No handshaking is performed with this call. To transfer blocks with handshaking
use Dsp_BlkHandShake().

Dsp_OutStream() – 4.51

T H E A T A R I C O M P E N D I U M

Dsp_OutStream()
VOID Dsp_OutStream(data_out, block_size, num_blocks, blocks_done)
char *data_out;
LONG block_size;
LONG num_blocks;
LONG * blocks_done;

Dsp_OutStream() transfers data from the DSP to a user-specified buffer using
interrupts.

OPCODE 100 (0x64)

AVAILABILITY This call is only available if the fifth bit of the ‘_SND’ cookie is set.

PARAMETERS This call transfers data from the DSP to the buffer pointed to by data_out via an
interrupt handler. block_size specifies the number of DSP WORDs to be
transferred and num_blocks specifies the number of blocks to transfer.

The LONG pointed to by blocks_done will be constantly updated by the interrupt
handler to indicate the number of blocks successfully transferred. The process is
complete when blocks_done is equal to num_blocks.

BINDING pea blocks_done
move.l num_blocks,-(sp)
move.l block_size,-(sp)
pea data_out
move.w #$64,-(sp)
trap #1
lea 18(sp),sp

SEE ALSO Dsp_DoBlock(), Dsp_MultBlocks(), Dsp_InStream()

Dsp_RemoveInterrupts()
VOID Dsp_RemoveInterrupts(mask)
WORD mask;

Dsp_RemoveInterrupts() turns off the generation of DSP interrupts.

OPCODE 102 (0x66)

AVAILABILITY This call is only available if the fifth bit of the ‘_SND’ cookie is set.

4.52 – XBIOS Reference

T H E A T A R I C O M P E N D I U M

PARAMETERS mask is an WORD bit mask indicating which interrupts to turn off composed of
one or both of the following values:

Name Mask Meaning

RTS_OFF 0x01 Disable DSP Ready to Send Interrupts

RTR_OFF 0x02 Disable DSP Ready to Receive Interrupts

BINDING move.w mask,-(sp)
move.w #$66,-(sp)
trap #14
addq.l #4,sp

COMMENTS This call is used to terminate interrupts when an interrupt driven block transfer
function does not terminate as expected (this will occur when less than the
expected number of blocks is returned) and to shut off interrupts installed by
Dsp_SetVectors().

SEE ALSO Dsp_SetVectors()

Dsp_RequestUniqueAbility()
WORD Dsp_RequestUniqueAbility(VOID)

Dsp_RequestUniqueAbility() generates a random ability code that is currently not
in use.

OPCODE 113 (0x71)

AVAILABILITY This call is only available if the fifth bit of the ‘_SND’ cookie is set.

BINDING move.w #$71,-(sp)
trap #14
addq.l #2,sp

RETURN VALUE Dsp_RequestUniqueAbility() returns a unique ability code to assign to a
subroutine or program.

COMMENTS Using this function allows you to call Dsp_InqSubrAbility() and
Dsp_GetProgAbility() to determine if the DSP code your application has already
loaded is still present (i.e. has not been flushed by another application).

SEE ALSO DspInqSubrAbility(), Dsp_GetProgAbility()

Dsp_Reserve() – 4.53

T H E A T A R I C O M P E N D I U M

Dsp_Reserve()
WORD Dsp_Reserve(xreserve, yreserve)
LONG xreserve, yreserve;

Dsp_Reserve() reserves DSP memory for program usage.

OPCODE 107 (0x6B)

AVAILABILITY This call is only available if the fifth bit of the ‘_SND’ cookie is set.

PARAMETERS xreserve and yreserve specify the amount of memory (in DSP words) to reserve
for a DSP program in X and Y memory space respectively. xreserve and yreserve
must include all program/data space so that subroutines do not overwrite your
reserved area.

BINDING move.l yreserve,-(sp)
move.l xreserve,-(sp)
move.w #$6B,-(sp)
trap #14
lea 10(sp),sp

RETURN VALUE Dsp_Reserve() returns a 0 if the memory was reserved successfully or -1 if not
enough DSP memory was available.

COMMENTS If this call fails you should call Dsp_FlushSubroutines() and then retry it. If it
fails a second time, the DSP lacks enough memory space to run your program.

Dsp_RunSubroutine()
WORD Dsp_RunSubroutine(handle)
WORD handle;

Dsp_RunSubroutine() begins execution of the specified subroutine.

OPCODE 118 (0x76)

AVAILABILITY This call is only available if the fifth bit of the ‘_SND’ cookie is set.

PARAMETERS handle is the WORD identifier of the DSP subroutine to engage.

BINDING move.w handle,-(sp)
move.w #$76,-(sp)
trap #14
addq.l #4,sp

4.54 – XBIOS Reference

T H E A T A R I C O M P E N D I U M

RETURN VALUE Dsp_RunSubroutine() returns a 0 if successful or a negative code indicating
failure.

SEE ALSO Dsp_LoadSubroutine()

Dsp_SetVectors()
VOID Dsp_SetVectors(receiver, transmitter)
VOID (* receiver)();
LONG (* transmitter)();

Dsp_SetVectors() sets the location of application interrupt handlers that are
called when the DSP is either ready to send or receive data.

OPCODE 126 (0x7E)

AVAILABILITY This call is only available if the fifth bit of the ‘_SND’ cookie is set.

PARAMETERS receiver is the address of an interrupt handler which is called when the DSP is
ready to send a DSP word of data or NULLFUNC (VOID (*)() 0L) if you do not
wish to set this interrupt.

Likewise, transmitter is a pointer to an interrupt handler which is called when the
DSP is ready to receive a DSP word of data or NULLFUNC if you do not wish to
install a transmitter interrupt.

Any function installed to handle transmitter interrupts should return a LONG
which has one of the following values:

Name
transmitter

Return Value Meaning
DSPSEND_NOTHING 0x00000000 Do not send any data to the DSP.

DSPSEND_ZERO 0xFF000000 Transmit a DSP word of 0 to the DSP.

— Any other Transmit the low 24 bits to the DSP.

BINDING move.l #transmitter,-(sp)
move.l #receiver,-(sp)
move.w #$7E,-(sp)
trap #14
lea 10(sp),sp

COMMENTS Use Dsp_RemoveInterrupts() to turn off interrupts set with this call.

SEE ALSO Dsp_RemoveInterrupts()

Dsp_TriggerHC() – 4.55

T H E A T A R I C O M P E N D I U M

Dsp_TriggerHC()
VOID Dsp_TriggerHC(vector);
WORD vector;

Dsp_TriggerHC() causes a host command set aside for DSP programs to execute.

OPCODE 112 (0x70)

AVAILABILITY This call is only available if the fifth bit of the ‘_SND’ cookie is set.

PARAMETERS vector specifies the vector to execute.

BINDING move.w vector,-(sp)
move.w #$70,-(sp)
trap #14
addq.l #4,sp

CAVEATS Currently vectors 0x13 and 0x14 are the only vectors available for this purpose.
All other vectors are overwritten by the system on program load and are used by
the system and subroutines.

Dsp_Unlock()
VOID Dsp_Unlock(VOID)

Dsp_Unlock() unlocks the sound system from use by a process which locked it
previously using Dsp_Lock().

OPCODE 105 (0x69)

AVAILABILITY This call is only available if the fifth bit of the ‘_SND’ cookie is set.

BINDING move.w #$69,-(sp)
trap #14
addq.l #2,sp

SEE ALSO Dsp_Lock()

4.56 – XBIOS Reference

T H E A T A R I C O M P E N D I U M

Dsptristate()
LONG Dsptristate(dspxmit, dsprec)
WORD dspxmit, dsprec;

Dsptristate() connects or disconnects the DSP from the connection matrix.

OPCODE 137 (0x89)

AVAILABILITY Available if ‘_SND’ cookie has bits 3 and 4 set.

PARAMETERS dpsxmit and dsprec specify whether data being transmitted and/or recorded into
the DSP passes through the connection matrix. A value of DSP_TRISTATE (0)
indicates a ‘tristate’ condition where data is not fed through the matrix. A value of
DSP_ENABLE (1) enables the use of the connection matrix.

BINDING move.w dsprec,-(sp)
move.w dspxmit,-(sp)
move.w #$89,-(sp)
trap #14
addq.l #6,sp

RETURN VALUE Dsptristate() returns 0 if no error occurred or non-zero otherwise.

COMMENTS This call is used in conjunction with Devconnect() to link the DSP to the internal
sound system.

SEE ALSO Devconnect()

EgetPalette()
VOID EgetPalette(start, count, paldata)
WORD start, count;
WORD *paldata;

EgetPalette() copies the current TT030 color palette data into a specified buffer..

OPCODE 85 (0x55)

AVAILABILITY This call is available when the high word of the ‘_VDO’ cookie has a value of 2.

PARAMETERS start gives the index (0-255) of the first color register to copy data into. count
specifies the total number of registers to copy. paldata is a pointer to an array
where the TT030 palette data will be stored. Each WORD will be formatted as

EgetShift() – 4.57

T H E A T A R I C O M P E N D I U M

follows:

Bits 15-12 Bits 11-8 Bits 7-4 Bits 3-0

Reserved Red Green Blue

BINDING pea palette
move.w count,-(sp)
move.w start,-(sp)
move.w #$55,-(sp)
trap #14
lea 10(sp),sp

CAVEATS This call is machine-dependent to the TT030. It is therefore recommended that
vq_color() be used in most instances.

COMMENTS Unlike Setpalette() this call encodes color nibbles from the most signifigant to
least signifigant bit (3-2-1-0) as opposed to the compatibilty method of 0-3-2-1.

SEE ALSO Esetpalette(), vq_color()

EgetShift()
WORD EgetShift(VOID)

EgetShift() returns the current mode of the video shifter.

OPCODE 81 (0x51)

AVAILABILITY This call is available when the high word of the ‘_VDO’ cookie has a value of 2.

BINDING move.w #$51,-(sp)
trap #14
addq.l #2,sp

RETURN VALUE EgetShift() returns a WORD bit array which is divided as follows:

Mask Name Bit(s) Meaning

ES_BANK 0–3 These bits determine the current color bank being used by the TT
(in all modes with less than 256 colors).

The macro ColorBank() as defined below will extract the current
bank code.

#define ColorBank(x) ((x) & ES_BANK)
— 4–7 Unused

4.58 – XBIOS Reference

T H E A T A R I C O M P E N D I U M

ES_MODE 8–10 These bits determine the current mode of the TT video shifter as
follows:

Name Value
ST_LOW 0x0000
ST_MED 0x0100
ST_HIGH 0x0200
TT_MED 0x0300
TT_HIGH 0x0600
TT_LOW 0x0700

The current shifter mode code can be extracted with the following
macro:

#define ScreenMode(x) ((x) & ES_MODE)
— 11 Unused

ES_GRAY 12 This bit determines if the TT video shifter is currently in grayscale
mode. The following macro can be used to extract this information:

#define IsGrayMode(x) ((x) & ES_GRAY)
— 13–14 Unused

ES_SMEAR 15 If this bit is set, the TT video shifter is currently in smear mode. The
following macro can be used to extract this information:

#define IsSmearMode(x) ((x) & ES_SMEAR)

SEE ALSO EsetGray(), EsetShift(), EsetSmear(), EsetBank()

EsetBank()
WORD EsetBank(bank)
WORD bank;

EsetBank() chooses which of 16 banks of color registers is currently active.

OPCODE 82 (0x52)

AVAILABILITY This call is available when the high word of the ‘_VDO’ cookie has a value of 2.

PARAMETERS bank specifies the index of the color bank to activate. A value of ESB_INQUIRE
(-1) does not change anything but still returns the current bank.

BINDING move.w bank,-(sp)
move.w #$52,-(sp)
trap #14
addq.l #4,sp

RETURN VALUE EsetBank() returns the index of the old blank.

EsetColor() – 4.59

T H E A T A R I C O M P E N D I U M

CAVEATS This call is machine-dependent to the TT030.

SEE ALSO EgetShift()

EsetColor()
WORD EsetColor(idx, color)
WORD idx, color;

EsetColor() sets an individual color in the TT030’s palette.

OPCODE 83 (0x53)

AVAILABILITY This call is available when the high word of the ‘_VDO’ cookie has a value of 2.

PARAMETERS idx specifies the color index to modify (0-255). color is a TT030 format color
WORD bit array divided as follows:

Bits 15-12 Bits 11-8 Bits 7-4 Bits 3-0

Reserved Red Green Blue

If color is EC_INQUIRE (-1) then the call does not change the register but still
returns it value.

BINDING move.w color,-(sp)
move.w idx,-(sp)
move.w #$53,-(sp)
trap #14
addq.l #6,sp

RETURN VALUE EsetColor() returns the old value of the color register.

CAVEATS This call is machine-dependent to the TT030. It is therefore recommended that
vs_color() be used instead for compatibility.

COMMENTS Unlike Setpalette() this call encodes color nibbles from the most signifigant to
least signifigant bit (3-2-1-0) as opposed to the compatibilty method of 0-3-2-1.

SEE ALSO EsetPalette(), vs_color()

4.60 – XBIOS Reference

T H E A T A R I C O M P E N D I U M

EsetGray()
WORD EsetGray(mode)
WORD mode;

EsetGray() reads/modifies the TT030’s video shifter gray mode bit.

OPCODE 86 (0x56)

AVAILABILITY This call is available when the high word of the ‘_VDO’ cookie has a value
of 2.

PARAMETERS mode is defined as follows:

Name mode Meaning

ESG_INQUIRE -1 Return the gray bit of the video shifter.

ESG_COLOR 0 Set the video shifter to interpret the lower 16 bits of a
palette entry as a TT030 color value (RGB 0-15).

ESG_GRAY 1 Set the video shifter to interpret the lower 8 bits of a
palette entry as a TT030 gray value (0-255)

BINDING move.w mode,-(sp)
move.w #$56,-(sp)
trap #14
addq.l #4,sp

RETURN VALUE EsetGray() returns the previous value of the video shifter’s gray bit.

CAVEATS This call is machine-dependent to the TT030.

SEE ALSO EgetShift()

EsetPalette()
VOID EsetPalette(start, count, paldata)
WORD start,count;
WORD *paldata;

EsetPalette() copies TT030 color WORDs from the specified buffer into the
TT030 Color Lookup Table (CLUT).

OPCODE 84 (0x54)

AVAILABILITY This call is available when the high word of the ‘_VDO’ cookie has a value of 2.

EsetShift() – 4.61

T H E A T A R I C O M P E N D I U M

PARAMETERS start specifies the index of the starting color register to copy color data to. count
indicates the number of palette WORDs to copy. paldata is a pointer to an array
of palette WORDs to copy.

BINDING pea palette
move.w count,-(sp)
move.w start,-(sp)
move.w #$54,-(sp)
trap #14
lea 10(sp),sp

CAVEATS This call is machine-dependent to the TT030. It is therefore recommended that
vs_color() be used instead for compatibility.

COMMENTS For the format of the color WORDs, see EgetPalette().

SEE ALSO EgetPalette(), vq_color()

EsetShift()
WORD EsetShift(mode)
WORD mode;

EsetShift() reads/modifies the TT030 video shifter.

OPCODE 80 (0x50)

AVAILABILITY This call is available when the high word of the ‘_VDO’ cookie has a value of 2.

PARAMETERS mode is a WORD bit array which defines the new setting of the video shifter as
follows:

Name Bit(s) Meaning

— 0–3 These bits determine the current color bank being used by the TT
(in all modes with less than 256 colors).

— 4–7 Unused

— 8–10 These bits determine the current mode of the TT video shifter as
follows:

Name Bit Mask
ST_LOW 0x0000
ST_MED 0x0100
ST_HIGH 0x0200
TT_MED 0x0300
TT_HIGH 0x0600
TT_LOW 0x0700

4.62 – XBIOS Reference

T H E A T A R I C O M P E N D I U M

— 11 Unused

ES_GRAY 12 Setting this bit places the TT video shifter in grayscale mode.

— 13–14 Unused

ES_SMEAR 15 Setting this bit places the TT video shifter in smearsmear mode.

BINDING move.w mode,-(sp)
move.w #$50,-(sp)
trap #14
addq.l #4,sp

RETURN VALUE EsetShift() returns the old mode setting of the video shifter.

CAVEATS This call is machine-dependent to the TT030.

SEE ALSO EgetShift(), EsetGray(), EsetSmear(), EsetBank()

EsetSmear()
WORD EsetSmear(mode)
WORD mode;

EsetSmear() reads/modifies the current state of the video shifter’s smear mode
bit.

OPCODE 87 (0x57)

AVAILABILITY This call is available when the high word of the ‘_VDO’ cookie has a value of 2.

PARAMETERS mode specifies the action of this call as follows:

Name mode Meaning

ESM_INQUIRE -1 Return the smear bit of the video shifter.

ESM_NORMAL 0 Set the video shifter to process video data normally.

ESM_SMEAR 1 Set the video shifter to repeat the color of the last
displayed pixel each time a 0x0000 is read from video
memory.

BINDING move.w mode,-(sp)
move.w #$57,-(sp)
trap #14
addq.l #4,sp

RETURN VALUE EsetSmear() returns the prior setting of the video shifter’s smear mode bit.

SEE ALSO Egetshift(), EsetShift()

Flopfmt() – 4.63

T H E A T A R I C O M P E N D I U M

Flopfmt()
WORD Flopfmt(buf, skew, dev, spt, track, side, intlv, magic, virgin)
VOIDP buf;
WORD *skew;
WORD dev, spt, track, side, intlv;
LONG magic;
WORD virgin;

Flopfmt() formats a specified track on a floppy disk.

OPCODE 10 (0x0A)

AVAILABILITY All TOS versions.

PARAMETERS buf is a pointer to a word-aligned buffer large enough to hold one disk track which
is used to build a copy of each sector to write. skew should be NULL for non-
interleaved sectors or point to a WORD array containing spt entries which
specifies the sector interleave order.

dev specifies which floppy drive to format (‘A:’ = FLOP_DRIVEA (0), ‘B:’ =
FLOP_DRIVEB (1)). spt indicates the number of sectors to format. track
indicates which track to format.

side indicates the side to format. intlv should be FLOP_NOSKEW (1) for
consecutive sectors or FLOP_SKEW (-1) to interleave the sectors based on the
array pointed to by skew.

magic is a fixed magic number which must be FLOP_MAGIC (0x87654321).
virgin is the value to assign to uninitialized sector data (should be
FLOP_VIRGIN (0xE5E5)).

BINDING move.w virgin,-(sp)
move.l magic,-(sp)
move.w intlv,-(sp)
move.w side,-(sp)
move.w track,-(sp)
move.w spt,-(sp)
move.w dev,-(sp)
pea skew
pea buf
move.w #$0A,-(sp)
trap #14
lea 26(sp),sp

RETURN VALUE Flopfmt() returns 0 if the track was formatted successfully or non-zero otherwise.

4.64 – XBIOS Reference

T H E A T A R I C O M P E N D I U M

Also, upon exit, buf will be filled in with a WORD array of sectors that failed
formatting terminated by an entry of 0. If no errors occurred then the first WORD
of buf will be 0.

COMMENTS The steps required to a format a floppy disk are as follows:

1. Call Flopfmt() to format the disk as desired.
2. Call Protobt() to create a prototype boot sector in memory.
3. Call Flopwr() to write the prototype boot sector to track 0, side 0, sector 1.

Interleaved sector formatting is only possible as of TOS 1.2. skew should be set to
NULL and intlv should be set to FLOP_NOSKEW under TOS 1.0.

Specifying an intlv value of FLOP_SKEW and a skew array equalling { 1, 2, 3, 4,
5, 6, 7, 8, 9 } is the same as specifying an intlv value of FLOP_NOSKEW. To
accomplish a 9 sector 2:1 interleave you would use a skew array which looked
like: { 1, 6, 2, 7, 3, 8, 4, 9, 5 }.

The ‘_FDC’ cookie (if present) contains specific information regarding the
installed floppy drives. The lower three bytes of the cookie value contain a three-
letter code indicating the manufacturer of the drive (Atari is 0x415443 ‘ATC’).
The high byte determines the capabilities of the highest density floppy drive
currently installed as follows:

Name Value Meaning

FLOPPY_DSDD 0 Standard Density (720K)

FLOPPY_DSHD 1 High Density (1.44MB)

FLOPPY_DSED 2 Extra High Density (2.88MB)

To format a high density diskette, multiple the spt parameter by 2. To format a
extra-high density diskette, multiply the spt parameter by 4.

This call forces a ‘media changed’ state on the device which will be returned on
the next Mediach() or Rwabs() call.

SEE ALSO Floprate(), Floprd(), Flopwr()

Floprate()
WORD Floprate(dev, rate)
WORD dev, rate;

Floprate() sets the seek rate of the specified floppy drive.

Floprd() – 4.65

T H E A T A R I C O M P E N D I U M

OPCODE 41 (0x29)

AVAILABILITY Available on all TOS versions except 1.00.

PARAMETERS dev indicates the floppy drive whose seek rate you wish to modify (‘A:’ =
FLOP_DRIVEA (0), ‘B:’ = FLOP_DRIVEB (1)). rate specifies the seek rate as
follows:

Name rate Meaning

FRATE_6 0 Set seek rate to 6ms

FRATE_12 1 Set seek rate to 12ms

FRATE_2 2 Set seek rate to 2ms

FRATE_3 3 Set seek rate to 3ms

A rate value of FRATE_INQUIRE (-1) will inquire the current seek rate without
modifying it.

BINDING move.w rate,-(sp)
move.w dev,-(sp)
move.w #$29,-(sp)
trap #14
addq.l #6,sp

RETURN VALUE Floprate() returns the prior seek rate for the specified drive.

COMMENTS TOS version 1.00 can have its seek rates set by setting the system variable
(_seekrate (WORD *)0x440) to the desired value (as in rate). Note that you can
only set the seek rate for both drives in this manner.

Floprd()
WORD Floprd(buf, rsrvd, dev, sector, track, side, count)
VOIDP buf;
LONG rsrvd;
WORD dev, sector, track, side, count;

Floprd() reads sectors from a floppy disk.

OPCODE 8 (0x08)

AVAILABILITY All TOS versions.

PARAMETERS buf points to a word-aligned buffer where the data to be read will be stored. rsrvd
is currently unused and should be 0. dev specifies the floppy drive to read from

4.66 – XBIOS Reference

T H E A T A R I C O M P E N D I U M

(‘A:’ = FLOP_DRIVEA (0), ‘B:’ = FLOP_DRIVEB (1)). The function reads
count physical sectors starting at sector sector, track track, side side.

BINDING move.w count,-(sp)
move.w side,-(sp)
move.w track,-(sp)
move.w sector,-(sp)
move.w dev,-(sp)
move.l rsrvd,-(sp)
pea buf
move.w #$08,-(sp)
trap #14
lea 20(sp),sp

RETURN VALUE Floprd() returns 0 if the operation was successful or non-zero otherwise.

CAVEATS This function reads sectors in physical order (not taking interleave into account).
Use Rwabs() to read logical sectors.

SEE ALSO Flopwr(), Flopfmt(), Flopver(), Rwabs()

Flopver()
WORD Flopver(buf, rsrvd, dev, sector, track, side, count)
VOIDP buf;
LONG rsrvd;
WORD dev, sector, track, side, count;

Flopver() verifies data on a floppy disk with data in memory.

OPCODE 19 (0x13)

AVAILABILITY All TOS versions.

PARAMETERS buf is a pointer to a word-aligned buffer to compare the sector against. rsrvd is
unused and should be 0. dev specifies the drive to verify (‘A:’ = FLOP_DRIVEA
(0), ‘B:’ = FLOP_DRIVEB (1)). This function verifies count sectors starting at
sector sector, track track, side side.

BINDING move.w count,-(sp)
move.w side,-(sp)
move.w track,-(sp)
move.w sector,-(sp)
move.w dev,-(sp)
move.l rsrvd,-(sp)
pea buf
move.w #$13,-(sp)
trap #14
lea 20(sp),sp

Flopwr() – 4.67

T H E A T A R I C O M P E N D I U M

RETURN VALUE Flopver() returns 0 if all sectors were successfully verified or a non-zero value
otherwise.

CAVEATS This function only verifies sectors in physical order.

COMMENTS As with Flopfmt() , upon the return of the function, buf is filled in with a WORD
array containing a list of any sectors which failed. The array is terminated with a
NULL .

SEE ALSO Flopwr(), Flopfmt()

Flopwr()
WORD Flopwr(buf, rsrvd, dev, sector, track, side, count)
VOIDP buf;
LONG rsrvd;
WORD dev, sector, track, side, count;

Flopwr() writes sectors to the floppy drive.

OPCODE 9 (0x09)

AVAILABILITY All TOS versions.

PARAMETERS buf is a pointer containing data to write. rsrvd is currently unused and should be
set to 0. dev specifies the floppy drive to write to (‘A:’ = 0,’B:’ = 1). This
function writes count sectors starting at sector sector, track track, side side.

BINDING move.w count,-(sp)
move.w side,-(sp)
move.w track,-(sp)
move.w sector,-(sp)
move.w dev,-(sp)
move.l rsrvd,-(sp)
pea buf
move.w #$09,-(sp)
trap #14
lea 20(sp),sp

RETURN VALUE Flopwr() returns 0 if the sectors were successfully written or non-zero otherwise.

CAVEATS This function writes sectors in physical order only (ignoring interleave). Use
Rwabs() to write sectors in logical order.

COMMENTS If this call is used to write to track 0, sector 1, side 0, the device will enter a

4.68 – XBIOS Reference

T H E A T A R I C O M P E N D I U M

‘media might have changed’ state indicated upon the next Rwabs() or Mediach()
call.

SEE ALSO Floprd(), Flopfmt(), Flopver(),Rwabs()

Getrez()
WORD Getrez(VOID)

Getrez() returns a machine-dependent code representing the current screen
mode/ratio.

OPCODE 4 (0x04)

AVAILABILITY All TOS versions.

BINDING move.w #$04,-(sp)
trap #14
addq.l #2,sp

RETURN VALUE Getrez() returns a value representing the current video display mode. To find the
value you will receive back based on current Atari manufactured video hardware,
refer to the following chart:

Colors:
Screen
Dimension: 2 4 16 256

True
Color

320x200 X X 0 0 X

320x240 X 0 0 0 0

320x480 X 7 7 7 7

640x200 1 X X X X

640x400 2 X X X X

640x480 2 2 2† 2 2

1280x960 6 X X X X

† This value varies. TT030 Medium resolution returns a value of 4, however, the
Falcon returns a value of 2.

CAVEATS This call is extremely machine-dependent. Dependence on this call will make your
program incompatible with third-party video boards and future hardware. Use the
values returned by v_opnvwk() to determine screen attributes.

COMMENTS Use of this call in preparing to call v_opnvwk() is acceptable and must be done to
specify the correct fonts to load from GDOS.

Gettime() – 4.69

T H E A T A R I C O M P E N D I U M

SEE ALSO VsetMode(), Egetshift(), Setscreen()

Gettime()
LONG Gettime(VOID)

Gettime() returns the current IKBD time.

OPCODE 23 (0x17)

AVAILABILITY All TOS versions.

BINDING move.w #$17,-(sp)
trap #14
addq.l #2,sp

RETURN VALUE Gettime() returns a LONG bit array packed with the current IKBD time as
follows:

Bits Meaning

0-4 Seconds/2 (0-29)

5-10 Minute (0-59)

11-15 Hour (0-23)

16-20 Day (1-31)

21-24 Month (1-12)

25-31 Year-1980 (0-127)

The return value can be represented in a C structure as follows:

typedef struct
{

unsigned year:7;
unsigned month:4;
unsigned day:5;
unsigned hour:5;
unsigned minute:6;
unsigned second:5;

} BIOS_TIME;

SEE ALSO Settime(), Tgettime(), Tgetdate()

4.70 – XBIOS Reference

T H E A T A R I C O M P E N D I U M

Giaccess()
WORD Giaccess(data, register)
WORD data, register;

Giaccess() reads/sets the registers of the FM sound chip and Port A/B
peripherals.

OPCODE 28 (0x1C)

AVAILABILITY All TOS versions.

PARAMETERS The lower eight bits of data are written to the register selected by register if the
value for register is OR’ed with 0x80 (high bit set). If this bit is not set, data is
ignored and the value of the register is returned. register selects the register to
read/write to as follows:

Name register Meaning

PSG_APITCHLOW
PSG_BPITCHHIGH

0
1

Set the pitch of the PSG’s channel A to the value in
registers 0 and 1. Register 0 contains the lower 8 bits
of the frequency and the lower 4 bits of register 1
contain the upper 4 bits of the frequency’s 12-bit value.

PSG_BPITCHLOW
PSG_BPITCHHIGH

2
3

Set the pitch of the PSG’s channel B to the value in
registers 0 and 1. Register 0 contains the lower 8 bits
of the frequency and the lower 4 bits of register 1
contain the upper 4 bits of the frequency’s 12-bit value.

PSG_CPITCHLOW
PSG_CPITCHHIGH

2
3

Set the pitch of the PSG’s channel C to the value in
registers 0 and 1. Register 0 contains the lower 8 bits
of the frequency and the lower 4 bits of register 1
contain the upper 4 bits of the frequency’s 12-bit value.

PSG_NOISEPITCH 6 The lower five bits of this register set the pitch of white
noise. The lower the value, the higher the pitch.

PSG_MODE 7 This register contains an eight bit map which
determines various aspects of sound generation.
Setting each bit on causes the following actions:

Name Bit Mask Meaning
PSG_ENABLEA 0x01 Chnl A tone enable
PSG_ENABLEB 0x02 Chnl B tone enable
PSG_ENABLEC 0x04 Chnl C tone enable
PSG_NOISEA 0x08 Chnl A white noise on
PSG_NOISEB 0x10 Chnl B white noise on
PSG_NOISEC 0x20 Chnl C white noise on
PSG_PRTAOUT 0x40 Port A: 0 = input

1 = output
PSG_PRTBOUT 0x80 Port B: 0 - input

1 = output

Gpio() – 4.71

T H E A T A R I C O M P E N D I U M

PSG_AVOLUME 8 This register controls the volume of channel A. Values
from 0-15 are absolute volumes with 0 being the
softest and 15 being the loudest. Setting bit 4 causes
the PSG to ignore the volume setting and to use the
envelope setting in register 13.

PSG_BVOLUME 9 This register controls the volume of channel B. Values
from 0-15 are absolute volumes with 0 being the
softest and 15 being the loudest. Setting bit 4 causes
the PSG to ignore the volume setting and to use the
envelope setting in register 13.

PSG_CVOLUME 10 This register controls the volume of channel C. Values
from 0-15 are absolute volumes with 0 being the
softest and 15 being the loudest. Setting bit 4 causes
the PSG to ignore the volume setting and to use the
envelope setting in register 13.

PSG_FREQLOW
PSG_FREQHIGH

11
12

Register 11 contains the low byte and register 12
contains the high byte of the frequency of the
waveform specified in register 13. This value may
range from 0 to 65535.

PSG_ENVELOPE 13 The lower four bits of the register contain a value
which defines the envelope wavefrom of the PSG. The
best definition of values is obtained through
experimentation.

PSG_PORTA 14 This register accesses Port A of the Yamaha PSG. It
is recommended that the functions Ongibit() and
Offgibit() be used to access this register.

PSG_PORTB 15 This register accesses Port B of the Yamaha PSG.
This register is currently assigned to the data in/out
line of the Centronics Parallel port.

BINDING move.w register,-(sp)
move.w data,-(sp)
move.w #$1C,-(sp)
trap #14
addq.l #6,sp

RETURN VALUE Giaccess() returns the value of the register in the lower eight bits of the word if
data was OR’ed with 0x80.

Gpio()
LONG Gpio(mode, data)
WORD mode, data;

Gpio() reads/writes data over the general purpose pins on the DSP connector.

OPCODE 138 (0x8A)

AVAILABILITY Available if ‘_SND’ cookie has bit 3 set.

4.72 – XBIOS Reference

T H E A T A R I C O M P E N D I U M

PARAMETERS mode specifies the meaning of data and the return value as follows:

Name mode Meaning

GPIO_INQUIRE 0 Return the old value.

GPIO_READ 1 Read the three general purpose pins and return their
state in the lower three bits of the returned value. data
is ignored.

GPIO_WRITE 2 Write the lower three bits of data to the corresponding
DSP pins. The return value is 0.

BINDING move.w data,-(sp)
move.w mode,-(sp)
move.w #$8A,-(sp)
trap #14
addq.l #6,sp

Ikbdws()
VOID Ikbdws(len, buf)
WORD len;
CHAR * buf;

Ikbdws() writes the contents of a buffer to the intelligent keyboard controller.

OPCODE 25 (0x19)

AVAILABILITY All TOS versions.

PARAMETERS This function writes len + 1 characters from buffer buf to the IKBD.

BINDING pea buf
move.w len,-(sp)
move.w #$19,-(sp)
trap #14
addq.l #8,sp

Initmous() – 4.73

T H E A T A R I C O M P E N D I U M

Initmous()
VOID Initmous(mode, param, vec)
WORD mode;
VOIDP param;
VOID (* vec)();

Initmous() determines the method of handling IKBD mouse packets from the
system.

OPCODE 0 (0x00)

AVAILABILITY All TOS versions.

PARAMETERS mode indicates a IKBD reporting mode and defines the meaning of the other
parameters as listed below. hand points to a mouse packet handler which is called
when each mouse packet is sent. Register A0 contains the mouse packet address
when called.

Name mode Meaning

IM_DISABLE 0 Disable mouse reporting.

IM_RELATIVE 1 Enable relative mouse reporting mode. Packets report
offsets from the previous mouse position. In this mode,
param is a pointer to a structure as follows:

struct param
{

BYTE topmode;
BYTE buttons;
BYTE xparam;
BYTE yparam;

}

topmode is IM_YBOT (0) to indicate that Y=0 means
bottom of the screen. A topmode value of IM_YTOP (1)
indicates that Y=0 means the top of the screen.

buttons is a bit array which affect the way mouse clicks are
handled. A value of IM_KEYS (4) causes mouse buttons to
generate keycodes rather than mouse packets. A value of
IM_PACKETS (3) causes the absolute mouse position to
be reported on each button press.

xparam and yparam specify the number of mouse X/Y
increments between position report packets.

This mode is the default mode of the AES and VDI.

4.74 – XBIOS Reference

T H E A T A R I C O M P E N D I U M

IM_ABSOLUTE 2 Enable absolute mouse reporting mode. Packets report
actual screen positions. In this mode, param is a pointer to
a structure as follows:

struct param
{

BYTE topmode;
BYTE buttons;
BYTE xparam;
BYTE yparam;
WORD xmax;
WORD ymax;
WORD xinitial;
WORD yinitial;

}

topmode, buttons, xparam, and yparam are the same as
for mode 2.

xmax and ymax specify the maximum X and Y positions
the mouse should be allowed to move to. xinital and yinitial
specify the mouse’s initial location.

— 3 Unused

IM_KEYCODE 4 Enable mouse keycode mode. Keyboard codes for mouse
movements are sent rather than actual mouse packets.

param is handled the same as in mode 1.

BINDING pea hand
pea param
move.w mode,-(sp)
clr.w -(sp)
trap #14
lea 12(sp),sp

CAVEATS Changing the mouse packet handler to anything but relative mode will cause the
AES and VDI to stop receiving mouse input.

SEE ALSO Kbdvbase()

Iorec()
IOREC *Iorec(dev)
WORD dev;

Iorec() returns the address in memory of system data structures relating to the
buffering of input data.

OPCODE 14 (0x0E)

AVAILABILITY All TOS versions.

Jdisint() – 4.75

T H E A T A R I C O M P E N D I U M

PARAMETERS dev specifies the device to return information about as follows:

Name dev Meaning

IO_SERIAL 0 Currently mapped serial device
(see Bconmap())

IO_KEYBOARD 1 Keyboard

IO_MIDI 2 MIDI

BINDING move.w dev,-(sp)
move.w #$0E,-(sp)
trap #14
addq.l #4,sp

RETURN VALUE Iorec() returns the address of an IOREC array with either one element (Keyboard
or MIDI) or two elements (RS-232 - 1st = input, 2nd = output). The IOREC
structure is defined as follows:

typedef struct
{

/* start of buffer */
char *ibuf;

/* size of buffer */
WORD ibufsize;

/* head index mark of buffer */
WORD ibufhd;

/* tail index mark of buffer */
WORD ibuftl;

/* low-water mark of buffer */
WORD ibuflow;

/* high-water mark of buffer */
WORD ibufhi;

} IOREC;

SEE ALSO Bconmap()

Jdisint()
VOID Jdisint(intno)
WORD intno;

Jdisint() disables an MFP interrupt.

OPCODE 26 (0x1A)

4.76 – XBIOS Reference

T H E A T A R I C O M P E N D I U M

AVAILABILITY All TOS versions.

PARAMETERS intno specifies the interrupt to disable (see Mfpint() for a list).

BINDING move.w intno,-(sp)
move.w #$1A,-(sp)
trap #14
addq.l #4,sp

SEE ALSO Jenabint(), Mfpint()

Jenabint()
VOID Jenabint(intno)
WORD intno;

Jenabint() enables an MFP interrupt.

OPCODE 27 (0x1B)

AVAILABILITY All TOS versions.

PARAMETERS intno specifies the interrupt to enable (see Mfpint() for a list).

BINDING move.w intno,-(sp)
move.w #$1B,-(sp)
trap #14
addq.l #4,sp

SEE ALSO Jdsint(), Mfpint()

Kbdvbase()
KBDVECS *Kbdvbase(VOID)

Kbdvbase() returns a pointer to a system structure containing a ‘jump’ table to
system vector handlers.

OPCODE 34 (0x22)

AVAILABILITY All TOS versions.

BINDING move.w #$22,-(sp)
trap #14

Kbrate() – 4.77

T H E A T A R I C O M P E N D I U M

addq.l #2,sp

RETURN VALUE Kbdvbase() returns a pointer to a system structure KBDVECS which is defined as
follows:

typedef struct
{

VOID (*midivec)(UBYTE data); /* MIDI Input */
VOID (*vkbderr)(UBYTE data); /* IKBD Error */
VOID (*vmiderr)(UBYTE data); /* MIDI Error */
VOID (*statvec)(char *buf); /* IKBD Status */
VOID (*mousevec)(char *buf); /* IKBD Mouse */
VOID (*clockvec)(char *buf); /* IKBD Clock */
VOID (*joyvec)(char *buf); /* IKBD Joystick */
VOID (*midisys)(VOID); /* Main MIDI Vector */
VOID (*ikbdsys)(VOID); /* Main IKBD Vector */
char ikbdstate; /* See below */

} KBDVECS;

midivec is called with the received data byte in d0. If an overflow error occurred
on either ACIA, vkbderr or vmiderr will be called, as appropriate by midisys or
ikbdsys with the contents of the ACIA data register in d0.

statvec, mousevec, clockvec, and joyvec all are called with the address of the
packet in register A0.

midisys and ikbdsys are called by the MFP ACIA interrupt handler when a
character is ready to be read from either the midi or keyboard ports.

ikbdstate is set to the number of bytes remaining to be read by the ikbdsys handler
from a multiple-byte status packet.

COMMENTS If you intercept any of these routines you should either JMP through the old handler
or RTS.

SEE ALSO Initmous()

Kbrate()
WORD Kbrate(delay, rate)
WORD delay, rate;

Kbrate() reads/modifies the keyboard repeat/delay rate.

OPCODE 35 (0x23)

AVAILABILITY All TOS versions.

4.78 – XBIOS Reference

T H E A T A R I C O M P E N D I U M

PARAMETERS delay specifies the amount of time (in 50Hz ticks) before a key begins repeating.
rate indicates the amount of time between repeats (in 50Hz ticks). A parameter of
KB_INQUIRE (-1) for either of these values leaves the value unchanged.

BINDING move.w rate,-(sp)
move.w delay,-(sp)
move.w #$23,-(sp)
trap #14
addq.l #6,sp

RETURN VALUE Kbrate() returns a WORD with the low byte being the old value for rate and the
high byte being the old value for delay.

Keytbl()
KEYTAB *Keytbl(normal, shift, caps)
char *unshift, *shift, *caps;

Keytbl() reads/modifies the internal keyboard mapping tables.

OPCODE 16 (0x10)

AVAILABILITY All TOS versions.

PARAMETERS normal is a pointer to an array of 128 CHARs which can be indexed by a
keyboard scancode to return the correct ASCII value for a given unshifted key.
shift and caps point to similar array except their values are only utilized when
SHIFT and CAPS-LOCK respectively are used. Passing a value of
KT_NOCHANGE ((char *)-1) will leave the table unchanged.

BINDING pea caps
pea shift
pea normal
move.w #$10,-(sp)
trap #14
lea 14(sp),sp

RETURN VALUE Keytbl() returns a pointer to a KEYTAB structure defined as follows:

typedef struct
{

char *unshift;
char *shift;
char *caps;

} KEYTAB;

The entries in this table each point to the current keyboard lookup table in their
category.

Locksnd() – 4.79

T H E A T A R I C O M P E N D I U M

Entries are indexed with a keyboard scancode to obtain the ASCII value of a key.
A value of 0 indicates that no ASCII equivalent exists.

SEE ALSO Bioskeys()

Locksnd()
LONG Locksnd(VOID)

Locksnd() prevents other applications from simultaneously attempting to use the
sound system.

OPCODE 128 (0x80)

AVAILABILITY Available if the ‘_SND’ cookie has bit 2 set.

BINDING move.w #$80,-(sp)
trap #14
addq.l #2,sp

RETURN VALUE Locksnd() returns 1 if the sound system was successfully locked or
SNDLOCKED (-129) if the sound system was already locked.

COMMENTS This call should be used prior to any usage of the 16-bit DMA sound system.

SEE ALSO Unlocksnd()

Logbase()
VOIDP Logbase(VOID)

Logbase() returns a pointer to the base of the logical screen.

OPCODE 3 (0x03)

AVAILABILITY All TOS versions.

BINDING move.w #$03,-(sp)
trap #14
addq.l #2,sp

RETURN VALUE Logbase() returns a pointer to the base of the logical screen.

4.80 – XBIOS Reference

T H E A T A R I C O M P E N D I U M

COMMENTS The logical screen should not be confused with the physical screen. The logical
screen is the memory area where the VDI does any drawing. The physical screen
is the memory area where the video shifter gets its data from. Normally they are
the same; however, keeping the addresses separate facilitates screen flipping.

SEE ALSO Physbase()

Metainit()
VOID Metainit(metainfo)
METAINFO * metainfo;

Metainit() returns information regarding the current version and installed drives
of MetaDOS.

OPCODE 48 (0x30)

AVAILABILITY To test for the availability of MetaDOS the following steps must be taken:

1. Fill the METAINFO structure with all zeros.
2. Call Metainit() .
3. If metainfo.version is NULL , MetaDOS is not installed.

PARAMETERS metainfo is a pointer to a METAINFO structure which is filled in by the call.
METAINFO is defined as:

typedef struct
{

/* Bitmap of drives (Bit 0 = A, 1 = B, etc... */
ULONG drivemap;

/* String containing name and version */
char *version;

/* Currently unused */
LONG reserved[2];

} METAINFO;

BINDING pea metainfo
move.w #$30,-(sp)
trap #14
addq.l #6,sp

Mfpint()

Mfpint() – 4.81

T H E A T A R I C O M P E N D I U M

VOID Mfpint(intno, vector)
WORD intno;
VOID (* vector)();

Mfpint() defines an interrupt handler for an MFP interrupt.

OPCODE 13 (0x0D)

AVAILABILITY All TOS versions.

PARAMETERS intno is an index to a vector to replace with vector as follows:

Name intno Vector

MFP_PARALLEL 0 Parallel port

MFP_DCD 1 RS-232 Data Carrier Detect

MFP_CTS 2 RS-232 Clear To Send

MFP_BITBLT 3 BitBlt Complete

MFP_TIMERD or
MFP_BAUDRATE

4 Timer D (RS-232 baud rate generator)

MFP_200HZ 5 Timer C (200Hz system clock)

MFP_ACIA 6 Keyboard/MIDI vector

MFP_DISK 7 Floppy/Hard disk vector

MFP_TIMERB or
MFP_HBLANK

8 Timer B (Horizontal blank)

MFP_TERR 9 RS-232 transmit error

MFP_TBE 10 RS-232 transmit buffer empty

MFP_RERR 11 RS-232 receive error

MFP_RBF 12 RS-232 receive buffer full.

MFP_TIMERA or
MFP_DMASOUND

13 Timer A (DMA sound)

MFP_RING 14 RS-232 ring indicator

MFP_MONODETECT 15 Mono monitor detect/DMA sound complete

BINDING pea vector
move.w intno,-(sp)
move.w #$0D,-(sp)
trap #14
addq.l #8,sp

CAVEATS This call does not return the address of the old handler.

The only RS-232 vector that may be set on the Falcon030 with this function is the
ring indicator.

COMMENTS Newly installed interrupts must be enabled with Jenabint().

4.82 – XBIOS Reference

T H E A T A R I C O M P E N D I U M

SEE ALSO Jenabint(), Jdisint()

Midiws()
VOID Midiws(count, buf)
WORD count;
char *buf;

Midiws() outputs a data buffer to the MIDI port.

OPCODE 12 (0x0C)

AVAILABILITY All TOS versions.

PARAMETERS count + 1 characters are written from the buffer pointed to by buf.

BINDING pea buf
move.w count,-(sp)
move.w #$0C,-(sp)
trap #14
addq.l #8,sp

NVMaccess()
WORD NVMaccess(op, start, count, buffer)
WORD op, start, count;
char *buffer;

NVMaccess() reads/modifies data in non-volatile (battery backed-up) memory.

OPCODE 46 (0x2E)

AVAILABILITY This function’s availability is variable. If it returns 0x2E (its opcode) when
called, the function is non-existent and the operation was not carried out.

PARAMETERS op indicates the operation to perform as follows:

Name op Meaning

NVM_READ 0 Read count bytes of data starting at offset start and place the data
in buffer.

NVM_WRITE 1 Write count bytes of data from buffer starting at offset start.

NVM_RESET 2 Resets and clears all data in non-volatile memory.

Offgibit() – 4.83

T H E A T A R I C O M P E N D I U M

BINDING pea buffer
move.w count,-(sp)
move.w start,-(sp)
move.w op,-(sp)
move.w #$2E,-(sp)
trap #14
lea 12(sp),sp

RETURN VALUE NVMaccess() returns 0 if the operation succeeded or a negative error code
otherwise.

CAVEATS All of the locations are reserved for use by Atari and none are currently
documented.

COMMENTS Currently there is a total of 50 bytes in non-volatile RAM.

Offgibit()
VOID Offgibit(mask)
WORD mask;

Offgibit() clears individual bits of the sound chip’s Port A.

OPCODE 29 (0x1D)

AVAILABILITY All TOS versions.

PARAMETERS mask is a bit mask arranged as shown below. For each of the lower eight bits in
mask set to 0, that bit will be reset. Other bits (set as 1) will remain unchanged.

Name Mask Meaning

GI_FLOPPYSIDE 0x01 Floppy side select

GI_FLOPPYA 0x02 Floppy A select

GI_FLOPPYB 0x04 Floppy B select

GI_RTS 0x08 RS-232 Request To Send

GI_DTR 0x10 RS-232 Data Terminal Ready

GI_STROBE 0x20 Centronics strobe

GI_GPO 0x40 General purpose output (On a Falcon030, this bit
controls the state of the internal speaker)

GI_SCCPORT 0x80 On a Mega STe or TT030, calling Ongibit(0x80)
will cause SCC channel A to control the Serial 2
port rather than the LAN. To select the LAN, use
Offgibit(0x7F).

BINDING move.w mask,-(sp)

4.84 – XBIOS Reference

T H E A T A R I C O M P E N D I U M

move.w #$1D,-(sp)
trap #14
addq.l #4,sp

SEE ALSO Giaccess(), Ongibit()

Ongibit()
VOID Ongibit(mask)
WORD mask;

Ongibit() sets individual bits of the sound chip’s assigned Port A.

OPCODE 30 (0x1E)

AVAILABILITY All TOS versions.

PARAMETERS mask is a bit mask arranged as defined in Offgibit() . For each of the lower eight
bits in mask set to 1, that bit will be set. Other bits (set as 0) will remain
unchanged.

BINDING move.w mask,-(sp)
move.w #$1E,-(sp)
trap #14
addq.l #4,sp

SEE ALSO Giaccess(), Offgibit()

Physbase()
VOIDP Physbase(VOID)

Physbase() returns the address of the physical base of screen memory.

OPCODE 2 (0x02)

AVAILABILITY All TOS versions.

BINDING move.w #$02,-(sp)
trap #14
addq.l #2,sp

RETURN VALUE Physbase() returns the physical base address of the screen.

COMMENTS The physical base address is the memory area where the video shifter reads its

Protobt() – 4.85

T H E A T A R I C O M P E N D I U M

data. The logical address is the memory area where the VDI draws. These are
normally the same but are addressed individually to enable screen flipping.

SEE ALSO Logbase()

Protobt()
VOID Protobt(buf, serial, type, execflag)
VOIDP buf;
LONG serial;
WORD type, execflag;

Protobt() creates a prototype floppy boot sector in memory for writing to a floppy
drive.

OPCODE 18 (0x12)

AVAILABILITY All TOS versions.

PARAMETERS buf is a 512 byte long buffer where the prototyped buffer will be written. If you
are creating an executable boot sector, the memory buffer should contain the code
you require. serial can be any of the following values:

Name serial Meaning

SERIAL_NOCHANGE -1 Don’t change the serial number already in
memory.

SERIAL_RANDOM >0x01000000 Use a random number for the serial number

— any other positive
number

Set the serial number to serial.

type defines the type of disk to prototype as follows:

Name type Meaning

DISK_NOCHANGE -1 Don’t change disk type.

DISK_SSSD 0 40 Track, Single-Sided (180K)

DISK_DSSD 1 40 Track, Double-Sided (360K)

DISK_SSDD 2 80 Track, Single-Sided (360K)

DISK_DSDD 3 80 Track, Double-Sided (720K)

DISK_DSHD 4 High Density (1.44MB)

DISK_DSED 5 Extra-High Density (2.88MB)

execflag specifies the executable status of the boot sector as follows:

4.86 – XBIOS Reference

T H E A T A R I C O M P E N D I U M

Name execflag Meaning

EXEC_NOCHANGE -1 Don’t alter executable status

EXEC_NO 0 Disk is not executable

EXEC_YES 1 Disk is executable

BINDING move.w execflag,-(sp)
move.w type,-(sp)
move.l serial,-(sp)
pea buf
move.w #$12,-(sp)
trap #14
lea 14(sp),sp

CAVEATS type values of DISK_DSHD and DISK_DSED are only available when the high
byte of the ‘_FDC’ cookie has a value of FLOPPY_DSHD (1) and
FLOPPY_DSED (2) respectively.

COMMENTS To create an MS-DOS compatible disk you must set the first three bytes of the
prototyped boot sector to 0xE9, 0x00, and 0x4E.

SEE ALSO Flopfmt(), Flopwr()

Prtblk()
WORD Prtblk(blk)
PRTBLK * blk;

Prtblk() accesses the built-in bitmap/text printing code.

OPCODE 36 (0x24)

AVAILABILITY All TOS versions.

PARAMETERS blk is a PRTBLK pointer containing information about the bitmap or text to print.
PRTBLK is defined as follows:

typedef struct
{

VOIDP blkptr; /* pointer to screen scanline */
UWORD offset; /* bit offset of first column */
UWORD width; /* width of bitmap in bits */
UWORD height; /* height of bitmap in scanlines */
UWORD left; /* left print margin (in pixels) */
UWORD right; /* right print margin (in pixels) */
UWORD srcres; /* same as Getrez() */
UWORD destres; /* 0 = draft, 1 = final */
UWORD *colpal; /* color palette pointer */
/*

Puntaes() – 4.87

T H E A T A R I C O M P E N D I U M

 * 0 = B/W Atari
 * 1 = Color Atari
 * 2 = Daisy Wheel
 * 3 = B/W Epson
 */
UWORD type;
/* 0 = parallel, 1 = serial */
UWORD port;
/* halftone mask pointer or NULL to use default */
char *masks;

} PRTBLK;

BINDING pea prtblk
move.w #$24,-(sp)
trap #14
addq.l #6,sp

CAVEATS This call is extremely device dependent. v_bit_image() with GDOS installed
should be used instead. Only ST compatible screen resolution bitmaps may be
printed with this utility function.

COMMENTS When printing text, blkptr should point to the text string, width should be the length
of the text string, height should be 0, and masks should be NULL .

In graphic print mode, masks can be NULL to use the default halftone masks.

The system variable _prt_cnt (WORD *)0x4EE should be set to 1 to disable the
ALT-HELP key before calling this function. It should be restored to a value of -1
when done.

SEE ALSO Scrdump(), SetPrt()

Puntaes()
VOID Puntaes(VOID)

Puntaes() discards the AES (if memory-resident) and restarts the system.

OPCODE 39 (0x27)

AVAILABILITY All TOS versions.

BINDING move.w #$27,-(sp)
trap #14
addq.l #2,sp

RETURN VALUE If successful, this function will not return control to the caller.

4.88 – XBIOS Reference

T H E A T A R I C O M P E N D I U M

CAVEATS Puntaes() is only valid with disk-loaded AES’s.

COMMENTS Puntaes() discards the AES by freeing any memory it allocated, resetting the
system variable os_magic (this variable should contain the magic number
0x87654321, however if reset, the AES will not initialize), and rebooting the
system.

Random()
LONG Random(VOID)

Random() returns a 24 bit random number.

OPCODE 17 (0x11)

AVAILABILITY All TOS versions.

BINDING move.w #$11,-(sp)
trap #14
addq.l #2,sp

RETURN VALUE Random() returns a 24-bit random value in the lower three bytes of the returned
LONG .

CAVEATS The algorithm used provides an exact 50% occurrence of bit 0.

Rsconf()
ULONG Rsconf(speed, flow, ucr, rsr, tsr, scr)
WORD speed, flow, ucr, rsr, tsr, scr;

Rsconf() reads/modifies the configuration of the serial device currently mapped to
BIOS device #1 (GEMDOS ‘aux:’).

OPCODE 15 (0x0F)

AVAILABILITY All TOS versions.

PARAMETERS speed sets the serial device speed as follows:

Name speed Baud Rate Name speed Baud Rate

BAUD_19200 0 19200 BAUD_600 8 600

BAUD_9600 1 9600 BAUD_300 9 300

Rsconf() – 4.89

T H E A T A R I C O M P E N D I U M

BAUD_4800 2 4800 BAUD_200 10 200

BAUD_3600 3 3600 BAUD_150 11 150

BAUD_2400 4 2400 BAUD_134 12 134

BAUD_2000 5 2000 BAUD_110 13 110

BAUD_1800 6 1800 BAUD_75 14 75

BAUD_1200 7 1200 BAUD_50 15 50

If speed is set to BAUD_INQUIRE (-2), the last baud rate set will be returned.

flow selects the flow control method as follows:

Name flow Meaning

FLOW_NONE 0 No flow control

FLOW_SOFT 1 XON/XOFF flow control (CTRL-S/CTRL-Q)

FLOW_HARD 2 RTS/CTS flow control (hardware)

FLOW_BOTH 3 Both methods of flow control

ucr, rsr, and tsr are each status bit arrays governing the serial devices. Each
parameter uses only the lower eight bits of the WORD. They are defined as
follows:

Mask ucr rsr and tsr

0x01 Unused Receiver enable:
RS_RECVENABLE

0x02 Enable odd parity
RS_ODDPARITY (0x02)
RS_EVENPARITY (0x00)

Sync strip
RS_SYNCSTRIP

0x04 Parity enable
RS_PARITYENABLE

Match busy
RS_MATCHBUSY

0x08 Bits 3-4 of the ucr collectively define the
start and stop bit configuration as follows:

00 = No Start or Stop bits
RS_NOSTOP (0x00)
01 = 1 Start bit, 1 Stop bit
RS_1STOP (0x08)
10 = 1 Start bit, 1½ Stop bits
RS_15STOP (0x10)
11 = 1 Start bit, 2 Stop bits
RS_2STOP (0x18)

Break detect
RS_BRKDETECT

0x10 See above. Frame error
RS_FRAMEERR

0x20 Bits 5 and 6 together define the number of
bits per word as follows:

00 = 8 bits
RS_8BITS (0x00)
01 = 7 bits
RS_7BITS (0x20)

Parity error
RS_PARITYERR

4.90 – XBIOS Reference

T H E A T A R I C O M P E N D I U M

10 = 6 bits
RS_6BITS (0x40)
11 = 5 bits
RS_5BITS (0x60)

0x40 See above. Overrun error
RS_OVERRUNERR

0x80 CLK/16
RS_CLK16

Buffer full
RS_BUFFULL

scr sets the synchronous character register in which the low byte is used as the
character to search for in an underrun error condition.

If a RS_INQUIRE (-1) is used for either ucr, rsr, tsr, or scr, then that parameter
is read and the register is unmodified.

BINDING move.w scr,-(sp)
move.w tsr,-(sp)
move.w rsr,-(sp)
move.w ucr,-(sp)
move.w flow,-(sp)
move.w speed,-(sp)
move.w #$0F,-(sp)
trap #14
lea 14(sp),sp

RETURN VALUE Rsconf() returns the last set baud rate if speed is set to RS_LASTBAUD (-2).
Otherwise, it returns the old settings in a packed LONG with ucr being in the high
byte, down to scr being in the low byte.

COMMENTS Bits in the ucr, rsr, tsr, and scr should be set atomically. To correctly change a
value, read the old value, mask it as appropriate and then write it back.

Baud rates higher than 19,200 bps available with SCC-based serial devices may
be set by using the appropriate Fcntl() call under MiNT or by directly
programming the SCC chip.

CAVEATS The baud rate inquiry mode (speed = RS_LASTBAUD) does not work at all on
TOS versions less than 1.04. TOS version 1.04 requires the patch program
TOS14FX2.PRG (available from Atari Corp.) to allow this mode to function. All
other TOS versions support the function normally.

SEE ALSO Bconmap()

Scrdmp() – 4.91

T H E A T A R I C O M P E N D I U M

Scrdmp()
VOID Scrdmp(VOID)

Scrdmp() starts the built-in hardware screen dump routine.

OPCODE 20 (0x14)

AVAILABILITY All TOS versions.

BINDING move.w #$14,-(sp)
trap #14
addq.l #2,sp

CAVEATS Scrdmp() only dumps ST compatible screen resolutions.

COMMENTS This routine is extremely device-dependent. You should use the VDI instead.

SEE ALSO Prtblk(), v_hardcopy()

Setbuffer()
LONG Setbuffer(mode, begaddr, endaddr)
WORD mode;
VOIDP begaddr;
VOIDP endaddr;

Setbuffer() sets the starting and ending addresses of the internal play and record
buffers.

OPCODE 131 (0x83)

AVAILABILITY Available when bit #2 of the ‘_SND’ cookie is set.

PARAMETERS mode specifies which registers are to be set. A mode value of PLAY (0) sets the
play registers, a value of RECORD (1) sets the record registers. begaddr
specifies the starting location of the buffer. endaddr specifies the first invalid
location for sound data past begaddr.

BINDING pea endaddr
pea begaddr
move.w mode,-(sp)
move.w #$83,-(sp)
trap #14
lea 12(sp),sp

4.92 – XBIOS Reference

T H E A T A R I C O M P E N D I U M

RETURN VALUE Setbuffer() returns a 0 if successful or non-zero otherwise.

SEE ALSO Buffoper()

Setcolor()
WORD Setcolor(idx, new)
WORD idx, new;

Setcolor() sets a ST/TT030 color register.

OPCODE 7 (0x07)

AVAILABILITY All TOS versions.

PARAMETERS idx specifies the color register to modify (0-16 on an ST, 0-255 on a STe or
TT030). new is a bit array specifying the new color as follows:

Bits 15-12 Bits 11-8 Bits 7-4 Bits 3-0

Unused Red Green Blue

Each color value has its bits packed in an unusual manner to stay compatible
between machines. Bits are ordered 0, 3, 2, 1 with 0 being the least signifigant bit.
If new is COL_INQUIRE (-1) then the old color is returned.

BINDING move.w new,-(sp)
move.w idx,-(sp)
move.w #$06,-(sp)
trap #14
addq.l #6,sp

RETURN VALUE Setcolor() returns the old value of the color register.

CAVEATS This call is extremely device-dependent. vs_color() should be used instead.

COMMENTS The top bit of each color nibble is unused on the original ST machines.

SEE ALSO VsetRGB(), EsetColor(), Setpalette()

Setinterrupt() – 4.93

T H E A T A R I C O M P E N D I U M

Setinterrupt()
LONG Setinterrupt(mode, cause)
WORD mode, cause;

Setinterrupt() defines the conditions under which an interrupt is generated by the
sound system

OPCODE 135 (0x87)

AVAILABILITY Available when bit #2 of the ‘_SND’ cookie is set.

PARAMETERS mode configures interrupts to occur when the end of a buffer is reached. A value of
INT_TIMERA (0) for mode sets Timer A, a value of INT_I7 (1) sets the MFP i7
interrupt. cause defines the conditions for the interrupt as follows:

Name cause Meaning

INT_DISABLE 0 Disable interrupt

INT_PLAY 1 Interrupt at end of play buffer

INT_RECORD 2 Interrupt at end of record buffer

INT_BOTH 3 Interrupt at end of both buffers

BINDING move.w cause,-(sp)
move.w mode,-(sp)
move.w #$87,-(sp)
trap #14
addq.l #6,sp

RETURN VALUE Setinterrupt() returns 0 if no error occurred or non-zero otherwise.

COMMENTS If either buffer is in repeat mode, these interrupts can be used to double-buffer
sounds.

SEE ALSO Buffoper()

Setmode()
LONG Setmode(mode)
WORD mode;

Setmode() sets the mode of operation for the play and record registers.

OPCODE 132 (0x84)

4.94 – XBIOS Reference

T H E A T A R I C O M P E N D I U M

AVAILABILITY Available if bit #2 of the ‘_SND’ cookie is set.

PARAMETERS mode defines the playback and record mode as follows:

Name mode Meaning

MODE_STEREO8 0 8-bit Stereo Mode

MODE_STEREO16 1 16-bit Stereo Mode

MODE_MONO 2 8-bit Mono Mode

BINDING move.w mode,-(sp)
move.w #$84,sp
trap #14
addq.l #4,sp

RETURN VALUE Setmode() returns 0 if the operation was successful or non-zero otherwise.

CAVEATS Recording only works in 16-bit stereo mode.

SEE ALSO Buffoper()

Setmontracks()
LONG Setmontracks(track)
WORD track;

Setmontracks() defines which playback track is audible through the internal
speaker.

OPCODE 134 (0x86)

AVAILABILITY Available only when bit #2 of the ‘_SND’ cookie is set.

PARAMETERS track specifies the playback track to monitor (0-3).

BINDING move.w track,-(sp)
move.w #$86,-(sp)
trap #14
addq.l #4,sp

RETURN VALUE Setmontracks() returns a 0 if the operation was successful or non-zero otherwise.

Setpalette() – 4.95

T H E A T A R I C O M P E N D I U M

Setpalette()
VOID Setpalette(palette)
WORD *palette;

Setpalette() loads the ST color lookup table with a new palette.

OPCODE 6 (0x06)

AVAILABILITY All TOS versions.

PARAMETERS palette is a pointer to a WORD array containing 16 color encoded WORDs as
defined in Setcolor().

BINDING pea palette
move.w #$06,-(sp)
trap #14
addq.l #6,sp

COMMENTS The actual palette data is not copied from the specified array until the next vertical
blank interrupt. For this reason, this call should be followed by Vsync() to be sure
the array memory is not modified or reallocated prior to the transfer.

SEE ALSO Setcolor(), EsetPalette(), VsetRGB(), vs_color()

Setprt()
WORD Setprt(new)
WORD new;

Setprt() sets the OS’s current printer configuration bits.

OPCODE 33 (0x21)

AVAILABILITY All TOS versions.

PARAMETERS new is a WORD bit array defined as follows:

Mask When clear When Set

0x01 Dot Matrix
PRT_DOTMATRIX

Daisy Wheel
PRT_DAISY

0x02 Monochrome
PRT_MONO

Color
PRT_COLOR

0x04 Atari Printer Epson Printer

4.96 – XBIOS Reference

T H E A T A R I C O M P E N D I U M

PRT_ATARI PRT_EPSON
0x08 Draft Mode

PRT_DRAFT
Final Mode
PRT_FINAL

0x10 Parallel Port
PRT_PARALLEL

Serial Port
PRT_SERIAL

0x20 Continuous Feed
PRT_CONTINUOUS

Single Sheet Feed
PRT_SINGLE

– Unused Unused

If new is set to PRT_INQUIRE (-1) Setprt() will return the current configuration
without modifying the current setup.

BINDING move.w new,-(sp)
move.w #$33,-(sp)
trap #14
addq.l #4,sp

RETURN VALUE Setprt() returns the prior configuration.

CAVEATS This call only affects the internal screen dump code which only operates on ST
compatible resolutions.

SEE ALSO Prtblk(), Scrdmp(), v_hardcopy()

Setscreen()
VOID Setscreen(log, phys, mode)
VOIDP log, phys;
WORD mode;

Setscreen() changes the base addresses and mode of the current screen.

OPCODE 5 (0x05)

AVAILABILITY All TOS versions.

PARAMETERS log is the address for the new logical screen base. phys is the new address for the
physical screen base. mode defines the screen mode to switch to (same as
Getrez()). If any of these three parameters is set to SCR_NOCHANGE (-1) then
that value will be left unchanged.

BINDING move.w mode,-(sp)
pea phys
pea log
move.w #$5,-(sp)
trap #14
lea 12(sp),sp

Settime() – 4.97

T H E A T A R I C O M P E N D I U M

CAVEATS Changing screen modes with this call does not reinitialize the AES. The VDI and
VT52 emulator are, however, correctly reinitialized. The AES should not be used
after changing screen mode with this call until the old screen mode is restored.

COMMENTS The Atari ST and Mega ST required that its physical screen memory be on a 256
byte boundary. All other Atari computers only require a WORD boundary.

To access the unique video modes of the Falcon030 the call VsetScreen() (which
is actually an alternate binding of this call with the same opcode) should be used
in place of this call.

SEE ALSO VsetMode(), VsetScreen(), EsetShift()

Settime()
VOID Settime(time)
LONG time;

Settime() sets a new IKBD date and time.

OPCODE 22 (0x16)

AVAILABILITY All TOS versions.

PARAMETERS time is a LONG bit array defined as follows:

Bits Meaning

0-4 Seconds / 2 (0-29)

5-10 Minute (0-59)

11-15 Hour (0-23)

16-20 Day (1-31)

21-24 Month (1-12)

25-31 Year - 1980 (0-127)

The value can be represented in a C structure as follows:

typedef struct
{

unsigned year:7;
unsigned month:4;
unsigned day:5;
unsigned hour:5;
unsigned minute:6;
unsigned second:5;

4.98 – XBIOS Reference

T H E A T A R I C O M P E N D I U M

} BIOS_TIME;

BINDING move.l time,-(sp)
move.w #$16,-(sp)
trap #14
addq.l #6,sp

COMMENTS As of TOS 1.02, this function also updates the GEMDOS time.

SEE ALSO Gettime(), Tsettime(), Tsetdate()

Settracks()
LONG Settracks(playtracks, rectracks)
WORD playtracks, rectracks;

Setttracks() sets the number of recording and playback tracks.

OPCODE 133 (0x85)

AVAILABILITY Available only when bit #2 of the ‘_SND’ cookie is set.

PARAMETERS playtracks specifies the number of playback tracks (0-3) and rectracks specifies
the number of recording tracks.

BINDING move.w rectracks,-(sp)
move.w playtracks,-(sp)
move.w #$85,-(sp)
trap #14
addq.l #6,sp

RETURN VALUE Settracks() returns 0 if the operation was successful or non-zero otherwise.

COMMENTS The tracks specified are stereo tracks. When in 8-bit Mono mode, two samples are
read at a time.

SEE ALSO Setmode(), Setmontracks()

Sndstatus() – 4.99

T H E A T A R I C O M P E N D I U M

Sndstatus()
LONG Sndstatus(reset)
WORD reset;

Sndstatus() can be used to test the error condition of the sound system and to
completely reset it.

OPCODE 140 (0x8C)

AVAILABILITY Available only when bit #2 of the ‘_SND’ cookie is set.

PARAMETERS reset is a flag indicating whether the sound system should be reset. A value of
SND_RESET (1) will reset the sound system.

BINDING move.w reset,-(sp)
move.w #$8C,-(sp)
trap #14
addq.l #4,sp

RETURN VALUE Sndstatus() returns a LONG bit array indicating the current error status of the
sound system defined as follows:

Bit(s) Meaning

0-3 These bits form a value indicating the error condition of the
sound system as follows:

Name Mask Meaning
SND_ERROR 0xF Use to mask error code

Name Value Meaning
SND_OK 0 No Error
SND_BADCONTROL 1 Invalid Control Field
SND_BADSYC 2 Invalid Sync Format
SND_BADCLOCK 3 Clock out of range

4 If this bit is set, left channel clipping has occurred. Use the
mask SND_LEFTCLIP (0x10) to isolate this bit.

5 If this bit is set, right channel clipping has occurred. Use the
mask SND_RIGHTCLIP (0x20) to isolate this bit.

6-31 Unused.

COMMENTS On reset, the following things happen:

• DSP is tristated
• Gain and attentuation are zeroed
• Old matrix connections are reset
• ADDERIN is disabled

4.100 – XBIOS Reference

T H E A T A R I C O M P E N D I U M

• Mode is set to 8-Bit Stereo
• Play and record tracks are set to 0
• Monitor track is set to 0
• Interrupts are disabled
• Buffer operation is disabled

Soundcmd()
LONG Soundcmd(mode, data)
WORD mode, data;

Soundcmd() sets various configuration parameters in the sound system.

OPCODE 130 (0x82)

AVAILABILITY Available only when bit #2 of ‘_SND’ cookie is set.

PARAMETERS mode specifies how data is interpreted as follows:

Name mode Meaning

LTATTEN 0 Set the left attenuation (increasing attentuation is the same as
decreasing volume). data is a bit mask as follows:

XXXX XXXX LLLL XXXX

‘L’ specifies a valid value between 0 and 15 used to set the
attenuation of the left channel in -1.5db increments. The bits
represented by ‘X’ are reserved and should be 0.

RATTEN 1 Set the right attentuation. data is a bit mask as follows:

XXXX XXXX RRRR XXXX

‘R’ specifies a valid value between 0 and 15 used to set the
attenuation of the right channel in -1.5db increments. The bits
represented by ‘X’ are reserved and should be 0.

LTGAIN 2 Set the left channel gain (boost the input to the ADC). data is a
bit mask as follows:

XXXX XXXX LLLL XXXX

‘L’ specifies a valid value between 0 and 15 used to set the
gain of the left channel in 1.5db increments. The bits
represented by ‘X’ are reserved and should be 0.

Soundcmd() – 4.101

T H E A T A R I C O M P E N D I U M

RTGAIN 3 Set the right channel gain (boost the input to the ADC). data is
a bit mask as follows:

XXXX XXXX RRRR XXXX

‘R’ specifies a valid value between 0 and 15 used to set the
gain of the right channel in 1.5Db increments. The bits
represented by ‘X’ are reserved and should be 0.

ADDERIN 4 Set the 16 bit ADDER to receive its input from the source(s)
specified in data. data is a bit mask where each bit indicates a
possible souce. Bit 0 represents the ADC (ADDR_ADC). Bit 1
represents the connection matrix (ADDR_MATRIX). Setting
either or both of these bits determines the source of the
ADDER.

ADCINPUT 5 Set the inputs of the left and right channels of the ADC. data is
a bit mask with bit 0 being the right channel: LEFT_MIC (0x00)
or LEFT_PSG (0x02) and bit 1 being the left channel:
RIGHT_MIC (0x00) or RIGHT_PSG (0x01).

Setting a bit causes that channel to receive its input from the
Yamaha PSG. Clearing a bit causes that channel to receive its
input from the microphone.

SETPRESCALE 6 This mode is only valid when Devconnect() is used to set the
prescaler to TT030 compatibility mode. In that case, data
represents the TT030 compatible prescale value as follows:

Name Value Meaning
CCLK_6K 0 Divide by 1280 (6.25 MHz)
CCLK_12K 1 Divide by 640 (12.5 Mhz)
CCLK_25K 2 Divide by 320 (25 MHz)
CCLK_50K 3 Divide by 160 (50 MHz)

Setting data to SND_INQUIRE (-1) with any command will cause that
command’s current value to be returned and the parameter unchanged.

BINDING move.w data,-(sp)
move.w mode,-(sp)
move.w #$82,-(sp)
trap #14
addq.l #2,sp

RETURN VALUE Soundcmd() returns the prior value of the specified command if data is
SND_INQUIRE (-1).

Using the SETPRESCALE mode to set a frequency of 6.25 MHz (CCLK_6K)
will cause the sound system to mute on a Falcon030 as it does not support this
sample rate.

CAVEATS On current systems, a bug exists that causes a mode value of LTGAIN to set the
gain for both channels.

SEE ALSO Devconnect()

4.102 – XBIOS Reference

T H E A T A R I C O M P E N D I U M

Ssbrk()
VOIDP Ssbrk(len)
WORD len;

Ssbrk() is designed to reserve memory at the top of RAM prior to the initialization
of GEMDOS.

OPCODE 1 (0x01)

AVAILABILITY All TOS versions.

PARAMETERS len is a WORD value specifying the number of bytes to reserve at the top of
RAM.

BINDING move.w len,-(sp)
move.w #$01,-(sp)
trap #14
addq.l #4,sp

RETURN VALUE Ssbrk() returns a pointer to the allocated block.

CAVEATS Ssbrk() was only used on early development systems. Currently the function is
unimplemented and does not do anything.

Supexec()
LONG Supexec(func)
LONG (* func)(VOID);

Supexec() executes a user-defined function in supervisor mode.

OPCODE 38 (0x26)

AVAILABILITY All TOS versions.

PARAMETERS func is the address to a function which will be called in supervisor mode.

BINDING pea func
move.w #$26,-(sp)
trap #14
addq.l #6,sp

Unlocksnd() – 4.103

T H E A T A R I C O M P E N D I U M

RETURN VALUE Supexec() returns the LONG value returned by the user function.

CAVEATS Care must be taken when calling the operating system in supervisor mode. The
AES must not be called while in supervisor mode.

SEE ALSO Super()

Unlocksnd()
LONG Unlocksnd(VOID)

Unlocksnd() unlocks the sound system so that other applications may utilize it.

OPCODE 129 (0x81)

AVAILABILITY All TOS versions.

BINDING move.w #$81,-(sp)
trap #14
addq.l #2,sp

RETURN VALUE Unlocksnd() returns a 0 if the sound system was successfully unlocked or
SNDNOTLOCK (-128) if the sound system wasn’t locked prior to the call.

SEE ALSO Locksnd()

VgetMonitor()
WORD VgetMonitor(VOID)

VgetMonitor() returns a value which determines the kind of monitor currently
being used.

OPCODE 89 (0x59)

AVAILABILITY Available if the ‘_VDO’ cookie has a value of 0x00030000 or greater.

BINDING move.w #$59,-(sp)
trap #14
addq.l #2,sp

RETURN VALUE VgetMonitor() returns a value describing the monitor currently connected to the
system as follows:

4.104 – XBIOS Reference

T H E A T A R I C O M P E N D I U M

Name Return Value Monitor Type

MON_MONO 0 ST monochrome monitor

MON_COLOR 1 ST color monitor

MON_VGA 2 VGA monitor

MON_TV 3 Television

VgetRGB()
VOID VgetRGB(index, count, rgb)
WORD index, count;
RGB *rgb;

VgetRGB() returns palette information as 24-bit RGB data.

OPCODE 94 (0x5E)

AVAILABILITY Available if the ‘_VDO’ cookie has a value of 0x00030000 or greater.

PARAMETERS index specifies the beginning color index in the palette to read data from. count
specifies the number of palette entries to read. rgb is a pointer to an array of
RGBs which will be filled in by the functions. RGB is defined as:

typedef struct
{

BYTE reserved;
BYTE red;
BYTE green;
BYTE blue;

} RGB;

BINDING pea rgb
move.w count,-(sp)
move.w index,-(sp)
move.w #$5E,-(sp)
trap #14
lea 10(sp),sp

COMMENTS VgetRGB() is device-dependent in nature and it is therefore recommended that
vq_color() be used instead.

SEE ALSO VsetRGB()

VgetSize() – 4.105

T H E A T A R I C O M P E N D I U M

VgetSize()
LONG VgetSize(mode)
WORD mode;

VgetSize() returns the size of a screen mode in bytes.

OPCODE 91 (0x5B)

AVAILABILITY Available if the ‘_VDO’ cookie has a value of 0x00030000 or greater.

PARAMETERS mode is a modecode as defined in VsetMode().

BINDING move.w mode,-(sp)
move.w #$5B,-(sp)
trap #14
addq.l #4,sp

RETURN VALUE VgetSize() returns the size in bytes of a screen mode of type mode.

VsetMask()
VOID VsetMask(ormask, andmask, overlay)
LONG ormask, andmask;
WORD overlay;

VsetMask() provides access to ‘overlay’ mode.

OPCODE 146 (0x92)

AVAILABILITY Available if the ‘_VDO’ cookie has a value of 0x00030000 or greater.

PARAMETERS When the VDI processes a vs_color() call. It converts the desired color into a
hardware palette register. In 16-bit true-color mode, this is a WORD formatted as
follows:

RRRR RGGG GGXB BBBB

The ‘X’ is the system overlay bit. In 24-bit true color a LONG is formatted as
follows:

XXXXXXXX RRRRRRRR GGGGGGGG BBBBBBBB

VsetMask() sets a logical OR and AND mask which are applied to this register

4.106 – XBIOS Reference

T H E A T A R I C O M P E N D I U M

before being stored. The default system value for ormask is 0x00000000 and the
default value for andmask is 0xFFFFFFFF.

overlay should be OVERLAY_ON (1) to enable overlay mode or
OVERLAY_OFF (0) to disable it.

BINDING move.w #overlay,-(sp)
move.l #andmask,-(sp)
move.l #ormask,-(sp)
move.w #$92,-(sp)
trap #14
add.l #12,sp

COMMENTS To make colors defined by the VDI transparent in 16-bit true color with overlay
mode enabled, use an andmask value of 0xFFFFFFDF and an ormask value of
0x00000000. To make colors visible, use an andmask of 0x00000000 and an
ormask of 0x00000020.

VsetMode()
WORD VsetMode(mode)
WORD mode;

VsetMode() places the video shifter into a specific video mode.

OPCODE 88 (0x58)

AVAILABILITY Available if the ‘_VDO’ cookie has a value of 0x00030000 or greater.

PARAMETERS mode is a WORD bit array arranged as follows:

Name Bit(s) Meaning

BPS1 (0x00)
BPS2 (0x01)
BPS4 (0x02)
BPS8 (0x03)
BPS16 (0x04)

0-2 These bits form a value so that 2 ^ X represents the
number of bits per pixel.

COL80 (0x08)
COL40 (0x00)

3 80 Column Flag (if set, 80 columns, otherwise 40)

VGA (0x10)
TV (0x00)

4 VGA Flag (if set, VGA mode will be used, otherwise
television/monitor mode)

PAL (0x20)
NTSC (0x00)

5 PAL Flag (if set, PAL will be used, otherwise NTSC)

OVERSCAN (0x40) 6 Overscan Flag (not valid with VGA)

STMODES (0x80) 7 ST Compatibility Flag

VERTFLAG (0x100) 8 Vertical Flag (is set, enables interlace mode on a color
monitor or double-line mode on a VGA monitor)

VsetRGB() – 4.107

T H E A T A R I C O M P E N D I U M

– 9-15 Reserved (set to 0)

If mode is VM_INQUIRE (-1) then the current mode code is returned without
changing the current settings.

BINDING move.w mode,-(sp)
move.w #$58,sp
trap #14
addq.l #4,sp

RETURN VALUE VsetMode() returns the prior video mode.

CAVEATS VsetMode() does not reset the video base address, reserve memory, or
reinitialize the VDI . To do this, use VsetScreen().

COMMENTS Some video modes are not legal. 40 column monoplane modes and 80 column
VGA true color modes are not supported.

SEE ALSO VsetScreen(), Setscreen()

VsetRGB()
VOID VsetRGB(index, count, rgb)
WORD index, count;
RGB *rgb;

VsetRGB() sets palette registers using 24-bit RGB values.

OPCODE 93 (0x5D)

AVAILABILITY Available if the ‘_VDO’ cookie has a value of 0x00030000 or greater.

PARAMETERS index specifies the first palette index to modify. count specifies the number of
palette entries to modify. rgb is a pointer to an array of RGB elements which will
be copied into the palette.

BINDING pea rgb
move.w count,-(sp)
move.w index,-(sp)
move.w #$5D,-(sp)
trap #14
lea 10(sp),sp

COMMENTS This call is device-dependent by nature. It is therefore recommended that
vs_color() be used instead.

4.108 – XBIOS Reference

T H E A T A R I C O M P E N D I U M

SEE ALSO VgetRGB(), EsetPalette(), Setpalette(), vs_color()

VsetScreen()
VOID VsetScreen(log, phys, mode, modecode)
VOIDP log, phys;
WORD mode, modecode;

VsetScreen() changes the base addresses and mode of the current screen.

OPCODE 5 (0x05)

AVAILABILITY All TOS versions. The ability of this call to utilize the modecode parameter and
the memory allocation feature is limited to systems having a ‘_VDO’ cookie with a
value of 0x00030000 or greater.

PARAMETERS log is the address for the new logical screen base. phys is the new address for the
physical screen base. If either log or phys is NULL , the XBIOS will allocate a
new block of memory large enough for the current screen and reset the parameter
accordingly.

mode defines the screen mode to switch to (same as Getrez()). Setting mode to
SCR_MODECODE (3) will cause modecode to be used to set the graphic mode
(see VsetMode() for valid values for this parameter), otherwise modecode is
ignored. If any of these three parameters is set to SCR_NOCHANGE (-1) then
that value will be left unchanged.

BINDING move.w modecode,-(sp)
move.w mode,-(sp)
pea phys
pea log
move.w #$05,-(sp)
trap #14
lea 14(sp),sp

CAVEATS Changing screen modes with this call does not reinitialize the AES. The VDI and
VT52 emulator are, however, correctly reinitialized. The AES should not be used
after changing screen mode with this call until the old screen mode is restored.

COMMENTS TOS 1.00 and 1.02 required that its physical screen memory be on a 256 byte
boundary. All other Atari computers only require a WORD boundary.

This call is actually a revised binding of Setscreen() developed to allow access
to the newly available modecode parameter.

SEE ALSO Setscreen(), VsetMode()

VsetSync() – 4.109

T H E A T A R I C O M P E N D I U M

VsetSync()
VOID VsetSync(external)
WORD external;

VsetSync() sets the external video sync mode.

OPCODE 90 (0x5A)

AVAILABILITY Available if the ‘_VDO’ cookie has a value of 0x00030000 or greater.

PARAMETERS external is a WORD bit array defined as follows:

Name Bit Meaning

VCLK_EXTERNA
L

0 Use external clock.

VCLK_EXTVSYN
C

1 Use external vertical sync.

VCLK_EXTHSYN
C

2 Use external horizontal sync.

– 3-15 Reserved (set to 0)

BINDING move.w external,-(sp)
move.w #$5A,-(sp)
trap #14
addq.l #2,sp

CAVEATS This call only works in Falcon video modes, not in compatibility or any four color
modes.

Vsync()
VOID Vsync(VOID)

Vsync() pauses program execution until the next vertical blank interrupt.

OPCODE 37 (0x25)

AVAILABILITY All TOS versions.

BINDING move.w #$25,-(sp)
trap #14
addq.l #2,sp

4.110 – XBIOS Reference

T H E A T A R I C O M P E N D I U M

WavePlay()
WORD WavePlay(flags, rate, sptr, slen)
WORD flags;
LONG rate;
VOIDP sptr;
LONG slen;

WavePlay() provides a easy method for applications to utilize the DMA sound
system on the STe, TT030, and Falcon030 and playback user-defined event sound
effects.

OPCODE 165 (0xA5)

AVAILABILITY Available only when the ‘SAM\0’ cookie exists.

PARAMETERS flags is a bit mask consisting of the following options:

Name Mask Meaning

WP_MONO 0x00 The sound to be played back is
monophonic.

WP_STEREO 0x01 The sound to be played back is in stereo.

WP_8BIT 0x00 The sound to be played back was
sampled at 8-bit resolution.

WP_16BIT 0x02 The sound to be played back was
sampled at 16-bit resolution.

WP_MACRO 0x100 Play back a user-assigned macro or
application global sound effect. This flag is
exclusive and modifies the meaning of the
other parameters to this call as shown
below.

rate specifies the sample rate in Hertz (for example 49170L to play back at 49170
Hz). If WP_MACRO was specified in flags, then this parameter is ignored and
should be set to 0L.

sptr is a pointer to the sound sample in memory. If WP_MACRO was specified in
flags then this parameter should be a LONG containing either the application
cookie specified in the .SAA file or the ‘SAM\0’ cookie to play an application
global.

slen is the length of the sample in bytes. If WP_MACRO was specified in flags
then slen is the macro or application global index as specified in the .SAA file.
Valid application global values are as follows:

Name slen Usage

WavePlay() – 4.111

T H E A T A R I C O M P E N D I U M

AG_FIND 0 Call WavePlay() with this value when the user requests
display of the ‘Find’ dialog box.

AG_REPLACE 1 Call WavePlay() with this value when the user requests
display of the ‘Replace’ dialog box.

AG_CUT 2 Call WavePlay() with this value when the user requests a
‘Cut’ operation.

AG_COPY 3 Call WavePlay() with this value when the user requests a
‘Copy’ operation.

AG_PASTE 4 Call WavePlay() with this value when the user requests a
‘Paste’ operation.

AG_DELETE 5 Call WavePlay() with this value when the user requests a
‘Delete’ operation. This should not be called when the user
presses the ‘Delete’ key.

AG_HELP 6 Call WavePlay() with this value when the user requests
display of application ‘Help.’ This should not be called
when the user presses the ‘Help’ key.

AG_PRINT 7 Call WavePlay() with this value when the user requests
display of the ‘Print’ dialog box.

AG_SAVE 8 Call WavePlay() with this value when the user requests
that the current document be saved. This should not be
used for any operation that calls the file selector.

AG_ERROR 9 Call WavePlay() with this value when the application
encounters an error not presented to the user in an alert or
error dialog (error dialogs may be assigned sounds).

AG_QUIT 10 Call WavePlay() with this value when the user requests
that the application exit. Use this global after the user has
confirmed a quit with any dialog box that may have been
necessary.

BINDING move.l slen,-(sp)
pea sptr
move.l rate,-(sp)
move.w flags,-(sp)
move.w #$A5,-(sp)
trap #14
lea 16(sp),sp

RETURN VALUE WavePlay() returns WP_OK (0) if the call was successful, WP_ERROR (-1) if
an error occurred, or WP_NOSOUND (1) to indicate that no sound was played
(either because the user had not previously assigned a sound to the given macro or
SAM was disabled).

CAVEATS This function is only available when the System Audio Manager TSR (available
from Atari Corp. or SDS) is installed. Extended development information is
available online the Atari Developer’s roundtable on GEnie.

Because of previously misdocumented sample rates, the value for rate must be
33880 to play back a sample at 32880 Hz, 20770 to play back a sample at
19668 Hz, and 16490 to play back a sample at 16390 Hz.

4.112 – XBIOS Reference

T H E A T A R I C O M P E N D I U M

COMMENTS Even if an application does not install any custom events in a .SAA file, an
application must still provide a .SAA file if it wishes to use application globals so
that the SAM configuration accessory allows the user to assign those sounds.

A macro is commonly used to access the application global sounds available as
follows:

#define WavePlayMacro(a) WavePlay(WP_MACRO, 0L, SAM_COOKIE, a
);

Xbtimer()
VOID Xbtimer(timer, control, data, hand)
WORD timer, control, data;
VOID (* hand)(VOID);

Xbtimer() sets an interrupt on the 68901 chip.

OPCODE 31 (0x1F)

AVAILABILITY All TOS versions.

PARAMETERS timer is a value defining which timer to set as follows:

Name Timer Meaning

XB_TIMERA 0 Timer A (DMA sound counter)

XB_TIMERB 1 Timer B (Hblank counter)

XB_TIMERC 2 Timer C (200Hz system clock)

XB_TIMERD 3 Timer D (RS-232 baud rate generator)

control is placed into the control register of the timer. data is placed in the data
register of the timer. hand is a pointer to the interrupt handler which is called by the
interrupt.

BINDING pea hand
move.w data,-(sp)
move.w control,-(sp)
move.w timer,-(sp)
move.w #$1F,-(sp)
trap #14
lea 12(sp),sp

SEE ALSO Mfpint(), Jenabint(), Jdisint()

T H E A T A R I C O M P E N D I U M

– CHAPTER 5 –

HARDWARE

Overview – 5.3

T H E A T A R I C O M P E N D I U M

Overview

This chapter will cover those aspects of Atari software programming that can only be
accomplished by accessing hardware registers directly. In most cases, Atari has provided OS
calls to manipulate the hardware. When an OS call exists to access hardware, it should always
be used to ensure upward and backward compatibility. Keep in mind that access to hardware
registers is limited to those applications operating in supervisor mode only (except where noted
otherwise).

Besides those hardware registers discussed here, a complete list of I/O registers, system
variables, and interrupt vectors are contained in Appendix B: Memory Map.

The 680x0 Processor

Atari computers use the Motorola MC68000 or MC68030. Third party devices have also been
created to allow the use of a MC68010, MC68020, or MC68040 processor. The system cookie
‘_CPU’ should be used to determine the currently installed processor. The following table lists
the 680x0’s interrupt priority assignments:

Level Assignment
7 NMI
6 MK68901 MFP
5 SCC1

4 VBLANK (Sync)
3 VME Interrupter2

2 HBLANK (Sync)
1 Unused

Interrupts may be disabled by setting the system interrupt mask (bits 8-10 of the SR register) to a
value higher than the interrupts you wish to disable. Setting the mask to a value of 7 will
effectively disable all interrupts (except the level 7 non-maskable interrupt).

The Data/Instruction Caches
The Atari TT030 and Falcon030 contain onboard data and instruction caches. These caches may
be controlled by writing to the CACR register (in supervisor mode). The following table lists
longword values that may be written to the CACR to enable or disable the caches:

Value to Write to
CACR

Effect

0xA0A Flush and disable both caches.
0x101 Enable both caches.
0xA00 Flush and disable the data cache.
0x100 Enable the data cache.

1On a computer without an SCC chip, this interrupt is unused.
2On a computer without a VME bus, this interrupt is unused.

5.4 – Hardware

T H E A T A R I C O M P E N D I U M

0xA Flush and disable the instruction cache.
0x1 Enable the instruction cache.

The 68881/882 Floating Point Coprocessor

A MC6888x math coprocessor may be installed in a Mega ST, Mega STe, or a Falcon030. The
TT030 has one installed in its standard configuration. The 6888x is interfaced to the 68000 in
peripheral mode and to the 68030 in coprocessor mode. Thus, the TT030 and Falcon030
computers access the 6888x in coprocessor mode while the Mega ST and MegaSTe computers
access the 6888x in peripheral mode.

Coprocessor Mode
When the 6888x is interfaced in coprocessor mode, using it is as simple as placing floating-point
instructions in the standard instruction stream (use a coprocessor ID of 1). The 68030 will
properly dispatch the instruction and respond to exceptions through the following vectors:

Vector Address Assignment
0x0000001C FTRAPcc Instruction
0x0000002C F-Line Emulator
0x00000034 Co-processor Protocol Violation
0x000000C0 Branch or Set on Unordered Condition
0x000000C4 Inexact Result
0x000000C8 Floating-Point Divide by Zero
0x000000CC Underflow
0x000000D0 Operand Error
0x000000D4 Overflow
0x000000D8 Signaling NAN

Peripheral Mode
Utilizing an installed math coprocessor interfaced using peripheral mode requires the use of
several hardware registers mapped to special coprocessor registers. Unlike most hardware
registers, these do not have to be accessed in supervisor mode. Atari computers map the 6888x
registers to the following locations:

Address Length Register Description
0xFFFFFA40 WORD FPCIR Status register
0xFFFFFA42 WORD FPCTL Control Register
0xFFFFFA44 WORD FPSAV Save Register
0xFFFFFA46 WORD FPREST Restore Register
0xFFFFFA48 WORD FPOPR Operation word register
0xFFFFFA4A WORD FPCMD Command register
0xFFFFFA4C WORD FPRES Reserved
0xFFFFFA4E WORD FPCCR Condition Code Register
0xFFFFFA50 LONG FPOP Operand Register

To execute a floating point instruction, use the following protocol for communicating data with
the 6888x:

The 68881/882 Floating Point Coprocessor – 5.5

T H E A T A R I C O M P E N D I U M

1. Wait for the chip to be idle.

2. Write a valid 6888x command to FPCMD.

3. If necessary for the command, write an operand to FPOP.

4. Wait for the status port to indicate the command is complete.

5. Read any return data from FPOP.

Step one is achieved by waiting for a value of 0x0802 to appear in the status register (after
ANDing with 0xBFFF) as follows:

while((FPCIR & 0xBFFF) != 0x0802) ;

Steps two and three involve writing the command word to FPCMD and any necessary operand
data to FPOP. A primitive response code will be generated (and should be read) between each
write to either FPCMD or FPOP. For a listing of primitive response codes returned by the
68881, consult the MC68881/68882 Floating-Point Coprocessor User’s Manual (2nd
edition), Motorola publication MC68881UM/AD rev. 2, ISBN 0-13-567-009-8.

After the operation is complete (step 4), data may be read from the 68881 in FPOP (step 5).

When sending or receiving data in FPOP, the following chart details the transfer ordering and
alignment:

The following code demonstrates transferring two single precision floating-point numbers to the
68881, multiplying them, and returning the result.

/* Number of iterations before an error is triggered */
#define FPCOUNT 0x80

#define FPCIR ((WORD *)(0xFFFFFA40L))
#define FPCMD ((WORD *)(0xFFFFFA4AL))
#define FPOP ((float *)(0xFFFFFA50L))

5.6 – Hardware

T H E A T A R I C O M P E N D I U M

WORD fpcount, dum;

/* fperr() is user-defined */

#define FPwait() { fpcount = FPCOUNT; \
while((*FPCIR & 0xBFFF) != 0x0802) \

if(!(--fpcount)) fperr(); }

#define FPsglset(r,v) { FPwait(); \
 *FPCMD = (0x5400 | ((r) << 7)); \
 while((*FPCIR & 0xFFF0) != 0x8C00) \

if(!(--fpcount)) fperr(); \
 *FPOP = (v); }

#define FPsglmul(r1,r2) { FPwait(); \
*FPCMD = (0x0027 | ((r2) << 10) | ((r1) << 7)); \
dum = *FPCIR + 1; }

/* dum = FPCIR +1; forces the status register to be read
 (we assume the data’s good) */

#define FPsglget(r,var) { FPwait(); \
*FPCMD = (0x6400 | ((r) << 7)); \
while(*FPCIR != 0xb104) \

if(!(--fpcount)) fperr(); \
var = *FPOP; }

/*
 * void sglmul(float *f1, float *f2);
 *
 * Multiplies f1 by f2. Returns result in f1.
 *
 */

void
sglmul(float &f1, float &f2)
{

FPsglset(0, *f1);
FPsglset(1, *f2);
FPsglmul(0, 1);
FPsglget(0, *f1);

}

Cartridges

All Atari computers support an external 128K ROM cartridge port. Cartridges may be created to
support applications or diagnostic tools. The 128K of address space allocated to cartridges
appears from address 0xFA0000 to 0xFBFFFF. Newer Atari computers support larger
cartridges (this is because the address space would no longer overlap the OS). All program
code must be compiled to be relative of this base address.

The LONG appearing at 0xFA0000 determines the type of cartridge installed as follows:

Cartridge LONG Value
Application 0xABCDEF42

Cartridges – 5.7

T H E A T A R I C O M P E N D I U M

Diagnostic 0xFA52255F

Diagnostic Cartridges
Diagnostic cartridges are executed almost immediately after a system reset. The OS uses a
680x0 JMP instruction to begin execution at address 0xFA0004 after having set the Interrupt
Priority Level (IPL) to 7, entering supervisor mode, and executing a RESET instruction to reset
external hardware devices.

Upon execution, register A6 will contain a return address which should be JMP’d to if you wish
to continue system initialization at any point. The stack pointers will contain garbage. In
addition, keep in mind that no hardware has been initialized, particularly the memory controller.
All system memory sizing and initialization must be performed by the diagnostic cartridge.

Application Cartridges
Application cartridges should contain one or more application headers beginning at location
0xFA0004 as follows (one cartridge may contain one or many applications):

Name Offset Meaning
CA_NEXT 0x00 Pointer to the next application header

(or NULL if there are no more).
CA_INIT 0x04 Pointer to the application’s

initialization code. The high eight bits
of this pointer have a special
meaning as follows:

Bit Set Meaning
0 Execute prior to display

memory and interrupt
vector initialization.

1 Execute just before
GEMDOS is initialized.

2 (unused)
3 Execute prior to boot

disk.
4 (unused)
5 Application is a Desk

Accessory.
6 Application is not a GEM

application.
7 Application needs

parameters.
CA_RUN 0x08 Pointer to application’s main entry

point.
CA_TIME 0x0C Standard GEMDOS time stamp.
CA_DATE 0x0E Standard GEMDOS date stamp.
CA_SIZE 0x10 Size of application in bytes.
CA_NAME 0x14 NULL terminated ASCII filename in

standard GEMDOS 8+3 format.

5.8 – Hardware

T H E A T A R I C O M P E N D I U M

When application cartridges are present, GEMDOS will allow a special ‘c’ (lowercase) drive
to be accessed. Executable files appear on this drive as they would on any standard disk. This
‘drive’ may also be installed on the desktop.

Game Controllers

The Atari 1040STe and Falcon030 support new enhanced joystick controls as well as older
style CX-40 controls. For the usage and polling of the older style controls, refer to the following
section which discusses the IKBD controller. This section will focus specifically on the newer
style of controllers.

Joysticks
Enhanced joysticks are read by a two-step process. The WORD at address 0xFF9202 is written
to using a mask which determines which values may subsequently be read from the WORDs at
address 0xFF9200 and 0xFF9202. Valid mask values and the keys that may be read follow:

Read Controller 0 at 0xFF9200
Write
Mask

Bit 0
Clear

Bit 1
Clear

0xFFFE Pause Fire 0
0xFFFD - Fire 1
0xFFFB - Fire 2
0xFFF7 - Option

Read Controller 1 at 0xFF9200
Write
Mask

Bit 2
Clear

Bit 3
Clear

0xFFEF Pause Fire 0
0xFFDF - Fire 1
0xFFBF - Fire 2
0xFF7F - Option

Read Controller 0 at 0xFF9202
Write
Mask

Bit 8
Clear

Bit 9
Clear

Bit 10
Clear

Bit 11
Clear

0xFFFE Up Down Left Right
0xFFFD Key * Key 7 Key 4 Key 1
0xFFFB Key 0 Key 8 Key 5 Key 2
0xFFF7 Key # Key 9 Key 6 Key 3

Read Controller 1 at 0xFF9202

Mask
Bit 12
Clear

Bit 13
Clear

Bit 14
Clear

Bit 15
Clear

0xFFEF Up Down Left Right
0xFFDF Key * Key 7 Key 4 Key 1
0xFFBF Key 0 Key 8 Key 5 Key 2
0xFF7F Key # Key 9 Key 6 Key 3

The IKBD Controller – 5.9

T H E A T A R I C O M P E N D I U M

To read the joystick, write a mask value corresponding to the row of keys/positions you wish to
interrogate to 0xFF9202. Next, read back a WORD from either 0xFF9200 or 0xFF9202. As
indicated in the table, cleared bits mean that a key is being pressed or a joystick is moved in that
direction.

Paddles
Two paddles may be plugged into each joystick port. Each paddle returns an 8-bit value
indicating its position (0 = full counter-clockwise, 255 = full clockwise) at the addresses
shown below. Unlike joysticks, paddle positions are returned automatically with no need to
write to an address prior to a read. Paddle fire buttons, however, are mapped and read in the
same manner as the joysticks. See the discussion of joysticks above for an explanation.

Byte Address Paddle
0xFF9211 X Paddle 0
0xFF9213 Y Paddle 0
0xFF9215 X Paddle 1
0xFF9217 Y Paddle 1

Light Gun/Pen
Joystick port 0 supports a light gun or pen. The position that the gun is pointing to is returned in
the WORD registers at 0xFF9220 (X position) and 0xFF9222 (Y position). Only the lower 10
bits are significant giving a range of values from 0-1023.

The IKBD Controller

The Atari 16/32 bit computer line uses the Intelligent Keyboard Controller (IKBD) for
keyboard, joystick (old-style CX-40), mouse, and clock communication. The 6850 ACIA serial
communications chip is used to transfer data packets from the IKBD interface to the host
computer.

The TOS calls Bconout(4, ???), Ikbdws(), and Initmous() handle communication to the
controller. Return messages from the controller must be processed by placing a specialized
handler in the vector table returned by the XBIOS call Kbdvbase(). Kbdvbase() returns the
pointer to a vector table as follows:

typedef struct
{

void (*midivec)(UBYTE data); /* Passed in d0 */
void (*vkbderr)(UBYTE data); /* Passed in d0 */
void (*vmiderr)(UBYTE data); /* Passed in d0 */
void (*statvec)(char *packet); /* Passed in a0 */
void (*mousevec)(char *packet); /* Passed in
a0 */
void (*clockvec)(char *packet); /* Passed in
a0 */
void (*joyvec)(char *packet); /* Passed in a0 */
void (*midisys)(VOID);
void (*ikbdsys)(VOID);
char ikbdstate;

5.10 – Hardware

T H E A T A R I C O M P E N D I U M

} KBDVECS;

When an IKBD message is pending, the interrupt handler for the ACIAs calls either the midisys
handler or the ikbdsys handler to retrieve the data and handle any errors. The default action for
the ikbdsys handler is to decide whether the packet contains error, status, joystick, clock, or
mouse information and to route it appropriately to vkbderr, statvec, joyvec, clockvec, or
mousevec. Keyboard packets are handled internally by ikbdsys.

Your handler should be patched into the appropriate vector and, if appropriate, expect the packet
buffer to be pointed to by register A0. Unless your handler is designed to completely replace the
functions of the default handler you should jump through the original vector pointer upon exit,
otherwise simply use the 680x0 RTS instruction.

Each byte received through the keyboard ACIA falls into one of the following categories as
follows:

Category Value(s) Meaning
Keyboard Make Code 0x00–0x7F One of these values is generated each time a key is

depressed.This value may be used with Keytbl() to
generate an ASCII code for the scan code.

Keyboard Break Code 0x80–0xFF This code is generated when a key previously
depressed has been released. It represents the make
code logically OR’ed with 0x80.

Status Packet Header 0xF6 This codes indicate the beginning of a multiple byte
status packet.

Absolute Mouse Position 0xF7 See Below
Relative Mouse Position 0xF8-0xFB See Below
Time-of-Day 0xFC See Below
Joystick Report 0xFD See Below
Joystick 0 Event 0xFE See Below
Joystick 1 Event 0xFF See Below
Status Packet Data Any When the ikbdstate variable (found in the KBDVECS

structure) is non-zero, it represents the number of
remaining bytes to retrieve that are part of a status
packet and should thus not be treated as any of the
above codes.

The IKBD Controller – 5.11

T H E A T A R I C O M P E N D I U M

The Keyboard
Keyboard keys generate both a ‘make’ and ‘break’ code for each complete press and release
respectively. The ‘make’ code is equivalent to the high byte of the IKBD scan code. ‘make’
codes are not related in any way to ASCII codes. They represent the physical position of the key
in the keyboard matrix and may vary in keyboards designed for other countries. The XBIOS
function Keytbl() provides lookup values which make internationalization possible. The key
‘break’ code is the ‘make’ code logically ORed with 0x80.

It should be noted that ‘key repeats’ are not generated by the ACIA but by a coordination of the
ikbdsys and system timer handlers.

The Mouse
The mouse may be programmed to return position reports in either absolute, relative, or keycode
mode (it is by default programmed to return relative position reports).

In relative reporting mode, the IKBD generates a mouse packet each time a mouse button is
pressed or released, and every time the mouse is moved over a preset threshold distance (which
is configurable). A relative mouse report packet is headed by a byte value between 0xF8 and
0xFB followed by the X and Y movement of the mouse as signed bytes. If the movement is
greater than can be represented as signed bytes (-128 to 127), multiple packets are sent.

The header byte determines the state of the mouse buttons as follows:

Header Mouse Button State
0xF8 No buttons depressed.
0xF9 Left button depressed.
0xFA Right button depressed.
0xFB Both buttons depressed.

In absolute reporting mode, the IKBD only generates a mouse packet when interrogated. Mouse
packets in absolute mode are headed by a 0xF7 byte followed by the MSB and LSB of the X
value and the MSB and LSB of the Y value respectively. The minimum and maximum X and Y
values are user-definable.

Keycode reporting mode generates keyboard ‘make’ and ‘break’ codes for mouse movements
rather than sending standard mouse packets. Mouse movement is translated into the arrow keys
and the codes 0x74 and 0x75 represent the left and right mouse button respectively. ‘break’
codes are sent immediately after the corresponding ‘make’ code is delivered.

5.12 – Hardware

T H E A T A R I C O M P E N D I U M

The Joystick
The basic CX-40 style joystick controls are still present on every Atari computer. Atari
recommends that these ports should not be supported when STe/Falcon030 enhanced joysticks
are present unless the option for four-player play is desired. While no direct TOS support is
available for reading these ports, it is possible using the IKBD controller in one of several
joystick reporting modes.

Joystick event reporting mode (the default) sends a joystick packet each time the status of one of
the joysticks changes. The joystick packet header is 0xFE if the state of joystick 0 has changed or
0xFF if the status of joystick 1 has changed. This header byte is followed by a BYTE containing
the new state of the joystick as follows:

Bit 7 Bit 0

Trigger State (1 = depressed)

Joystick Position

The four bits corresponding to joystick position can be interpreted as follows:

Joysticks may be interrogated at any time by sending an interrogate command (as described later
in this chapter). The packet response to this command is 0xFD followed by the BYTE report of
joystick 0 and 1 (as shown above).

The joysticks may be placed into joystick monitoring or fire button monitoring mode. In these
modes, all other IKBD communication is stopped and all processor time is devoted to the
processing of packets. Joystick monitoring mode cause the IKBD to send a continuous stream of
two-byte packets as follows: The first byte contains the status of joystick buttons 0 and 1 in bits
1 and 0 respectively. The second byte contains the position state of joystick 0 in the high nibble
and joystick 1 in the lower nibble (the position state can be interpreted as shown in the diagram
above).

The IKBD Controller – 5.13

T H E A T A R I C O M P E N D I U M

Fire button monitoring mode constantly scans joystick button 1 and returns the results in BYTEs
packed with 8 reports each (one per bit). These modes may be paused or halted using the
appropriate commands.

Joystick keycode mode is similar to mouse keycode mode. This mode translates all joystick
position information into arrow keys. A ‘make’ code of 0x74 is generated when joystick button 0
is depressed and a ‘make’ code of 0x75 is generated when joystick button 1 is depressed. The
rate at which the IKBD controller generates these joystick events can be controlled using
commands discussed in the following section.

Time-of-Day
The IKBD controller maintains a separate time-of day clock that is kept synchronized with
GEMDOS time by OS calls. A time-of-day packet may be requested using the method shown
below under IKBD commands.

The response packet from the IKBD is seven bytes in length identified by its header byte of
0xFC and followed by six UBYTES containing the year (last two digits), month, day, hours (0-
24), minutes, and seconds in BCD format (ex: a month byte in December would be 0x12).

IKBD Commands
Commands may be sent to the IKBD using any of the TOS function calls described above. Some
commands may generate packets while other commands change the operating state of the IKBD
controller. Unrecognized command codes are treated as NOPs. The following lists valid IKBD
command codes:

Command
BYTE Result
0x07 Set mouse button action. This command BYTE should be

followed by a BYTE which describes how the mouse
buttons should be treated as follows:

BYTE Meaning
0x00 Default mode.
0x01 Mouse button press triggers an absolute

position report.
0x02 Mouse button release triggers an

absolute position report.
0x03 Mouse button press and release triggers

absolute position reports.
0x04 Mouse buttons report key presses.

0x08 Enable relative mouse position reporting (default).
0x09 Enable absolute mouse position reporting. This

command is followed by the MSB and LSB of the X and Y
coordinate maximum values for the mouse.

0x0A Enable mouse keycode mode. This command is followed
by two BYTEs indicating the maximum number of mouse
‘ticks’ required to generate a keycode for the X and Y
axis respectively.

5.14 – Hardware

T H E A T A R I C O M P E N D I U M

0x0B Set mouse threshold. This command is followed by two
BYTEs which determine the number of mouse ‘ticks’
required to generate a mouse position report in relative
positioning mode.

0x0C Set mouse scale. This command is followed by two
BYTEs which determine the number of mouse ‘ticks’ for
each single coordinate on the X and Y axis respectively.

0x0D Interrogate mouse position. This command generates an
absolute mouse position report.

0x0E Load mouse position. This command sets the mouse
position based on the current coordinate system in
absolute reporting mode. The command is followed by a
filler BYTE of 0x00 and the MSB and LSB of the new X
and Y axis for the mouse.

0x0F Set Y=0 to the bottom. This command changes the origin
of the mouse coordinate system to the upper left of the
screen.

0x10 Set Y=0 to the top. This command changes the origin of
the mouse coordinate system to the lower left of the
screen.

0x11 Resume sending data. This command (or for that matter
any command) will cause the IKBD to resume sending
packet data to the host.

0x12 Disable all mouse packet reporting. Any valid mouse
command resets this state. If the mouse buttons have
been programmed to act like keyboard keys, this
command will have no effect on them.

0x13 Pause output. All output from the IKBD controller is halted
until a ‘Resume’ or other command is received.

0x14 Set joystick event reporting mode. This command causes
a joystick report to be generated whenever the state of
either joystick changes.

0x15 Set joystick interrogation mode. This command causes
the IKBD to generate joystick packets only when
requested by the host.

0x16 Joystick interrogation. This command causes a joystick
packet indicating the status of both joysticks to be
generated.

0x17 Enables joystick monitoring mode. Besides serial
communication and the maintenance of the time-of-day
clock, this command causes only special joystick reports
to be generated.

The command BYTE should be followed by a BYTE
indicating how often the joystick should be polled in
increments of 1/100ths of a second.

0x18 Enables fire button monitoring mode. As above, this
mode limits the IKBD to serial communication, updating
the time-of-day clock, and the reporting of the state of
joystick button 1.

The IKBD Controller – 5.15

T H E A T A R I C O M P E N D I U M

0x19 Set joystick keycode mode. This command is followed by
six BYTEs as follows:

BYTE Meaning
1 The length of time (in tenths of a

second) before the horizontal breakpoint is
 reached.

2 Same as above for the vertical plane.
3 The length of time (in tenths of a

second) between key repeats before the
velocity breakpoint is reached.

4 Same as above for the vertical plane.
5 The length of time (in tenths of a

second) between key repeats after the
velocity breakpoint is reached.

6 Same as above for the vertical plane.
0x1A Disable joystick event reporting.
0x1B Set the time of day clock. This command is followed by

six BYTEs used to set the IKBD clock. These BYTEs are
in binary-coded decimal (BCD) format. Each BYTE
contains two digits (0-9), one in each nibble. The format
for these BYTEs is as follows:

BYTE Meaning
1 Year (last two digits)
2 Month
3 Date
4 Hours (0-23)
5 Minutes (0-59)
6 Seconds (0-59)

0x1C Interrogate the time-of-day clock. This command returns a
packet headed by the value 0xFC followed by six BYTEs
as indicated above.

0x20 Load BYTEs into the IKBD memory. This command is
followed by at least three BYTEs containing the MSB and
LSB of the address into which to load the data, the
number of BYTEs to load (0-127), and the data itself.

0x21 Read BYTEs from the IKBD controller. This command is
followed by two BYTEs containing the MSB and LSB of
the address to read from. This returns a packet headed
by the BYTE values 0xF6 and 0x20 followed by the
memory data.

0x22 Execute a subroutine on the IKBD controller. This
command BYTE is followed by two BYTEs containing the
MSB and LSB of the memory location of the subroutine to
execute.

0x80 Reset the IKBD controller. This command is actually a
two-BYTE command. The BYTE 0x80 must be followed
by a BYTE of 0x01 or the command will be ignored.

5.16 – Hardware

T H E A T A R I C O M P E N D I U M

0x87 Return a status message containing the current mouse
action state. After receiving this command the IKBD will
respond by sending a status packet (which may be
intercepted at statvec) as follows:

BYTE Meaning
1 0xF6
2 0x07
3 Current mouse action state

(see command 0x07)
4-8 0

0x88 Return a status message containing the current mouse
mode. After receiving this command the IKBD will
respond by sending a status packet (which may be
intercepted at statvec) as follows:

BYTE Meaning
1 0xF6
2 Current mode as follows:

0x08 = Relative mode
0x09 = Absolute mode
0x0A = Keycode mode

3 Absolute mode: MSB of maximum X
position (units to current scale).
Keycode mode: Horizontal distance
threshold that must be passed prior to
sending a keycode.
Relative mode: 0

4 Absolute mode: LSB of maximum X
position.
Keycode mode: Vertical distance
threshold that must be passed prior to
sending a keycode.
Relative mode: 0

5 Absolute mode: MSB of maximum Y
position (units to current scale).
Keycode mode: 0
Relative mode: 0

6 Absolute mode: LSB of maximum Y
position.
Keycode mode: 0
Relative mode: 0

7-8 0
0X89 Same as 0x88.
0X8A Same as 0x88.

The IKBD Controller – 5.17

T H E A T A R I C O M P E N D I U M

0x8B Return a status message containing the current mouse
threshold state. After receiving this command the IKBD
will respond by sending a status packet (which may be
intercepted at statvec) as follows:

BYTE Meaning
1 0xF6
2 0x0B
3 Number of horizontal mouse ‘ticks’ that

must be traveled prior to sending a mouse
packet.

4 Number of vertical mouse ‘ticks’ that
must be traveled prior to sending a mouse
packet.

5-8 0
0x8C Return a status message containing the current mouse

scaling factor. After receiving this command the IKBD will
respond by sending a status packet (which may be
intercepted at statvec) as follows:

BYTE Meaning
1 0xF6
2 0x0C
3 Horizontal mouse ‘ticks’ between a change

in mouse position on the X axis.
4 Vertical mouse ‘ticks’ between a change

in mouse position on the Y axis.
5-8 0

0x8F Return a status message containing the current origin
point of the Y axis used for mouse position reporting.
After receiving this command the IKBD will respond by
sending a status packet (which may be intercepted at
statvec) as follows:

BYTE Meaning
1 0xF6
2 0x0F = Bottom is (Y=0)

0x10 = Top is (Y=0)
3-8 0

0x90 Same as 0x8F.
0x92 Return a status message containing the current state of

mouse reporting. After receiving this command the IKBD
will respond by sending a status packet (which may be
intercepted at statvec) as follows:

BYTE Meaning
1 0xF6
2 0x00 = Mouse reporting enabled.

0x12 = Mouse reporting disabled.
3-8 0

5.18 – Hardware

T H E A T A R I C O M P E N D I U M

0x94 Return a status message containing the current joystick
mode. After receiving this command the IKBD will
respond by sending a status packet (which may be
intercepted at statvec) as follows:

BYTE Meaning
1 0xF6

2 Current mode as follows:
0x14 = Event reporting mode
0x15 = Interrogation mode
0x19 = Keycode mode

3 Keycode mode: This value represents the
amount of time (in tenths of a second)
that keycodes are returned to the host
for horizontal position events at the initial
velocity level (after this time expires, the
secondary velocity level is used).
Event recording mode: 0
Interrogation mode: 0

4 Keycode mode: Same as BYTE 3 for
vertical events.
Event recording mode: 0
Interrogation mode: 0

5 Keycode mode: This value represents the
initial horizontal velocity level (in tenths of a
second). This is the initial rate at which
keycodes are generated.
Event recording mode: 0
Interrogation mode: 0

6 Keycode mode: Same as byte 5 for vertical
events.
Event recording mode: 0
Interrogation mode: 0

7 Keycode mode: This value represents the
secondary horizontal velocity level (in
tenths of a second). This is the rate used
after the amount of time specified in bytes
3-4 expires.
Event recording mode: 0
Interrogation mode: 0

8 Keycode mode: Same as byte 7 for vertical
events.
Event recording mode: 0
Interrogation mode: 0

0x95 Same as 0x94.
0x99 Same as 0x94.

STe/TT030 DMA Sound – 5.19

T H E A T A R I C O M P E N D I U M

0x9A Return a status message containing the current status of
the joystick. After receiving this command the IKBD will
respond by sending a status packet (which may be
intercepted at statvec) as follows:

BYTE Meaning
1 0xF6
2 0x00 = Joystick enabled

0x1A = Joystick disabled
3-8 0

STe/TT030 DMA Sound

The Atari STe, Mega STe, TT030, and Falcon030 are all equipped with the ability to playback
stereo digital audio. Only the Falcon030, however, has supporting XBIOS calls which eliminate
the need for the programmer to directly access the sound system hardware. Although the
Falcon030 has a more sophisticated sound system than the earlier Atari machines, the hardware
registers have been kept compatible so older applications should function as expected.
Programmers designing Falcon030 applications which use digital audio should use the
appropriate XBIOS calls.

The STe, MegaSTe, and TT030 support 8-bit monophonic or stereophonic sound samples.
Samples should be signed (-128 to 127) with alternating left and right channels (for stereo)
beginning with the left channel. Samples may be played at 50 kHz, 25 kHz, 12.5 kHz, or
6.25 kHz (6.25 kHz is not supported on the Falcon030).

DMA Sound Registers
Several hardware registers control DMA sound output as follows:

Address Bit Layout Meaning
0xFF8900 ---- ---- ---- --cc Sound DMA Control
0xFF8902 ---- ---- 00xx xxxx Frame Base Address High (bits 21-16)
0xFF8904 ---- ---- xxxx xxxx Frame Base Address Middle (bits 15-8)
0xFF8906 ---- ---- xxxx xxx0 Frame Base Address Low (bits 7-1)
0xFF8908 ---- ---- 00xx xxxx Frame Address Counter (bits 21-16)
0xFF890A ---- ---- xxxx xxxx Frame Address Counter (bits 15-8)
0xFF890C ---- ---- xxxx xxx0 Frame Address Counter (bits 7-1)
0xFF890E ---- ---- 00xx xxxx Frame End Address High (bits 21-16)
0xFF8910 ---- ---- xxxx xxxx Frame End Address Middle (bits 15-8)
0xFF8912 ---- ---- xxxx xxx0 Frame End Address Low (bits 7-1)
0xFF8920 0000 0000 m000 00rr Sound Mode Control

Addresses placed in the three groups of address pointer registers must begin on an even address.
In addition, only sounds within the first 4 megabytes of memory may be accessed (this limitation
has been lifted on the Falcon030). Sounds may not be played from alternate RAM.

5.20 – Hardware

T H E A T A R I C O M P E N D I U M

Playing a Sound
To begin sound playback, place the start address of the sound in the Frame Base Address
registers. Place the address of the end of the sound in the Frame End Address registers. The
address of the end of the sound should actually be the first byte in memory past the last byte of
the sample.

Set the Sound Mode Control register to the proper value. Bit 7, notated as ‘m’ should be set to 1
for a monophonic sample or 0 for a stereophonic sample. Bits 0 and 1, notated as ‘r’, control the
sample playback rate as follows:

‘r’ Playback Rate
00 6258 Hz
01 12517 Hz
10 25033 Hz
11 50066 Hz

To begin the sample playback, set bits 0 and 1 of the Sound DMA Control register, notated as
‘c’, as follows:

‘c’ Sound Control
00 Sound Disabled (this will stop any sound

currently being played)
01 Sound Enabled (play once)
11 Sound Enabled (repeat until stopped)

Sound playback may be prematurely halted by writing a 0 to address 0x00FF8900.

Sound Interrupts using MFP Timer A
Discontinuous sample frames may be linked together using the MFP Timer A interrupt. When a
sound is played using repeat mode an interrupt is generated at the end of every frame. By
configuring Timer A to ‘event count’ mode you can ensure the seamless linkage and variable
repeating of frames.

For example, suppose you have three sample frames, A, B, and C, in memory and you want to
play A five times, B five times, and C only once. Use the following steps to properly configure
Timer A and achieve the desired result:

• Use Xbtimer() to set Timer A to event count mode with a data value of 4 (the first
data value should be one less than actually desired since the sound will play once
before the interrupt occurs).

• Configure the sound registers as desired and start sound playback in repeat mode.

• When the interrupt fires, place the address of frame B in the sound playback
registers (these values aren’t actually used until the current frame finishes).

• Reset Timer A’s data register to 5 and exit your interrupt handler.

The MICROWIRE Interface – 5.21

T H E A T A R I C O M P E N D I U M

• When the second interrupt fires, place the address of frame C in the sound
playback registers.

• Reset Timer A’s data register to 1 and exit your interrupt handler.

• When the final interrupt is triggered, write a 0x01 to the sound control register to
cause sound playback to end at the end of the current frame.

Sound Interrupts using GPIP 7
Another method of generating interrupts at the end of sound frames is by using the MFP’s
General Purpose Interrupt Port (GPIP) 7. This interrupt does not support an event count mode so
it will generate an interrupt at the end of every frame. In addition, the interrupt must be
configured differently depending on the type on monitor connected to the system (this is because
GPIP 7 serves double-duty as the monochrome detect signal).

To program GPIP 7 for interrupts, disable all DMA sound by placing a 0x00 in the sound control
register. Next, check bit 7 of the GPIP port at location 0xFFFA01. If a monochrome monitor is
connected the bit will be 0. The bit will be 1 if a color monitor is connected.

Bit 7 of the MFP’s active edge register (at 0xFFFA03) should be set to the opposite of the GPIP
port’s bit 7. This will cause an interrupt to trigger at the end of every frame. Use Mfpint() to set
the location of your interrupt handler and Jenabint() to enable interrupts. From this point,
interrupts will be generated at the end of every frame playing in ‘play once’ mode or repeat
mode until the interrupt is disabled.

The MICROWIRE Interface

The STe and TT030 computers use the MICROWIRE interface to control volume, mixing of the
PSG and DMA output, and tone control. The original ST is limited to amplitude control through
the use of the appropriate PSG register. The Falcon030 supports new XBIOS calls which allow
volume and mixing control.

The MICROWIRE interface is a write-only device accessed using two hardware registers
0xFFFF8924 (mask) and 0xFFFF8922 (data). To write a command to the MICROWIRE you
must first place the value 0x07FF into the mask register and then write the appropriate command
to the data register. The format for the data WORD is shown below:

x x x x x 1 0 d d d d d d

Bit 15 Bit 0

c c c

Bits labeled ‘x’ will be ignored. Bits 9 and 10 should always be %10 to correctly specify the
device address which is a constant. Bits labeled ‘c’ specify the command and bits labeled ‘d’
contain the appropriate data for the command. The following table explains the valid
MICROWIRE commands:

5.22 – Hardware

T H E A T A R I C O M P E N D I U M

Command ‘ccc’ ‘dddddd’
Set Master Volume 011 Example Value Result

%000000 -80dB Attenuation
%010100 -40dB Attenuation
%101000 0dB Attenuation (Maximum)

Set Left Channel Volume 101 Example Value Result
%000000 -40dB Attenuation
%001010 -20dB Attenuation
%010100 0dB Attenuation (Maximum)

Set Right Channel Volume 100 Example Value Result
%000000 -40dB Attenuation
%001010 -20dB Attenuation
%010100 0dB Attenuation (Maximum)

Set Treble 010 Example Value Result
%000000 -12dB Attenuation
%000110 0dB Attenuation
%001100 +12dB Attenuation (Maximum)

Set Bass 001 Example Value Result
%000000 -12dB Attenuation
%000110 0dB Attenuation
%001100 +12dB Attenuation (Maximum)

Set PSG/DMA Mix 000 Example Value Result
%000000 -12dB Attenuation
%000001 Mix PSG sound output.
%000010 Don’t Mix PSG sound output.

When configuring multiple settings at once, you should program a delay between writes since the
MICROWIRE takes at least 16µsec to completely read the data register. During a read the
MICROWIRE rotates the mask register one bit at a time. You will know a read operation has
completed when the mask register returns to 0x07FF. The following assembly segment illustrates
this by setting the left and right channel volumes to their maximum values:

MWMASK EQU $FFFF8924
MWDATA EQU $FFFF8922

MASKVAL EQU $7FF
HIGHLVOL EQU $554
HIGHRVOL EQU $514

.text

maxvol:
move.w MASKVAL,MWMASK ; First write the mask and data values
move.w #HIGHLVOL,MWDATA

mwwrite:
cmp.w MASKVAL,MWMASK
bne.s mwwrite ; loop until MWMASK reaches $7FF again
move.w #HIGHRVOL,MWDATA ; ok, safe to write second value
rts

.end

Video Hardware – 5.23

T H E A T A R I C O M P E N D I U M

Video Hardware

Video Resolutions
Atari computers support a wide range of video resolutions as shown in the following tables:

Computer System
Modes

(width ´ height ´ colors)
Possible
Colors

ST, Mega ST 320x200x16
640x200x4
640x400x2

512

STe, Mega STe 320x200x16
640x200x4
640x400x2

4096

STacy 640x400x2 N/A
TT030 320x200x256

640x200x4
640x400x2

320x480x256
640x480x16

4096

Falcon030 See below. 262,144

Falcon030 Video Modes
The Falcon030 is equipped with a much more flexible video controller than earlier Atari
computers. The display area may be output on a standard television, an Atari color or
monochrome monitor, or a VGA monitor. Overscan is supported with all monitor configurations
with the exception of VGA. Also, hardware support for NTSC and PAL monitors is software
configurable.

The Falcon030 supports graphic modes of 40 or 80 columns (320 or 640 pixels across)
containing 1, 2, 4, 8, or 16 bits per pixel resulting in 2, 4, 16, 256, or 262,144 colors
respectively. All modes except the 16 bit per pixel mode supply the video shifter with palette
indexes. The 16 bit per pixel mode is a ‘true-color’ mode where each 16 bit value determines
the color rather than being an index into a palette. Each 16 bit WORD value is arranged as
follows:

R R R R R G G G G G G B B B B B

Bit 15 Bit 0

Falcon030 True-Color Video Word

The ‘R’, ‘G’, and ‘B’, represent the red, green, and blue components of the color. Because red
and blue are each allocated five bits, they can represent a color range of 0-31. The green
component is allocated six bits so it can represent a color range of 0-63.

The Falcon030 also supports an overlay mode (see VsetMask()) where certain colors can be
defined as transparent to a connected Genlock (or similar) device. In this mode, the least
signifigant green bit (Bit #5) is treated as the transparent flag bit and the resolution of the green

5.24 – Hardware

T H E A T A R I C O M P E N D I U M

color component is slightly reduced. If the transparent flag bit of a pixel is set, that pixel will
display video from the Falcon030’s video shifter, otherwise the external video source will be
responsible for its display.

Another feature of the Falcon030’s video shifter is an optional interlace/double-line mode.
When operating on a VGA monitor, this mode doubles the pixel height effectively reducing the
vertical screen resolution by half. On any other video display, this mode engages interlacing
which increases the video resolution.

The operating system calls VsetMode() or VsetScreen() can be used to manipulate the
operating mode of the Falcon030’s video shifter. These calls do not, however, do any checking
to ensure the selected video mode is actually attainable on the connected monitor or that the
mode is legal. In particular, you should not attempt to set the video shifter to either 40 column
mode with only one bit per pixel or 80 column VGA mode with 16 bits per pixel.

Video Memory
Most of the available video modes are palette-based. The number of bits required per pixel
depends on the number of palette entries as shown in the table below. The Falcon030 also offers
a true color video mode which requires 16 bits per pixel.

Palette
Entries

Bits per
Pixel

2 1
4 2
16 4

256 8

Directly accessing video memory is normally not recommended because it may create
compatibility problems with future machines and wreak havoc with other system applications.
The VDI provides a rich set of function calls which should be used when outputting to the
screen. The function call vr_trnfm() , for instance, can be useful in transforming video images
into a pattern compatible with the current video shifter. Certain software, however, does need
exclusive access to video memory.

With the exception of the 16-bit true color mode of the Falcon030, all video images are stored in
memory in WORD interleaved format. The video shifter grabs one at a time from each plane
present as shown in the following diagram which represents a 16-color (four plane) screen
layout:

Video Hardware – 5.25

T H E A T A R I C O M P E N D I U M

The Falcon030’s 16-bit true color mode is pixel-packed so that WORD #0 in memory is the
complete color WORD for the pixel at (0, 0), WORD #1 is the complete color WORD for the
pixel at (1, 0), etc.

Fine Scrolling
All Atari computers except the original ST and Mega ST support both horizontal and vertical
fine scrolling in hardware. To accomplish this, an application must place a special handler in
the vertical blank vector (at 0x00000070) which resets the scroll registers and video base
address as needed.

The following registers are manipulated during the vertical-blank period to shift the screen
across any number of virtual ‘screens’:

Register Address Contents
VBASEHI 0xFFFF8200 Low byte contains bits 23-16 of the video

display base address.
VBASEMID 0xFFFF8202 Low byte contains bits 15-8 of the video

display base address.
VBASELO 0xFFFF820C Low byte contains bits 7-0 of the video

display base address.
LINEWID 0xFFFF820E Number of extra WORDs per scanline

(normally 0).
HSCROLL 0xFFFF8264 Low four bits contain the bitwise offset

(0-15) of the screen (normally 0 unless
scrolling is in effect).

VCOUNTHI 0xFFFF8204 Low byte contains bits 23-16 of the
current video refresh address (use with
care).

VCOUNTMID 0xFFFF8206 Low byte contains bits 15-8 of the current
video refresh address (use with care).

VCOUNTLO 0xFFFF8208 Low byte contains bits 7-0 of the current
video refresh address (use with care).

5.26 – Hardware

T H E A T A R I C O M P E N D I U M

To accommodate virtual screens wider than the display can show, set LINEWID to the number
of extra WORDs per scanline. For instance, to create a virtual display two screens wide for a
320x200 16-color display, set LINEWID to 80.

To scroll vertically, simply alter the video base address by adding or subtracting the number of
WORDs per scanline for each line you wish to scroll during the vertical blank.

To scroll horizontally, alter the video base address in WORD increments to move the physical
screen left and right over the virtual screen. This by itself will cause the screen to skip in 16
pixel jumps. To scroll smoothly, use the HSCROLL register to shift the display accordingly.
When HSCROLL is non-zero, subtract one from LINEWID for each plane.

To illustrate this more clearly, imagine a physical screen of 320x200 (16 colors) which is laid
out over 4 virtual screens in a 2x2 grid. The following diagram and table shows example values
to move the physical screen to the desired virtual coordinates:

Sample Values
Virtual Coordinates VBASE Address LINEWID HSCROLL

(0, 0) 0x80000 80 0
(16, 0) 0x80004 80 0
(0, 1) 0x80140 80 0
(1, 0) 0x80000 76 1
(0, 10) 0x80B40 80 0

(100, 100) 0x87BE4 76 4

T H E A T A R I C O M P E N D I U M

– CHAPTER 6 –

AES

Overview – 6.3

T H E A T A R I C O M P E N D I U M

Overview

The Application Environment Services (AES) compose the highest level of the operating
system. The AES uses the VDI , GEMDOS, and XBIOS to provide a global utility library of
calls which provide applications with the GEM interface. Usage of the AES makes application
development simpler and makes user interfaces more consistent. The services provided by the
AES include:

• Application Control/Interaction

• Event Management

• Menu Services

• Object Rendering/Manipulation

• Form Management

• Graphic Utility Functions

• Scrap (Clipboard) Management

• Common Dialog Display

• Window Management

• Resource Management

• Shell (Desktop) Interaction

System-specific AES information and variables may be determined through reserved fields in
the application’s global array (see appl_init()) or by using the various modes of appl_getinfo().

Process Handling

The AES manages two types of user programs. Normal GEM applications have file extensions
of ‘.PRG’, ‘.APP’, or ‘.GTP’. Desk Accessories have file extensions of ‘.ACC’.

Without MultiTOS , the AES can have a maximum of one application and six desk accessories
(four desk accessories under TOS 1.0) executing concurrently. The currently running application
(or the Desktop if no application is running) is given primary control over the system. Desk
accessories are allocated processor time only when the foreground application releases control
by calling one of the event library functions. An application which does not have a standard
event loop (as illustrated below) will cause desk accessories to stop functioning while it is
being executed.

6.4 – AES

T H E A T A R I C O M P E N D I U M

Under MultiTOS , an unlimited amount of applications and desk accessories may be loaded
concurrently1. MultiTOS is a pre-emptive system where all system processes are given time
regardless of other applications.

Applications

When an application is launched, GEM allocates all remaining system memory and loads the
application into this area2. It is the responsibility of the application to free whatever memory it
doesn’t immediately need for its text, data, bss, and stack area. Most high level languages do this
for you in the startup stub linked with every application.

GEM applications begin with an appl_init() function call. This call will return a valid
application ID if the process can be successfully registered or a -1 if it fails. If the call fails, the
application should immediately exit without making any AES calls. Upon success, however, the
ID should be stored for future use within the application. Applications running under MultiTOS
should call menu_register() to display the program title in the application list rather than the
filename.

The next steps a GEM application will follow are variable, however, most GEM applications
will initialize themselves further by performing some or all of the following steps:

• Open a VDI workstation.

• Verify that the computer the application is being run on has the minimum
requirements (screen resolution, OS versions, memory needs, hardware features)
necessary to continue.

• Load the application ‘.RSC’ file and fix it up as necessary.

• Display the menu bar.

• Change the mouse form to an arrow (the AES defaults to a BUSY_BEE shape).

• Enter the application’s main event loop.

The following represents a basic skeleton for an AES application:

#include <AES.H>
#include <VDI.H>
#include <OSBIND.H>
#include <VDIWORK.H>
#include “skel.h”

#define CNTRL_Q 0x11

1Some MultiTOS versions limit this based upon the available space in the leftmost menu.
2TOS 5.0 does allow the user to set limits on the amount of memory allowed to an application.

Applications – 6.5

T H E A T A R I C O M P E N D I U M

int main(int, char *[]);

extern int _AESglobal[15];

short ap_id;
VDI_Workstation ws; /* See entry for V_Opnvwk() in VDI docs */
OBJECT *mainmenu;

char RSCname[] = “skeleton.rsc”;
char menu_title[] = “ Skeleton”;

int
main(int argc, char *argv[])
{

char *altNoVDIWork = “[3][GEM is unable to|allocate a workstation.|The
program must abort.][OK]”;
char *altNoRSC = “[3][The program cannot locate|SKELETON.RSC. Please

ensure|that it resides in the|same directory as|SKELETON.PRG.][OK]”;
short ret,msg[8],kc,quit,dum;

ap_id = appl_init();
if(ap_id == -1)

return -1;

if(!OpenVwork(&ws))
{

graf_mouse(ARROW, 0L);
form_alert(1, altNoVDIWork);
appl_exit();
return -1;

}

if(!rsrc_load(RSCname))
{

graf_mouse(ARROW, 0L);
form_alert(1, altNoRSC);
v_clsvwk(ws.handle);
appl_exit();
return -1;

}

if(_AESglobal[1] == -1) /* MultiTOS present?
*/

menu_register(ap_id, menu_title); /* Yes, make name pretty. */

rsrc_gaddr(R_TREE, MAINMENU, &mainmenu);

menu_bar(mainmenu,1);
graf_mouse(ARROW, 0L);

quit = FALSE;
while(!quit)
{

ret = evnt_multi(MU_MESAG|MU_KEYBD,2,1,1,0,0,0,0,0,0,0,0,0,0,msg,0,0,
&dum,&dum,&dum,&dum,&kc,&dum);

if(ret & MU_MESAG)
{

6.6 – AES

T H E A T A R I C O M P E N D I U M

switch(msg[0])
{

case MN_SELECTED:
switch(msg[3])
{

. /* Other menu selections */

.

.

case mmExit: /* Defined in SKEL.H */
quit = TRUE;
break;

}
break;

}
}

}

if(ret & MU_KEYBD)
{

switch(kc & 0xFF)
{

. /* Other keyboard equivalents */

.

.
case CNTRL_Q:

quit = TRUE;
break;

}
}

}

menu_bar(mainmenu, 0);
v_clsvwk(ws.handle);
rsrc_free();
appl_exit();
return 0;

}

The Command Line
GEM applications, like TOS applications, may be started with a command line (for a detailed
description of command line processing, see Chapter 2: GEMDOS). ‘.PRG’ files and ‘.APP’
files will have items on the command line if a document file which was registered with the
application was double-clicked or if a valid document file was dropped over the application’s
icon in the Desktop. Launching a ‘.GTP’ application will cause the Desktop to prompt the user
for a command line in the same manner as ‘.TTP’ programs are handled. Applications which
find one or more valid document names on their command line should automatically load them
on program start.

Desk Accessories – 6.7

T H E A T A R I C O M P E N D I U M

Desk Accessories

Upon bootup, any files with the extension ‘.ACC’ found in the root directory of the user’s boot
drive will be loaded and executed up until their first event library call. MultiTOS allows desk
accessories to be loaded and unloaded after bootup.

Unlike applications, desk accessories are not given all of available system memory on startup.
They are only allocated enough memory for their text, data, and bss segments. No stack space is
allocated for a desk accessory either. Many high level language stubs reserve space in the BSS
or overwrite startup code to provide a stack but keep in mind that desk accessory stacks are
usually small compared to applications.

As with applications, GEM desk accessories should begin with an appl_init() function call.
Upon success, the ID should be stored and used within a menu_register() call to place the
applications’ name on the menu bar.

Desk accessories, unlike applications, do not begin user interaction immediately. Most desk
accessories initialize themselves and enter a message loop waiting for an AC_OPEN message.
Some desk accessories wait for timer events or custom messages from another application. After
being triggered, they usually open a window in which user interaction may be performed
(dialogs and alerts may also be presented but are not recommended because they prevent
shuffling between other system processes).

Desk accessories should not use a menu bar and should never exit (unless appl_init() fails) after
calling menu_register(). If an error condition occurs which would make the accessory
unusable, simply enter an indefinite message loop.

Any resources loaded by an accessory should be loaded prior to entering the first event loop and
should never be freed after the accessory has called menu_register(). Resource data for desk
accessories should be embedded in the executable rather than being soft-loaded because memory
allocated to a desk accessory is not freed during a resolution change on TOS versions less than
2.06. This causes resource memory allocated by rsrc_load() to be lost to the system after a
resolution change and will likely cause memory fragmentation.

An AC_CLOSE message is sent to an accessory when it is being closed at the request of the
OS. At this point, it should perform any cleanup necessary to release system resources and close
files opened at AC_OPEN (accessory windows will be closed automatically by the AES).
After cleanup, the event loop should be reentered to wait for subsequent AC_OPEN messages.

The following code represents a basic skeleton for an AES desk accessory:

#include <AES.H>
#include <VDI.H>
#include <OSBIND.H>
#include <VDIWORK.H>

6.8 – AES

T H E A T A R I C O M P E N D I U M

int main(int, char *[]);

short ap_id;
VDI_Workstation ws; /* See entry for V_Opnvwk() in VDI docs */

char menu_title[] = “ Skeleton”;

int
main(int argc, char *argv[])
{

char *altNoVDIWork = “[3][GEM is unable to|allocate a workstation.|The
program must abort.][OK]”;
short ret,msg[8],kc,dum;

ap_id = appl_init();
if(ap_id == -1)

return -1;

if(!OpenVwork(&ws))
{

form_alert(1, altNoVDIWork);
appl_exit();
return -1;

}

menu_id = menu_register(ap_id, menu_title); /* Place name on menu bar
*/

for(;;)
{

evnt_mesag(msg);

switch(msg[0])
{

case AC_OPEN:
if(msg[3] == menu_id)

OpenAccessoryWindow();
break;

case AC_CLOSE:
if(msg[3] == menu_id)
{

v_clsvwk(ws.handle);
break;

}
}

}
}

The Environment String – 6.9

T H E A T A R I C O M P E N D I U M

The Environment String

One AES environment string exists in the system. This environment string is the one initially
allocated for the AES by GEMDOS. The AES environment string should not be confused with
GEMDOS environment strings. Each GEMDOS process receives its own environment string
when launched. This string may have been purposely altered (or omitted) by its parent.

The AES environment string is a collection of variables which the AES (and other processes)
may use as global system variables. Environment data may be set by a CPX designed to
configure the environment, in the user’s GEM.CNF file, or by an application.

In actuality, the environment string is actually one or many string entries separated by NULL
bytes with the full list being terminated by a double NULL byte. Examples of environment string
entries include:

PATH=C:\;D:\;E:\BIN\
TEMP=C:\
AE_SREDRAW=0

The environment variable name is followed by an equal sign which is followed by the variable
data. Multiple arguments (such as path names) may be separated by semicolons or commas3.

The AES call shel_envrn() may be used to search for an environment variable and new modes
of shel_write() (after AES version 4.0) may be used to alter environment variables or copy the
entire environment string.

Most versions of the AES contain a bug which causes the ‘PATH’ environment variable to be
set incorrectly upon bootup to ‘PATH=[nul] A:\[nul][nul] ’. If an environment string like this is
found it may be safely reset or simply ignored.

The Event Dispatcher

Most GEM applications and all desk accessories rely on one of the AES event processing calls
to direct program flow. After program initialization, an application enters a message loop which
waits for and reacts to messages sent by the AES. Five basic types of events are generated by
the AES and each can be read by a specialized event library call as follows:

Event Type AES Function
Message evnt_mesag()
Mouse Button evnt_button()
Keyboard evnt_keybd()
Timer evnt_timer()

3The AES only began recognizing commas as valid argument separators (for the PATH environment variable) as of AES version 1.4.

6.10 – AES

T H E A T A R I C O M P E N D I U M

Mouse Movement evnt_mouse()

In addition to these five basic calls, the AES offers one multi-purpose call which waits for any
combination of the above events called evnt_multi(). The evnt_multi() call is often the most
important function call in any GEM application. A typical message loop follows:

#include <AES.H>

void
MessageLoop(void)
{

short mx, my; /* Mouse Position */
short mb, mc; /* Mouse button/# clicks */
short ks, kc; /* Key state/code */
short quit; /* Exit flag */
short msg[8]; /* Message buffer */
short events; /* What events are valid? */

/* Mask for all events */
#define ALL_EVENTS (MU_MESAG|MU_BUTTON|MU_KEYBD|MU_TIMER|MU_M1|MU_M2)

quit = FALSE;
while(!quit)
{

events = evnt_multi(ALL_EVENTS,
2, 1, 1, /* Single/double clicks */
0, 0, 0, 128, 128, /* M1 event */
1, 0, 0, 128, 128, /* M2 event */
msg, /* Pointer to msg */
1000, 0, /* MU_TIMER every 1 sec. */
&mx, &my, &ks, &kc,
&mc);

if(events & MU_MESAG)
{

switch(msg[0]) /* msg[0] is message type */
{

case MN_SELECTED:
HandleMenuClick(msg);
break;

case WM_CLOSED:
CloseWindow(msg[3]);
break;

/*
 * more message events...
 */

}
}

if(events & MU_BUTTON)
{

/*
 * Handle mouse button event.
 */

}

if(events & MU_KEYBD)

The Event Dispatcher – 6.11

T H E A T A R I C O M P E N D I U M

{
/*
 * Handle keyboard events.
 */

}

if(events & MU_TIMER)
{

/*
 * Handle Timer events.
 */

}

if(events & MU_M1)
{

/*
 * Handle mouse rectangle event 1.
 */

}

if(events & MU_M2)
{

/*
 * Handle mouse rectangle event 2.
 */

}
}

/* Loop will terminate here when ‘quit’ is set to TRUE. */
}

When an event library function is called, the program is effectively halted until a message which
is being waited for becomes available. Not all applications will require all events so the above
code may be considered flexible.

Message Events
Each standard GEM message event (MU_MESAG) uses some or all of an 8 WORD message
buffer. Each entry in this buffer is assigned as follows:

msg[x] Meaning
0 Message type.
1 The application identifier of the process sending the

message.
2 The length of the message beyond 16 bytes (in bytes).

For all standard GEM messages, this values is 0.
3 Depends on message.
4 Depends on message.
5 Depends on message.
6 Depends on message.
7 Depends on message.

The entry for evnt_mesag() later in this chapter has a comprehensive list of all system messages
and the action that should be taken when they are received.

6.12 – AES

T H E A T A R I C O M P E N D I U M

User-Defined Message Events
Applications may write customized messages to other applications (or themselves) using
appl_write(). The structure of the message buffer should remain the same as shown above. If
more than the standard eight WORDs of data are sent, however, appl_read() must be used to
read the additional bytes. It is recommended that user-defined messages be set to a multiple of 8
bytes.

You can use this method to send your own application standard messages by filling in the
message buffer appropriately and using appl_write(). This method is often used to force redraw
or window events.

Mouse Button Events
When a mouse button (MU_BUTTON) event happens, the evnt_button() or evnt_multi() call
is returned with the mouse coordinates, the number of clicks that occurred, and the keyboard
shift state.

Keyboard Events
Keyboard events (MU_KEYBD) are generated whenever a key is struck. The IKBD scan code
(see Appendix F: IKBD Scan Codes) and current key shift state are returned by either
evnt_keybd() or evnt_multi(). If your application is designed to run on machines in other
countries, you might consider translating the scan codes using the tables returned by the XBIOS
call Keytbl() .

Timer Events
evnt_timer() or evnt_multi(MU_TIMER , ...) can be used to request a timer event(s) be
scheduled in a certain number of milliseconds. The time between the actual function call and the
event may, however, be greater than the time specified.

Mouse Rectangle Events
Mouse rectangle events (MU_M1 and/or MU_M2) are generated by evnt_mouse() and
evnt_multi() when the mouse pointer enters or leaves (depending on how you program it) a
specified rectangle.

Resources – 6.13

T H E A T A R I C O M P E N D I U M

Resources

GEM resources consist of object trees, strings, and bitmaps used by an application. They
encapsulate the user interface and make internationalization easier by placing all program strings
in a single file. Resources are generally created using a Resource Construction Set (RCS) and
saved to a .RSC file (see Appendix C: Native File Formats) which is loaded by rsrc_load() at
program initialization time.

Resources may also be embedded as data structures in source code (some utility programs
convert .RSC files to source code). Desk accessories often do this to avoid complications they
have in loading .RSC files.

Resources contain pointers and coordinates which must be fixed up before being used.
rsrc_load() does this automatically, however if you use an embedded resource you must use
rsrc_rcfix() if available or rsrc_obfix() on each object in each object tree to convert the initial
character coordinates of to screen coordinates. This allows resources designed on screens with
different aspect ratios and system fonts to appear the same. In any case, you should test your
resources on several different screens, especially screen resolutions with different aspect ratios
such as ST Medium and ST High.

Once a resource is loaded use rsrc_gaddr() to obtain pointers to individual object trees which
can then be manipulated directly or with the AES Object Library. Replacing resources after
they’re loaded is accomplished with rsrc_saddr().

Objects

Objects can be boxes, buttons, text, images, and more. An object tree is an array of OBJECT
structures linked to form a structured relationship to each other. The OBJECT structure format
is as follows:

typedef struct object
{

WORD ob_next;
WORD ob_head;
WORD ob_tail;
UWORD ob_type;
UWORD ob_flags;
UWORD ob_state;
VOIDP ob_spec;
WORD ob_x;
WORD ob_y;
WORD ob_width;
WORD ob_height;

} OBJECT;

Normally OBJECTs are loaded in an application resource file but it is possible to create and
manipulate them on-the-fly using the objc_add(), objc_delete(), and objc_order() commands.

6.14 – AES

T H E A T A R I C O M P E N D I U M

The first object in an OBJECT tree is called the ROOT object (OBJECT #0). It’s coordinates
are relative to the upper-left hand corner of the screen.

The ROOT object can have any number of children and each child can have children of their
own. In each case, the OBJECT’s coordinates, ob_x, ob_y, ob_width, and ob_height are
relative to that of its parent. The AES call objc_offset() can, however, be used to determine the
exact screen coordinates of a child object. objc_find() is used to determine the object at a given
screen coordinate.

The ob_next, ob_head, and ob_tail fields determine this relationship between parent OBJECTs
and child OBJECTs. The following alert box is an example of an OBJECT tree:

Objects – 6.15

T H E A T A R I C O M P E N D I U M

The tree structure this object has can be represented as follows:

The exact usage of ob_head, ob_next, and ob_tail are as follows:

Element Usage
ob_head This member gives the exact index from the first object in

the OBJECT tree to the first child of the current object. If
the object has no children then this value should be -1.

ob_tail This member gives the exact index from the first object in
the OBJECT tree to the last child of the current object. If
the object has no children then this value should be -1.

ob_next This member gives the exact index from the first object in
the OBJECT tree to the next child at the same level. The
ROOT object should be set to -1. The last child at any
given nesting level should be set to the index of its parent.

The low byte of the ob_type field specifies the object type as follows:

Name ob_type & 0xFF Meaning
G_BOX 20 Box
G_TEXT 21 Formatted Text
G_BOXTEXT 22 Formatted Text in a Box
G_IMAGE 23 Monochrome Image
G_PROGDEF 24 Programmer-Defined Object.

6.16 – AES

T H E A T A R I C O M P E N D I U M

G_IBOX 25 Invisible Box
G_BUTTON 26 Push Button w/String
G_BOXCHAR 27 Character in a Box
G_STRING 28 Unformatted Text
G_FTEXT 29 Editable Formatted Text
G_FBOXTEXT 30 Editable Formatted Text in a Box
G_ICON 31 Monochrome Icon
G_TITLE 32 Menu Title
G_CICON 33 Color Icon (Available as of AES v3.3)

Object Flags
The ob_flags field of the OBJECT structure is a bitmask of different flags that can be applied to
any object as follows:

Name Bit(s) Mask Meaning
SELECTABLE 0 0x0001 Object’s selected state may be toggled by

clicking on it with the mouse.
DEFAULT 1 0x0002 An EXIT object with this bit set will have a

thicker outline and be triggered when the
user presses RETURN.

EXIT 2 0x0004 Clicking on this OBJECT and releasing the
mouse button while still over it will cause the
dialog to exit.

EDITABLE 3 0x0008 Set for FTEXT and FBOXTEXT objects to
indicate that they may receive edit focus.

RBUTTON 4 0x0010 This object is one of a group of radio
buttons. Clicking on it will deselect any
selected objects at the same tree level that
also have the RBUTTON flag set.

Likewise, it will be deselected automatically
when any other object is selected.

LASTOB 5 0x0020 This flag signals to the AES that the current
OBJECT is the last in the object tree.
(Required!)

TOUCHEXIT 6 0x0040 Setting this flag causes the OBJECT to
return an exit state immediately after being
clicked on with the mouse.

HIDETREE 7 0x0080 This OBJECT and all of its children will not
be drawn.

INDIRECT 8 0x0100 This flag cause the ob_spec field to be
interpreted as a pointer to the ob_spec
value rather than the value itself.

FL3DIND 9 0x0200 Setting this flag causes the OBJECT to be
drawn as a 3D indicator. This is appropriate
for radio and toggle buttons. This flag is only
recognized as of AES version 3.4.

FL3DACT 10 0x0400 Setting this flag causes the OBJECT to be
drawn as a 3D activator. This is appropriate
for EXIT buttons. This flag is only recognized
as of AES version 3.4.

Objects – 6.17

T H E A T A R I C O M P E N D I U M

FL3DBAK 9 & 10 0x0600 If these bits are set, the object is treated as
an AES background object. If it is
OUTLINED, the outlined is drawn in a 3D
manner. If its color is set to WHITE and its
fill pattern is set to 0 then the OBJECT will
inherit the default 3D background color. This
flag is only recognized as of AES version
3.4.

SUBMENU 11 0x0800 This bit is set on menu items which have a
sub-menu attachment. This bit also indicates
that the high byte of the ob_type field is
being used by the menu system.

Object States
The ob_state field determines the display state of the OBJECT as follows:

Name Bit Mask Meaning
SELECTED 0 0x0001 The object is selected. An object with this

bit set will be drawn in inverse video
except for G_CICON which will use its
‘selected’ image.

CROSSED 1 0x0002 An OBJECT with this bit set will be drawn
over with a white cross (this state can only
usually be seen over a colored or
SELECTED object).

CHECKED 2 0x0004 An OBJECT with this bit set will be
displayed with a checkmark in its upper-
left corner.

DISABLED 3 0x0008 An OBJECT with this bit set will ignore
user input. Text objects with this bit set will
draw in a dithered pattern.

OUTLINED 4 0x0010 G_BOX, G_IBOX, G_BOXTEXT,
G_FBOXTEXT, and G_BOXCHAR
OBJECTs with this bit set will be drawn
with a double border.

SHADOWED 5 0x0020 G_BOX, G_IBOX, G_BOXTEXT,
G_FBOXTEXT, and G_BOXCHAR
OBJECTs will be drawn with a shadow.

The AES supports the objc_change() call which can be used to change the state of an object and
(optionally) redraw it.

6.18 – AES

T H E A T A R I C O M P E N D I U M

The Object-Specific Field
The ob_spec field contains different data depending on the object type as indicated in the table
below:

Object Contents of ob_spec
G_BOX The low 16 bits contain a WORD containing color

information for the OBJECT . Bits 23-16 contain a signed
BYTE representing the border thickness of the box.

G_TEXT The ob_spec field contains a pointer to a TEDINFO
structure.

G_BOXTEXT The ob_spec field contains a pointer to a TEDINFO
structure.

G_IMAGE The ob_spec field points to a BITBLK structure.
G_PROGDEF The ob_spec field points to a APPLBLK structure.
G_IBOX The low 16 bits contain a WORD containing color

information for the OBJECT . Bits 23-16 contain a signed
BYTE representing the border thickness of the box.

G_BUTTON The ob_spec field contains a pointer to the text to be
contained in the button.

G_BOXCHAR The low 16 bits contain a WORD containing color
information for the OBJECT . Bits 23-16 contain a signed
BYTE representing the border thickness of the box. Bits
31-24 contain the ASCII value of the character to display.

G_STRING The ob_spec field contains a pointer to the text to be
displayed.

G_FTEXT The ob_spec field contains a pointer to a TEDINFO
structure.

G_FBOXTEXT The ob_spec field contains a pointer to a TEDINFO
structure.

G_ICON The ob_spec field contains a pointer to an ICONBLK
structure.

G_TITLE The ob_spec field contains a pointer to the text to be
used for the title.

G_CICON The ob_spec field contains a pointer to a CICONBLK
structure.

Object-Specific Structures
Almost all objects reference a WORD containing the object color as defined below (note the
definition below may need to be altered depending upon the bit ordering of your compiler).

typedef struct objc_colorword
{

UWORD borderc : 4; /* Bits 15-12 contain the border color */
UWORD textc : 4; /* Bits 11-8 contain the text color */
UWORD opaque : 1; /* Bit 7 is 1 if opaque or 0 if transparent */
UWORD pattern : 3; /* Bits 6-4 contain the fill pattern index */
UWORD fillc : 4; /* Bits 3-0 contain the fill color */

} OBJC_COLORWORD;

Available colors for fill patterns, text, and borders are listed below:

Objects – 6.19

T H E A T A R I C O M P E N D I U M

Name Value Color
WHITE 0 White
BLACK 1 Black
RED 2 Red
GREEN 3 Green
BLUE 4 Blue
CYAN 5 Cyan
YELLOW 6 Yellow
MAGENTA 7 Magenta
LWHITE 8 Light Gray
LBLACK 9 Dark Gray
LRED 10 Light Red
LGREEN 11 Light Green
LBLUE 12 Light Blue
LCYAN 13 Light Cyan
LYELLOW 14 Light Yellow
LMAGENTA 15 Light Magenta

TEDINFO
G_TEXT , G_BOXTEXT , G_FTEXT , and G_FBOXTEXT objects all reference a TEDINFO
structure in their ob_spec field. The TEDINFO structure is defined below:

typedef struct text_edinfo
{

char * te_ptext;
char * te_ptmplt;
char * te_pvalid;
WORD te_font;
WORD te_fontid;
WORD te_just;
WORD te_color;
WORD te_fontsize;
WORD te_thickness;
WORD te_txtlen;
WORD te_tmplen;

} TEDINFO;

The three character pointer point to text strings required for G_FTEXT and G_FBOXTEXT
objects. te_ptext points to the actual text to be displayed and is the only field used by all text
objects. te_ptmplt points to the text template for editable fields. For each character that the user
can enter, the text string should contain a tilde character (ASCII 126). Other characters are
displayed but cannot be overwritten by the user. te_pvalid contains validation characters for
each character the user may enter. The current acceptable validation characters are:

Character Allows
9 Digits 0-9
A Uppercase letters A-Z plus

SPACE

a Upper and lowercase letters
plus SPACE

6.20 – AES

T H E A T A R I C O M P E N D I U M

N Digits 0-9, uppercase
letters A-Z, and SPACE

n Digits 0-9, upper and
lowercase letters A-Z, and
SPACE

F Valid GEMDOS filename
characters plus question
mark and asterisk

P Valid GEMDOS pathname
characters plus backslash,
colon, question mark, and
asterisk

p Valid GEMDOS pathname
characters plus backslash
and colon

X All characters

As an example the following diagram shows the correct text, template, and validation strings for
obtaining a GEMDOS filename from the user.

String Contents
te_ptext ‘\0’ (NULL char)
te_ptmplt ________.___
te_pvalid FFFFFFFFFFF

te_font may be set to any of the following values:

Name te_font Meaning
GDOS_PROP 0 Use a SpeedoGDOS font (valid only with an AES version

of at least 4.0 and SpeedoGDOS installed).
GDOS_MONO 1 Use a SpeedoGDOS font (valid only with an AES version

of at least 4.1 and SpeedoGDOS installed) and force
monospaced output.

GDOS_BITM 2 Use a GDOS bitmap font (valid only with an AES version
of at least 4.1 and SpeedoGDOS installed).

IBM 3 Use the standard monospaced system font.
SMALL 5 Use the small monospaced system font.

When using a value of GDOS_PROP, GDOS_MONO, or GDOS_BITM , te_fontsize
specifies the font size in points and te_fontid specifies the SpeedoGDOS font identification
number. Selecting the IBM or SMALL font will cause te_fontsize and te_fontid to be ignored.

te_just sets the justification of the text output as follows:

Name te_just Meaning
TE_LEFT 0 Left Justify
TE_RIGHT 1 Right Justify
TE_CNTR 2 Center

Objects – 6.21

T H E A T A R I C O M P E N D I U M

te_thickness sets the border thickness (positive and negative values are acceptable) of the
G_BOXTEXT or G_FBOXTEXT object. te_txtlen and te_tmplen should be set to the length of
the starting text and template length respectively.

BITBLK
G_IMAGE objects contain a pointer to a BITBLK structure in their ob_spec field. The
BITBLK structure is defined as follows:

typedef struct bit_block
{

WORD *bi_pdata;
WORD bi_wb;
WORD bi_hl;
WORD bi_x;
WORD bi_y;
WORD bi_color;

} BITBLK;

bi_pdata should point to a monochrome bit image. bi_wb specifies the width (in bytes) of the
image. All BITBLK images must be a multiple of 16 pixels wide therefore this value must be
even.

bi_hl specifies the height of the image in scan lines (rows). bi_x and bi_y are used as offsets
into bi_pdata. Any data occurring before these coordinates will be ignored. bi_color is a
standard color WORD where the fill color specifies the color in which the image will be
rendered.

ICONBLK
The ob_spec field of G_ICON objects point to an ICONBLK structure as defined below:

typedef struct icon_block
{

WORD * ib_pmask;
WORD * ib_pdata;
char * ib_ptext;
WORD ib_char;
WORD ib_xchar;
WORD ib_ychar;
WORD ib_xicon;
WORD ib_yicon;
WORD ib_wicon;
WORD ib_hicon;
WORD ib_xtext;
WORD ib_ytext;
WORD ib_wtext;
WORD ib_htext;

} ICONBLK;

ib_pmask and ib_pdata are pointers to the monochrome mask and image data respectively.
ib_ptext is a string pointer to the icon text. ib_char defines the icon character (used for drive
icons) and the icon foreground and background color as follows:

6.22 – AES

T H E A T A R I C O M P E N D I U M

ib_char
Bits 15-12 Bits 11-8 Bits 7-0

Icon Foreground
Color

Icon Background
Color

ASCII Character (or 0
for no character).

ib_xchar and ib_ychar specify the location of the icon character relative to ib_xicon and
ib_yicon. ib_xicon and ib_yicon specify the location of the icon relative to the ob_x and ob_y of
the object. ib_wicon and ib_hicon specify the width and height of the icon in pixels. As with
images, icons must be a multiple of 16 pixels in width.

ib_xtext and ib_ytext specify the location of the text string relative to the ob_x and ob_y of the
object. ib_wtext and ib_htext specify the width and height of the icon text area.

CICONBLK
The G_CICON object (available as of AES version 3.3) defines its ob_spec field to be a
pointer to a CICONBLK structure as defined below:

typedef struct cicon_blk
{

ICONBLK monoblk;
CICON * mainlist;

} CICONBLK;

monoblk contains a monochrome icon which is rendered if a color icon matching the display
parameters cannot be found. In addition, the icon text, character, size, and positioning data from
the monochrome icon are always used for the color one. mainlist points to the first CICON
structure in a linked list of color icons for different resolutions. CICON is defined as follows:

typedef struct cicon_data
{

WORD num_planes;
WORD * col_data;
WORD * col_mask;
WORD * sel_data;
WORD * sel_mask;
struct cicon_data * next_res;

} CICON;

num_planes indicates the number of bit planes this color icon contains. col_data and col_mask
point to the icon data and mask for the unselected icon respectively. Likewise, sel_data and
sel_mask point to the icon data and mask for the selected icon. next_res points to the next color
icon definition or NULL if no more are available. Bitmap data pointed to by these variables
should be in VDI device-dependent format (they are stored as device-independent images in a
.RSC file).

The AES searches the CICONBLK object for a color icon that has the same number of planes in
the display. If none is found, the AES simply uses the monochrome icon.

Objects – 6.23

T H E A T A R I C O M P E N D I U M

APPLBLK
G_PROGDEF objects allow programmers to define custom objects and link them transparently
in the resource. The ob_spec field of G_PROGDEF objects contains a pointer to an APPLBLK
as defined below:

typedef struct appl_blk
{

WORD (*ab_code)(PARMBLK *);
LONG ab_parm;

} APPLBLK;

ab_code is a pointer to a user-defined routine which will draw the object. The routine will be
passed a pointer to a PARMBLK structure containing the information it needs to render the
object. The routine must be defined with stack checking off and expect to be passed its
parameter on the stack. ab_parm is a user-defined value which is copied into the PARMBLK
structure as defined below:

typedef struct parm_blk
{

OBJECT *tree;
WORD pb_obj;
WORD pb_prevstate;
WORD pb_currstate;
WORD pb_x;
WORD pb_y;
WORD pb_w;
WORD pb_h;
WORD pb_xc;
WORD pb_yc;
WORD pb_wc;
WORD pb_hc;
LONG pb_parm;

} PARMBLK;

tree points to the OBJECT tree of the object being drawn. The object is located at index
pb_obj.

The routine is passed the old ob_state of the object in pb_prevstate and the new ob_state of the
object in pb_currstate. If pb_prevstate and pb_currstate is equal then the object should be
drawn completely, otherwise only the drawing necessary to redraw the object from
pb_prevstate to pb_currstate are necessary.

pb_x, pb_y, pb_w, and pb_h give the screen coordinates of the object. pb_xc, pb_yc, pb_wc, and
pb_hc give the rectangle to clip to. pb_parm contains a copy of the ap_parm value in the
APPLBLK structure.

The custom routine should return a WORD containing any remaining ob_state bits you wish the
AES to draw over your custom object.

6.24 – AES

T H E A T A R I C O M P E N D I U M

Because the drawing routing will be called from the context of the AES, using the stack heavily
or defining many local variables is not recommended.

Dialogs

Dialog boxes are modal forms of user input. This means that no other interaction can occur
between the user and applications until the requirements of the dialog have been met and it is
exited. A normal dialog box consists of an OBJECT tree with a BOX as its root object and any
number of other controls that accept user input. Both alert boxes and the file selector are
examples of AES provided dialog boxes.

The AES form_do() function is the simplest method of using a dialog box. Simply construct an
OBJECT tree with at least one EXIT or TOUCHEXIT object and call form_do(). All
interaction with the dialog like editable fields, radio buttons, and selectable objects will be
maintained by the AES until the user strikes an EXIT or TOUCHEXIT object. The proper
method for displaying a dialog box is shown in the example below:

WORD
do_dialog(OBJECT *tree, WORD first_edit)
{

GRECT g;
WORD ret;

/* Reserve screen/mouse button */
wind_update(BEG_UPDATE);
wind_update(BEG_MCTRL);

/* Center dialog on screen and put clipping rectangle in g */
form_center(tree, &g.g_x, &g.g_y, &g.g_w, &g.g_h);

/* Reserve screen space and draw growing box */
form_dial(FMD_START, 0, 0, 0, 0, g.g_x, g.g_y, g.g_w, g.g_h);
form_dial(FMD_GROW, g.g_x + g.g_w/2, g.g_y + g.g_h/2, 0, 0, g.g_x, g.g_y,

g.g_w, g.g_h);

/* Draw the dialog box */
objc_draw(tree, ROOT, MAX_DEPTH, g.g_x, g.g_y, g.g_w, g.g_h);

/* Handle dialog */
ret = form_do(tree, first_edit);

/* Deselect EXIT button */
tree[ret].ob_state &= ~SELECTED;

/* Draw shrinking box and release screen area */
form_dial(FMD_SHRINK, g.g_x + g.g_w/2, g.g_y + g.g_h/2, 0, 0, g.g_x, g.g_y,

g.g_w, g.g_h);
form_dial(FMD_FINISH, 0, 0, 0, 0, g.g_x, g.g_y, g.g_w, g.g_h);

/* Release screen/mouse control. */
wind_update(END_MCTRL);
wind_update(END_UPDATE);

Menus – 6.25

T H E A T A R I C O M P E N D I U M

/* Return the object selected */
return ret;

}

You may wish to create your own specialized dialog handling routines or place dialog boxes in
windows to create modeless input. This can be accomplished by using the form_button() ,
form_keybd(), and objc_edit() AES calls. Specific information about these calls may be found
in the Function Reference.

GEM also provides two generic dialog boxes through the form_alert() and form_error() calls.
form_alert() displays an alert dialog with a choice between icons and user-defined text and
buttons. form_error() displays an alert based on predefined system error codes.

Menus

Most GEM applications use a menu bar to allow the user to navigate through program options.
In addition, newer versions of the AES now allow popup menus and drop-down list boxes (a
special form of a popup menu). Menus are simply specially designed OBJECT trees activated
using special AES calls.

The Menu Bar
The menu bar is a special OBJECT which is usually registered in the beginning stages of a
GEM program which contains choices which the user may select to trigger a special menu event
(MN_SELECTED) to be sent to the application’s message loop. Normally, you will use a
resource construction set to create a menu but if you are designing an RCS or must create a menu
bar by hand, the format for the OBJECT structure of a GEM menu bar is shown below:

The ROOT object is a G_IBOX and should be set to the same width and height of the screen. It
has two children, the BAR object and the DROPDOWNS object.

6.26 – AES

T H E A T A R I C O M P E N D I U M

The BAR object is a G_BOX which should be the width of the screen and the height of the
system font plus two pixels for a border line. The DROPDOWNS object is a G_IBOX and
should be of a size large enough to encompass all of the drop-down menu boxes.

The BAR object has one child, the ACTIVE object, it should be the width of the screen and the
height of the system font. It has as many G_TITLE children as there are menu titles.

The DROPDOWNS object has the same number of G_BOX child objects as the ACTIVE
object has G_TITLE children. Each box must be high enough to support the number of
G_STRING menu items and wide enough to support the longest item. Each G_BOX must be
aligned so that it falls underneath its corresponding G_TITLE . In addition, each G_STRING
menu item should be the same length as its parent G_BOX object.

Each G_STRING menu item should be preceded by two spaces. Each G_TITLE should be
preceded and followed by one space. The first G_BOX object should appear under a G_TITLE
object named ‘Desk’ and should contain eight children. The first child G_STRING is
application defined (it usually leads to the ‘About...’ program credits), the second item should
be a disabled separator (‘-----------’) line. The next six items are dummy objects used by the
AES to display program and desk accessory titles.

Utilizing a Menu Bar
Menu bars can be displayed and their handling initiated by calling menu_bar(). In addition,
using this command, a menu bar may be turned off or replaced with another menu bar at any time.

Individual menu items may be altered with three AES calls. menu_icheck() sets or removes a
checkmark from in front of menu items. menu_ienable() enables or disables a menu item.
menu_itext() alters the text of a menu item. After receiving a message indicating that a menu
item has been clicked, perform the action appropriate to the menu item and then call
menu_tnormal() to return the menu title text to normal video.

Hierarchical Menus
AES versions 3.3 and above support hierarchical submenus. When a submenu is attached to a
regular menu item, a right arrow is appended to the end of the menu item text and a submenu is
displayed whenever the mouse is positioned over the menu item. The user may select submenu
items which cause an extended version of the MN_SELECTED message to be delivered
(containing the menu object tree).

Up to 64 submenu attachments may be in effect at any time per process. Attaching a single
submenu to more than one menu item counts as only one attachment.

Submenus should be G_BOX objects with as many G_STRING (or other) child objects as
necessary. One or several submenus may be contained in a single OBJECT tree. If the
submenu’s scroll flag is set, scroll arrows will appear and the menu will be scrollable if it

Menus – 6.27

T H E A T A R I C O M P E N D I U M

contains more items than the currently set system scroll value. Submenus containing user-defined
objects should not have their scroll flag set.

Submenus are attached and removed with the menu_attach() call. A serious bug exists in AES
versions lower than 4.0 which causes menu_attach() to crash the system if you use it to remove
or inquire the state of an existing submenu. This means that submenus may only be removed in
AES versions 4.0 and above. Submenus may be nested to up to four levels though only one level
is recommended.

Submenus may not be attached to menu items in the left-most ‘Desk’ menu. Individual submenu
items may be aligned with the parent object by using menu_istart().

Popup Menus
AES versions 3.3 and above support popup menus. Popup menus share the same OBJECT
structure as hierarchical menus but are never attached to a parent menu item. They may be
displayed anywhere on the screen and are often called in response to selecting a special dialog
item (see Chapter 11: GEM User Interface Guidelines). Popup menus are displayed with the
AES call menu_popup().

Menu Settings
The AES call menu_settings() may be used to adjust certain global defaults regarding the
appearance and timing delays of submenus and popup menus. Because this call affects all system
applications it should only be utilized by a system configuration utility and not by individual
applications.

Drop-Down List Boxes
AES versions 4.0 and later support a special type of popup menu called a drop-down list box.
Setting the menu scroll flag to a value of -1 will cause a popup menu to be displayed as a drop-
down list instead.

A drop-down list reveals up to eight items from a multiple item list to the user. A slider bar is
displayed next to the list and is automatically handled during the menu_popup() call. Several
considerations must be taken when using a drop-down list box:

• Drop-down lists may only contain G_STRING objects.

• If you want to force the AES to always draw scroll bars for the list box, the
OBJECT tree must contain at least eight G_STRING objects. If less than that
number of items exist, pad the remaining items with blanks and set the object’s
DISABLED flag.

• As long as the OBJECT tree has at least eight G_STRING objects, it should not
be padded with any additional objects since the size of the slider is based on the
number of objects.

6.28 – AES

T H E A T A R I C O M P E N D I U M

The Menu Buffer
A special memory area is allocated by the AES so that it may reserve the screen area underneath
displayed menus. A pointer to this memory and its length may be obtained by calling wind_get(
WF_SCREEN, ...). Menu buffer memory may be used as a temporary holding arena for
applications as long as the following rules are maintained:

• The application must not use a menu bar or it must be locked with
wind_update(BEG_UPDATE).

• Access to the menu buffer in a multitasking environment is not controlled so
information stored by one application may be overwritten by another. It is
therefore recommended that the menu buffer should not be used under MultiTOS .

Windows

GEM applications usually maintain most user-interaction in windows. Windows are
workspaces created with wind_create() with any of several predefined gadgets (controls)
illustrated in the diagram and table below:

Windows – 6.29

T H E A T A R I C O M P E N D I U M

Name Mask Meaning
NAME 0x0001 Using this mask will cause the AES

to display the window with a title bar
containing a name that the
application should set with
wind_set(WF_NAME, ...).

CLOSER 0x0002 This mask will attach a closer box to
the window which, when pressed, will
send a WM_CLOSED message to
the application.

FULLER 0x0004 This mask displays a fuller box with
the window which, when pressed, will
cause a WM_FULLED message to
be sent to the application.

MOVER 0x0008 This mask allows the user to move
the window by clicking and dragging
on the window’s title bar. This action
will generate a WM_MOVED
message.

INFO 0x0010 This mask creates an information line
just below the title bar which can
contain any user-defined information
as set with wind_set(WF_INFO , ...).

SIZER 0x0020 This mask attaches a sizer object to
the window which, when clicked and
dragged to a new location, will
generate a WM_SIZED message.

UPARROW 0x0040 This mask attaches an up arrow
object to the window which, when
pressed, will generate a
WM_ARROWED message to the
application.

DNARROW 0x0080 This mask attaches a down arrow
object to the window which, when
pressed, will generate a
WM_ARROWED message to the
application.

VSLIDE 0x0100 This mask attaches a vertical slider
object to the window which, when
clicked and dragged, will generate a
WM_VSLID message. Clicking on
the exposed area of the slider will
also generate this message.

LFARROW 0x0200 This mask attaches a left arrow
object to the window which, when
pressed, will generate a
WM_ARROWED message to the
application.

RTARROW 0x0400 This mask attaches a right arrow
object to the window which, when
pressed, will generate a
WM_ARROWED message to the
application.

6.30 – AES

T H E A T A R I C O M P E N D I U M

HSLIDE 0x0800 This mask attaches a horizontal
slider object to the window which,
when clicked and dragged, will
generate a WM_HSLID message.
Clicking on the exposed area of the
slider will also generate this
message.

SMALLER 0x4000 This mask attaches a smaller object
which, when clicked, will generate a
WM_ICONIFIED message. If the
object is CTRL-clicked, a
WM_ALLICONIFY message will be
generated.

This object is only valid in AES v4.1
and higher.

wind_create() returns a window handle which should be stored as it must be referenced on any
further calls that open, alter, close, or delete the window. wind_create() may fail if too many
windows are already open. Different versions of the AES impose different limits on the number
of concurrently open windows.

Calling wind_create() does not automatically display the window. wind_open() displays a
window named by its window handle. Any calls needed to initialize the window (such as setting
the window title, etc.) should be made between the wind_create() and wind_open() calls.

wind_set() and wind_get() can be used to set and retrieve many various window attributes.
Look for their documentation in the function reference for further details.

wind_close() may be used to remove a window from the screen. The window itself and its
attributes are not deleted as a result of this call, however. A subsequent call to wind_open()
will restore a window to the state it was in prior to the wind_close() call. The wind_delete()
function is used to physically delete a window and free any memory it was using.

Two other utility functions for use in dealing with windows are provided by the AES.
wind_calc() will return the border rectangle of a window given the desired work area or the
work area of a window given the desired border area. The call takes into account the sizes of the
various window gadgets.

wind_find() returns the handle of the window currently under the mouse.

Windows – 6.31

T H E A T A R I C O M P E N D I U M

The Desktop Window
The desktop window encompasses the entire screen. It has a constant window handle of
DESK (0) so information about it can be inquired with wind_get(). Calling wind_get() with a
parameter of WF_CURRXYWH will return the size of the screen. Calling wind_get() with a
parameter of WF_WORKXYWH will return the size of the screen minus the size of the menu
bar.

The desktop draws a custom OBJECT tree in its work area. This tree results in the fill pattern
and color seen on screen. An application may create its own custom desktop object tree by using
wind_set() with a parameter of WF_DESKTOP. The OBJECT tree specified should be the
exact size of the desktop work area.

MultiTOS will switch between these object trees as applications are switched. The desktop’s
object tree will be visible whenever an application doesn’t specify one of its own.

The Rectangle List
Whenever a window receives a redraw message or needs to update its window because of its
reasons, it should always constrain output to its current rectangle list. The AES will calculate
the size and position of a group of rectangles that compromise the area of your window not
covered by other overlapping windows.

wind_get() with parameters of WF_FIRSTXYWH and WF_NEXTXYWH is used to return the
current rectangle list. Redrawing inside a window should also only be attempted when the
window semaphore is locked with wind_update(BEG_UPDATE). This prevents the rectangle
list from changing during the redraw and prevents the user from dropping down menus which
might be overwritten. The following code sample illustrates a routine that correctly steps
through the rectangle list:

.

.

. Application Event Loop

.
case WM_REDRAW:

RedrawWindow(msg[3], (GRECT *)&msg[4]);
break;

.

.

VOID
RedrawWindow(WORD winhandle, GRECT *dirty)
{

GRECT rect;

wind_update(BEG_UPDATE);

wind_get(winhandle, WF_FIRSTXYWH, &rect.g_x, &rect.g_y, &rect.g_w,
&rect.g_h);
while(rect.g_w && rect.g_h)
{

6.32 – AES

T H E A T A R I C O M P E N D I U M

if(rc_intersect(dirty, &rect))
{

/*
 * Do your drawing here...constrained to the rectangle in g.
 */

}

wind_get(winhandle, WF_NEXTXYWH, &rect.g_x, &rect.g_y, &rect.g_w,
&rect.g_h);

}

wind_update(END_UPDATE);
}

Window Toolbars
AES versions 4.0 and later support window toolbar attachments. Toolbars are OBJECT trees
containing a number of TOUCHEXIT objects. They are attached to a window using wind_set()
with a parameter of WF_TOOLBAR . The following diagram shows a window with a toolbar:

Example from Atari Works 2.1

Window toolbars are automatically redrawn whenever necessary and their ROOT objects are
automatically repositioned and resized with the window. If any special redrawing is necessary
(ex: changing the visual state of an object after a click), the application may obtain a special
toolbar rectangle list by using wind_get() with parameters of WF_FTOOLBAR and
WF_NTOOLBAR .

If toolbar objects must be modified on WM_SIZED events, simply modify them prior to calling
wind_set(handle, WM_CURRXYWH , ...).

A special note about windows with toolbars concerns the usage of wind_calc(). wind_calc()
doesn’t understand the concept of toolbars. The information it returns must be modified by
adjusting the height of its output rectangles according to the current height of the toolbar object
tree.

The Graphics Library – 6.33

T H E A T A R I C O M P E N D I U M

The Graphics Library

The Graphics Library contain many functions which can be used to provide visual clues to the
user. This library also contains functions to inquire and set information about the mouse pointer.

graf_movebox(), graf_shrinkbox(), and graf_growbox() display animations that can be used to
indicate an impending change in the screen display. graf_dragbox(), graf_rubberbox(), and
graf_slidebox() display visual effects that are interactively changed by the mouse position.

graf_mkstate() is used to inquire the current state of the mouse buttons and mouse position.
graf_mouse() can be used to change the shape of the system mouse. graf_handle() is used to
return the physical handle of the screen (needed to open a VDI workstation) and the metrics of
the system default text font.

The File Selector Library

Two routines are provided by the AES to display and handle the common system file selector.
AES versions less than 1.4 do not support fsel_exinput(). All AES versions support
fsel_input().

Both calls take a GEMDOS pathname and filename as parameters. The pathname should include
a complete path specification including a drive letter, colon, path, and filemask. The filemask
may (and usually does include wildcard characters). The application may also pass a default
filename to the selector.

fsel_exinput() allows the application to specify a replacement title for the file selector which
reminds the user about the action they are taking such as ‘Select a .DOC file to open...’.

The Scrap Library

The scrp_read() and scrp_write() calls are provided by the AES to return and set the current
clipboard path. The clipboard is a global resource in which applications can share data.
Applications supporting the clipboard contain an ‘Edit’ menu title which has at least the
following four items, ‘Cut’, ‘Copy’, ‘Paste’, and ‘Delete’. An appropriate action for each is
listed below:

Implementing ‘Cut’ and ‘Copy’
When the user selects ‘Cut’ or ‘Copy’ from the ‘Edit’ menu and an object is selected (‘Cut’ and
‘Copy’ should only be enabled in the menu when an object is selected which may be transferred
to the clipboard) the following steps may be used to transfer the data to the system clipboard:

1. Call scrp_read() to return the name of the current scrap directory. If the returned
string is empty, no clipboard directory has been defined since the computer has

6.34 – AES

T H E A T A R I C O M P E N D I U M

been started. The directory string returned may need to be reformatted. A proper
directory string ends in a backslash, however some applications incorrectly
append a filename to this string.

2. If no clipboard directory was returned or the one specified is invalid, create a
directory in the user’s boot drive called ‘\CLIPBRD’ and write the pathname back
using scrp_write(). For example, if the user’s boot drive was ‘C:’ then your
parameter to scrp_write() would be ‘C:\CLIPBRD\’.

3. Search and delete files in the current clipboard directory with the mask
‘SCRAP.*’.

4. Now write a disk file for the selected data to a file named SCRAP.??? where ‘???’
is the proper file extension for an object of its type. If the object can be
represented in more than one format by your application, write as many formats as
possible all named ‘SCRAP’ with the proper file extension.

5. If the menu choice was ‘Cut’ rather than ‘Copy,’ delete the object from your data
structures and update your application as necessary.

Implementing ‘Paste’
‘Paste’ is used to read a file and insert it appropriately into an application that supports data of
its type. To implement ‘Paste’ follow the steps below:

1. Call scrp_read() to obtain the current system clipboard directory. If the returned
string is empty, no data is in the clipboard.

2. Format the string returned by scrp_read() into a usable pathname and search for
files called ‘SCRAP’ in that path having a file extension of data that your
application supports. Remember, more than one SCRAP.??? file may be present.

3. Load the data and insert it in your application as appropriate.

MultiTOS Notes
The AES, when running under MultiTOS , will create a MiNT semaphore named ‘_SCP’ which
should be used to provide negotiated access to the scrap directory. Access to this semaphore
should be obtained from MiNT prior to any clipboard operation and must be released as soon as
it is complete. Applications should not attempt to destroy this semaphore.

The Shell Library – 6.35

T H E A T A R I C O M P E N D I U M

The Shell Library

The Shell Library was originally intended to provide AES support to the Desktop application.
Many of the routines, however, are useful to other GEM applications. Some functionality of the
Shell Library was discussed earlier in this chapter in ‘The Environment String’.

The Shell Buffer
The Desktop application loads the DESKTOP.INF or NEWDESK.INF file (depending on the
TOS version) into the shell buffer. Prior to TOS 2.00, the shell buffer was 1024 bytes long
meaning that was the maximum length of the DESKTOP.INF file. AES versions 2.00 to 3.30
allocate a buffer 4096 bytes long. AES versions 3.30 and above support variable-length buffers.

The shell buffer contains the ‘working’ copy of the above mentioned system files. The
information in this buffer may be copied by using shel_get(). Likewise, information can be
written to this buffer using shel_put(). Extreme care must be used with these functions as their
misuse can confuse or possibly even crash the Desktop.

Miscellaneous Shell Library Functions
shel_find() is used to locate data files associated with an application. The AES uses this call to
locate application resource files during rsrc_load().

shel_read() returns information about the process which called the application (usually the
Desktop).

shel_write() was originally used only to spawn new applications. With newer AES versions,
though, shel_write() has taken on an enormous functionality and its documentation should be
consulted for more information.

The GEM.CNF File

When running under MultiTOS , the AES will load and process an ASCII text file called
‘GEM.CNF’ which contains command lines that set environment and AES system variables and
may run GEM programs. In addition, a replacement shell program may be specified in this file
(see Chapter 9: Desktop for more information).

AES environment variables may be set in the ‘GEM.CNF’ file with the command ‘setenv’ as in
the following example:

setenv TOSRUN=c:\multitos\miniwin.app

Several AES system variables may also be set in this file as shown in the following example:

AE_FONTID=3

6.36 – AES

T H E A T A R I C O M P E N D I U M

Currently recognized AES system variables that may be set are shown in the following table:

Variable Meaning
AE_FONTID This variable may be set to any valid Speedo outline

font ID which will be used as the AES default text font.

This feature is only valid as of AES version 4.1.
AE_PNTSIZE This variable defines the size of the AES default text

font in points.

This feature is only valid as of AES version 4.1.
AE_SREDRAW Setting this variable to 1 causes the AES to send a full-

screen redraw message whenever an application
starts. Setting it to 0 disables this feature. The default is
1.

AE_TREDRAW Setting this variable to 1 causes the AES to send a full-
screen redraw message whenever an application
terminates. Setting it to 0 disables this feature. The
default is 1.

The ‘GEM.CNF’ file may also be used to automatically start applications as shown in the
following example:

run c:\multitos\tclock.prg

AES Function Calling Procedure

The GEM AES is accessed through a 680x0 TRAP #2 statement. Upon calling the TRAP,
register d0 should contain the magic number 0xC8 and register d1 should contain a pointer to the
AES parameter block. The global data array member of the parameter block is filled in with
information about the AES after an appl_init() call (see appl_init() for more details). The AES
parameter block is a structure containing pointers to several arrays defined as follows:

struct aespb
{

WORD *contrl;
WORD *global;
WORD *intin;
WORD *intout;
LONG *addrin;
LONG *addrout;

};

The control array is filled in prior to an AES call with information about the number of
parameters the function is being passed, the number of return values the function expects, and the
opcode of the function itself as follows:

AES Function Calling Procedure – 6.37

T H E A T A R I C O M P E N D I U M

contrl[x] Contents
0 Function opcode.
1 Number of intin elements the function is

being sent.
2 Number of intout elements the function

is being sent.
3 Number of addrin elements the function

returns.
4 Number of addrout elements the

function returns.

 The intin array and addrin arrays are used to pass integer and address parameters respectively
(consult each individual binding for details).

Upon return from the call, the intout and addrout arrays will be filled in with any appropriate
output values.

To add a binding for the AES to your compiler you will usually write a short procedure that
provides an interface to the AES arrays. The following example illustrates the binding to
graf_dragbox() in this manner:

WORD
graf_dragbox(WORD width, WORD height, WORD start_x, WORD start_y,

WORD box_x, WORD box_y, WORD box_w, WORD box_h,
WORD *end_x, WORD *end_y)

{
contrl[0] = 71;
contrl[1] = 8;
contrl[2] = 3;
contrl[3] = 0;
contrl[4] = 0;

intin[0] = width;
intin[1] = height;
intin[2] = start_x;
intin[3] = start_y;
intin[4] = box_x;
intin[5] = box_y;
intin[6] = box_w;
intin[7] = box_h;

aes();

*end_x = intout[1];
*end_y = intout[2];

return intout[0];
}

6.38 – AES

T H E A T A R I C O M P E N D I U M

The following code is the assembly language function aes() used by the function above:

.globl _aes

.text
_aes:

lea _aespb,a0
move.l a0,d1
move.w #$C8,d0
trap #2
lea _intout,a0
move.w (a0),d0
rts

.data

_aespb: .dc.l _contrl, _global, _intin, _intout, _addrin, _addrout

.bss

_contrl: .ds.w 5
_global: .ds.w 15
_intin: .ds.w 16
_intout: .ds.w 7
_addrin: .ds.l 2
_addrout: .ds.l 1

.end

The bindings in the AES Function Reference call a specialized function called crys_if() to
actually call the AES. Many compilers use this method as well (Lattice C calls the function
_AESif()).

crys_if() properly fills in the contrl array and calls the AES. It is passed one WORD parameter
in d0 which contains the opcode of the function minus ten multiplied by four (for quicker table
indexing). This gives an index into a table from which the contrl array data may be loaded. The
crys_if() function is listed below:

* Note that this binding depends on the fact that no current AES call utilizes
* the addrout array

.globl _crys_if

.globl _aespb

.globl _contrl

.globl _global

.globl _intin

.globl _addrin

.globl _intout

.globl _addrout

.text

_crys_if:
lea table(pc),a0 ; Table below

AES Function Calling Procedure – 6.39

T H E A T A R I C O M P E N D I U M

move.l 0(a0,d0.w),d0 ; Load four packed bytes into d0
lea _aespb,a0 ; Load address of _aespb into a0
movea.l (a0),a1 ; Move address of contrl into a1
movep.l d0,1(a1) ; Move four bytes into WORDs at 1(contrl)
move.l a0,d1 ; Move address of _aespb into d1
move.w #$C8,d0 ; AES magic number
trap #2 ; Call GEM
lea _intout,a0 ; Get return value
move.w (a0),d0 ; Put it into d0
rts

* Table of AES opcode/control values
* Values are: opcode, intin, intout, addrin
* As stated before, addrout is left at 0 since no AES calls use it

table:
.dc.b 10, 0, 1, 0 ; appl_init
.dc.b 11, 2, 1, 1 ; appl_read
.dc.b 12, 2, 1, 1 ; appl_write
.dc.b 13, 0, 1, 1 ; appl_find
.dc.b 14, 2, 1, 1 ; appl_tplay
.dc.b 15, 1, 1, 1 ; appl_trecord
.dc.b 16, 0, 0, 0 ;
.dc.b 17, 0, 0, 0 ;
.dc.b 18, 1, 3, 1 ; appl_search (v4.0)
.dc.b 19, 0, 1, 0 ; appl_exit
.dc.b 20, 0, 1, 0 ; evnt_keybd
.dc.b 21, 3, 5, 0 ; evnt_button
.dc.b 22, 5, 5, 0 ; evnt_mouse
.dc.b 23, 0, 1, 1 ; evnt_mesag
.dc.b 24, 2, 1, 0 ; evnt_timer
.dc.b 25, 16, 7, 1 ; evnt_multi
.dc.b 26, 2, 1, 0 ; evnt_dclick
.dc.b 27, 0, 0, 0 ;
.dc.b 28, 0, 0, 0 ;
.dc.b 29, 0, 0, 0 ;
.dc.b 30, 1, 1, 1 ; menu_bar
.dc.b 31, 2, 1, 1 ; menu_icheck
.dc.b 32, 2, 1, 1 ; menu_ienable
.dc.b 33, 2, 1, 1 ; menu_tnormal
.dc.b 34, 1, 1, 2 ; menu_text
.dc.b 35, 1, 1, 1 ; menu_register
.dc.b 36, 2, 1, 2 ; menu_popup (v3.3)
.dc.b 37, 2, 1, 2 ; menu_attach (v3.3)
.dc.b 38, 3, 1, 1 ; menu_istart (v3.3)
.dc.b 39, 1, 1, 1 ; menu_settings (v3.3)
.dc.b 40, 2, 1, 1 ; objc_add
.dc.b 41, 1, 1, 1 ; objc_delete
.dc.b 42, 6, 1, 1 ; objc_draw
.dc.b 43, 4, 1, 1 ; objc_find
.dc.b 44, 1, 3, 1 ; objc_offset
.dc.b 45, 2, 1, 1 ; objc_order
.dc.b 46, 4, 2, 1 ; objc_edit
.dc.b 47, 8, 1, 1 ; objc_change
.dc.b 48, 4, 3, 0 ; objc_sysvar (v3.4)
.dc.b 49, 0, 0, 0 ;
.dc.b 50, 1, 1, 1 ; form_do
.dc.b 51, 9, 1, 0 ; form_dial
.dc.b 52, 1, 1, 1 ; form_alert

6.40 – AES

T H E A T A R I C O M P E N D I U M

.dc.b 53, 1, 1, 0 ; form_error

.dc.b 54, 0, 5, 1 ; form_center

.dc.b 55, 3, 3, 1 ; form_keybd

.dc.b 56, 2, 2, 1 ; form_button

.dc.b 57, 0, 0, 0 ;

.dc.b 58, 0, 0, 0 ;

.dc.b 59, 0, 0, 0 ;

.dc.b 60, 0, 0, 0 ;

.dc.b 61, 0, 0, 0 ;

.dc.b 62, 0, 0, 0 ;

.dc.b 63, 0, 0, 0 ;

.dc.b 64, 0, 0, 0 ;

.dc.b 65, 0, 0, 0 ;

.dc.b 66, 0, 0, 0 ;

.dc.b 67, 0, 0, 0 ;

.dc.b 68, 0, 0, 0 ;

.dc.b 69, 0, 0, 0 ;

.dc.b 70, 4, 3, 0 ; graf_rubberbox

.dc.b 71, 8, 3, 0 ; graf_dragbox

.dc.b 72, 6, 1, 0 ; graf_movebox

.dc.b 73, 8, 1, 0 ; graf_growbox

.dc.b 74, 8, 1, 0 ; graf_shrinkbox

.dc.b 75, 4, 1, 1 ; graf_watchbox

.dc.b 76, 3, 1, 1 ; graf_slidebox

.dc.b 77, 0, 5, 0 ; graf_handle

.dc.b 78, 1, 1, 1 ; graf_mouse

.dc.b 79, 0, 5, 0 ; graf_mkstate

.dc.b 80, 0, 1, 1 ; scrp_read

.dc.b 81, 0, 1, 1 ; scrp_write

.dc.b 82, 0, 0, 0 ;

.dc.b 83, 0, 0, 0 ;

.dc.b 84, 0, 0, 0 ;

.dc.b 85, 0, 0, 0 ;

.dc.b 86, 0, 0, 0 ;

.dc.b 87, 0, 0, 0 ;

.dc.b 88, 0, 0, 0 ;

.dc.b 89, 0, 0, 0 ;

.dc.b 90, 0, 2, 2 ; fsel_input

.dc.b 91, 0, 2, 3 ; fsel_exinput

.dc.b 92, 0, 0, 0 ;

.dc.b 93, 0, 0, 0 ;

.dc.b 94, 0, 0, 0 ;

.dc.b 95, 0, 0, 0 ;

.dc.b 96, 0, 0, 0 ;

.dc.b 97, 0, 0, 0 ;

.dc.b 98, 0, 0, 0 ;

.dc.b 99, 0, 0, 0 ;

.dc.b 100, 5, 1, 0 ; wind_create

.dc.b 101, 5, 1, 0 ; wind_open

.dc.b 102, 1, 1, 0 ; wind_close

.dc.b 103, 1, 1, 0 ; wind_delete

.dc.b 104, 2, 5, 0 ; wind_get

.dc.b 105, 6, 1, 0 ; wind_set

.dc.b 106, 2, 1, 0 ; wind_find

.dc.b 107, 1, 1, 0 ; wind_update

.dc.b 108, 6, 5, 0 ; wind_calc

.dc.b 109, 0, 0, 0 ; wind_new

.dc.b 110, 0, 1, 1 ; rsrc_load

.dc.b 111, 0, 1, 0 ; rsrc_free

AES Function Calling Procedure – 6.41

T H E A T A R I C O M P E N D I U M

.dc.b 112, 2, 1, 0 ; rsrc_gaddr

.dc.b 113, 2, 1, 1 ; rsrc_saddr

.dc.b 114, 1, 1, 1 ; rsrc_obfix

.dc.b 115, 0, 0, 0 ; rsrc_rcfix (v4.0)

.dc.b 116, 0, 0, 0 ;

.dc.b 117, 0, 0, 0 ;

.dc.b 118, 0, 0, 0 ;

.dc.b 119, 0, 0, 0 ;

.dc.b 120, 0, 1, 2 ; shel_read

.dc.b 121, 3, 1, 2 ; shel_write

.dc.b 122, 1, 1, 1 ; shel_get

.dc.b 123, 1, 1, 1 ; shel_put

.dc.b 124, 0, 1, 1 ; shel_find

.dc.b 125, 0, 1, 2 ; shel_envrn

.dc.b 126, 0, 0, 0 ;

.dc.b 127, 0, 0, 0 ;

.dc.b 128, 0, 0, 0 ;

.dc.b 129, 0, 0, 0 ;

.dc.b 130, 1, 5, 0 ; appl_getinfo (v4.0)

.data

_aespb: .dc.l _contrl, _global, _intin, _intout, _addrin, _addrout
_contrl: .dc.l 0, 0, 0, 0, 0

.bss

* _contrl = opcode
* _contrl+2 = num_intin
* _contrl+4 = num_addrin
* _contrl+6 = num_intout
* _contrl+8 = num_addrout

_global .ds.w 15
_intin .ds.w 16
_intout .ds.w 7
_addrin .ds.l 2
_addrout .ds.l 1

.end

T H E A T A R I C O M P E N D I U M

AES Function Reference

T H E A T A R I C O M P E N D I U M

Application Services Library

The Application Services Library provides general use functions used in locating and working with other
resident applications in addition to providing AES initialization and termination code. The members of
the Application Services Library are:

•• appl_exit()
•• appl_find()
•• appl_getinfo()
•• appl_init()
•• appl_read()
•• appl_search()
•• appl_tplay()
•• appl_trecord()
•• appl_write()

appl_exit() – 6.47

T H E A T A R I C O M P E N D I U M

appl_exit()
WORD appl_exit(VOID)

appl_exit() should be called at the termination of any program initialized with
appl_init() .

OPCODE 19 (0x13)

AVAILABILITY All AES versions.

BINDING return crys_if(0x13);

RETURN VALUE appl_exit() returns 0 if an error occurred or non-zero otherwise.

COMMENTS The proper procedure for handling an error from this function is currently
undefined.

SEE ALSO appl_init()

appl_find()
WORD appl_find(fname)
CHAR * fname;

appl_find() searches the AES’s current process list for a program named fname
and, if present, returns the application identifier of the process.

OPCODE 13 (0x0D)

AVAILABILITY All AES versions.

PARAMETERS fname is a pointer to a null-terminated ASCII string containing a valid GEMDOS
filename (not including an extension) padded with blanks to be exactly 8
characters long (not including the NULL).

BINDING addrin[0] = fname;

return crys_if(0x0D);

RETURN VALUE appl_find() returns the application identifier of the process if it is found or -1
otherwise.

6.48 – Application Services Library - AES Function Reference

T H E A T A R I C O M P E N D I U M

VERSION NOTES AES versions from 4.0 add several extensions to this call for the benefit of
MultiTOS as follows:

• If the upper word of the CHAR * is 0xFFFF, the lower word is assumed
to be the MiNT id and appl_find() will return the AES application
identifier.

• If the upper word of the CHAR * is 0xFFFE, the lower word is assumed
to be the AES application identifier and the MiNT id is returned.

• If the upper word of the CHAR * is 0x0000, the current processes’
application identifier is returned.

This functionality only exists if the AES version is 4.0 and above and
appl_getinfo() indicates that it is available.

SEE ALSO appl_write(), appl_init()

appl_getinfo()
WORD appl_getinfo(ap_gtype, ap_gout1, ap_gout2, ap_gout3, ap_gout4)
WORD ap_gtype;
WORD *ap_gout1, *ap_gout2, *ap_gout3, *ap_gout4;

appl_getinfo() returns information about the AES.

OPCODE 130 (0x82)

AVAILABILITY Available as of AES version 4.00.

PARAMETERS ap_gtype specifies the type of information to be returned in the shorts pointed to
by ap_gout1, ap_gout2, ap_gout3, and ap_gout4 as follows:

Name Value Returns

AES_LARGEFONT 0 AES Large Font Information

ap_gout1 is filled in with the AES font’s point size.

ap_gout2 is filled in with the font id.

ap_gout3 is a code indicating the type of font:
SYSTEM_FONT (0) is the system font
OUTLINE_FONT (1) is an outline font

ap_gout4 is unused.
AES_SMALLFONT 1 AES Large Font Information

Same as above for the current small font.

appl_getinfo() – 6.49

T H E A T A R I C O M P E N D I U M

AES_SYSTEM 2 AES System Specifics

ap_gout1 is filled in with the resolution number (as would be
returned by Getrez()).

ap_gout2 is filled in with the number of colors supported by
the AES object library.

ap_gout3 is 0 if color icons are not supported or 1 if they
are.

ap_gout4 is 0 to indicate that the extended resource file
format is not supported or 1 if it is.

AES_LANGUAGE 3 AES Globalization

ap_gout1 is filled in with the current AES language code as
follows:

Name ap_gout1 Language
AESLANG_ENGLISH 0 English
AESLANG_GERMAN 1 German
AESLANG_FRENCH 2 French
— 3 (Reserved)
AESLANG_SPANISH 4 Spanish
AESLANG_ITALIAN 5 Italian
AESLANG_SWEDISH 6 Swedish

ap_gout2, ap_gout3, and ap_gout4 are unused.
AES_PROCESS 4 AES Multiple Process Support

ap_gout1 is 0 to indicate the use of non-pre-emptive
multitasking and 1 to indicate the use of pre-emptive
multitasking.

ap_gout2 is 0 if appl_find() cannot convert between MiNT
and AES id’s and 1 to indicate that it can.

ap_gout3 is 0 if appl_search() is not implemented and 1 if
it is.

ap_gout4 is 0 if rsrc_rcfix() is not implemented and 1 if it
is.

AES_PCGEM 5 AES PC-GEM Features

ap_gout1 is 0 if objc_xfind() is not implemented and 1 if it
is.

ap_gout2 is currently reserved.

ap_gout3 is 0 if menu_click() is not implemented and 1 if it
is.

ap_gout4 is 0 if shel_rdef() and shel_wdef() are not
implemented and 1 if they are.

6.50 – Application Services Library - AES Function Reference

T H E A T A R I C O M P E N D I U M

AES_INQUIRE 6 AES Extended Inquiry Functions

ap_gout1 is 0 if -1 is not a valid ap_id parameter to
appl_read() or 1 if it is.

ap_gout2 is 0 if -1 is not a valid length parameter to
shel_get() or 1 if it is.

ap_gout3 is 0 if -1 is not a valid mode parameter to
menu_bar() or 1 if it is.

ap_gout4 is 0 if MENU_INSTL is not a valid mode
parameter to menu_bar() or 1 if it is.

– 7 Currently reserved.

AES_MOUSE 8 AES Mouse Support

ap_gout1 is 0 to indicate that mode parameters of 258-260
are not supported by graf_mouse() and 1 if they are.

ap_gout2 is 0 to indicate that the application has control
over the mouse form and 1 to indicate that the mouse form
is maintained by the AES on a per-application basis.

ap_gout3 and ap_gout4 are currently unused.
AES_MENU 9 AES Menu Support

ap_gout1 is 0 to indicate that sub-menus are not supported
and 1 if MultiTOS style sub-menus are.

ap_gout2 is 0 to indicate that popup menus are not
supported and 1 if MultiTOS style popup menus are.

ap_gout3 is 0 to indicate that scrollable menus are not
supported and 1 if MultiTOS style scrollable menus are.

ap_gout4 is 0 to indicate that the MN_SELECTED
message does not contain object tree information in
msg[5-7] and 1 to indicate that it does.

appl_getinfo() – 6.51

T H E A T A R I C O M P E N D I U M

AES_SHELL 10 AES Shell Support

ap_gout1 & 0x00FF indicates the highest legal value for the
mode parameter of shel_write() . ap_gout1 & 0xFF00
indicate which extended shel_write() mode bits are
supported.

ap_gout2 is 0 if shel_write() with a mode parameter of 0
launches an application or 1 if it cancels the previous
shel_write() .

ap_gout3 is 0 if shel_write() with a mode parameter of 1
launches an application immediately or 1 if it takes effect
when the current application exits.

ap_gout4 is 0 if ARGV style parameter passing is not
supported or 1 if it is.

AES_WINDOW 11 AES Window Features

ap_gout1 is a bitmap of extended modes supported by
wind_get() and wind_set() (if a bit is set, it is supported)
as follows:

Bit mode
0 WF_TOP returns window below the top also.
1 wind_get(WF_NEWDESK , ...) supported.
2 WF_COLOR get/set.
3 WF_DCOLOR get/set.
4 WF_OWNER get/set.
5 WF_BEVENT get/set.
6 WF_BOTTOM set.
7 WF_ICONIFY set.
8 WF_UNICONIFY set.

9-15 Unused

ap_gout2 is current unused.

ap_gout3 is a bitmap of supported window behaviors (if a
bit is set, it is supported) as follows:

Bit Behaviour
0 Iconifier gadget present.
1 Bottomer gadget present.
2 SHIFT-click sends window to bottom.
3 “hot” close box supported.

4-15 Unused

ap_gout4 is currently unused.

6.52 – Application Services Library - AES Function Reference

T H E A T A R I C O M P E N D I U M

AES_MESSAGE 12 AES Extended Messages

ap_gout1 is a bitmap of extra messages supported (if a bit
is set, it is supported) as follows:

Bit Message
0 WM_NEWTOP is meaningful.
1 WM_UNTOPPED is sent.
2 WM_ONTOP is sent.
3 AP_TERM is sent.
4 Shutdown and resolution change messages.
5 CH_EXIT is sent.
6 WM_BOTTOM is sent.
7 WM_ICONIFY is sent.
8 WM_UNICONIFY is sent.
9 WM_ALLICONIFY is sent.

10-15 Unused

ap_gout2 is a bitmap of extra messages supported.
Current all bits are unused.

ap_gout3 is a bitmap indicating message behaviour (if a bit
is set, the behaviour exists) as follows:

Bit Message
0 WM_ICONIFY message gives coordinates.

1-15 Unused

ap_gout4 is currently unused.
AES_OBJECT 13 AES Extended Objects

ap_gout1 is 0 if 3D objects are not supported or 1 if they
are.

ap_gout2 is 0 if objc_sysvar() is not present, 1 if
MultiTOS v1.01 objc_sysvar() is present, or 2 if extended
objc_sysvar() is present.

ap_gout3 is 0 if the system font is the only font supported or
1 if GDOS fonts are also supported.

ap_gout4 is reserved for OS extensions.
AES_FORM 14 AES Form Support

ap_gout1 is 0 if ‘flying dialogs’ are not supported or 1 if they
are.

ap_gout2 is 0 if keyboard tables are not supported or 1 if
Mag!X style keyboard tables are supported.

ap_gout3 is 0 if the last cursor position from objc_edit() is
not returned or 1 if it is.

ap_gout4 is currently reserved.

appl_init() – 6.53

T H E A T A R I C O M P E N D I U M

BINDING intin[0] = ap_gtype;

crys_if(0x82);

*ap_gout1 = intout[1];
*ap_gout2 = intout[2];
*ap_gout3 = intout[3];
*ap_gout4 = intout[4];

return intout[0];

RETURN VALUE appl_getinfo() returns 1 if an error occurred or 0 otherwise.

VERSION NOTES Using an ap_gtype value of 4 and above is only supported as of AES version 4.1.

COMMENTS Many of the ap_gtype return values identify features of TOS not supported by
Atari but for the benefit of third-party vendors. You should contact the appropriate
third-party for documentation on these functions.

SEE ALSO appl_init()

appl_init()
WORD appl_init(VOID)

appl_init() should be the first function called in any application that intends to use
GEM calls.

OPCODE 10 (0x0A)

AVAILABILITY All AES versions.

PARAMETERS The function as prototyped accepts no parameters, however, all ‘C’ compilers use
this call to set up internal information as well as to update the applications’ global
array.

BINDING return crys_if(0x0A);

RETURN VALUE appl_init() returns the applications’ global identifier if successful or -1 if the AES
cannot register the application. If successful, the global identifier should be stored
in a global variable for later use.

Besides the return value, the AES fills in the application’s global array (to
reference the global array see your programming languages’ manual).

Name global[x] Meaning

6.54 – Application Services Library - AES Function Reference

T H E A T A R I C O M P E N D I U M

_AESversion 0 AES version number.

_AESnumapps 1 Number of concurrent applications possible (normally 1).
MultiTOS will return -1.

_AESapid 2 Application identifier (same as appl_init() return value).

_AESappglobal 3-4 LONG global available for use by the application.

_AESrscfile 5-6 Pointer to the base of the resource loaded via
rsrc_load() .

— 7-12 Reserved

_AESmaxchar 13 Current maximum character used by the AES to do
vst_height() prior to writing to the screen. This entry is
only present as of AES version 0x0400.

_AESminchar 14 Current minimum character used by the AES to do
vst_height() prior to writing to the screen. This entry is
only present as of AES version 0x0400.

VERSION NOTES See above.

SEE ALSO appl_exit()

appl_read()
WORD appl_read(ap_id, length, message)
WORD ap_id, length;
VOIDP message;

appl_read() is designed to facilitate inter-process communication between
processes running under the AES. The call will halt the application until a
message of sufficient length is available (see version notes below).

OPCODE 11 (0x0B)

AVAILABILITY All AES versions.

PARAMETERS ap_id is your application identifier as returned by appl_init() . length is the length
(in bytes) of the message to read. message is a pointer to a memory buffer where
the incoming message should be copied to.

BINDING intin[0] = ap_id;
intin[1] = length;

addrin[0] = message;

return crys_if(0x0B);

RETURN VALUE appl_read() returns 0 if an error occurred or non-zero otherwise.

appl_search() – 6.55

T H E A T A R I C O M P E N D I U M

VERSION NOTES If the AES version is 4.0 or higher and appl_getinfo() indicates that this feature is
supported, ap_id takes on an additional meaning. If APR_NOWAIT (-1) is
passed instead of ap_id, appl_read() will return immediately if no message is
currently waiting.

COMMENTS Normally this call is not used. evnt_multi() or evnt_mesag() is used instead for
standard message reception. appl_read() is required for reading messages that are
long and/or of variable length.

It is recommended that message lengths in multiples of 16 bytes be used.

SEE ALSO appl_write()

appl_search()
WORD appl_search(mode, fname, type, ap_id)
WORD mode;
CHAR * fname;
WORD * type,*ap_id;

appl_search() provides a method of identifying all of the currently running
processes.

OPCODE 18 (0x12)

AVAILABILITY Available only in AES versions 4.0 and above when appl_getinfo() indicates its
presence.

PARAMETERS mode specifies the search mode as follows:

Name mode Meaning

APP_FIRST 0 Return the filename of the first process

APP_NEXT 1 Return the filename of subsequent processes

fname should point to a memory location at least 9 bytes long to hold the 8
character process filename found and the NULL byte. type is a pointer to a
WORD into which will be placed the process type as follows:

Name type Meaning

APP_SYSTEM 0x01 System process

APP_APPLICATION 0x02 Application

APP_ACCESSORY 0x04 Accessory

APP_SHELL 0x08

6.56 – Application Services Library - AES Function Reference

T H E A T A R I C O M P E N D I U M

The type parameter is actually a bit mask so it is possible that a process containing
more than one characteristic will appear. The currently running shell process
(usually the desktop) will return a value of APP_APPLICATION | APP_SHELL
(0x0A).

ap_id is a pointer to a word into which will be placed the processes’ application
identifier.

BINDING intin[0] = mode;

addrin[0] = fname;
addrin[1] = type;
addrin[2] = ap_id;

return crys_if(0x12);

RETURN VALUE appl_search() returns 0 if no more applications exist or 1 when more processes
exist that meet the search criteria.

appl_tplay()
WORD appl_tplay(mem, num, scale)
VOIDP mem;
WORD num, scale;

appl_tplay() plays back events originally recorded with appl_trecord().

OPCODE 14 (0x0E)

AVAILABILITY All AES versions.

PARAMETERS mem is a pointer to an array of EVNTREC structures (see appl_trecord()). num
indicates the number of EVNTREC ’s to play back.

scale indicates on a scale of 1 to 10000 how fast the AES will attempt to play
back your recording. A value of 100 will play it back at recorded speed. A value
of 200 will play the events back at twice the recorded speed, and 50 will play
back the events at half of the recorded speed. Other values will respond
accordingly.

BINDING intin[0] = num;
intin[1] = scale;

addrin[0] = mem;

return crys_if(0x0E);

appl_trecord() – 6.57

T H E A T A R I C O M P E N D I U M

RETURN VALUE appl_tplay() always returns 1 meaning no error occurred.

CAVEATS This function does not work correctly on AES versions less than 1.40 without a
patch program available from Atari Corp.

SEE ALSO appl_trecord()

appl_trecord()
WORD appl_trecord(mem, num)
VOIDP mem;
WORD num;

appl_trecord() records AES events for later playback.

OPCODE 15 (0x0F)

AVAILABILITY All AES versions.

PARAMETERS mem points to an array of num EVNTREC structures into which the AES will
record events as indicated here:

typedef struct pEvntrec
{

WORD ap_event;
LONG ap_value;

} EVNTREC;

ap_event defines the required interpretation of ap_value as follows:

Name ap_event Event ap_value

APPEVNT_TIMER 0 Timer Elapsed Time (in milliseconds)

APPEVNT_BUTTON 1 Button low word = state (1 = down)
high word = # of clicks

APPEVNT_MOUSE 2 Mouse low word = X pos
high word = Y pos

APPEVNT_KEYBOARD 3 Keyboard bits 0-7: ASCII code
bits 8-15: scan code
bits 16-31: shift key state

BINDING intin[0] = num;

addrin[0] = mem;

return crys_if(0x0F);

6.58 – Application Services Library - AES Function Reference

T H E A T A R I C O M P E N D I U M

RETURN VALUE appl_trecord() returns the number of events actually recorded.

CAVEATS This function does not work correctly on AES versions less than 1.40 without a
patch program available from Atari Corp.

SEE ALSO appl_tplay()

appl_write()
WORD appl_write(ap_id, length, msg)
WORD ap_id, length;
VOIDP msg;

appl_write() can be used to send a message to a valid message pipe.

OPCODE 12 (0x0C)

AVAILABILITY All AES versions.

PARAMETERS ap_id is the application identifier of the process to which you wish to send the
message. length specifies the number of bytes present in the message. msg is a
pointer to a memory buffer with at least length bytes available.

BINDING intin[0] = ap_id;
intin[1] = length;

addrin[0] = msg;

return crys_if(0x0C);

RETURN VALUE appl_write() returns 0 if an error occurred or greater than 0 if the message was
sent successfully.

VERSION NOTES As of AES version 1.40, desk accessories may send MN_SELECTED messages
to the desktop to trigger desktop functions.

As of AES version 4.00 you can use shel_write(7,...) to ‘broadcast’ a message to
all processes running with the exception of the AES itself, the desktop, and your
own application. See shel_write() for details.

COMMENTS It is recommended that you always send messages in 16 byte blocks using a
WORD array of 8 elements as the AES does.

SEE ALSO appl_read(), shel_write()

T H E A T A R I C O M P E N D I U M

Event Library

The Event Library consists of a group of system calls which are used to monitor system messages
including mouse clicks, keyboard usage, menu bar interaction, timer calls, and mouse tracking. The
library consists of the following calls:

•• evnt_button()
•• evnt_dclick()
•• evnt_keybd()
•• evnt_mesag()
•• evnt_mouse()
•• evnt_multi()
•• evnt_timer()
•• evnt_button()

evnt_button() – 6.61

T H E A T A R I C O M P E N D I U M

evnt_button()
WORD evnt_button(clicks, mask, state, mx, my, button, kstate)
WORD clicks, mask, state;
WORD *mx, *my, *button, *kstate;

evnt_button() releases control to the operating system until the specified mouse
button event has occurred.

OPCODE 21 (0x15)

AVAILABILITY All AES versions.

PARAMETERS clicks specifies the number of mouse-clicks that must occur before returning.
mask specifies the mouse buttons to wait for as follows:

Name mask Meaning

LEFT_BUTTON 0x01 Left mouse button

RIGHT_BUTTON 0x02 Right mouse button

MIDDLE_BUTTON 0x04 Middle button (this button would be the first
button to the left of the rightmost button on the
device).

— 0x08
.
.

Other buttons (0x08 is the mask for the button to
the immediate left of the middle button. Masks
continue leftwards).

state specifies the button state that must occur before returning as follows:

mask Meaning

0x00 All buttons released

0x01 Left button depressed

0x02 Right button depressed

0x04 MIddle button depressed

0x08
.
.

etc...

mx is a pointer to a WORD which upon return will contain the x-position of the
mouse pointer at the time of the event. my is a pointer to a WORD which upon
return will contain the y-position of the mouse pointer at the time of the event.

button is a pointer to a WORD which upon return will contain the mouse button
state as defined in state.

kstate is a pointer to a WORD which upon return will contain the current status

6.62 – Event Library - AES Function Reference

T H E A T A R I C O M P E N D I U M

of the keyboard shift keys. The value is a bit-mask defined as follows:

Name Mask Key

K_RSHIFT 0x01 Right Shift

K_LSHIFT 0x02 Left Shift

K_CTRL 0x04 Control

K_ALT 0x08 Alternate

BINDING intin[0] = clicks;
intin[1] = mask;
intin[2] = state;

crys_if(0x15);

*mx = intout[1];
*my = intout[2];
*button = intout[3];
*kstate = intout[4];

return intout[0];

RETURN VALUE Upon exit, evnt_button() returns a WORD indicating the number of times the
mouse button state matched state.

COMMENTS A previously undocumented feature of this call is accessed by logically OR’ing
the mask parameter with 0x100. This causes the call to return when independent
buttons are depressed. For example, a mask value of 0x03 will return when both
the left and right mouse buttons are depressed. A mask value of 0x103 will cause
the call to return when either button is depressed.

SEE ALSO evnt_multi()

evnt_dclick()
WORD evnt_dclick(new, flag)
WORD new, flag;

evnt_dclick() sets the mouse double-click response rate. This call is global, and
thus, affects all applications.

OPCODE 26 (0x1A)

AVAILABILITY All AES versions.

PARAMETERS If flag is EDC_INQUIRE (0), new is ignored and the current double-click rate is
returned. If flag is EDC_SET (1), new specifies the new double-click rate as

evnt_keybd() - 6.63

T H E A T A R I C O M P E N D I U M

follows:

flag Response

0
1
2
3
4

Slowest

Fastest

BINDING intin[0] = new;
intin[1] = flag;

return crys_if(0x1A);

RETURN VALUE evnt_dclick() returns the newly set or current double-click rate based on flag.

COMMENTS Because this setting is global for all applications, Atari has strongly recommended
that developers use this call only where appropriate (such as in a configuration
CPX like the General Setup CPX included with XCONTROL).

evnt_keybd()
WORD evnt_keybd(VOID)

evnt_keybd() relinquishes program control to the operating system until a valid
keypress is available in the applications’ message pipe.

OPCODE 20 (0x14)

AVAILABILITY All AES versions.

PARAMETERS None

BINDING return crys_if(0x14);

RETURN VALUE evnt_keybd() returns a 16-bit value containing the ASCII code of the key entered
in the lower eight bits and the scan code in the upper 8-bits.

VERSION NOTES TOS versions released at or above 2.06 and 3.06 disabled reception of keys 1
through 9 on the numeric keypad when used in conjunction with the alternate key.
Users may now enter the full range of ASCII values by holding down ALT, typing
in the decimal ASCII code, and then releasing the ALT key. These keys, therefore,
should not be used by applications. The standard numeric keypad is still available.

SEE ALSO evnt_multi()

6.64 – Event Library - AES Function Reference

T H E A T A R I C O M P E N D I U M

evnt_mesag()
WORD evnt_mesag(msg)
WORD *msg;

evnt_mesag() releases control to the operating system until a valid system
message is available in the applications’ message pipe.

OPCODE 23 (0x17)

AVAILABILITY All AES versions.

PARAMETERS msg is a pointer to an array of 8 WORD’ s to be used as a message buffer.

BINDING addrin[0] = msg

return crys_if(0x17);

RETURN VALUE The return value is currently reserved by Atari and currently is defined as 1. The
array msg is filed in with the following values:

evnt_mesag() - 6.65

T H E A T A R I C O M P E N D I U M

Index Description Possible Values #

msg[0] Message Type MN_SELECTED

WM_REDRAW

WM_TOPPED

WM_CLOSED

WM_FULLED

WM_ARROWED

WM_HSLID

WM_VSLID

WM_SIZED

WM_MOVED

WM_UNTOPPED

WM_ONTOP

WM_BOTTOM

WM_ICONIFY

WM_UNICONIFY

WM_ALLICONIFY

WM_TOOLBAR

AC_OPEN

AC_CLOSE

AP_TERM

AP_TFAIL

AP_RESCHG

SHUT_COMPLETED

RESCH_COMPLETED

AP_DRAGDROP

SH_WDRAW

CH_EXIT

10

20

21

22

23

24

25

26

27

28

30

31

33

34

35

36

37

40

41

50

51

57

60

61

63

72

90
msg[1] The application identifier of the

sending application.
Any valid ap_id.

msg[2] The length of the message beyond
16 bytes (use appl_read() to read
the excess).

Currently all system messages return 0
in this slot. Only user-defined
messages utilize a higher value.

6.66 – Event Library - AES Function Reference

T H E A T A R I C O M P E N D I U M

Each system message can be interpreted as follows:

Message Extended Information

MN_SELECTED A menu item has been selected by the user. msg[3] contains the
object number of the menu title and msg[4] contains the object
number of the menu item.

As of AES version 4.0 (and when indicated by appl_getinfo()),
msg[5] and msg[6] contain the high and low word, respectively, of
the object tree of the menu item. msg[7] contains the parent object
index of the menu item.

WM_REDRAW This message alerts an application that a portion of the screen
needs to be redrawn. msg[3] contains the handle of the window to
redraw. msg[4-7] are the x, y, w, and h respectively of the ‘dirtied’
area.

When the message is received the window contents should be
drawn (or a representative icon if the window is iconified).

WM_TOPPED This message is sent when an application window which is currently
not the top window is clicked on by the user. msg[3] contains the
handle of the window.

You should use wind_set(handle, WF_TOP, msg[3], 0, 0, 0) to
actually cause the window to be topped.

WM_CLOSED This message is sent when the user clicks on a windows’ close
box. msg[3] contains the handle of the window to close.

You should react to this message with wind_close() .
WM_FULLED This message is sent when the user clicks on a windows’ full box. If

the window is not at full size, the window should be resized using
wind_set(handle, WF_CURRXYWH,... to occupy the entire screen
minus the menu bar (see wind_get()).

If the window was previously ‘fulled’ and has not been resized since,
the application should return the window to its previous size.

evnt_mesag() - 6.67

T H E A T A R I C O M P E N D I U M

WM_ARROWED This message is sent to inform an application that one of its slider
gadgets has been clicked on.

A row or column message is sent when a slider arrow is selected.
A ‘page’ message is sent when a darkened area of the scroll bar is
clicked. This usually indicates that the application should adjust the
window’s contents by a larger amount than with the row or column
messages.

msg[3] indicates which action was actually selected as follows:

Name Value Meaning
WA_UPPAGE 0 Page Up
WA_DNPAGE 1 Page Down
WA_UPLINE 2 Row Up
WA_DNLINE 3 Row Down
WA_LFPAGE 4 Page Left
WA_RTPAGE 5 Page Right
WA_LFLINE 6 Column Left
WA_RTLINE 7 Column Right

WM_HSLID This message indicates that the horizontal slider has been moved.
msg[3] contains the new slider position ranging from 0 to 1000.

Note: Slider position is relative and not related to slider size.
WM_VSLID This message indicates that the vertical slider has been moved.

msg[3] contains the new slider position ranging from 0 to 1000.

Note: Slider position is relative and not related to slider size.
WM_SIZED This message occurs when the user drags the window sizing

gadget. msg[3] contains the window handle. msg[4-7] indicate the
x, y, w, and h respectively of the new window location.

Use wind_set(handle, WF_CURRXYWH,... to actually size the
window.

WM_SIZED and WM_MOVED usually share common handling
code.

WM_MOVED This message occurs when the user moves the window by dragging
the windows’ title bar. msg[3] contains the handle of the window
being moved. msg[4-7] indicate the x, y, w, and h respectively of the
new window location.

Use wind_set(handle, WF_CURRXYWH,...) to actually move the
window.

WM_MOVED and WM_SIZED usually share common handling
code.

WM_UNTOPPED This message is sent when the current window is sent behind one
or more windows as the result of another window being topped.
msg[3] contains the handle of the window being untopped.

The application need take no action. The message is for
informational use only.

6.68 – Event Library - AES Function Reference

T H E A T A R I C O M P E N D I U M

WM_ONTOP This message is sent when an applications’ window is brought to
the front on a multitasking AES. msg[3] is the handle of the window
being brought to the front.

This message requires no action, it is for informational purposes
only.

WM_BOTTOM This message is sent when the user shift-clicks on the window’s
(specified in msg[3]) mover bar to indicate that the window should
be sent to the bottom of the window stack by using wind_set() with
a parameter of WF_BOTTOM.

WM_ICONIFY This message is sent when the user clicks on the SMALLER
window gadget. msg[3] indicates the handle of the window to be
iconified. msg[4-7] indicate the x, y, w, and h of the iconified
window.

If the iconified window represents a single window this message
should be responded to by using wind_set() with a parameter of
WF_ICONIFY.

WM_UNICONIFY This message is sent when the user double-clicks on an iconified
window. msg[3] indicates the handle of the window to be iconified.
msg[4-7] indicate the x, y, w, and h of the original window.

This message should be responded to by using wind_set() with a
parameter of WF_UNICONIFY.

WM_ALLICONIFY This message is sent when the user CTRL-clicks on the SMALLER
window gadget. msg[3] indicates which window’s gadget was
clicked. msg[4-7] indicates the position at which the new iconified
window should be placed.

The application should respond to this message by closing all open
windows and opening a new iconified window at the position
indicated which represents the application.

WM_TOOLBAR This message is sent when a toolbar object is clicked. msg[3]
contains the handle of the window containing the toolbar.

msg[4] contains the object index of the object clicked. msg[5]
contains the number of clicks. msg[6] contains the state of the
keyboard shift keys at the time of the click (as in evnt_keybd()).

AC_OPEN This message is sent when the user has selected a desk accessory
to open. msg[4] contains the application identifier (as returned by
appl_init()) of the accessory to open.

AC_CLOSE This message is sent to a desk accessory when the accessory
should be closed. msg[3] is the application identifier (as returned
by appl_init()) of the accessory to close.

Do not close any windows your accessory had open, the system will
do this for you. Also, do not require any feedback from the user
when this is received. Treat this message as a ‘Cancel’ from the
user.

evnt_mesag() - 6.69

T H E A T A R I C O M P E N D I U M

AP_TERM This message is sent when the system requests that the application
terminate. This is usually the result of a resolution change but may
also occur if another application sends this message to gain total
control of the system.

The application should shut down immediately after closing
windows, freeing resources, etc... msg[5] indicates the reason for
the shut down as follows:

AP_TERM (50) = Just shut down.
AP_RESCHG (57) = Resolution Change.

If for some reason, your process can not shut down you must inform
the AES by sending an AP_TFAIL (51) message by using
shel_write() mode 10 (see shel_write()).

Note: Desk Accessories wil always be sent AC_CLOSE
messages, not AP_TERM.

AP_TFAIL This message should be sent to the system (see shel_write())
when an application has received an AP_TERM (50) message and
cannot shut down.

msg[0] should contain AP_TFAIL and msg[1] should contain the
application error code.

AP_RESCHG This message is actually a sub-command and is only found as a
possible value in the AP_TERM (50) message (see above).

SHUT_COMPLETED This message is sent to the application which requested a
shutdown when the shutdown is complete and was successful.

RESCH_COMPLETE
D

This message is sent to an application when a resolution change it
requested is completed. msg[3] contains 1 if the resolution change
was successful and 0 if an error occurred.

AP_DRAGDROP This message indicates that another application wishes to initiate a
drap and drop session. msg[3] indicates the handle of the window
which had an object dropped on it or -1 if no specific window was
targeted.

msg[4-5] contains the X and Y position of the mouse when the
object was ‘dropped’. msg[6] indicates the keyboard shift state at
the time of the drop (as in evnt_keybd()).

msg[7] is a two-byte ASCII packed pipe identifier which gives the
file extension of the pipe to open.

For more information about the drag & drop protocal, see Chapter
2: GEMDOS.

SH_WDRAW This message is sent to the Desktop to ask it to update an open
drive window. msg[3] should contain the drive number to update (0
= A:, 1 = B:) or -1 to update all windows.

CH_EXIT This message is sent when a child process that the application has
started, returns. msg[3] contains the child’s application identifier
and msg[4] contains its exit code.

VERSION NOTES WM_UNTOPPED, WM_ONTOP , AP_TERM , AP_TFAIL , AP_RESCHG,
SHUT_COMPLETED , RESCH_COMPLETED , and CH_EXIT are new as of

6.70 – Event Library - AES Function Reference

T H E A T A R I C O M P E N D I U M

AES version 4.0.

WM_BOTTOM , WM_ICONIFY , WM_UNICONIFY , WM_ALLICONIFY ,
and WM_TOOLBAR are new as of AES version 4.1.

No lower version AES will send these messages.

The existence (or acceptance) of these messages should also be checked for by
using appl_getinfo().

SEE ALSO evnt_multi()

evnt_mouse()
WORD evnt_mouse(flag, x, y, w, h, mx, my, button, kstate)
WORD flag, x, y, w, h;
WORD *mx, *mx, *button, *kstate;

evnt_mouse() releases control to the operating system until the mouse enters or
leaves a specified area of the screen .

OPCODE 22 (0x16)

AVAILABILITY All AES versions.

PARAMETERS flag specifies the event to wait for as follows:

Name Value Meaning

MO_ENTER 0 Wait for mouse to enter rectangle.

MO_LEAVE 1 Wait for mouse to leave rectangle.

The rectangle to watch is specified in x, y, w, h. mx and my are WORD pointers
which will be filled in with the final position of the mouse.

button is a WORD pointer which will be filled in upon return with the final state
of the mouse button as defined in evnt_button().

kstate is a WORD pointer which will be filled in upon return with the final state
of the keyboard shift keys as defined in evnt_button().

BINDING intin[0] = flag;
intin[1] = x;
intin[2] = y;
intin[3] = w;
intin[4] = h;

evnt_multi() - 6.71

T H E A T A R I C O M P E N D I U M

crys_if(0x16);

*mx = intout[1];
*my = intout[2];
*button = intout[3];
*kstate = intout[4];

return intout[0];

RETURN VALUE The return value of this function is reserved. Currently it always returns 1.

COMMENTS The evnt_multi() function can be used to watch two mouse/rectangle events as
opposed to one.

SEE ALSO evnt_multi()

evnt_multi()
WORD evnt_multi(events, bclicks, bmask, bstate, m1flag, m1x, m1y, m1w, m1h, m2flag, m2x, m2y,

m2w, m2h, msg, locount, hicount, mx, my, ks, kc, mc)
WORD events, bclicks, bmask, bstate, m1flag, m1x, m1y, m1w, m1h, m2flag, m2x, m2y, m2w, m2h;
WORD *msg;
WORD locount, hicount;
WORD *mx, *my, *ks, *kc, *mc;

evnt_multi() suspends the application until a valid message that the application is
interested in occurs. This call combines the functionality of evnt_button(),
evnt_keybd(), evnt_mesag(), evnt_mouse(), and evnt_timer() into one call.

This call is usually the cornerstone of all GEM applications that must process
system events.

OPCODE 25 (0x19)

AVAILABILITY All AES versions.

PARAMETERS events is a bit mask which tells the function which events your application is
interested in. You should logically ‘OR’ any of the following values together:

Name Mask Function

MU_KEYBD 0x01 Wait for a user keypress.

MU_BUTTON 0x02 Wait for the specified mouse button state.

MU_M1 0x04 Wait for a mouse/rectangle event as specified.

MU_M2 0x08 Wait for a mouse/rectangle event as specified.

6.72 – Event Library - AES Function Reference

T H E A T A R I C O M P E N D I U M

MU_MESAG 0x10 Wait for a message.

MU_TIMER 0x20 Wait the specified amount of time.

For usage of bclicks, bmask, bstate, mx, my, kc, and ks, you should consult
evnt_button().

For usage of m1flag, m1x, m1y, m1w, m1h, m2flag, m2x, m2y, m2w, and m2h,
consult evnt_mouse().

For usage of msg, see evnt_mesag().

For usage of locount and hicount, see evnt_timer().

BINDING intin[0] = events;
intin[1] = bclicks;
intin[2] = bmask;
intin[3] = bstate;
intin[4] = m1flag;
intin[5] = m1x;
intin[6] = m1y;
intin[7] = m1w;
intin[8] = m1h;
intin[9] = m2flag;
intin[10] = m2x;
intin[11] = m2y;
intin[12] = m2w;
intin[13] = m2h;
intin[14] = locount;
intin[15] = hicount;

addrin[0] = msg;

crys_if(0x19);

*mx = intout[1];
*my = intout[2];
*mb = intout[3];
*ks = intout[4];
*kc = intout[5];
*mc = intout[6];

return intout[0];

RETURN VALUE The function returns a bit mask of which events actually happened as in events.
This may be one or more events and your application should be prepared to handle
each.

VERSION NOTES The only facet of evnt_multi() which has changed from AES version 4.0 is that
which relates to evnt_mesag(). For further information you should consult that
section.

CAVEATS Under TOS 1.0, calling this function from a desk accessory with the MU_TIMER

evnt_timer() - 6.73

T H E A T A R I C O M P E N D I U M

mask and locount and hicount being equal to 0 could hang the system.

SEE ALSO evnt_button(), evnt_keybd(), evnt_mesag(), evnt_mouse(), evnt_timer()

evnt_timer()
WORD evnt_timer(locount, hicount)
WORD locount, hicount;

evnt_timer() releases control to the operating system until a specified amount of
time has passed.

OPCODE 24 (0x18)

AVAILABILITY All AES versions.

PARAMETERS locount is the low word of a 32-bit time value specified in milliseconds.
hicount is the high portion of that 32-bit value.

BINDING intin[0] = locount;
intin[1] = hicount;

return crys_if(0x18);

RETURN VALUE The return value is reserved and is currently always 1.

CAVEATS Under TOS 1.0, calling this function from a desk accessory with a both parameters
having a value of 0 will hang the system.

COMMENTS This function should not be relyed on as an accurate clock. The time specified is
used as a minimum time value only and the function will return at some point after
that duration has passed.

SEE ALSO evnt_multi()

T H E A T A R I C O M P E N D I U M

Form Library

The Form Library contains utility functions for the use and control of dialog boxes, alert boxes, and user
input. The members of the Form Library are:

•• form_alert()
•• form_button()
•• form_center()
•• form_dial()
•• form_do()
•• form_error()
•• form_keybd()

form_alert() – 6.77

T H E A T A R I C O M P E N D I U M

form_alert()
WORD form_alert(default, alertstr)
WORD default;
CHAR * alertstr;

form_alert() displays a standardized alert box and returns the user’s selection.

OPCODE 52 (0x34)

AVAILABILITY All AES versions.

PARAMETERS default contains the number of the exit button which is to be made default (1-3).
alertstr contains a formatted string as follows: “[#][Alert Text][Buttons]”.

specifies the icon to display in the alert as follows:

Icon Displayed

0 No Icon

1

2

3

4

5

‘Alert Text’ is a text string of as many as 5 lines composed of up to 30 characters
each. Each line is separated by a ‘|’ character.

‘Buttons’ is a text string to define as many as 3 buttons up to 10 characters each. If
only one button is used, its text may be as long as 30 characters. Again, each button
is separated by a ‘|’ character

6.78 – Form Library - AES Function Reference

T H E A T A R I C O M P E N D I U M

BINDING intin[0] = default;

addrin[0] = alertstr;

return crys_if(0x34);

RETURN VALUE form_alert() returns a WORD indicating which button was used to exit by the
user (A possible value of 1-3).

VERSION NOTES Icons #4-5 are only available as of AES version 4.1.

CAVEATS Several versions of the AES have special quirks related to this function. By
following the quidelines below you should avoid any difficulty:

1. All AES versions below 1.06 have some difficulty formatting alert strings
padded with spaces. If you want your alerts to look right on all AES
versions, do not pad any button or line with spaces with the exception below.

2. Add one space to the end of the longest text line on an alert. This will
prevent the right edge from touching the border in some AES versions.

form_button()
WORD form_button(tree, obj, clicks, newobj)
OBJECT * tree;
WORD obj, clicks, newobj;

form_button() is a utility function designed to aid in the creation of a custom
form_do() handler.

OPCODE 56 (0x38)

AVAILABILITY All AES versions.

PARAMETERS tree is a pointer to a valid object tree in memory you wish to process button events
for. obj is the object index into tree which was clicked on and which needs to be
processed.

clicks is the number of times the mouse button was clicked.

newobj returns the next object to gain edit focus or 0 if there are no editable
objects. If the top bit of newobj is set, this indicates that a TOUCHEXIT object
was double-clicked.

BINDING intin[0] = obj;
intin[1] = clicks;

form_center() - 6.79

T H E A T A R I C O M P E N D I U M

addrin[0] = tree;

crys_if(0x38);

*newobj = intout[1];

return intout[0];

RETURN VALUE form_button() returns a 0 if it exits finding an EXIT or TOUCHEXIT object
selected or 1 otherwise.

COMMENTS To use this function properly, the application should take the following steps:

1. Monitor mouse clicks with evnt_multi() or evnt_button().

2. When a click occurs, use objc_find() to determine if the click occurred
over the object.

3. If so, call form_button() with the appropriate values.

This function was not originally documented by Atari. You may have to add
bindings for this function to some earlier ‘C’ compilers.

SEE ALSO form_do(), form_keybd()

form_center()
WORD form_center(tree, x, y, w, h)
OBJECT * tree;
WORD *x, *y, *w, *h;

form_center() is used to modify an object’s coordinates so that it will appear in
the center of the display screen.

OPCODE 54 (0x36)

AVAILABILITY All AES versions.

PARAMETERS tree points to a valid OBJECT structure (see discussion of resources) which the
application wishes to have centered. x, y, w, and h, return a clipping rectangle
suitable for use in objc_draw().

BINDING addrin[0] = tree;

crys_if(0x36);

6.80 – Form Library - AES Function Reference

T H E A T A R I C O M P E N D I U M

*x = intout[1];
*y = intout[2];
*w = intout[3];
*h = intout[4];

return intout[0];

RETURN VALUE The return value is currently reserved. Currently it equals 1.

COMMENTS The values that form_center() returns in x, y, w, and h, are not necessarily the
same as the object’s. These values take into account negative borders, outlining,
and shadowing. This is meant to provide a suitable clipping rectangle for
objc_draw()

SEE ALSO objc_draw()

form_dial()
WORD form_dial(mode, x1, y1, w1, h1, x2, y2, w2, h2)
WORD mode, x1, y1, w1, h1, x2, y2, w2, h2;

form_dial() is used to reserve and release screen space for dialog usage. In
addition, it also optionally provides grow/shrink box effects.

OPCODE 51 (0x33)

AVAILABILITY All AES versions.

PARAMETERS mode specifies the action to take and the meaning of remaining parameters as
follows:

Name # Action

FMD_START 0 This mode reserves the screen space for a dialog. x2, y2, w2, and
h2, contain the coordinates of the dialog to be used (usually
obtained through form_center()).

FMD_GROW 1 This mode draws an expanding box from the coordinates specified
in x1, y1, w1, and h1 to the coordinates specified in x2, y2, w2, and
h2. This call is optional and is not required to display a dialog.

FMD_SHRINK 2 This mode draws a shrinking box from the coordinates specified in
x2, y2, w2, and h2 to the coordinates specified in x1, y1, w1, and
h1. This call is optional and is not required to display a dialog.

FMD_FINISH 3 This mode releases the screen space for a dialog (previously
reserved with mode 0). x2, y2, w2, and h2 contain the coordinates
of the space to release. One of the side-effects of this call is a
WM_REDRAW message sent to any window which the dialog was
covering.

form_do() - 6.81

T H E A T A R I C O M P E N D I U M

BINDING intin[0] = mode;
intin[1] = x1;
intin[2] = y1;
intin[3] = w1;
intin[4] = h1;
intin[5] = x2;
intin[6] = y2;
intin[7] = w2;
intin[8] = h2;

return crys_if(0x33);

RETURN VALUE The function returns 0 is an error occurred or non-zero otherwise.

VERSION NOTES The AES does not currently make use of mode FMD_START . The call should,
however, still be executed for upward compatibility.

SEE ALSO graf_growbox(), graf_shrinkbox()

form_do()
WORD form_do(tree, editobj)
OBJECT * tree;
WORD editobj;

form_do() provides an automated dialog handling function to the calling
application. It suspends program control, handling all radio buttons, selectable
objects, etc... until an object with the TOUCHEXIT or EXIT flag is selected.

OPCODE 50 (0x32)

AVAILABILITY All AES versions.

PARAMETERS tree is a pointer to a valid object tree (see the discussion on objects in this
chapter) which contains a dialog with at least one EXIT or TOUCHEXIT button
or object.

editobj is the object index into tree which specifies the desired initial location of
the edit cursor (the object must be flagged as EDITABLE). If the form has no text
editable fields, you should use 0.

BINDING intin[0] = editobj;

addrin[0] = tree;

return crys_if(0x32);

RETURN VALUE form_do() returns the object index of the EXIT or TOUCHEXIT button which

6.82 – Form Library - AES Function Reference

T H E A T A R I C O M P E N D I U M

was selected. If the object was double clicked, bit 15 will be set. This means that
to obtain the actual object number you should mask off the result with 0x7FFF.

form_error()
WORD form_error(error)
WORD error;

form_error() displays a pre-defined error alert box to the user.

OPCODE 53 (0x35)

AVAILABILITY All AES versions.

PARAMETERS error specifies a MS-DOS error code as follows:

Name
GEMDOS

Error # error Message
FERR_FILENOTFOUND -33 2 File Not Found

The application can not find the folder or
file that you tried to access.

FERR_PATHNOTFOUND -34 3 Path Not Found

The application cannot find the folder or
file that you tried to access.

FERR_NOHANDLES -35 4 No More File Handles

The application does not have room to
open another document. To make
room, close any open document that
you do not need.

FERR_ACCESSDENIED -36 5 Access Denied

An item with this name already exists in
the directory, or this item is set to read-
only status.

FERR_LOWMEM -39 8 Insufficient Memory

There is not enough memory for the
application you just tried to run.

FERR_BADENVIRON -41 10 Invalid Environment

There is not enough memory for the
application you just tried to run.

FERR_BADFORMAT -42 11 Invalid Format

There is not enough memory for the
application you just tried to run.

form_keybd() - 6.83

T H E A T A R I C O M P E N D I U M

FERR_BADDRIVE -46 15 Invalid Drive Specification

The drive you specified does not exist.
FERR_DELETEDIR -47 16 Attempt To Delete Working

Directory

You cannot delete the folder in which
you are working.

FERR_NOFILES -49 18 No More Files

The application can not find the folder or
file that you tried to access.

The GEMDOS error number can be translated into a MS-DOS code by
subtracting 31 from the absolute value of the error code.

BINDING intin[0] = error;

return crys_if(0x35);

RETURN VALUE The function returns the exit button clicked as in form_alert() . It is, however,
insignifigant as all of the error alerts have only one button.

CAVEATS Not every GEMDOS error code has a matching alert box.

SEE ALSO form_alert()

form_keybd()
WORD form_keybd(tree, obj, nextobj, kc, newobj, keyout)
OBJECT * tree;
WORD obj, nextobj, kc;
WORD *newobj, *keyout;

form_keybd() processes keyboard input for dialog box control. It handles special
keys such as return, escape, tab, etc... It is only of real use if you are writing a
customized form_do() routine.

OPCODE 55 (0x37)

AVAILABILITY All AES versions.

PARAMETERS tree points to a valid OBJECT tree containing the dialog you wish to process. obj
is the object index of the object which currently has edit focus (0 if none). nextobj
is reserved and should be 1.

6.84 – Form Library - AES Function Reference

T H E A T A R I C O M P E N D I U M

kc is the value returned from evnt_keybd() or evnt_multi() which represents the
keypresses’ scan code and ASCII value.

newobj is a WORD pointer which is filled in on function exit to be the new object
with edit focus unless the RETURN key was pressed with a default object present in
which case it equals the object index of the object that was the default.

keyout is the value ready to be passed on to objc_edit() if no processing was
required or 0 if the key was processed and handled by the call.

BINDING intin[0] = obj;
intin[1] = nextobj;
intin[2] = kc;

addrin[0] = tree;

crys_if(0x37);

*newobj = intout[1];
*keyout = intout[2];

return intout[0];

RETURN VALUE form_keybd() returns 0 if a default EXIT object was triggered by this call or 1 if
the dialog should continue to be processed.

COMMENTS This function was not originally documented by Atari. You may need to add
bindings for this function into some older ‘C’ compilers.

SEE ALSO objc_edit(), form_do(), form_button()

T H E A T A R I C O M P E N D I U M

File Selector Library

The File Selector Library contains two functions for displaying the system file selector (or currently
installed alternate file selector) and prompting the user to select a file. The members of this library are:

•• fsel_exinput()
•• fsel_input()

fsel_exinput() – 6.87

T H E A T A R I C O M P E N D I U M

fsel_exinput()
WORD fsel_exinput(path, file, button, title)
CHAR * path, *file;
WORD *button;
CHAR * title;

fsel_exinput() displays the system file selector and offers the user an opportunity
to choose a complete GEMDOS path specification.

OPCODE 91 (0x5B)

AVAILABILITY Available from AES version 1.40.

PARAMETERS path should be a pointer to a character buffer at least 128 bytes long (applications
wishing to access CD-ROM’s should allocate at least 200 bytes). On input the
buffer should contain a complete GEMDOS path specification including a drive
specifier, path string, and wildcard mask as follows: ‘drive:\path\mask’. The mask
can be any valid GEMDOS wildcard (usually *.*).

On function exit, path contains final path of the selected file (you will have to strip
the mask).

file should point to a character buffer 13 bytes long (12 character filename plus
NULL). On input its contents will be placed on the filename line of the selector
(usually this value can simply be a empty string). On function exit, file contains the
filename which the user selected.

button is a short pointer which upon function exit will contain
FSEL_CANCEL (0) if the user selected CANCEL or FSEL_OK (1) if OK.

title should be a pointer to a character string up to 30 characters long which
contains the title to appear in the file selector (usually indicates which action the
user is about to take).

BINDING addrin[0] = path;
addrin[1] = file;
addrin[2] = label;

crys_if(0x5B);

*button = intout[1];

return intout[0];

RETURN VALUE fsel_exinput() returns 0 if an error occured and 1 otherwise.

6.88 – File Selector Library - AES Function Reference

T H E A T A R I C O M P E N D I U M

VERSION NOTES Some ‘C’ compilers (Lattice for example) provide a special function which
allows fsel_exinput() to be used even on earlier AES versions.

COMMENTS The path parameter to this function should be validated to ensure that the path
actually exists prior to calling this function to prevent confusing the user.

This call should always be used as opposed to fsel_input() when it is available.
Otherwise, the user has no reminder as to what function s/he is actually
undertaking.

SEE ALSO fsel_input()

fsel_input()
WORD fsel_input(path, file, button)
CHAR * path, *file;
WORD *button;

fsel_input() displays the system file selector and allows the user to select a valid
GEMDOS path and file.

OPCODE 90 (0x5A)

AVAILABILITY All AES versions.

PARAMETERS All parameters are consistent with fsel_exinput() with the notable lack of title.

BINDING addrin[0] = path;
addrin[1] = file;

crys_if(0x5A);

*button = intout[1];

return intout[0];

RETURN VALUE fsel_input() returns a 0 if an error occurred or 1 otherwise.

COMMENTS You should never use this function in place of fsel_exinput() when fsel_exinput()
is available.

SEE ALSO fsel_exinput()

T H E A T A R I C O M P E N D I U M

Graphics Library

The Graphics Library provides applications with a variety of utility functions which serve to provide
common screen effects, mouse control, and the obtaining of basic screen attributes. The functions of the
Graphics Library are as follows:

•• graf_dragbox()
•• graf_growbox()
•• graf_handle()
•• graf_mkstate()
•• graf_mouse()
•• graf_movebox()
•• graf_rubberbox()
•• graf_shrinkbox()
•• graf_slidebox()
•• graf_watchbox()

graf_dragbox() – 6.91

T H E A T A R I C O M P E N D I U M

graf_dragbox()
WORD graf_dragbox(w, h, sx, sy, bx, by, bw, bh, endx, endy)
WORD w, h, sx, sy, bx, by, bw, bh;
WORD *endx, *endy;

graf_dragbox() allows the user to move a box frame within the constraints of a
bounding rectangle. This call is most often used to give the user a visual ‘clue’
when an object is being moved on screen.

OPCODE 71 (0x47)

AVAILABILITY All AES versions.

PARAMETERS w and h specify the initial width and height of the box to draw. sx and sy specify
the starting x and y screen coordinates.

bx, by, bw, and bh, give the coordinates of the bounding rectangle.

endx and endy are WORD pointers which, on function exit, will be filled in with
the ending x and y position of the box.

BINDING intin[0] = w;
intin[1] = h;
intin[2] = sx;
intin[3] = sy;
intin[4] = bx;
intin[5] = by;
intin[6] = bw;
intin[7] = bh;

crys_if(0x47);

*endx = intout[1];
*endy = intout[2];

return intout[0];

RETURN VALUE graf_dragbox() returns a 0 if an error occurred during execution or greater than
zero otherwise.

COMMENTS This call should be made only when the mouse button is depressed. The call
returns when the mouse button is released.

SEE ALSO graf_slidebox()

6.92 – Graphics Library - AES Function Reference

T H E A T A R I C O M P E N D I U M

graf_growbox()
WORD graf_growbox(x1, y1, w1, h1, x2, y2, w2, h2)
WORD x1, y1, w2, h2, x2, y2, w2, h2;

graf_growbox() is used to provide a visual ‘clue’ to a user by animating an
outline of a box from one set of coordinates to another. It is the complement
function to graf_shrinkbox().

OPCODE 73 (0x49)

AVAILABILITY All AES versions.

PARAMETERS x1, y1, w1, and h1 are the screen coordinates of the starting rectangle (where the
outline will grow from).

x2, y2, w2, and h2 are the screen coordinates of the ending rectangle (where the
outline will grow to).

BINDING intin[0] = x1;
intin[1] = y1;
intin[2] = w1;
intin[3] = h1;
intin[4] = x2;
intin[5] = y2;
intin[6] = w2;
intin[7] = h2;

return crys_if(0x49);

RETURN VALUE graf_growbox() returns 0 if an error occured or non-zero otherwise.

CAVEATS There is currently no defined method of handling an error generated by this
function.

COMMENTS This function is what is called by GEM ’s form_dial(FMD_GROW ,...

SEE ALSO form_dial(), graf_shrinkbox()

graf_handle()
WORD graf_handle(wcell, hcell, wbox, hbox);
WORD *wcell, *hcell, *wbox, *hbox;

graf_handle() returns important information regarding the physical workstation

graf_mkstate() - 6.93

T H E A T A R I C O M P E N D I U M

currently in use by the AES.

OPCODE 77 (0x4D)

AVAILABILITY All AES versions.

PARAMETERS wcell and hcell are WORD pointers which on function exit will be filled in with
the width and height, respectively, of the current system character set.

wbox and hbox are WORD pointers which on function exit will be filled in with
the width and height, respectively, of the minimum bounding box of a BOXCHAR
character.

BINDING crys_if(0x4D);

*charw = intout[1];
*charh = intout[2];
*boxw = intout[3];
*boxh = intout[4];

return intout[0];

RETURN VALUE This function returns the VDI handle for the current physical workstation used by
the AES.

CAVEATS There is currently no defined method of handling an error generated by this
function.

COMMENTS The return value of this function is required to open a virtual screen workstation.

SEE ALSO v_opnvwk()

graf_mkstate()
WORD graf_mkstate(mx, my, mb, ks)
WORD *mx, *my, *mb, *ks;

graf_mkstate() returns information about the current state of the mouse pointer,
buttons, and keyboard shift-key state.

OPCODE 79 (0x4F)

AVAILABILITY All AES versions.

PARAMETERS mx and my are WORD pointers, which, on function exit will be filled in with the
current x and y coordinates of the mouse pointer. mb is a WORD pointer, which,

6.94 – Graphics Library - AES Function Reference

T H E A T A R I C O M P E N D I U M

on function exit will be filled in with the current button state of the mouse as
defined in evnt_button().

BINDING crys_if(0x4F);

*mx = intout[1];
*my = intout[2];
*mb = intout[3];
*ks = intout[4];

return intout[0];

RETURN VALUE The function return is currently reserved and currently equals 1.

SEE ALSO evnt_button(), vq_mouse()

graf_mouse()
WORD graf_mouse(mode, formptr)
WORD mode;
VOIDP formptr;

graf_mouse() alters the appearance of the mouse form and can be used to hide and
display the mouse pointer from the screen.

OPCODE 78 (0x4E)

AVAILABILITY All AES versions.

PARAMETERS mode is defined as follows:

mode # Meaning Shape

ARROW 0 Change the current mouse cursor
shape.

TEXT_CRSR 1 Change the current mouse cursor
shape.

BUSY_BEE 2 Change the current mouse cursor
shape.

POINT_HAND 3 Change the current mouse cursor
shape.

graf_mouse() - 6.95

T H E A T A R I C O M P E N D I U M

FLAT_HAND 4 Change the current mouse cursor
shape.

THIN_CROSS 5 Change the current mouse cursor
shape.

THICK_CROSS 6 Change the current mouse cursor
shape.

OUTLN_CROS
S

7 Change the current mouse cursor
shape.

USER_DEF 255 Change the current mouse cursor
shape.

Form is defined
below.

M_OFF 256 Remove the mouse cursor from the
screen.

No shape change.

M_ON 257 Display the mouse cursor. No shape change.

M_SAVE 258 Save the current mouse form in an
AES provided buffer. Check
appl_getinfo() for the presence of
this feature.

No shape change.

M_LAST 259 Restore the most recently saved
mouse form. Check appl_getinfo()
for the presence of this feature.

Changes the shape
as indicated.

M_RESTORE 260 Restore the mouse form to its last
shape. Check appl_getinfo() for the
presence of this feature.

Changes the shape
as indicated.

If mode is equal to USER_DEF, formptr must point to a MFORM structure as
defined below (if mode is different than USER_DEF, formptr should be NULL):

typedef struct {
short mf_xhot;
short mf_yhot;
short mf_nplanes;
short mf_fg;
short mf_bg;
short mf_mask[16];
short mf_data[16];

} MFORM;

mf_xhot and mf_yhot are the location of the mouse ‘hot-spot’. These values should
be in the range 0 to 15 and define what offset into the bitmap is actually the
‘point’.

mf_nplanes specifies the number of bit-planes used by the mouse pointer.
Currently, the value of 1 is the only legal value.

mf_fg and mf_bg are the mask and data colors of the mouse specified as palette

6.96 – Graphics Library - AES Function Reference

T H E A T A R I C O M P E N D I U M

indexes. Usually these values will be 0 and 1 respectively.

mf_mask is an array of 16 WORD’ s which define the mask portion of the mouse
form. mf_data is an array of 16 WORD’ s which define the data portion of the
mouse form.

As of AES 4.0 and beyond, the AES may not allow a mouse form to change to
benefit another application. If it is absolutely necessary for the application to
display its mouse form, logically OR the mode parameter with M_FORCE
(0x8000) and make the call.

This will force the AES to change to your mouse form. It should, however, be
done within the scope of a wind_update() sequence.

BINDING intin[0] = mode;

addrin[0] = formptr;

return crys_if(0x4E);

RETURN VALUE graf_mouse() returns a 0 if an error occurred or non-zero otherwise.

CAVEATS There is currently no defined method of handling an error generated by this
function.

SEE ALSO vsc_form()

graf_movebox()
WORD graf_movebox(bw, bh, sx, sy, ex, ey)
WORD bw, bh, sx, sy, ex, ey;

graf_movebox() animates a moving box between two points on the screen. It is
used to give the user a visual ‘clue’ to an action undertaken by the application.

OPCODE 72 (0x48)

AVAILABILITY All AES versions.

PARAMETERS bw and bh specify the width and height, respectively, of the box to animate. sx and
sy specify the starting coordinates of the box. ex and ey specify the ending
coordinates of the box.

BINDING intin[0] = bw;
intin[1] = bh;
intin[2] = sx;

graf_rubberbox() - 6.97

T H E A T A R I C O M P E N D I U M

intin[3] = sy;
intin[4] = ex;
intin[5] = ey;

return crys_if(0x48);

RETURN VALUE The return value is 0 if an error occured or non-zero otherwise.

CAVEATS There is currently no defined method for handling an error generated by this call.

COMMENTS Some older ‘C’ bindings referred to this call as graf_mbox(). If your compiler
still uses this call you should update it.

graf_rubberbox()
WORD graf_rubberbox(bx, by, minw, minh, endw, endh)
WORD bx, by, minw, minh;
WORD *endw, *endh;

graf_rubberbox() allows the user to change the size of a box outline with a fixed
starting point.

OPCODE 70 (0x46)

AVAILABILITY All AES versions.

PARAMETERS bx and by define the fixed upper-left corner of the box to stretch or shrink.

minw and minh specify the minimum width and height that the rectangle can be
shrunk to.

endw and endh are WORD pointers which will be filled in with the ending width
and height of the box when the mouse button is released.

BINDING intin[0] = bx;
intin[1] = by;
intin[2] = minw;
intin[3] = minh;

crys_if(0x46);

*endw = intout[1];
*endh = intout[2];

return intout[0];

RETURN VALUE graf_rubberbox() returns 0 if an error occurred or non-zero otherwise.

6.98 – Graphics Library - AES Function Reference

T H E A T A R I C O M P E N D I U M

CAVEATS There is currently no defined method for handling an error generated by this call.

COMMENTS This function should only be entered when the user has depressed the mouse button
as it returns when the mouse button is released.

SEE ALSO graf_dragbox(), graf_slidebox()

graf_shrinkbox()
WORD graf_shrinkbox(x1, y1, w1, h1, x2, y2, w2, h2)
WORD x1, y1, w1, h1, x2, y2, w2, h2;

graf_shrinkbox() displays an animated box shrinking from one rectangle to
another. It should be used to provide the user with a visual ‘clue’ to an action. It is
the complement function to graf_growbox().

OPCODE 74 (0x4A)

AVAILABILITY All AES versions.

PARAMETERS x1, y1, w1, and h1 are the coordinates of the rectangle to shrink to.

x2, y2, w2, and h2 are the coordinates of the rectangle to shrink from.

BINDING intin[0] = x1;
intin[1] = y1;
intin[2] = w1;
intin[3] = h1;
intin[4] = x2;
intin[5] = y2;
intin[6] = w2;
intin[7] = h2;

return crys_if(0x4A);

RETURN VALUE The function returns 0 if an error occurred or non-zero otherwise

CAVEATS There is currently no defined method of handling an error from this call.

COMMENTS This function is essentially the same as form_dial(FMD_SHRINK ,...

SEE ALSO form_dial(), graf_growbox()

graf_slidebox() - 6.99

T H E A T A R I C O M P E N D I U M

graf_slidebox()
WORD graf_slidebox(tree, parent, obj, orient)
OBJECT * tree;
WORD parent, obj,orient;

graf_slidebox() allows the user to slide a child object within the bounds of its
parent. It is often used to implement slider controls.

OPCODE 76 (0x4C)

AVAILABILITY All AES versions.

PARAMETERS tree is pointer to the object tree containing the child and parent objects.

parent is the object index of an object which bounds the movement of the child.
child is the object index of the object which can be moved within the bounds of
parent.

orient specifies the orientation of the allowed movement. 0 is horizontal (left-
right), 1 is vertical (up-down).

BINDING intin[0] = parent;
intin[1] = child;
intin[2] = orient;

addrin[0] = tree;

return crys_if(0x4C);

RETURN VALUE The function returns a value specifying the relative offset of the child within the
parent as a number between 0 and 1000.

COMMENTS This call can be used easily with sliders built into dialogs by making the slider bar
a TOUCHEXIT and calling this function when it is clicked. This call should only
be made when the mouse button is depressed as it returns when it is released.

SEE ALSO graf_movebox()

6.100 – Graphics Library - AES Function Reference

T H E A T A R I C O M P E N D I U M

graf_watchbox()
WORD graf_watchbox(tree, obj, instate, outstate)
OBJECT * tree;
WORD obj, instate, outstate;

graf_watchbox() modifies the given state of a specified object depending on
whether the pointer is within the bounds of the object or outside the bounds of the
object as long as the left mouse button is held down.

OPCODE 75 (0x4B)

AVAILABILITY All AES versions.

PARAMETERS tree is a pointer to the ROOT object of the tree which contains the object you
wish to watch. obj is the object index of the object to watch.

instate is the ob_state (see objc_change()) to apply while the mouse is inside of
the bounds of the object.
outstate is the ob_state to apply while the mouse is outside of the bounds of the
object.

BINDING intin[0] = obj;
intin[1] = instate;
intin[2] = outstate;

addrin[0] = tree;

return crys_if(0x4B);

RETURN VALUE graf_watchbox() returns a 0 if the mouse button was released outside of the
object or a 1 if the button was released inside of the object.

COMMENTS As this call returns when the mouse button is released, it should only be made
when the mouse button is depressed. This call is used internally by form_button()
and form_do() and is usually only necessary if you are replacing one of these
handlers.

SEE ALSO form_button()

T H E A T A R I C O M P E N D I U M

Menu Library

The Menu Library assists in the handling of system menu bars and popup menus. In addition, individual
control of menu items can also be handled through these functions. The members of the Menu Library are:

•• menu_attach()
•• menu_bar()
•• menu_icheck()
•• menu_ienable()
•• menu_istart
•• menu_popup()
•• menu_register()
•• menu_settings()
•• menu_text()
•• menu_tnormal()

menu_attach() – 6.103

T H E A T A R I C O M P E N D I U M

menu_attach()
WORD menu_attach(flag, tree, item, mdata)
WORD flag;
OBJECT * tree;
WORD item;
MENU * mdata;

menu_attach() allows an application to attach, change, or remove a sub-menu. It
also allows the application to inquire information regarding a currently defined
sub-menu.

OPCODE 37 (0x25)

AVAILABILITY This function is only available from AES version 3.30 and above. In AES
versions 4.0 and greater, appl_getinfo() should be used to determine its exact
functionality.

PARAMETERS flag indicates the action the application desires as follows:

Define Meaning

0 ME_INQUIRE Return information on a sub-menu attached to the menu item
designated by tree and item in mdata.

1 ME_ATTACH Attach or change a sub-menu. mdata should be initialized by
the application.

tree and item should be the OBJECT pointer and index to the
menu which is to have the sub-menu attached. If mdata is
NULLPTR , any sub-menu attached will be removed.

2 ME_REMOVE Remove a sub-menu. tree and item should be the OBJECT
pointer and index to the menu item which a sub-menu was
attached to. mdata should be NULLPTR .

In all cases except ME_REMOVE , mdata should point to a MENU structure as
defined here:

typedef struct
{

OBJECT *mn_tree;
WORD mn_menu;
WORD mn_item;
WORD mn_scroll;
WORD mn_keystate;

} MENU;

The MENU structure members are defined as follows:

6.104 – Menu Library - AES Function Reference

T H E A T A R I C O M P E N D I U M

Member Meaning

mn_tree Points to the OBJECT tree of the sub-menu.

mn_menu Is an index to the parent object of the menu items.

mn_item Is the starting menu item.

mn_scroll If SCROLL_NO (0), the menu will not scroll. If SCROLL_YES (1), and the
number of menu items exceed the menu scroll height, arrows will appear
which allow the user to scroll selections.

mn_keystate This member is unused and should be 0 for this call.

BINDING intin[0] = flag;
intin[1] = item;

addrin[0] = tree;
addrin[1] = mdata;

return crys_if(0x25);

RETURN VALUE menu_attach() returns 0 if an error occurred and the sub-menu could not be
attached or 1 if the operation was successful.

CAVEATS AES versions supporting menu_attach() less than 4.1 contain a bug which causes
the AES to crash when changing or removing a sub-menu attachment.

At present, if you wish to attach a scrolling menu, the menu items must be
G_STRING’s.

COMMENTS If a menu bar having attachments is removed with
menu_bar(NULL , MENU_REMOVE) those attachments are removed by the
system and must be reattached with this call if the menu is redisplayed at a later
time.

Several recommendations regarding sub-menus should be adhered to:

1. Menu items which will have sub-menus attached to them should be
padded with blanks to the end of the menu.

2. Menu items which will have sub-menus attached to them should not have
a keyboard equivalent.

3. Sub-menus will display faster if a byte-boundary is specified.
4. Sub-menus will be shifted vertically to align the start object with the

main menu item which it is attached to.
5. Sub-menus will always be adjusted to automatically fit on the screen.
6. There can be a maximum of 64 sub-menu attachments per process

(attaching a sub-menu to more than one menu item counts as only one
attachment).

7. Do not attach a sub-menu to itself.
8. As a user-interface guideline, there should only be one level of sub-

menus, though it is possible to have up to four levels currently.
9. menu_istart() works only on sub-menus attached with menu_attach().

menu_bar() - 6.105

T H E A T A R I C O M P E N D I U M

SEE ALSO menu_istart(), menu_settings(), menu_popup()

menu_bar()
WORD menu_bar(tree, mode)
OBJECT * tree;
WORD mode;

menu_bar() displays a specialized OBJECT tree on the screen as the application
menu. It can also be used to determine the owner of the currently displayed menu
bar in a multitasking AES.

OPCODE 30 (0x1E)

AVAILABILITY All AES versions.

PARAMETERS tree is a pointer to an OBJECT tree which has been formatted for use as a system
menu (for more information on the OBJECT format of a menu see the discussion
on objects in this chapter).

mode is a flag indicating the action to take as follows:

Name mode Meaning

MENU_REMOVE 0 Erase the menu bar specified in tree.

MENU_INSTALL 1 Display the menu bar specified in tree.

MENU_INQUIRE -1 Return the AES application identifier of the process
which owns the currently displayed system menu. tree
can be set to NULL . The AES version must be greater
than 4.0 and appl_getinfo() must indicate that this is
feature is supported.

BINDING intin[0] = mode;

addrin[0] = tree;

return crys_if(0x1E);

RETURN VALUE If mode is MENU_REMOVE (0) or MENU_INSTALL (1), the return value
indicates an error condition where >0 means no error and 0 means an error
occurred. In inquiry mode (mode = MENU_INQUIRE (-1)), menu_bar() returns
the application identified of the process which owns the currently displayed menu
bar.

COMMENTS The safest way to redraw an application’s menu bar is to redraw it only if you are

6.106 – Menu Library - AES Function Reference

T H E A T A R I C O M P E N D I U M

sure it is currently the active menu bar. In a non-multitasking AES, this is a
certainty, however, in a multitasking AES you should first inquire the menu bar’s
owner within the scope of a wind_update(BEG_UPDATE) call to prevent the
system from swapping active menu bars while in the process of redrawing.

SEE ALSO menu_ienable(), menu_icheck()

menu_icheck()
WORD menu_icheck(tree, obj, check)
OBJECT * tree;
WORD obj, check;

menu_icheck() adds/removes a checkmark in front of a menu item.

OPCODE 31 (0x1F)

AVAILABILITY All AES versions.

PARAMETERS tree specifies the object tree of the current menu. obj should be the object index of
a menu item. If check is UNCHECK (0), no checkmark will be displayed next to
this item whereas if check is CHECK (1), a checkmark will be displayed.

BINDING intin[0] = obj;
intin[1] = check;

addrin[0] = obj;

return crys_if(0x1F);

RETURN VALUE menu_icheck() returns 0 if an error occurred or non-zero otherwise.

SEE ALSO objc_change()

menu_ienable()
WORD menu_ienable(tree, obj, flag)
OBJECT * tree;
WORD obj, flag;

menu_ienable() enables/disables menu items.

OPCODE 32 (0x20)

menu_istart() - 6.107

T H E A T A R I C O M P E N D I U M

AVAILABILITY All AES versions.

PARAMETERS tree specifies the object tree of the menu to alter. obj is the object index of the
menu item to modify. flag should be set to DISABLE (0) to disable the item or
ENABLE (1) to enable it.

BINDING intin[0] = obj;
intin[1] = flag;

addrin[0] = tree;

return crys_if(0x20);

RETURN VALUE menu_icheck() returns 0 if an error occurred or non-zero otherwise.

SEE ALSO objc_change()

menu_istart()
WORD menu_istart(flag, tree, imenu, item)
WORD flag;
OBJECT * tree;
WORD imenu, item;

menu_istart() shifts a sub-menu that is attached to a menu item to align vertically
with the specified object in the sub-menu.

OPCODE 38 (0x26)

AVAILABILITY This function is only available with AES versions 3.30 and above.

PARAMETERS flag should be set to MIS_SETALIGN (1) to modify the alignment of a sub-menu
and its parent menu item. If flag is set to MIS_GETALIGN (0), no modifications
will be made, however the sub-menu item index which is currently aligned with its
parent menu item is returned.

tree points to the object tree of the menu to alter. imenu specifies the object within
the submenu which will be aligned with menu item item.

BINDING intin[0] = flag;
intin[1] = imenu;
intin[2] = item;

addrin[0] = tree;

return crys_if(0x26);

6.108 – Menu Library - AES Function Reference

T H E A T A R I C O M P E N D I U M

RETURN VALUE menu_istart() returns 0 if an error occurred or the positive object index of the
sub-menu item which is currently aligned with its parent menu item.

COMMENTS Generally, a sub-menu is aligned so that the currently selected sub-menu item is
aligned with its parent menu.

SEE ALSO menu_attach()

menu_popup()
WORD menu_popup(menu, xpos, ypos, mdata)
MENU * menu;
WORD xpos, ypos;
MENU * menu;

menu_popup() displays a popup menu and returns the user’s selection.

OPCODE 36 (0x24)

AVAILABILITY This function is only available with AES versions 3.30 and above.

PARAMETERS menu points to a MENU structure (defined under menu_attach()) containing the
popup menu. xpos and ypos specify the location at which the upper-left corner of
the starting object will be placed.

If the function returns a value of 1, the MENU structure pointed to by mdata will
be filled in with the ending state of the menu (including the object the user
selected).

As of AES version 4.1, if menu.mn_scroll is set to SCROLL_LISTBOX (-1)
when this function is called, a drop-down list box will be displayed instead of a
popup menu.

Drop-down list boxes will only display a scroll bar if at least eight entries exist. If
you want to force the scroll bar to appear, pad the object with empty G_STRING
objects with their DISABLED flag set.

BINDING intin[0] = xpos;
intin[1] = ypos;

addrin[0] = menu;
addrin[1] = mdata;

return crys_if(0x24);

RETURN VALUE menu_popup() returns 0 if an error occurred or 1 if successful.

menu_register() - 6.109

T H E A T A R I C O M P E N D I U M

SEE ALSO menu_attach(), menu_settings()

menu_register()
WORD menu_register(ap_id, title)
WORD ap_id;
char *title;

menu_register() registers desk accessories in the ‘Desk’ menu and renames
MultiTOS applications which appear there.

OPCODE 35 (0x23)

AVAILABILITY All AES versions.

PARAMETERS ap_id specifies the application identifier of the application to register. title points
to a NULL -terminated string containing the title which is to appear in the ‘Desk’
menu for the accessory or application.

If ap_id is set to REG_NEWNAME (-1) then the process name given in title will
be used as the new process name. The new process name should be exactly eight
characters terminated with a NULL . Pad the string with space characters if
necessary.

BINDING intin[0] = ap_id;

addrin[0] = title;

return crys_if(0x23);

RETURN VALUE menu_register() returns a -1 if an error occurred or the menu identifier otherwise.

VERSION NOTES Applications other than desk accessories should not call this function unless they
are running under MultiTOS .

COMMENTS Desk accessories should store the return value as this is the value that will be
included with future AC_OPEN messages to identify the accessory.

Applications running under MultiTOS may use this function to provide a more
functional title for the ‘Desk’ menu than the program’s filename.

Calling menu_register() with a parameter of REG_NEWNAME is used to
change the internal process name of the application returned by appl_find() and
appl_search(). This is useful if you know another process will attempt to find your

6.110 – Menu Library - AES Function Reference

T H E A T A R I C O M P E N D I U M

application as a specific process name and the user may have renamed your
application filename (normally used as the process name).

menu_settings()
WORD menu_settings(flag, set)
WORD flag;
MN_SET *set;

menu_settings() changes the global settings for popup and scrollable menus.

OPCODE 39 (0x27)

AVAILABILITY This function is only available with AES versions 3.30 and above.

PARAMETERS If flag is 0, current settings are read into the MN_SET structure pointed to by set.
If flag is 1, current settings are set from the MN_SET structure pointed to by set.
MN_SET is defined as follows:

typedef struct
{

/* Submenu-display delay in milliseconds */
LONG display;

/* Submenu-drag delay in milliseconds */
LONG drag;

/* Single-click scroll delay in milliseconds*/
LONG delay;

/* Continuous-scroll delay in milliseconds */
LONG speed;

/* Menu scroll height (in items) */
WORD height;

} MN_SET;

BINDING intin[0] = flag;

addrin[0] = set;

return crys_if(0x27);

RETURN VALUE menu_settings() always returns 1.

COMMENTS The defaults set by menu_settings() are global and not local to an application.
You should therefore limit your use of this function to system applications like
CPX’s and so forth.

menu_text() - 6.111

T H E A T A R I C O M P E N D I U M

menu_text()
WORD menu_text(tree, obj, text)
OBJECT * tree;
WORD obj;
char *text;

menu_text() changes the text of a menu item.

OPCODE 34 (0x22)

AVAILABILITY All AES versions.

PARAMETERS tree specifies the object tree of the menu bar. obj specifies the object index of the
menu item to change. text points to a NULL -terminated character string containing
the new text.

BINDING intin[0] = obj;

addrin[0] = tree;
addrin[1] = text;

return crys_if(0x22);

RETURN VALUE menu_text() returns a 0 if an error occurred or non-zero otherwise.

COMMENTS The new menu item text must be no larger than the original menu item text.

menu_tnormal()
WORD menu_tnormal(tree, obj, flag)
OBJECT * tree;
WORD obj, flag;

menu_tnormal() highlights/un-highlights a menu-title.

OPCODE 33 (0x21)

AVAILABILITY All AES versions.

PARAMETERS tree specifies the object tree of the menu. obj specifies the object index of the title
to change. flag should be set to HIGHLIGHT (0) to display the title in reverse
(highlighted) or UNHIGHLIGHT (1) to display it normally.

6.112 – Menu Library - AES Function Reference

T H E A T A R I C O M P E N D I U M

BINDING intin[0] = obj
intin[1] = flag

addrin[1] = tree

return crys_if(0x21);

RETURN VALUE menu_tnormal() returns 0 if an error occurred or non-zero otherwise.

COMMENTS This call is usually called by an application after a MN_SELECTED message is
received and processed to return the menu title to normal.

T H E A T A R I C O M P E N D I U M

Object Library

The Object Library is responsible for the drawing and manipulation of AES objects such as boxes,
strings, icons, etc. See earlier in this chapter for a complete discussion of AES objects. The Object
Library includes the following functions:

•• objc_add()
•• objc_change()
•• objc_delete()
•• objc_draw()
•• objc_edit()
•• objc_find()
•• objc_offset()
•• objc_order()
•• objc_sysvar()

objc_add() – 6.115

T H E A T A R I C O M P E N D I U M

objc_add()
WORD objc_add(tree, parent, child)
OBJECT * tree;
WORD parent, child;

objc_add() establishes a child object’s relationship to its parent.

OPCODE 40 (0x28)

AVAILABILITY All AES versions.

PARAMETERS tree specifies the object tree to modify. parent and child specify the parent and
child object to update.

BINDING intin[0] = parent;
intin[1] = child;

addrin[0] = tree;

return crys_if(0x28);

RETURN VALUE objc_add() returns a 0 if an error occurred or non-zero otherwise.

COMMENTS In order for this function to work, the object to be added must be already be a
member of the OBJECT array. This function simply updates the ob_next,
ob_head, and ob_tail structure members of OBJECTs in the object tree. These
fields should be initialized to NIL (0) in the child to be added.

SEE ALSO objc_order(), objc_delete()

objc_change()
WORD objc_change(tree, obj, rsvd, ox, oy, ow, oh, newstate, drawflag)
OBJECT * tree;
WORD obj, rsvd, ox, oy, ow, oh, newstate, drawflag;

objc_change() changes the display state of an object.

OPCODE 47 (0x2F)

AVAILABILITY All AES versions.

PARAMETERS tree specifies the object tree of the object to modify. obj specifies the object to

6.116 – Object Library - AES Function Reference

T H E A T A R I C O M P E N D I U M

modify.

rsvd is reserved and should be 0.

ox, oy, ow, and oh specify the clipping rectangle if the object is to be redrawn.

newstate specifies the new state of the object (same as ob_state).

If drawflag is NO_DRAW (0) the object is not redrawn whereas if drawflag is
REDRAW (1) the object is redrawn.

BINDING intin[0] = obj;
intin[1] = rsvd;
intin[2] = ox;
intin[3] = oy;
intin[4] = ow;
intin[5] = oh;
intin[6] = newstate;
intin[7] = drawflag;

addrin[0] = tree;

return crys_if(0x2F);

RETURN VALUE objc_change() returns 0 if an error occurred and non-zero otherwise.

COMMENTS In general, if not redrawing the object, it is usually quicker to manipulate the
object tree directly.

SEE ALSO objc_draw()

objc_delete()
WORD objc_delete(tree, obj)
OBJECT * tree;
WORD obj;

objc_delete() removes an object from an object tree.

OPCODE 41 (0x29)

AVAILABILITY All AES versions.

PARAMETERS tree specifies the object tree of the object to delete. obj is the object to be deleted.

BINDING intin[0] = obj;

addrin[0] = tree;

objc_draw() – 6.117

T H E A T A R I C O M P E N D I U M

return crys_if(0x29);

RETURN VALUE objc_delete() returns 0 if an error occurred or non-zero otherwise.

COMMENTS This function does not move other objects in the tree structure, it simply unlinks the
specified object from the object chain by updating the other object’s ob_next,
ob_head, and ob_tail structure members.

SEE ALSO objc_add()

objc_draw()
WORD objc_draw(tree, obj, depth, ox, oy, ow, oh)
OBJECT * tree;
WORD obj, depth, ox, oy, ow, oh;

objc_draw() renders an AES object tree on screen.

OPCODE 42 (0x2A)

AVAILABILITY All AES versions.

PARAMETERS tree specifies the object tree to draw. obj specifies the object index at which
drawing is to begin.

depth specifies the maximum object depth to draw (a value of 1 searches only first
generation objects, a value of 2 searches up to second generation objects, up to a
maximum of 7 to search all objects).

ox, oy, ow, and oh specify an AES style rectangle which defines the clip rectangle
to enforce during drawing.

BINDING intin[0] = obj;
intin[1] = depth;
intin[2] = ox;
intin[3] = oy;
intin[4] = ow;
intin[5] = oh;

addrin[0] = tree;

return crys_if(0x2A);

RETURN VALUE objc_draw() returns 0 if an error occurred or non-zero otherwise.

6.118 – Object Library - AES Function Reference

T H E A T A R I C O M P E N D I U M

objc_edit()
WORD objc_edit(tree, obj, kc, idx, mode)
OBJECT * tree;
WORD obj, kc;
WORD * idx
WORD mode;

objc_edit() allows manual control of an editable text field.

OPCODE 46 (0x2E)

AVAILABILITY All AES versions.

PARAMETERS tree specifies the object tree containing the editable object obj to modify. mode
specifies the action of the call and the meaning of the other parameters as
follows:

mode Value Meaning

ED_START 0 Reserved for future use. Do not call.

ED_INIT 1 Display the edit cursor in the object specified. kc is ignored.
The WORD pointed to by idx is filled in with the current
index of the edit cursor in the field.

ED_CHAR 2 A key has been pressed that needs special processing. kc
contains the keyboard scan code in the high byte and ASCII
code in the low byte. idx points to the current index of the
text cursor in the field. idx will be updated as a result of this
call.

ED_END 3 Turn off the text cursor.

BINDING intin[0] = obj;
intin[1] = kc;
intin[2] = *idx;
intin[3] = mode;

addrin[0] = tree;

crys_if(0x2E);

*idx = intout[1];
return intout[0];

RETURN VALUE objc_edit() returns 0 if an error occurred or non-zero otherwise.

COMMENTS This function is usually used in conjunction with form_keybd() in a custom
form_do() handler.

objc_find() – 6.119

T H E A T A R I C O M P E N D I U M

SEE ALSO form_keybd()

objc_find()
WORD objc_find(tree, obj, depth, ox, oy)
OBJECT * tree;
WORD obj, depth, ox, oy;

objc_find() determines which object is found at a given coordinate.

OPCODE 43 (0x2B)

AVAILABILITY All AES versions.

PARAMETERS tree specifies the object tree containing the objects to search. The search starts
from object index obj forward in the object tree.

depth specifies the depth in the tree to search (a value of 1 searches only first
generation objects, a value of 2 searches up to second generation objects, up to a
maximum of 7 to search all objects).

ox and oy specify the coordinate to search at.

BINDING intin[0] = obj;
intin[1] = depth;
intin[2] = ox;
intin[3] = oy;

addrin[0] = tree;

return crys_if(0x2B);

RETURN VALUE objc_find() returns the object index of the object found at coordinates (ox, oy) or
-1 if no object is found.

objc_offset()
WORD objc_offset(tree, obj, ox, oy)
OBJECT * tree;
WORD obj;
WORD *ox, *oy;

objc_offset() calculates the true screen coordinates of an object.

OPCODE 44 (0x2C)

6.120 – Object Library - AES Function Reference

T H E A T A R I C O M P E N D I U M

AVAILABILITY All AES versions.

PARAMETERS tree specifies the object tree containing obj. The WORDs pointed to by ox and oy
will be filled in with the true X and Y screen position of object obj.

BINDING intin[0] = obj;

addrin[0] = tree;

crys_if(0x2C);

*ox = intout[1];
*oy = intout[2];

return intout[0];

RETURN VALUE objc_offset() returns 0 if an error occurred or non-zero otherwise.

COMMENTS The ob_x and ob_y structure members of objects give an offset from their parent as
opposed to true screen location. This call is used to determine a true screen
coordinate.

The values returned by objc_offset() coupled with the ob_width and ob_height
members do not take into account negative borders, shadowing, or sculpturing.
When redrawing an object you are responsible for using these values to and the
object’s state to compensate for a correct clipping rectangle.

SEE ALSO objc_draw()

objc_order()
WORD objc_order(tree, obj, pos)
OBJECT * tree;
WORD obj, pos;

objc_order() changes the position of an object relative to other child objects of
the same parent.

OPCODE 45 (0x2D)

AVAILABILITY All AES versions.

PARAMETERS tree specifies the object tree of object obj which is to be moved. pos specifies the
new position of the object as follows:

objc_sysvar() – 6.121

T H E A T A R I C O M P E N D I U M

Name pos Meaning

OO_LAST -1 Make object the last child.

OO_FIRST 0 Make object the first child.

— 1 Make object the second child.

— 2– etc...

BINDING intin[0] = obj;
intin[1] = pos;

addrin[0] = tree;

return crys_if(0x2D);

RETURN VALUE objc_order() returns 0 if an error occurred or non-zero otherwise.

COMMENTS objc_order() does not actually move structure elements in memory. It works by
updating the OBJECT tree’s ob_head, ob_tail, and ob_next fields to ‘move’ the
OBJECT in the tree hierarchy.

objc_sysvar()
WORD objc_sysvar(mode, which, in1, in2, out1, out2)
WORD mode, which, in1, in2;
WORD *out1, *out2;

objc_sysvar() returns/modifies information about the color and placement of 3D
object effects.

OPCODE 48 (0x30)

AVAILABILITY Available as of AES version 3.40.

PARAMETERS mode determines whether attributes should be read or modified. A value of
SV_INQUIRE (0) will read the current values whereas a value of SV_SET (1)
will modify the current values. which determines what attribute you wish to read
or modify.

When reading values, in1 and in2 are unused. The two return values are placed in
the WORDs pointed to by out1 and out2. When modifying values, out1 and out2
are unused. in1 and in2 specify the new values for the attribute.

The meanings of the two input/output values referred to as val1 and val2 are as
follows:

6.122 – Object Library - AES Function Reference

T H E A T A R I C O M P E N D I U M

Name which Values

LK3DIND 1 If val1 is 1, the text of indicator objects does move when selected,
otherwise, if 0, it does not.

If val2 is 1, the color of indicator objects does change when
selected, otherwise, if 0, it does not.

LK3DACT 2 Same as LK3DIND for activator objects.

INDBUTCOL 3 val1 specifies the default color for indicator objects. val2 is
unused.

ACTBUTCOL 4 val1 specifies the default color for activator objects. val2 is
unused.

BACKGRCO
L

5 val1 specifies the default color for background objects. val2 is
unused.

AD3DVAL 6 val1 specifies the number of extra pixels on each horizontal side of
an indicator or activator object needed to accomodate 3D effects.

val2 specifies the number of extra pixels on each vertical side of
an indicator or activator object needed to accomodate 3D effects.

This setting may only be read, not modified.

BINDING intin[0] = mode;
intin[1] = which;
intin[2] = in1;
intin[3] = in2;

crys_if(0x30);

*out1 = intout[1];
*out2 = intout[2];

return intout[0];

RETURN VALUE objc_sysvar() returns 0 if unsuccessful or non-zero otherwise.

COMMENTS Applications should not use objc_sysvar() to change these settings since all
changes are global. Only CPXs or Desk Accessories designed to modify these
parameters should.

T H E A T A R I C O M P E N D I U M

Resource Library

The Resource Library is responsibe for the loading/unloading of resource files and the manipulation of
resource objects in memory. The members of the Resource Library are:

•• rsrc_free()
•• rsrc_gaddr()
•• rsrc_load()
•• rsrc_obfix()
•• rsrc_rcfix()
•• rsrc_saddr()

rsrc_free() – 6.125

T H E A T A R I C O M P E N D I U M

rsrc_free()
WORD rsrc_free(VOID)

rsrc_free() releases memory allocated by rsrc_load() for an application’s
resource.

OPCODE 111 (0x6F)

AVAILABILITY All AES versions.

BINDING return crys_if(0x6F);

RETURN VALUE rsrc_free() returns 0 if an error occurred or non-zero otherwise.

COMMENTS rsrc_free() should be called before an application which loaded a resource using
rsrc_load() exits.

SEE ALSO rsrc_load()

rsrc_gaddr()
WORD rsrc_gaddr(type, index, addr)
WORD type, index;
VOIDPP addr;

rsrc_gaddr() returns the address of an object loaded with rsrc_load().

OPCODE 112 (0x70)

AVAILABILITY All AES versions.

PARAMETERS The pointer pointed to by addr will be filled in with the address of the indexth

resource object of type type. Valid values for type are as follows:

Name type Resource Object

R_TREE 0 Object tree

R_OBJECT 1 Individual object

R_TEDINFO 2 TEDINFO structure

R_ICONBLK 3 ICONBLK structure

R_BITBLK 4 BITBLK structure

R_STRING 5 Free String data

6.126 – Resource Library - AES Function Reference

T H E A T A R I C O M P E N D I U M

R_IMAGEDATA 6 Free Image data

R_OBSPEC 7 ob_spec field within OBJECTs

R_TEPTEXT 8 te_ptext within TEDINFOs

R_TEPTMPLT 9 te_ptmplt within TEDINFOs

R_TEPVALID 10 te_pvalid within TEDINFOs

R_IBPMASK 11 ib_pmask within ICONBLK s

R_IBPDATA 12 ib_pdata within ICONBLK s

R_IBPTEXT 13 ib_ptext within ICONBLK s

R_BIPDATA 14 bi_pdata within BITBLK s

R_FRSTR 15 Free string

R_FRIMG 16 Free image

BINDING intin[0] = type;
intin[1] = index;

crys_if(0x70);

*addr = addrout[0];

return intout[0];

RETURN VALUE rsrc_gaddr() returns a 0 if the address in addr is valid or non-zero if the object
did not exist.

COMMENTS This function is most often used to obtain the address of OBJECT trees, ‘free’
strings, and ‘free’ images after loading a resource file.

SEE ALSO rsrc_saddr()

rsrc_load()
WORD rsrc_load(fname)
char *fname;

rsrc_load() loads and allocates memory for the named resource file.

OPCODE 110 (0x6E)

AVAILABILITY All AES versions.

PARAMETERS fname is a character pointer to a NULL -terminated GEMDOS file specification
of the resource to load.

BINDING addrin[0] = fname;

rsrc_obfix() – 6.127

T H E A T A R I C O M P E N D I U M

return crys_if(0x6E);

RETURN VALUE rsrc_load() returns 0 if successful or non-zero if an error occurred.

COMMENTS In addition to loading the resource, all OBJECT coordinates are converted from
character based coordinates to screen coordinates.

SEE ALSO rsrc_free()

rsrc_obfix()
WORD rsrc_obfix(tree, obj)
OBJECT * tree;
WORD obj;

rsrc_obfix() converts an object’s coordinates from character-based to pixel-
based.

OPCODE 114 (0x72)

AVAILABILITY All AES versions.

PARAMETERS tree specifies the OBJECT tree containing the object obj to convert.

BINDING intin[0] = obj;

addrin[0] = tree;

return crys_if(0x72);

RETURN VALUE rsrc_obfix() returns a 0 if successful or non-zero otherwise.

COMMENTS All objects in ‘.RSC’ files have their coordinates based on character positions
rather than screen coordinates to allow an object tree to be shown in any
resolution. This function converts those character coordinates to pixel coordinates
based on the current screen resolution.

SEE ALSO rsrc_load(), rsrc_rcfix()

6.128 – Resource Library - AES Function Reference

T H E A T A R I C O M P E N D I U M

rsrc_rcfix()
WORD rsrc_rcfix(rc_header)
VOID * rc_header;

rsrc_rcfix() fixes up coordinates and memory pointers of raw resource data in
memory.

OPCODE 115 (0x73)

AVAILABILITY Available only in AES versions 4.0 and greater. The presence of this call should
also be checked for using appl_getinfo().

PARAMETERS rc_header is a pointer to an Atari Resource Construction Set (or compatible)
resource file header in memory.

BINDING addrin[0] = rc_header;

return crys_if(0x73);

RETURN VALUE rsrc_rcfix() returns a 0 if successful or non-zero otherwise.

COMMENTS If a resource has already been loaded with rsrc_load() it must be freed by
rsrc_free() prior to this call. In addition, resources identified with this call must
likewise be freed before program termination or another resource file is needed.

SEE ALSO rsrc_obfix()

rsrc_saddr()
WORD rsrc_saddr(type, index, addr)
WORD type, index;
VOID * addr;

rsrc_saddr() sets the address of a resource element.

OPCODE 113 (0x71)

AVAILABILITY All AES versions.

PARAMETERS type specifies the type of resource element to set as defined under rsrc_gaddr().
index specifies the index of the element to modify (0 based). addr specifies the
actual address that will be placed in the appropriate data structure.

rsrc_saddr() – 6.129

T H E A T A R I C O M P E N D I U M

BINDING intin[0] = type;
intin[1] = index;

addrin[0] = addr;

return crys_if(0x71);

RETURN VALUE rsrc_saddr() returns 0 if an error occurred or non-zero otherwise.

COMMENTS In most cases, direct manipulation of the structures involved is quicker and easier
than using this call.

SEE ALSO rsrc_gaddr(), rsrc_load()

T H E A T A R I C O M P E N D I U M

Scrap Library

The Scrap Library is used to maintain the location of the clipboard directory used for interprocess data
exchange. The members of the Scrap Library are:

•• scrp_read()
•• scrp_write()

scrp_read() – 6.133

T H E A T A R I C O M P E N D I U M

scrp_read()
WORD scrp_read(cpath)
char *cpath;

scrp_read() returns the location of the current clipboard directory.

OPCODE 80 (0x50)

AVAILABILITY All AES versions.

PARAMETERS cpath is a pointer to a character buffer of at least 128 bytes into which the
clipboard path will be placed.

BINDING addrin[0] = cpath;

return crys_if(0x50);

RETURN VALUE scrp_read() returns 0 if the clipboard path had not been set or non-zero if cpath
was properly updated.

CAVEATS The system scrap directory is a global resource. Some programs incorrectly call
scrp_write() with a path and filename when only a pathname should be used. The
following is an example of a correctly formatted cpath argument:

C:\CLIPBRD\

Unfortunately, not all programs adhere exactly to this standard. For this reason,
programs reading this information from scrp_read() should be especially careful
that the information returned is parsed correctly. In addition, don’t count on a
trailing backslash or the existence of a drive specification.

COMMENTS If a value of 0 is returned and the application wishes to write a scrap to the
clipboard you should follow these steps:

• Create a folder ‘\CLIPBRD\’ on the root directory of the user’s boot
drive (‘C:’ or ‘A:’).

• Write your scrap to the directory as ‘SCRAP.???’ where ‘???’ signifies
the type of information contained in the file.

• Allow other applications to access this information by calling
scrp_write() with the new clipboard path. For example
“C:\CLIPBRD\”.

A detailed discussion of the proper clipboard data exchange protocol, including
information about a scrap directory semaphore useful with MultiTOS , is given
earlier in this chapter.

6.134 – Scrap Library - AES Function Reference

T H E A T A R I C O M P E N D I U M

SEE ALSO scrp_write()

scrp_write()
WORD scrp_write(cpath)
char *cpath;

scrp_write() sets the location of the clipboard directory.

OPCODE 81 (0x51)

AVAILABILITY All AES versions.

PARAMETERS cpath points to a NULL -terminated path string containing a valid drive and path
specification with a closing backslash. The following is an example of a correctly
formatted cpath argument:

C:\CLIPBRD\

BINDING addrin[0] = cpath;

return crys_if(0x51);

RETURN VALUE scrp_write() returns 0 if an error occurred or non-zero otherwise.

COMMENTS The scrap directory is a global resource. This call should only be used in two
circumstances as follows:

• when used to set the default location of the scrap directory using a CPX
or accessory at bootup or by the user’s request.

• when scrp_read() returns an error value and you need to create the
clipboard to write information to it.

The clipboard data exchange protocol is discussed in greater detail earlier in this
chapter.

SEE ALSO scrp_read()

T H E A T A R I C O M P E N D I U M

Shell Library

The Shell Library contains several miscellaneous functions most often used by the GEM Desktop and
other ‘Desktop-like’ applications. Other applications may, however, need specific functions of the Shell
Library for various tasks. The members of the Shell Library are:

•• shel_envrn()
•• shel_find()
•• shel_get()
•• shel_put()
•• shel_read()
•• shel_write()

shel_envrn() – 6.137

T H E A T A R I C O M P E N D I U M

shel_envrn()
WORD shel_envrn(value, name)
char ** value;
char *name;

shel_envrn() searches the current environment string for a specific variable.

OPCODE 125 (0x7D)

AVAILABILITY All AES versions.

PARAMETERS value points to a character pointer which will be filled in with the address of the
first character in the environment string following the string given by name. If the
string given by name is not found, value will be filled in with NULL . For
instance, suppose the current environment looked like this:

PATH=C:\;D:\;E:\

A call made to shel_envrn() with name pointing to the string ‘PATH=’ would set
the pointer pointed to by value to the string ‘C:\;D:\;E:\’ above.

BINDING addrin[0] = value;
addrin[1] = name;

return crys_if(0x7D);

RETURN VALUE shel_envrn() currently always returns 1.

VERSION NOTES AES versions prior to 1.4 only accepted semi-colons as separators between
multiple ‘PATH=’arguments. Newer versions accept commas as well.

COMMENTS The character string pointed to by name should include the name of the variable
and the equals sign.

shel_find()
WORD shel_find(buf)
char *buf;

shel_find() searches for a file along the AES’s current path, any paths specified by
the ‘PATH’ environmental variable, and the calling application’s path.

OPCODE 124 (0x7C)

6.138 – Shell Library - AES Function Reference

T H E A T A R I C O M P E N D I U M

AVAILABILITY All AES versions.

PARAMETERS buf should point to a character buffer of at least 128 characters and contain the
filename of the file to search for on entry. If the function was able to find the file,
the buffer pointed to by buf will be filled in with the full pathname of the file upon
return.

BINDING addrin[0] = buf;

return crys_if(0x7C);

RETURN VALUE shel_find() returns 0 if the file was not found or non-zero otherwise.

SEE ALSO shel_write()

shel_get()
WORD shel_get(buf, length)
char *buf;
WORD length;

shel_get() copies the contents of the AES’s shell buffer (normally the
‘DESKTOP.INF’ or ‘NEWDESK.INF’ file) into the specified buffer.

OPCODE 122 (0x7A)

AVAILABILITY All AES versions.

PARAMETERS buf points to a buffer at least length bytes long into which the AES should copy
the shell buffer into.

BINDING intin[0] = length;

addrin[0] = buf;

return crys_if(0x7A);

RETURN VALUE shel_get() returns 0 if an error occurred or non-zero otherwise.

VERSION NOTES AES versions prior to version 1.4 had a shell buffer size of 1024 bytes. Versions
1.4 to 3.0 had a shell buffer size of 4192 bytes.

In AES versions 4.0 or greater the shell buffer is no longer of a fixed size. When
appl_getinfo() indicates that this feature is supported, length can be specified as
SHEL_BUFSIZE (-1) to return the size of the current shell buffer.

shel_put() – 6.139

T H E A T A R I C O M P E N D I U M

SEE ALSO shel_put()

shel_put()
WORD shel_put(buf, length)
char *buf;
WORD length;

shel_put() copies information into the AES’s shell buffer.

OPCODE 123 (0x7B)

AVAILABILITY All AES versions.

PARAMETERS buf points to a user memory buffer from which length bytes are to be copied into
the shell buffer.

BINDING intin[0] = length;

addrin[0] = buf;

return crys_if(0x7B);

RETURN VALUE shel_put() returns 0 if an error occurred or non-zero otherwise.

VERSION NOTES Prior to AES version 4.0 this function would only copy as many bytes as would fit
into the current buffer. As of version 4.0, the AES will dynamically allocate more
memory as needed (up to 32767 bytes) for the shell buffer.

COMMENTS The Desktop uses the information in the shell buffer for several purposes.
Applications should not use the shell buffer for their own purposes.

SEE ALSO shel_get()

shel_read()
WORD shel_read(name, tail)
char *name, *tail;

shel_read() is used to determine the current application’s parent and the command
tail used to call it.

OPCODE 120 (0x78)

6.140 – Shell Library - AES Function Reference

T H E A T A R I C O M P E N D I U M

AVAILABILITY All AES versions.

PARAMETERS name points to a buffer which upon exit will be filled in with the complete file
specification of the application which launched the current process.

tail will likewise be filled in with the initial command line. The first BYTE of the
command line indicates the length of the string which actually begins at &tail[1] .

BINDING addrin[0] = name;
addrin[1] = tail;

return crys_if(0x78);

RETURN VALUE shel_read() returns 0 if an error occurred or non-zero otherwise.

CAVEATS shel_read() actually returns the arguments to the last shel_write() so if a process
was Pexec()’ed, the information returned will be incorrect.

shel_write()
WORD shel_write(mode, wisgr, wiscr, cmd, tail)
WORD mode, wisgr, wiscr;
char *cmd, *tail;

shel_write() is a multi-purpose function which handles the manipulation and
launching of processes.

OPCODE 121 (0x79)

AVAILABILITY All AES versions. In AES versions 4.0 and above, appl_getinfo() can be used to
determine the highest legal value for mode as well as the functionality of extended
mode bits.

PARAMETERS mode specifies the meaning of the rest of the parameters as follows:

Name mode Meaning

SWM_LAUNCH 0 Launch a GEM or TOS application or GEM desk
accessory depending on the extension of the file. This
mode is only available as of AES version 4.0. wisgr is not
used in mode SWM_LAUNCH (0). When the lower eight
bits of mode are SWM_LAUNCH (0),
SWM_LAUNCHNOW (1), or SWM_LAUNCHACC (3),
appropriate bits in the upper byte may be set to enter
‘extended’ mode. The bits in the upper byte are assigned
as follows:

shel_write() – 6.141

T H E A T A R I C O M P E N D I U M

Name Mask Meaning
SW_PSETLIMIT 0x100 Initial Psetlimit()
SW_PRENICE 0x200 Initial Prenice()
SW_DEFDIR 0x400 Default Directory
SW_ENVIRON 0x800 Environment

If the upper byte is empty, extended mode is not entered
and cmd specifies the filename (to search for the file with
shel_find()) or the complete file specification. Otherwise,
if any extended bits are set, cmd points to a structure as
shown below.

typedef struct _shelw
{

char *newcmd;
LONG psetlimit;
LONG prenice;
char *defdir;
char *env;

} SHELW;

_shelw.newcmd points to the filename formatted in the
manner indicated above.

If bit 8 (SW_PSETLIMIT) of mode is set, _shelw.psetlimit
contains the maximum memory size available to the
process.

If bit 9 of mode is (SW_PRENICE) set, _shelw.prenice
contains the process priority of the process to launch.

If bit 10 of mode (SW_DEFDIR) is set, _shelw.defdir
points to a character string containing the default directory
for the application begin launched.

If bit 11 of mode (SW_ENVIRON) is set, _shelw.env
points to a valid environment string for the process.

tail points to a buffer containing the command tail to pass
to the process. If wiscr is set to CL_NORMAL (0), tail is
passed normally, otherwise, if wiscr is set to CL_PARSE
(1), the AES will parse tail and set up an ARGV
environment string.

modes SWM_LAUNCH (0), SWM_LAUNCHNOW (1),
and SWM_LAUNCHACC (3) return the AES id of the
started process. If a 0 is returned, then the process was
not launched.

Under MultiTOS , processes are launched concurrently
with their parent. An exit code is returned in a CH_EXIT
message when the child terminates. See evnt_mesag() .

In AES versions 4.0 and above, appl_getinfo() should be
used to determine the exact result of this call.

6.142 – Shell Library - AES Function Reference

T H E A T A R I C O M P E N D I U M

SWM_LAUNCHNOW 1 Launch a GEM or TOS application based on the value of
wisgr. If wisgr is TOSAPP (0), the application will be
launched as a TOS application, otherwise if wisgr is
GEMAPP (1), the application will be launched as a GEM
application. For the meaning of other parameters, see
mode SWM_LAUNCH (0). The extended bits in mode
are only supported by AES versions of at least 4.0.

Parent applications which launch children using this mode
are suspended under MultiTOS .

In AES versions 4.0 and above, appl_getinfo() should be
used to determine the exact result of this call.

SWM_LAUNCHACC 3 Launch a GEM desk accessory. For the meaning of other
parameters, see mode SWM_LAUNCH (0). This mode is
only supported by AES versions of at least 4.0.

SWM_SHUTDOWN 4 Manipulate ‘Shutdown’ mode. Shutdown mode is usually
used prior to a resolution change to cause system
processes to terminate. wisgr, cmd, and tail are ignored
by this call. The value of wiscr determines the action this
call takes as follows:

Name wiscr Meaning
SD_ABORT 0 Abort shutdown mode
SD_PARTIAL 1 Partial shutdown mode
SD_COMPLETE 2 Complete shutdown mode

During a shutdown, processes which have registered
themselves as accepting AP_TERM messages will be
sent them and all accessories will be sent AC_CLOSE
messages. In addition, in complete shutdown mode,
AP_TERM messages will also be sent to accessories.

Shutdown mode may be aborted but only by the original
caller.

The status of the shutdown is sent to the calling processes
by AES messages. See evnt_mesag() .

This mode is only supported by AES versions greater than
or equal to 4.0.

SWM_REZCHANGE 5 Change screen resolution. wisgr is the work station ID
(same as in AES global[13]) of the new resolution. No
other parameters are utilized.

This mode is only recognized as of AES version 4.0.
SWM_BROADCAST 7 Broadcast an AES message to all processes. cmd should

point to an 8 WORD message buffer containing the
message to send. All other parameters are ignored.

This mode is only recognized as of AES version 4.0.

shel_write() – 6.143

T H E A T A R I C O M P E N D I U M

SWM_ENVIRON 8 Manipulate the AES environment. If wisgr is
ENVIRON_SIZE (0), the current size of the environment
string is returned.

If wisgr is ENVIRON_CHANGE (1), cmd should point to a
environment variable to modify. If cmd points to
“TOSEXT=TOS,TTP”, that string will be added. Likewise,
“TOSEXT=“ will remove that environment variable.

If wisgr is ENVIRON_COPY (2), the AES will copy as
many as wiscr bytes of the current environment string into
a buffer pointer to by cmd. The function will return the
number of bytes not copied.

This mode is only recognized as of AES version 4.0.
SWM_NEWMSG 9 Inform the AES of a new message the current application

understands. wisgr is a bit mask which specifies which
new messages the application understands. Currently only
bit 0 (B_UNTOPPABLE) has a meaning. Setting this bit
when calling this function will inform the AES that the
application understands AP_TERM messages. No other
parameters are used.

This mode is only recognized as of AES version 4.0.
SWM_AESMSG 10 Send a message to the AES. cmd points to an 8 WORD

message buffer containing the message to send. No other
parameters are needed.

This mode is only recognized as of AES version 4.0.

BINDING intin[0] = mode;
intin[1] = wisgr;
intin[2] = wiscr;

addrin[0] = cmd;
addrin[1] = tail;

return crys_if(0x79);

RETURN VALUE The value shel_write() differs depending on the mode which was invoked. See
above for details.

VERSION NOTES Many new features were added as of AES version 4.0. For details of each, see
above.

T H E A T A R I C O M P E N D I U M

Window Library

The Window Library is responsible for the displaying and maintenance of AES windows. The members
of the Window Library are:

•• wind_calc()
•• wind_close()
•• wind_create()
•• wind_delete()
•• wind_find()
•• wind_get()
•• wind_new()
•• wind_open()
•• wind_set()
•• wind_update()

wind_calc() – 6.147

T H E A T A R I C O M P E N D I U M

wind_calc()
WORD wind_calc(request, kind, x1, y1, w1, h1, x2, y2, w2, h2)
WORD request, kind, x1, y1, w1, h1;
WORD *x2, *y2, *w2, *h2;

wind_calc() returns size information for a specific window.

OPCODE 108 (0x6C)

AVAILABILITY All AES versions.

PARAMETERS request specifies the mode of this call.

If request is WC_BORDER (0), x1, y1, w1, and h1 specify the work area of a
window of type kind. The call then fills in the WORDs pointed to by x2, y2, w2,
and h2 with the full extent of the window.

If request is WC_WORK (1), x1, y1, w1, and h1 specify the full extent of a
window of type kind. The call fills in the WORDs pointed to by x2, y2, w2, and
h2 with the work area of the window.

kind is a bit mask of window ‘widgets’ present with the window. For a detailed
listing of these elements see wind_create().

BINDING intin[0] = request;
intin[1] = kind;
intin[2] = x1;
intin[3] = y1;
intin[4] = w1;
intin[5] = h1;

crys_if(0x6C);

*x2 = intout[1];
*y2 = intout[2];
*w2 = intout[3];
*h2 = intout[4];

return intout[0];

RETURN VALUE wind_calc() returns 0 if an error occurred or non-zero otherwise.

COMMENTS wind_calc() is unable to calculate correct values when a toolbar is attached to a
window. This can be corrected, though, by adjusting the values output by this
function with the height of the toolbar.

SEE ALSO wind_create()

6.148 – Window Library - AES Function Reference

T H E A T A R I C O M P E N D I U M

wind_close()
WORD wind_close(handle)
WORD handle;

wind_close() removes a window from the display screen.

OPCODE 102 (0x66)

AVAILABILITY All AES versions.

PARAMETERS handle specifies the window handle of the window to close.

BINDING intin[0] = handle;

return crys_if(0x66);

RETURN VALUE wind_close() returns 0 if an error occurred or non-zero otherwise.

COMMENTS Upon calling wind_close() a redraw message for the portion of the screen changed
will be sent to all applications.

Calling wind_close() does not release the memory allocated to the window
structure. wind_delete() must be called to permanently destroy the window and
free any memory allocated by the AES for the window. Until wind_delete() is
called, the window may be re-opened at any time with wind_open().

SEE ALSO wind_create(), wind_open(), wind_delete()

wind_create()
WORD wind_create(kind, x, y, w, h)
WORD kind, x, y, w, h;

wind_create() initializes a new window structure and allocates any necessary
memory.

OPCODE 100 (0x64)

AVAILABILITY All AES versions.

PARAMETERS kind is a bit array whose elements determine the presence of any ‘widgets’ on the

wind_create() – 6.149

T H E A T A R I C O M P E N D I U M

window as follows:

Name Mask Meaning

NAME 0x01 Window has a title bar.

CLOSER 0x02 Window has a close box.

FULLER 0x04 Window has a fuller box.

MOVER 0x08 Window may be moved by the user.

INFO 0x10 Window has an information line.

SIZER 0x20 Window has a sizer box.

UPARROW 0x40 Window has an up arrow.

DNARROW 0x80 Window has a down arrow.

VSLIDE 0x100 Window has a vertical slider.

LFARROW 0x200 Window has a left arrow.

RTARROW 0x400 Window has a right arrow.

HSLIDE 0x800 Window has a horizontal slider.

SMALLER 0x4000 Window has an iconifier.

The parameter kind is created by OR’ing together any desired elements.

x, y, w, and h, specify the maximum extents of the window. Normally this is the
entire screen area minus the menu bar (to find this area use wind_get() with a
parameter of WF_WORKXYWH). The area may be smaller to bound the
window to a particular size and location.

BINDING intin[0] = kind;
intin[1] = x;
intin[2] = y;
intin[3] = w;
intin[4] = h;

return crys_if(0x64);

RETURN VALUE wind_create() returns a window handle if successful or a negative number if it
was unable to create the window.

VERSION NOTES The SMALLER gadget is only available as of AES version 4.1.

COMMENTS A window is not actually displayed on screen with this call, you need to call
wind_open() to do that.

TOS version 1.00 and 1.02 limited applications to four windows. In TOS version
1.04 that limit was raised to seven. As of MultiTOS the number of open windows
is limited only by memory and the capabilities of an application.

You should ensure that your application calls a wind_delete() for each
wind_create(), otherwise memory may not be deallocated when your application

6.150 – Window Library - AES Function Reference

T H E A T A R I C O M P E N D I U M

exits.

SEE ALSO wind_open(), wind_close(), wind_delete()

wind_delete()
WORD wind_delete(handle)
WORD handle;

wind_delete() destroys the specified window and releases any memory allocated
for it.

OPCODE 103 (0x67)

AVAILABILITY All AES versions.

PARAMETERS handle specifies the window handle of the window to destroy.

BINDING intin[0] = handle;

return crys_if(0x67);

RETURN VALUE wind_delete() returns 0 if an error occurred or non-zero otherwise.

COMMENTS A window should by closed with wind_close() before deleting it.

SEE ALSO wind_create(), wind_open(), wind_close(), wind_new()

wind_find()
WORD wind_find(x, y)
WORD x, y;

wind_find() returns the handle of the window found at the given coordinates.

OPCODE 106 (0x6A)

AVAILABILITY All AES versions.

PARAMETERS x and y specify the coordinates to search for a window at.

BINDING intin[0] = x;
intin[1] = y;

wind_get() – 6.151

T H E A T A R I C O M P E N D I U M

return crys_if(0x6A);

RETURN VALUE wind_find() returns the handle of the uppermost window found at location x, y. If
no window is found, the function returns 0 meaning the Desktop window.

COMMENTS This function is useful for tracking the mouse pointer and changing its shape
depending upon what window it falls over.

wind_get()
WORD wind_get(handle, mode, parm1, parm2, parm3, parm4)
WORD handle, mode;
WORD *parm1, *parm2, *parm3, *parm4;

wind_get() returns various information about a window.

OPCODE 104 (0x68)

AVAILABILITY All AES versions.

PARAMETERS handle specifies the handle of the window to return information about (0 is the
desktop window). mode specifies the information to return and the values placed
into the WORDs pointed to by parm1, parm2, parm3, and parm4 as follows:

Name mode Meaning

WF_WORKXYWH 4 parm1, parm2, parm3, and parm4 are filled in with the x, y,
w, and h of the current coordinates of the window’s work
area.

WF_CURRXYWH 5 parm1, parm2, parm3, and parm4 are filled in with the x, y,
w, and h of the current coordinates of the full extent of the
window.

WF_PREVXYWH 6 parm1, parm2, parm3, and parm4 are filled in with the x, y,
w, and h of the previous coordinates of the full extent of the
window prior to the last wind_set() call.

WF_FULLXYWH 7 parm1, parm2, parm3, and parm4 are filled in with the x, y,
w, and h values specified in the wind_create() call.

WF_HSLIDE 8 parm1 is filled in with the current position of the horizontal
slider between 1 and 1000. A value of one indicates that
the slider is in its leftmost position.

WF_VSLIDE 9 parm1 is filled in with the current position of the vertical
slider between 1 and 1000. A value of one indicates that
the slider is in its uppermost position.

WF_TOP 10 parm1 is filled in with the window handle of the window
currently on top. As of AES version 4.0 (and when
appl_getinfo() indicates), parm2 is filled in with the owners
AES id, and parm3 is filled in with the handle of the window
directly below it.

6.152 – Window Library - AES Function Reference

T H E A T A R I C O M P E N D I U M

WF_FIRSTXYWH 11 parm1, parm2, parm3, and parm4 are filled in with the x, y,
w, and h of the first AES rectangle in the window’s rectangle
list. If parm3 and parm4 are both 0, the window is
completely covered.

WF_NEXTXYWH 12 parm1, parm2, parm3, and parm4 are filled in with
subsequent AES rectangles for each time this function is
called until parm3 and parm4 are 0 to signify the end of the
list.

WF_NEWDESK 14 As of AES versions 4.0 (and when appl_getinfo()
indicates), this mode returns a pointer to the current
desktop background OBJECT tree. parm1 contains the
high WORD of the address and parm2 contains the low
WORD.

WF_HSLSIZE 15 parm1 contains the size of the current slider relative to the
size of the scroll bar as a value from 1 to 1000. A value of
1000 indicates that the slider is at its maximum size.

WF_VSLSIZE 16 parm1 contains the size of the current slider relative to the
size of the scroll bar as a value from 1 to 1000. A value of
1000 indicates that the slider is at its maximum size.

WF_SCREEN 17 This mode returns a pointer to the current AES menu/alert
buffer and its size. The pointer’s high WORD is returned in
parm1 and the pointer’s low WORD is returned in parm2.
The length of the buffer is returned as a LONG with the
upper WORD being in parm3 and the lower WORD being
in parm4. Note that TOS 1.02 returns 0 in w and h by
mistake.

The menu/alert buffer is used by the AES to save the
screen area hidden by menus and alert boxes. It is not
recommended that applications use this area as its usage
is not guaranteed in future versions of the OS.

wind_get() – 6.153

T H E A T A R I C O M P E N D I U M

WF_COLOR 18 This mode gets the current color of the window widget
specified on entry to the function in the WORD pointed to by
parm1. Valid window widget indexes are as follows
(W_SMALLER is only valid as of AES 4.1):

parm1 Value ob_type
W_BOX 0 IBOX
W_TITLE 1 BOX
W_CLOSER 2 BOXCHAR
W_NAME 3 BOXTEXT
W_FULLER 4 BOXCHAR
W_INFO 5 BOXTEXT
W_DATA 6 IBOX
W_WORK 7 IBOX
W_SIZER 8 BOXCHAR
W_VBAR 9 BOX
W_UPARROW 10 BOXCHAR
W_DNARROW 11 BOXCHAR
W_VSLIDE 12 BOX
W_VELEV 13 BOX
W_HBAR 14 BOX
W_LFARROW 15 BOXCHAR
W_RTARROW 16 BOXCHAR
W_HSLIDE 17 BOX
W_HELEV 18 BOX
W_SMALLER 19 BOXCHAR

The ob_spec field (containing the color information) used
for the object when not selected is returned in the WORD
pointed to by parm2. The ob_spec field used for the object
when selected is returned in parm3.

This mode under wind_get() is only valid as of AES
version 3.30. From AES versions 4.0 and above,
appl_getinfo() should be used to determine if this mode is
supported.

WF_DCOLOR 19 This mode gets the default color of newly created windows
as with WF_COLOR above. As above, this mode under
wind_get() only works as of AES version 3.30.

As of AES version 4.1, WF_DCOLOR changes the color of
open windows unless they have had their colors explicitly
set with WF_COLOR.

WF_OWNER 20 parm1 is filled in with the AES id of the owner of the
specified window. parm2 is filled in with its open status (0 =
closed, 1 = open). parm3 is filled in with the handle of the
window directly above it (in the window order list) and
parm4 is filled in with the handle of the window below it
(likewise, in the window order list).

This mode is only available as of AES version 4.0 (and
when indicated by appl_getinfo()).

6.154 – Window Library - AES Function Reference

T H E A T A R I C O M P E N D I U M

WF_BEVENT 24 parm1, parm2, parm3, parm4 are each interpreted as bit
arrays whose bits indicate supported window features.
Currently only one bit is supported. If bit 0 of the value
returned in parm1 is 1, that window has been set to be ‘un-
toppable’ and it will never receive WM_TOPPED
messages, only button clicks.

This mode is only available as of AES version 4.0 (and
when indicated by appl_getinfo()).

WF_BOTTOM 25 parm1 will be filled in with the handle of the window currently
on the bottom of the window list (it may actually be on top if
there is only one window). Note also that this does not
include the desktop window.

This mode is only available as of AES version 4.0 (and
when indicated by appl_getinfo()).

WF_ICONIFY 26 parm1 will be filled in with 0 if the window is not iconified or
non-zero if it is. parm2 and parm3 contain the width and
height of the icon. parm4 is unused.

This mode is only available as of AES version 4.1 (and
when indicated by appl_getinfo()).

WF_UNICONIFY 27 parm1, parm2, parm3, and parm4, are filled in with the x, y,
w, and h of the original coordinates of the iconified window.

This mode is only available as of AES version 4.1 (and
when indicated by appl_getinfo()).

WF_TOOLBAR 30 parm1 and parm2 contain the high and low WORD
respectively of the pointer to the current toolbar object tree
(or NULL if none).

This mode is only available as of AES version 4.1.
WF_FTOOLBAR 31 parm1, parm2, parm3, are parm4, are filled in with the x, y,

w, and h, respectively of the first uncovered rectangle of the
toolbar region of the window. If parm3 and parm4 are 0, the
toolbar is completely covered.

This mode is only available as of AES version 4.1.
WF_NTOOLBAR 32 parm1, parm2, parm3, and parm4, are filled in with the x, y,

w, and h, respectively of subsequent uncovered rectangles
of the toolbar region. This mode should be repeated to
reveal subsequent rectangles until parm3 and parm4 are
found to be 0.

This mode is only available as of AES version 4.1.

BINDING /* This binding must be different to */
/* accomodate reading WF_COLOR and */
/* WF_DCOLOR */

contrl[0] = 0x68;
contrl[1] = 2;
contrl[2] = 1;
contrl[3] = 0;
contrl[4] = 0;

wind_new() – 6.155

T H E A T A R I C O M P E N D I U M

intin[0] = handle;
intin[1] = mode;

if(mode == WF_DCOLOR || mode == WF_COLOR)
{

intin[2] = *x;
contrl[1] = 3;

}

aes();

*x = intout[1];
*y = intout[2];
*w = intout[3];
*h = intout[4];

return intout[0];

RETURN VALUE wind_get() returns a 0 if an error occurred or non-zero otherwise.

SEE ALSO wind_set()

wind_new()
WORD wind_new(VOID)

wind_new() closes and deletes all of the application’s windows. In addition, the
state of wind_update(), and the mouse pointer hide count is reset.

OPCODE 109 (0x6D)

AVAILABILITY Available as of AES version 0x0140.

BINDING return crys_if(0x6D);

RETURN VALUE The return value is reserved and currently unused

COMMENTS This function should not be relied upon to clean up after an application. It was
designed for parent processes that wish to ensure that a poorly written child
process has properly cleaned up after itself.

SEE ALSO wind_delete(), graf_mouse(), wind_update()

6.156 – Window Library - AES Function Reference

T H E A T A R I C O M P E N D I U M

wind_open()
WORD wind_open(handle, x, y, w, h)
WORD handle;
WORD x, y, w, h;

wind_open() opens the window specified.

OPCODE 101 (0x65)

AVAILABILITY All AES versions.

PARAMETERS handle specifies the handle of the window to open as returned by wind_create().
x, y, w, and h specify the rectangle into which the rectangle should be displayed.

BINDING intin[0] = handle;

return crys_if(0x65);

RETURN VALUE wind_open() returns a 0 if an error occurred or non-zero otherwise.

COMMENTS This call will also trigger a WM_REDRAW message which encompasses the
work area of the window so applications should not initially render the work area,
rather, wait for the message.

SEE ALSO wind_close(), wind_create(), wind_delete()

wind_set()
WORD wind_set(handle, mode, parm1, parm2, parm3, parm4)
WORD handle, mode, parm1, parm2, parm3, parm4;

wind_set() sets various window attributes.

OPCODE 105 (0x69)

AVAILABILITY All AES versions.

PARAMETERS handle specifies the window handle of the window to modify. mode specifies the
attribute to change and the meanings of parm1, parm2, parm3, and parm4 as
follows:

wind_set() – 6.157

T H E A T A R I C O M P E N D I U M

Name mode Meaning

WF_NAME 2 This mode passes a pointer to a character string
containing the new title of the window. parm1 contains
the high WORD of the pointer and parm2 contains the
low WORD.

WF_INFO 3 This mode passes a pointer to a character string
containing the new information line of the window.
parm1 contains the high WORD of the pointer, parm2
contains the low WORD.

WF_CURRXYWH 5 parm1, parm2, parm3, and parm4 specify the x, y, w,
and h of the new coordinates of the full extent of the
window.

WF_HSLIDE 8 parm1 specifies the new position of the horizontal slider
between 1 and 1000. A value of 1 indicates that the
slider is in its leftmost position.

WF_VSLIDE 9 parm1 specifies the new position of the vertical slider
between 1 and 1000. A value of 1 indicates that the
slider is in its uppermost position.

WF_TOP 10 parm1 specifies the window handle of the window to
top. Note that if multiple calls of wind_set(WF_TOP , ...
) are made without releasing control to the AES (which
allows the window to actually be topped), only the most
recent window specified will actually change position.

WF_NEWDESK 14 This mode specifies a pointer to an OBJECT tree
which is redrawn automatically by the desktop as the
background. parm1 contains the high WORD of the
pointer and parm2 contains the low WORD. To reset
the desktop background to the default, specify parm1
and parm2 as 0.

WF_HSLSIZE 15 parm1 defines the size of the current slider relative to
the size of the scroll bar as a value from 1 to 1000. A
value of 1000 indicates that the slider is at its maximum
size.

WF_VSLSIZE 16 parm1 defines the size of the current slider relative to
the size of the scroll bar as a value from 1 to 1000. A
value of 1000 indicates that the slider is at its maximum
size.

6.158 – Window Library - AES Function Reference

T H E A T A R I C O M P E N D I U M

WF_COLOR 18 This mode sets the current color of the window widget
specified on entry in parm1. Valid window widget
indexes are as follows (W_SMALLER is only valid as
of AES 4.1):

parm1 Value ob_type
W_BOX 0 IBOX
W_TITLE 1 BOX
W_CLOSER 2 BOXCHAR
W_NAME 3 BOXTEXT
W_FULLER 4 BOXCHAR
W_INFO 5 BOXTEXT
W_DATA 6 IBOX
W_WORK 7 IBOX
W_SIZER 8 BOXCHAR
W_VBAR 9 BOX
W_UPARROW 10 BOXCHAR
W_DNARROW 11 BOXCHAR
W_VSLIDE 12 BOX
W_VELEV 13 BOX
W_HBAR 14 BOX
W_LFARROW 15 BOXCHAR
W_RTARROW 16 BOXCHAR
W_HSLIDE 17 BOX
W_HELEV 18 BOX
W_SMALLER 19 BOXCHAR

The ob_spec field of the object (containing the color
information) while the window is on top is defined in
parm2. The ob_spec field for the object while the
window is not on top is defined in parm3.

This mode is only valid as of AES version 0x0300.
WF_DCOLOR 19 This mode sets the default color of newly created

windows as with WF_COLOR above. This mode only
works as of AES version 0x0300. As of AES version
4.1, this mode causes all currently displayed windows
which have not had their color explicitly set with
WF_COLOR to be changed.

WF_BEVENT 24 parm1, parm2, parm3, and parm4 are each interpreted
as bit arrays whose bits indicate supported window
features. Currently only one bit is supported. If bit 0
(B_UNTOPPABLE) of parm1 is set, the window will be
set to be ‘un-toppable’ and it will never receive
WM_TOPPED messages, only button clicks.

This mode is only available as of AES versions 4.0.
WF_BOTTOM 25 This mode will place the specified window at the

bottom of the window list (if there is more than one
window) and top the new window on the top of the list.

This mode is only available as of AES version 4.0.

wind_update() – 6.159

T H E A T A R I C O M P E N D I U M

WF_ICONIFY 26 This mode iconifies the specified window to the X, Y,
width, and height coordinates given in parm1, parm2,
parm3, and parm4 respectively. Normally, this happens
as the result of receiving a WM_ICONIFY message.

This mode is only available as of AES version 4.1.
WF_UNICONIFY 27 This mode uniconifies the window specified, returning it

to its original X, Y, width, and height as specified in
parm1, parm2, parm3, and parm4 respectively.
Normally, this happens as the result of receiving a
WM_UNICONIFY message.

This mode is only available as of AES version 4.1.
WF_UNICONIFYXYWH 28 This mode sets the X, Y, width, and height that will be

transmitted to the window with the next
WM_UNICONIFY message that targets it. This call is
used when a window is opened in an iconified state to
give the OS a method of positioning it when it is
uniconified.

This mode is only available as of AES version 4.1.
WF_TOOLBAR 30 This mode attaches a toolbar to the specified window.

parm1 and parm2 contain the high and low WORD of
the address of the toolbar OBJECT tree respectively.
parm3 and parm4 are unused.

Set parm1 and parm2 to 0 to remove a toolbar.

BINDING intin[0] = handle;
intin[1] = mode;
intin[2] = x;
intin[3] = y;
intin[4] = w;
intin[5] = h;

return crys_if(0x69);

RETURN VALUE wind_set() returns 0 if an error occurred or non-zero otherwise.

SEE ALSO wind_get()

wind_update()
WORD wind_update(mode)
WORD mode;

wind_update() manages the screen drawing semaphore.

OPCODE 107 (0x6B)

6.160 – Window Library - AES Function Reference

T H E A T A R I C O M P E N D I U M

AVAILABILITY All AES versions.

PARAMETERS mode specifies an action as follows:

Name mode Meaning

END_UPDATE 0 This mode resets the flag set by BEG_UPDATE and should
be called as soon as redrawing is complete. This will allow
windows to be moved and menus to be dropped down again.

BEG_UPDATE 1 Calling this mode will suspend the process until no drop-down
menus are showing and no other process is updating the
screen. This will then set a flag which guarantees that the
screen will not be updated and windows will not be moved until
you reset it with END_UPDATE.

Generally this call is made whenever a WM_REDRAW
message is received to lock the screen semaphore while
redrawing.

END_MCTRL 2 This mode releases control of the mouse to the AES and
resumes mouse click message services.

BEG_MCTRL 3 This mode prevents mouse button messages from being sent
to applications other than your own.

form_do() makes this call to lock out screen functions. Desk
accessories which display a dialog outside of a window must
use this function to prevent button clicks from falling through to
the desktop.

BINDING intin[0] = mode;

return crys_if(0x6B);

RETURN VALUE wind_update() returns 0 if an error occurred or non-zero otherwise.

VERSION NOTES As of AES version 4.0, you may logically OR a mask of NO_BLOCK (0x0100)
to either BEG_UPDATE or BEG_MCTRL . This mask will prevent the
application from blocking if another application currently has control of the screen
semaphore. Instead, if another application has control, the function will
immediately return with an error value of 0.

This method should only be used by timing-sensitive applications such as terminal
programs in which a long redraw by another application could cause a timeout.

COMMENTS All wind_update() modes nest. For instance, to release the screen semaphore, the
same number of END_UPDATE calls must be received as were BEG_UPDATE
calls. It it recommended that you design your application in a manner that avoids
nesting these calls.

Both the BEG_UPDATE and BEG_MCTRL modes should be used prior to
displaying a form or popup to prevent them from being overwritten or clicks to
them being sent to other applications.

wind_update() – 6.161

T H E A T A R I C O M P E N D I U M

Always wait until after the BEG_UPDATE call to turn off the mouse cursor when
updating the screen to be sure you have gained control of the screen.

Applications such as slide-show viewers which require the whole screen area
(and may need to change screen modes) may call wind_update() with parameters
of both BEG_UPDATE and BEG_MCTRL to completely lock out the screen
from other applications. The application would still be responsible for saving the
screen area, manipulating video modes as necessary, restoring the screen when
done, and returning control of the screen to other applications with
END_UPDATE and END_MCTRL .

SEE ALSO wind_new()

T H E A T A R I C O M P E N D I U M

– CHAPTER 7 –

VDI

Overview – 7.3

T H E A T A R I C O M P E N D I U M

Overview

The Virtual Device Interface (VDI) is a collection of drivers designed to provide applications
with a device-independent method of accessing graphically based devices such as monitors,
printers, and plotters. Applications which are written to use the VDI rather than directly
accessing hardware will be compatible with all currently available devices including those
which have not yet been developed.

All Atari systems with TOS in ROM include a VDI screen driver adaptable to each display
resolution the system can support. Soft-loaded screen drivers and drivers for other devices are
loaded through a VDI sub-system called the Graphics Device Operating System (GDOS).

The GDOS system is disk-loaded as a TSR utility at bootup. It loads device drivers based upon
the contents of its configuration file(s).

Applications wishing to use the GDOS extensions must verify its presence using the method
described later in this chapter. If an application’s output will be limited to the screen and no font
other than the system font is needed, then the presence of GDOS is not mandatory.

VDI Workstations

Every system call made to the VDI must include a workstation handle. This handle is a unique
integer which identifies the device and current attribute array. Workstation handles are returned
by the VDI calls v_opnwk() or v_opnvwk().

Workstations provide a lookup array of attributes such as line width, text color, clipping state,
etc. that are unique to it.

Physical Workstations
Each device must be initialized by opening its physical workstation. Opening a physical
workstation causes all drawing and clipping attributes to be reset and the current page (display)
to be reset to the default background color. Only one physical workstation may be opened to a
single device at any given time.

The screen device’s physical workstation is automatically initialized by the AES upon bootup.
Its physical workstation handle may be obtained from the AES call graf_handle().

Devices such as printers and plotters must have their physical workstation opened by the
application wishing to utilize them. When opening a physical workstation the application must
specify a device ID which identifies the device to open. Device identification codes are
assigned as follows:

7.4 – VDI

T H E A T A R I C O M P E N D I U M

VDI Device
Identification Numbers
Screen 1–10
Plotters 11–20
Printers 21–30
Metafiles 31–40
Cameras 41–50
Tablets 51–60
Memory 61–70
Other 71–

These values correspond to the value listed in the leftmost column of the user’s ‘ASSIGN.SYS’
file. The following code segment demonstrates opening a physical workstation to the printer
device with ID #21. It is important to note that the function assumes that the presence of GDOS
has been tested for and was verified.

work_in[0] is set to the desired device ID and work_in[1-9] are filled in with common defaults
for workstation attributes. work_in[10] is set to 2 to indicate raster coordinates as explained
later in this chapter. The function returns a non-zero value if an error occurred.

WORD work_in[11],work_out[57];
WORD handle;

WORD
printer_open(VOID)
{

WORD i;

work_in[0] = 21;
for(i = 1;i < 10; work_in[i++] = 1);
work_in[10] = 2;

v_opnwk(work_in,&handle,work_out);

return (handle == 0);
}

Virtual Workstations
Each physical workstation may have multiple virtual workstations opened which allow
individual applications to maintain separate workstation attributes. In fact, a single application
may open multiple virtual workstations to the same device to manage workstation attributes
more efficiently. Opening a virtual workstation does not affect the current contents of the
display.

Most GEM applications will open a virtual workstation to the current screen device upon
initialization. The following code segment illustrates opening a virtual workstation to the display
device.

The device identification code for the display device must be specified as Getrez() + 2 for all
VDI features to work correctly. All other parameters are passed the same as the example for

Workstation Specifics – 7.5

T H E A T A R I C O M P E N D I U M

opening a physical workstation except that handle must contain the physical workstation handle
of the device for which you wish to obtain a virtual workstation handle.

A more programmer-friendly method of opening workstations involves the use of the
VDI_Workstation structure which is discussed in the reference entry for V_Opnvwk()

WORD work_in[11],work_out[57];
WORD handle;
WORD wcell, hcell, wbox, hbox;

WORD
screen_open(VOID)
{

WORD i;

handle = graf_handle(&wcell, &hcell, &wbox, &hbox);

work_in[0] = Getrez() + 2;
for(i = 1;i < 10;work_in[i++] = 1);
work_in[10] = 2;

v_opnvwk(work_in, &handle, work_out);

return (handle == 0);
}

Workstation Specifics

Coordinate Systems
The VDI defaults to the usage of Raster Coordinates (RC) which places the origin at the upper-
left of the page or display. As an example, the coordinate range for the 1040ST’s monochrome
graphics mode is shown here:

(639, 399)

(0, 0)

RC coordinate ranges vary with the device. It is up to the application to interpret and scale the
size and position of its output appropriately.

With the addition of GDOS, the VDI gains the ability to utilize Normalized Device Coordinates
(NDC). When using NDC, GDOS translates and scales all coordinates to the device as

7.6 – VDI

T H E A T A R I C O M P E N D I U M

appropriate. All devices using NDC will have their origin at the lower-left hand corner of the
display or page as follows:

(32767, 32767)

(0, 0)

Using NDC provides an excellent manner of reducing the overhead of having to internally scale
every coordinate, however, applications which depend on the proper aspect ratio for their output
should consider managing coordinates internally.

Rendering Graphics
Each VDI output function uses attributes set by other related VDI functions to determine
characteristics such as line width, text face, and color. The following table lists VDI attribute
calls and the functions they affect.

To output a VDI object, set each attribute as desired and then make the appropriate call. For
example, to output a line of text in the System font at 9 point colored red, make the following
sequence of calls.

vst_font(handle, 1); /* Select the System Font */
vst_point(handle, 9);
vst_color(handle, 2);
v_ftext(handle, 10, 10, “The Atari Compendium”);

Generalized Device Primitives
GDP’s (Generalized Device Primitives) are basic drawing components available through the
VDI . All current device drivers support all GDP’s though specialized drivers may not be able
to. intout[14-24] may be used to determine the presence of GDP’s. Currently there are 10
supported GDP’s as follows:

Workstation Specifics – 7.7

T H E A T A R I C O M P E N D I U M

GDP
1 Bar (Rectangle)
2 Arc
3 Pie Slice
4 Circle
5 Ellipse
6 Elliptical Arc
7 Elliptical Pie
8 Rounded Rectangle
9 Filled Rounded

Rectangle
10 Justified Graphics Text

VDI Rectangles
Several VDI functions require that a rectangle in VDI format be passed to them. VDI rectangles
are different from AES rectangles in the manner in which they are specified.

To correctly define a VDI rectangle you must specify two coordinate pairs one representing the
upper-left point of the rectangle and the other specifying the lower-right as follows:

(x2, y2)

(x1, y1)

The following two functions provide simple conversion between AES GRECTs and VDI
rectangles in an array.

VOID
Grect2xy(GRECT *g, short *pxy)
{

pxy[0] = g.g_x;
pxy[1] = g.g_y;
pxy[2] = g.g_x + g.g_w - 1;
pxy[3] = g.g_y + g.g_h - 1;

}

VOID
Xy2Grect(short *pxy, GRECT *g)
{

g.g_x = pxy[0];
g.g_y = pxy[1];
g.g_w = pxy[2] - pxy[0] + 1;
g.g_h = pxy[3] - pxy[1] + 1;

}

7.8 – VDI

T H E A T A R I C O M P E N D I U M

Device Types vs. Required Functions
Not all VDI functions are supported by all drivers. The presence of GDP functions may be
checked using the information returned in the intout array after a v_opnwk() call. Other calls
may be checked for by entering a test call and comparing returned information with what would
be expected.

In addition, each type of driver has a certain number of required functions which must be
supported by the device. Each entry in the VDI Function Reference specifies the support
required for a function.

 Write Modes
All VDI graphics primitives are subject to one of four writing modes set by vswr_mode(), with
the exception of vro_cpyfm() which is passed one of sixteen writing modes.

The following logic tables illustrate the effects of each of the four primary modes. Graphic
examples can be found under the reference entry for vswr_mode().

Mode Logic
Replace Destination = Source
Transparent Destination = Source OR Destination
XOR Destination = Source XOR Destination
Reverse Transparent Destination = (NOT Source) AND Destination

Using Color

The color capabilities of VDI devices can be placed into three categories as follows.
Determining which category a device falls into is accomplished by examining the return values
from v_opnvwk(), v_opnwk(), and vq_extnd().

Categories

v_opn/v/wk()
work_out[13]

{ colors }

vq_extnd()
work_out[5]

{ lut }

Monochrome Device1 2 0
Palette-Based Device >= 2 1
True Color Device > 2 0

1Sometimes monochrome devices appear as palette-based devices with two available colors.

VDI Raster Forms – 7.9

T H E A T A R I C O M P E N D I U M

Monochrome Devices
Monochrome devices are only capable of displaying one color. Often, monochrome devices are
instead represented by palette-based devices with two fixed colors.

Palette-Based Devices
Palette-based devices have a fixed number of colors that may be rendered on screen
simultaneously. Each pixel value is used to index into the palette to decide what color to
display. For instance, if you change VDI color #2 to green, draw a box with that color index,
and then change VDI color #2 to red, the box will appear first in green and then turn red.

The first 16 VDI color registers are used by the operating system and should be avoided. If your
application must change them, they should be restored when no longer needed.

True Color Devices
True-color devices allow each pixel to have a unique color value. Rather than palette entries,
colors (work_out[13]) corresponds to the number of available virtual pens. Drawing is
accomplished by using these pens, however, unlike using a palette, changing the color of a pen
does not change any pixel’s color drawn with that pen on the screen.

Whatever color is stored in virtual pen #0 is considered the background color for the purpose of
computing write modes.

It is possible for external devices, printers, plotters, etc. to behave as if they were a true-color
device.

Color Mapping
Color values are defined in the VDI by specifying a red, green, and blue value from 0–1000.
The VDI will scale the value to the closest color possible. vq_color() can be used to determine
the actual color that was set.

VDI Raster Forms

The VDI handles raster forms using three commands, vro_cpyfm(), vrt_cpyfm() , and
vr_trnfm() . vro_cpyfm() and vrt_cpyfm() are responsible for ‘blitting’ raster images between
memory and a workstation. These functions may also be used to copy images from one location
on a workstation to another. ‘Blitting’ is the process of copying memory from one location to
another. Atari computers use the BLiTTER chip (when one is installed) or a software bit blit
algorithm to quickly move memory. While these calls are designed to transfer screen memory, if
carefully used, they may also be used to transfer other types of memory as well.

vr_trnfm() is responsible for the transformation of images between device-specific and VDI
standard format, the two raster image formats recognized by the VDI . Device-specific format is
limited to images in the format of the source device whereas the second is a generic format
recommended for transporting images to non-standard displays.

7.10 – VDI

T H E A T A R I C O M P E N D I U M

VDI Device-Specific Format
Device-specific format simply mimics the layout of pixels and planes on the source device.
When using vro_cpyfm() and vrt_cpyfm() the source form will be transferred to the destination
form in device-specific format2.

If you intend to save images to disk you should first utilize vr_trnfm() to transform the image
into a VDI standard format so that the image can be successfully ported to any display.

VDI Standard Format
VDI standard format is designed to provide a portable method of specifying raster images which
may be displayed on any device. Images stored in VDI standard format must be transformed with
vr_trnfm() before copying them to a workstation.

Images in VDI standard format appear in memory in a plane-by-plane fashion. All of the bits for
plane #0 appear first followed by the bits for plane #1, and so on for as many planes as exist in
the image.

Images may be easily transferred to devices with a higher number of planes by simply inserting
empty bytes to account for planes not present in the source image. This method will only work,
however, with palette based devices.

Vector Handling

The VDI screen driver is also responsible for managing some hardware vectors responsible for
keyboard and mouse input. The functions available for altering these vectors are vex_motv(),
vex_timv(), vex_curv(), and vex_butv(). For further explanation of these calls please see the
VDI Function Reference.

Use of these functions is not recommended with MultiTOS as these vectors are global and affect
all applications. In addition, results are undefined if two or more non-resident applications
utilized these calls at once.

Existing applications which use these calls must have their program flags set to either supervisor
or global memory protection. See the GEMDOS Overview for a discussion of the program flags.

2The definitions of vro_cpyfm() and vrt_cpyfm() allow for the specification of the format of the source and destination form, however, this
feature is not currently supported by any version of the operating system. Any call which specifies either the source or destination form to
be in device-independent format will fail.

GDOS – 7.11

T H E A T A R I C O M P E N D I U M

GDOS

The Graphics Device Operating System (GDOS) is a disk-based component of the operating
system which allows disk-loadable device drivers and additional fonts to be accessible through
standard VDI calls.

Several versions of Atari GDOS have been released in addition to several third-party GDOS
‘clones’. All of these forms have stayed backward-compatible with GDOS 1.0, however it is
recommended that programs be written to support newer GDOS calls when it can be determined
that a more recent release of GDOS is present.

Each VDI call documented in the VDI Function Reference specifies if GDOS is required, and
if so, what type.

Determining the Version of GDOS Present
A non-standard VDI call is available to check for the presence of GDOS. The following
machine-code subroutine will return a longword result in d0 which can be used to determine the
variety of GDOS present. Beware of older bindings which looked only for the original GDOS
and returned a 1 or 0 as a result.

.text
_vq_gdos:

move.l #-2,d0
trap #2
rts

.end

The longword return value in d0 can be interpreted as follows:

Name Value Meaning
GDOS_NONE -2 No GDOS is installed.

— Any other value. Original GDOS 1.x is installed.
GDOS_FNT 0x5F464E54

‘_FNT’
FONTGDOS is installed.

GDOS_FSM 0x5F46534D
‘_FSM’

FSM GDOS or SpeedoGDOS is installed. For
information on determining the specific variety of
outline GDOS available, see the description of the
‘FSMC’ cookie in Chapter 3: BIOS

7.12 – VDI

T H E A T A R I C O M P E N D I U M

FSM GDOS vs. SpeedoGDOS
Since FSMGDOS (a QMS/Imagen outline font-based GDOS) was never officially released
from Atari (though shipped in limited quantity with third-party products), some changes have
been made to calls in SpeedoGDOS that were never exploited by developers. For that reason,
these calls will only be documented in the Speedo-compatible way in the VDI Function
Reference. This does mean, however, that use of these calls will cause your application to fail
under the original FSMGDOS.

The calls which were affected are v_getoutline(), v_getbitmap_info(), v_killoutline() , and
vqt_get_table(). In addition, use of the new SpeedoGDOS calls vst_charmap(),
vqt_trackkern() , vqt_pairkern() , vqt_fontheader(), vst_kern(), or any of the older calls
when used with the fix31 data type will fail with the older FSM.

To determine the type of outline-font GDOS installed, look for the ‘FSMC’ cookie. The cookie
value is a pointer to a longword which contains the character string ‘_FSM’ for Imagen-based
FSMGDOS or ‘_SPD’ for Speedo-based FSMGDOS.

GDOS 1.x

GDOS 1.0 and the other 1.x versions which followed it was the original GDOS developed by
Digital Research for Atari. It handled only bitmap fonts and was slow compared to the newer
FONTGDOS which now replaces it.

When a v_opnwk() call is made with GDOS installed, a check is done to see if a driver was
assigned to the device ID specified in the ‘ASSIGN.SYS’ file, and if so, loaded.

All VDI calls which specify the returned handle will subsequently be redirected to the driver.

Not all VDI functions are available with every driver. Check the ‘Availability’ heading for each
specific function in the VDI Function Reference for specific availability.

Bitmap Fonts
Bitmap fonts have the ability to be quickly rendered and highly accurate. They do generally
require more disk space and a font file must be available for each point size and aspect ratio
required. Bitmap fonts follow a special naming convention as follows:

ATSS12LS.FNT
Vendor Code

Font Code Point Size
Device Type

The vendor code is a unique two-letter identifier which specifies the creator of the font. The font
code is a two-letter code which abbreviates the font’s name. The point size field specifies the
point size of the font. The device type is a two-letter abbreviation which should match the aspect
ratio of the device as follows:

FONTGDOS – 7.13

T H E A T A R I C O M P E N D I U M

Device Type Destination Ratio
None or HI 91x91 (Screen Devices)

CG 91x45 (Screen Devices)
LS 300x300 (Laser Printers, Inkjets)
EP 120x144 (Lo-Res Dot-Matrix Printers)
LB 160x72 (Lo-Res Dot-Matrix Printers)
SP 180x180 (Med-Res Dot-Matrix Printers)
QD 240x216 (Med-Res Dot-Matrix Printers)
NP 360x360 (High-Res Dot-Matrix Printers)

For a driver to recognize a bitmap font it must be listed in the user’s ‘ASSIGN.SYS’ file and be
of the correct aspect ratio. No extra fonts are made available to applications until a
vst_load_fonts() call is made.

FONTGDOS

FONTGDOS is the successor to GDOS 1.x. As with the original GDOS, FONTGDOS
supports only bitmap fonts. Its differences are improved driver support, support for bezier
curves, improved error handling, and a much quicker response time.

Bezier Curves
FONTGDOS conforms to the PC-GEM/3 file standard with the inclusion of bezier curve
rendering capability with the v_bez() and v_bez_fill() calls. v_bez_on() must be used to allow
FONTGDOS to allocate the memory necessary for bezier rendering. Likewise v_bez_off()
should be used before an application exits to free any memory used for bezier calls.

Error Support
When GDOS 1.x encountered an error condition, it simply wrote an error message at the top of
the display overwriting a portion of the menu bar and display screen. FONTGDOS allows an
application to disengage this behavior and instead return error codes in a global variable. It is
then the applications responsibility to check this variable after calls which may cause an error
condition. See the VDI Function Reference call vst_error() for more information.

FSMGDOS

FSMGDOS was developed by Atari in conjunction with QMS/Imagen Corp. to provide Imagen
outline fonts which could be displayed at any point size, aspect ratio, or device. It provided all
of the improved features of FONTGDOS with outline fonts and caching capability. This version
of GDOS was, however, never officially released. Third-party manufacturers did ship many
copies of this GDOS to the public. In addition, many developers did update their products to
utilize the special features of FSMGDOS.

Most VDI function calls added with this version of GDOS have remained compatible with
SpeedoGDOS, however, some calls which were never used by developers were changed. This

7.14 – VDI

T H E A T A R I C O M P E N D I U M

means that applications written to support SpeedoGDOS may not be backwardly compatible.
For specific compatibility information, consult the VDI Function Reference.

SpeedoGDOS

SpeedoGDOS is a new variety of FSM which employs outline font technology from Bitstream
using Speedo-format outline fonts. In addition, several new calls were added to gain access to
internal font information and provide true WYSIWYG (What-You-See-Is-What-You-Get)
output.

The fix31 Data Type
SpeedoGDOS optionally allows the use of the fix31 data type in some calls for parameters and
return values. Old bindings designed for the Imagen-based FSM will still function properly.
Newer bindings may be written to take advantage of this data type.

The fix31 data type allows for the internal representation and manipulation of floating-point
values without the use of a floating-point library. It is a 32-bit value with a 1-bit sign and a 31-
bit magnitude. Each value specifies a number in 1/65536 pixels. Examples of this data type
follow:

fix31 Floating Point
0x00010000 1.0
0xFFFF0000 -1.0
0x00018000 1.5

Character advances can be simply be added or subtracted to each other using integer arithmetic.
To convert a fix31 unit to an integer (rounding to 0) use the following code:

x_integer = (WORD)(x_fix31 >> 16);

To convert a fix31 to an integer and round it to the closest integer use the following code:

x_integer = (WORD)((x_fix31 + 32768) >> 16);

Use of fix31 values provides higher character placement accuracy and access to non-integer
point sizes. For specific implementation notes, see the VDI Function Reference entries for
vqt_advance32(), v_getbitmap_info(), vst_arbpt32(), and vst_setsize32().

Kerning
SpeedoGDOS outline fonts have the ability to be kerned using two methods. Track kerning is
global for an entire font and has three settings, normal, tight, and extra tight. Pair kerning works
for individual pair groups of characters. In addition, new pairs may be defined as necessary to
produce the desired output.

Kerning is taken into account with v_ftext() and vqt_advance() only when enabled. Use the
calls vst_kern(), vqt_pairkern() , and vqt_trackkern() to access kerning features.

SpeedoGDOS – 7.15

T H E A T A R I C O M P E N D I U M

Caching
All SpeedoGDOS extent and outline rendering calls are cached for improved performance.
Cache files may be loaded or saved to disk as desired to preserve the current state of the cache.
In addition, an application might want to flush the cache before doing an output job to a device
such as a printer to improve performance with new fonts.

The call vqt_cachesize() can be used to estimate the ability of the cache to store data for an
unusually large character and prevent memory overflow errors.

Special Effects
The call vst_scratch() determines the method used when calculating the size of the special
effects buffer. In general an application should not allow the user to use algorithmically
generated effects on Speedo fonts. In most cases, special effects are available by simply
choosing another font.

The problem is that Speedo fonts may be scaled to any size and SpeedoGDOS has no way of
predicting the upper-limit on the size of a character to allocate special effects memory.
Currently, SpeedoGDOS allocates a buffer large enough to hold the largest character possible
from the point sizes in the ‘ASSIGN.SYS’ file and those listed in the ‘EXTEND.SYS’ file. If
your application limits special effects to these sizes then no problems will occur.

If you intend to restrict users to using special effects only with bitmap fonts you may call
vst_scratch() with a mode parameter of 1, memory allocation will be relaxed to only take
bitmap fonts into account. You may also specify a mode parameter of 2 if you plan to allow no
special effects at all. The vst_scratch() call must be made prior to calling vst_load_fonts().

Speedo Character Indexes
Speedo fonts contain more characters than the Atari ASCII set can define. Fonts may be
re-mapped with a CPX using the vqt_get_table() call (this method is not recommended on an
application basis as this call affects all applications in the system).

Another method involves the use of a new call, vst_charmap(). Calling this function with a
mode parameter of 0 causes all functions which take character indexes (like v_ftext(),
vqt_width() , etc.) to interpret characters as WORDs rather than BYTEs and utilize Speedo
International Character Encoding rather than ASCII.

The Function Reference provides two alternate bindings for v_ftext() and v_ftext_offset()
called v_ftext16() and v_ftext_offset16() which correctly output 16-bit Speedo character text
rather than 8-bit ASCII text.

A complete listing of the Bitstream International Character Set is listed in Appendix G: Speedo
Fonts.

Speedo Font IDs

7.16 – VDI

T H E A T A R I C O M P E N D I U M

The function vqt_name() is used with all versions of GDOS to return a unique integer identifier
for each font. Because some bitmap font ID’s conflicted with Bitstream outline font ID’s,
SpeedoGDOS versions 4.20 and higher add 5000 to each of the outline font ID’s to differentiate
them from bitmap fonts.

Device Drivers

Printer and Plotter Drivers
Printer drivers are the most common form of GDOS driver available, though some plotter
drivers do exist. The VDI Function Reference can be used to determine if a particular function
call is required to be available on a particular device. This does not, however, prohibit the
addition of supplementary functions.

Some special printer driver features are available with drivers designed to support them as
follows:

Dot-Matrix Printers

Dot-matrix printers with wide carriages can have their print region expanded by passing a
custom X and Y resolution for the driver in ptsin[0] and ptsin[1] respectively prior to the
v_opnwk() call. In addition, contrl[1] should be set to 1 to indicate the presence of the
parameters.

SLM804

After a v_opnwk() call to an SLM804 driver contrl[0] will contain the MSB and contrl[1] will
contain the LSB of the allocated printer buffer address.

After a v_updwk() call, intout[0] will contain a printer status code as follows:

Name Error Code Meaning
SLM_OK 0x00 No Error
SLM_ERROR 0x02 General Printer Error
SLM_NOTONER 0x03 Toner Empty
SLM_NOPAPER 0x05 Paper Empty

Device Drivers – 7.17

T H E A T A R I C O M P E N D I U M

All Printer Drivers

A user-defined printer buffer may be passed to the v_updwk() call by specifying the address of
the buffer in intin[0] and intin[1] . In addition, contrl[3] must be set to 2 to indicate the new
parameters and contrl[1] must be set to 1 to instruct the VDI to not clear the buffer first.

Camera and Tablet Drivers
As of this writing, no camera or tablet drivers existed for Atari GEM . Several functions are
reserved to support them which were developed under PC-GEM, however, many remain
undocumented. Where documentation was available, those calls are included for completeness
in the VDI Function Reference.

The Metafile Driver
‘META.SYS’ drivers are specially designed drivers which create ‘.GEM’ disk files rather than
produce output on a device. When a metafile device is opened, the file ‘GEMFILE.GEM’ is
created in the current GEMDOS path. The function vm_filename() may be used to change the
filename to which the metafile is written to, however, the file ‘GEMFILE.GEM’ must be deleted
by the application.

When a metafile is opened, several defaults relating to the coordinate space and pixel size are
set. Each pixel is assigned a default width and height of 85 microns (1 micron = 1/25400 inch).
This equates to a default resolution of 300dpi.

The device size is specified where Normalized Device Coordinates (NDC) = Raster
Coordinates (RC). The coordinate space of the metafile has (0, 0) in the lower-left corner and (
32767, 32767) in the upper-right. This coordinate system may be modified with vm_coords().
The size of the actual object space being written to the metafile should also be specified with
vm_pagesize() so that an application may correctly clip the objects when reading.

After changing coordinate space, values returned by vq_extnd() related to pixel width, height
and page size will not change. Also, font metrics returned by functions such as vqt_fontinfo()
and vqt_advance() will remain based on the default metafile size information. In most cases,
text metric information should be embedded based on the workstation metrics of the destination
device (such as a screen or printer) anyway.

The metafile is closed when a v_clswk() call is issued. Other applications which read metafiles
will play back the file by issuing commands in the same order as recorded by the driver. For
more information on the metafile format see Appendix C: Native File Formats.

7.18 – VDI

T H E A T A R I C O M P E N D I U M

The Memory Driver
‘MEMORY.SYS’ includes all of the standard VDI calls yet works only in memory and is not
designed to be output to a device. Normally, the memory driver should be assigned in the user’s
‘ASSIGN.SYS’ file as device number 61. Upon calling v_opnwk() to the memory driver,
contrl[1] should be set to 1 and ptsin[0] and ptsin[1] should contain the X and Y extent of the
memory area. Upon return from the call, contrl[0] and contrl[1] will contain the high and low
WORD respectively of the address of the memory device raster. v_updwk() clears the raster.

VDI Function Calling Procedure

The GEM VDI is accessed through a 68x00 TRAP #2 statement. Prior to the TRAP, register d0
should contain the magic number 0x73 and register d1 should contain a pointer to VDI parameter
block. An example binding is as follows:

.text
_vdi:

move.l #_VDIpb,d1
move.l #$73,d0
trap #2
rts

The VDI parameter block is an array of 5 pointers which each point to a specialized array of
WORD values which contain input parameters and function return values. Different versions of
the VDI support different size arrays. The following code contains the ‘worst case’ sizes for
these arrays. Many newer versions of the VDI support larger array sizes. You can inquire what
the maximum array size that VDI supports by examining the work_out array after a v_opnvwk()
or v_opnwk(). Larger array sizes allow more points to be passed at a time for drawing functions
and longer strings to be passed for text functions. The definition of the VDI parameter block
follows:

.data

_contrl: ds.w 12
_intin: ds.w 128
_ptsin: ds.w 256
_intout: ds.w 128
_ptsout : ds.w 256

_VDIpb: dc.l _contrl, _intin, _ptsin
dc.l _intout, _ptsout

.end

The contrl array contains the opcode and number of parameters being passed the function as
follows:

contrl[x] Contents
0 Function Opcode
1 Number of Input Vertices in ptsin
2 Number of Output Vertices in ptsout

VDI Function Calling Procedure – 7.19

T H E A T A R I C O M P E N D I U M

3 Number of Parameters in intin
4 Number of Output Values in intout
5 Function Sub-Opcode
6 Workstation Handle

7–11 Function Specific

contrl[0] , contrl[1] , contrl[3] , contrl[5] (when necessary), and contrl[6] must be filled in by
the application. contrl[2] and contrl[4] are filled in by the VDI on exit. contrl[7-11] are rarely
used, however some functions do rely on them for function-specific parameters.

For specific information on bindings, see the VDI Function Reference.

T H E A T A R I C O M P E N D I U M

VDI/GDOS Function Reference

v_alpha_text() – 7.23

T H E A T A R I C O M P E N D I U M

v_alpha_text()
VOID v_alpha_text(handle, str)
WORD handle;
char *str;

v_alpha_text() outputs a line of alpha text.

OPCODE 5

SUB-OPCODE 25

AVAILABILITY Supported by all printer and metafile drivers.

PARAMETERS handle is a valid workstation handle. str is a pointer to a null-terminated text
string which will be printed. Two special BYTE codes may be embedded in the
text. ASCII 12 will cause a printer form-feed. ASCII 18 ‘DC2’ will initiate an
escape sequence followed by a command descriptor BYTE (in ASCII) indicating
which action to take as follows.

Command
BYTE Meaning

‘0’ Enable bold print.

‘1’ Disable bold print.

‘2’ Enable italic print.

‘3’ Disable italic print.

‘4’ Enable underlining.

‘5’ Disable underlining.

‘6’ Enable superscript.

‘7’ Disable superscript.

‘8’ Enable subscript.

‘9’ Disable subscript.

‘A’ Enable NLQ mode.

‘B’ Disable NLQ mode.

‘C’ Enable wide printing.

‘D’ Disable wide printing.

‘E’ Enable light printing.

‘F’ Disable light printing.

‘W’ Switch to 10-cpi printing.

‘X’ Switch to 12-cpi printing.

‘Y’ Toggle compressed printing.

‘Z’ Toggle proportional printing.

7.24 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

BINDING WORD i = 0;

while(intin[i++] = (WORD)*str++);

contrl[0] = 5;
contrl[1] = 0;
contrl[3] = --i;
contrl[5] = 25;
contrl[6] = handle;

vdi();

CAVEATS The line of text must not exceed the maximum allowable length of the intin array
as returned by vq_extnd() or the maximum length of your compilers’ array.

COMMENTS Only commands ‘0’, ‘1’, ‘2’, ‘3’, ‘4’, and ‘5’ are available with most printer
drivers.

SEE ALSO v_gtext(), v_ftext()

v_arc()
VOID v_arc(handle, x, y, radius, startangle, endangle)
WORD handle, x, y, radius, startangle, endangle;

v_arc() outputs an arc to the specified workstation.

OPCODE 11

SUB-OPCODE 2

AVAILABILITY Supported by all drivers. This function composes one of the 10 VDI GDP’s
(Generalized Drawing Primitives). Although all current drivers support all
GDP’s, their availability is not guaranteed and may vary. To check for a particular
GDP refer to the table returned by v_opnvwk() or v_opnwk().

v_bar() – 7.25

T H E A T A R I C O M P E N D I U M

PARAMETERS handle is a valid workstation handle. x and y specify the center of an arc with a
radius of radius and starting and ending angles of startangle and endangle
specified in tenths of degrees as follows:

900

2700

01800

BINDING contrl[0] = 11;
contrl[1] = 4;
contrl[3] = contrl[5] = 2;
contrl[6] = handle;

intin[0] = startangle;
intin[1] = endangle;

ptsin[0] = x;
ptsin[1] = y;
ptsin[2] = ptsin[3] = ptsin[4] = ptsin[5] = 0;
ptsin[6] = radius;
ptsin[7] = 0;

vdi();

SEE ALSO vsl_color()

v_bar()
VOID v_bar(handle, pxy)
WORD handle;
WORD *pxy;

v_bar() outputs a filled rectangle to the specified workstation.

OPCODE 11

SUB-OPCODE 1

AVAILABILITY Supported by all drivers. This function composes one of the 10 VDI GDP’s
(Generalized Drawing Primitives). Although all current drivers support all
GDP’s, their availability is not guaranteed and may vary. To check for a particular
GDP refer to the table returned by v_opnvwk() or v_opnwk().

7.26 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

PARAMETERS handle is a valid workstation handle. pxy points to an array of four WORDs
specifying a VDI format rectangle to output.

BINDING contrl[0] = 11;
contrl[1] = 2;
contrl[3] = 0;
contrl[5] = 1;
contrl[6] = handle;

ptsin[0] = pxy[0];
ptsin[1] = pxy[1];
ptsin[2] = pxy[2];
ptsin[3] = pxy[3];

vdi();

COMMENTS This function, as opposed to vr_recfl() , does take the setting of vsf_perimeter()
into consideration.

SEE ALSO vsf_interior(), vsf_style(), vsf_color(), vsf_perimeter(), vsf_udpat()

v_bez()
VOID v_bez(handle, count, pxy, bezarr, extent, totpts, totmoves)
WORD handle, count;
WORD *pxy, *extent;
char *bezarr;
WORD * totpts, *totmoves;

v_bez() outputs a bezier curve path.

OPCODE 6

SUB-OPCODE 13

AVAILABILITY Available only with FONTGDOS, FSMGDOS or SpeedoGDOS.

PARAMETERS handle is a valid workstation handle. count specifies the number of vertices in the
path. pxy is a pointer to a WORD array (count * 2) WORDs long containing the
vertices where pxy[0] is the X coordinate of the first point, pxy[1] is the Y
coordinate of the first point and so on. bezarr is a pointer to a character array
count BYTEs long where each byte is a bit mask with two flags that dictate the
interpretation of each vertice as follows:

v_bez_fill() – 7.27

T H E A T A R I C O M P E N D I U M

Name Bit Meaning

BEZ_BEZIER
(0x01)
BEZ_POLYLINE
(0x00)

0 If set, begin a 4-point bezier segment (two anchor
points followed by two control points), otherwise,
begin a polyline segment.

BEZ_NODRAW
(0x02)

1 If set, jump to this point without drawing.

— 2-7 Currently unused (set to 0).

Upon exit, a 4 WORD array pointed to by extent is filled in with a VDI format
rectangle defining a bounding box of the path drawn. The WORD pointed to by
totpts is filled in with the number of points in the resulting path whereas the total
number of moves is stored in the WORD pointed to by totmoves.

BINDING WORD i;

contrl[0] = 6;
contrl[1] = count;
contrl[3] = (count + 1)/2;
contrl[5] = 13;
contrl[6] = handle;

for(i = 0;i < count; i++)
{

intin[i] = (WORD)bezarr[i];
ptsin[i*2] = pxy[i*2];
ptsin[(i*2) + 1] = pxy[(i*2) + 1];

}

vdi();

*totpts = intin[0];
*totmoves = intin[1];

for(i = 0; i < 4; i++)
extent[i] = ptsout[i];

SEE ALSO v_bez_fill(), v_bez_on(), v_bez_off(), v_bez_qual(), v_set_app_buff()

v_bez_fill()
VOID v_bez_fill(handle, count, pxy, bezarr, extent, totpts, totmoves)
WORD handle, count;
WORD *pxy, *extent;
char *bezarr;
WORD * totpts, *totmoves;

v_bez_fill() outputs a filled bezier path.

OPCODE 9

7.28 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

SUB-OPCODE 13

AVAILABILITY Available only with FONTGDOS, FSMGDOS or SpeedoGDOS.

PARAMETERS Same as v_bez().

BINDING WORD i;

contrl[0] = 9;
contrl[1] = count;
contrl[3] = (count + 1)/2;
contrl[5] = 13;
contrl[6] = handle;

for(i = 0;i < count * 2; i++)
ptsin[i] = pxy[i];

for(i = 0;i < count; i++)
intin[i] = (WORD)bezarr[i];

vdi();

*totpts = intin[0];
*totmoves = intin[1];

for(i = 0; i < 4; i++)
extent[i] = ptsout[i];

SEE ALSO v_bez(), v_bez_on(), v_bez_off(), v_bez_qual(), v_set_app_buff()

v_bez_off()
VOID v_bez_off(handle)
WORD handle;

v_bez_off() disables bezier capabilities and frees associated memory.

OPCODE 11

SUB-OPCODE 13

AVAILABILITY Available only with FONTGDOS, FSM, or SpeedoGDOS.

PARAMETERS handle is a valid workstation handle.

BINDING contrl[0] = 11;
contrl[1] = 0;
contrl[3] = 0;
contrl[5] = 13;

v_bez_on() – 7.29

T H E A T A R I C O M P E N D I U M

contrl[6] = handle;

vdi();

COMMENTS This function should be called to free any memory reserved by the bezier
functions.

SEE ALSO v_bez_on()

v_bez_on()
WORD v_bez_on(handle)
WORD handle;

v_bez_on() enables bezier capabilities.

OPCODE 11

SUB-OPCODE 13

AVAILABILITY Available only with FONTGDOS, FSM, or SpeedoGDOS.

PARAMETERS handle is a valid workstation handle.

BINDING contrl[0] = 11;
contrl[1] = 1;
contrl[3] = 0;
contrl[5] = 13;
contrl[6] = handle;

vdi();

return intout[0];

RETURN VALUE v_bez_on() returns a WORD value indicating the number of line segments each
curve is composed of (smoothness). The value returned (0-7) is a power of 2
meaning that a return value of 7 indicates 128 line segments per curve.

SEE ALSO v_bez_off()

7.30 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

v_bez_qual()
VOID v_bez_qual(handle, percent, actual)
WORD handle, percent;
WORD *actual;

v_bez_qual() sets the speed/quality ratio of the bezier curve rendering engine.

OPCODE 5

SUB-OPCODE 99

AVAILABILITY Available only with FONTGDOS, FSM, or SpeedoGDOS.

PARAMETERS handle specifies a valid workstation handle. percent is a value (0–100) specifying
the tradeoff between bezier quality and speed. A value of 0 renders a bezier fastest
with the lowest quality while a value of 100 renders a bezier slowest with the
highest possible quality. On return, the WORD pointed to by actual will contain
the actual value used.

BINDING contrl[0] = 5;
contrl[1] = 0;
contrl[3] = 3;
contrl[5] = 99;
contrl[6] = handle;

intin[0] = 32;
intin[1] = 1;
intin[2] = percent;

vdi();

*actual = intout[0];

COMMENTS actual may not be an exact percentage as the rendering engine may not actually
support every value possible between 1–99.

SEE ALSO v_bez(), v_bez_fill(), v_bez_on()

v_bit_image() – 7.31

T H E A T A R I C O M P E N D I U M

v_bit_image()
VOID v_bit_image(handle, fname, ratio, xscale, yscale, halign, valign, pxy)
WORD handle;
char *fname;
WORD aspect, xscale, yscale, halign, valign;
WORD *pxy;

v_bit_image() outputs a disk-based GEM ‘.IMG’ file.

OPCODE 5

SUB-OPCODE 23

AVAILABILITY Supported by all printer, metafile, and memory drivers.

PARAMETERS handle is a valid workstation handle. fname specifies the GEMDOS file
specification for the GEM bit-image file to print. ratio should be 0 to ignore the
aspect ratio of the image and 1 to adhere to it.

xscale and yscale specify the method of scaling to apply to the image. Fractional
scaling is specified by a value of 0 whereas a value of 1 represents integer
scaling.

If fractional scaling is used, the image will be displayed at the coordinates given
by the VDI format rectangle pointed to by pxy. If integer scaling is applied, the
image will be displayed as large as possible within the given coordinates using
halign and valign to specify the image justification as follows:

Value halign valign

0 Left
IMAGE_LEFT

Top
IMAGE_TOP

1 Center
IMAGE_CENTER

Center
IMAGE_CENTER

2 Right
IMAGE_RIGHT

Bottom
IMAGE_BOTTOM

BINDING WORD tmp = 5;

intin[0] = ratio;
intin[1] = xscale;
intin[2] = yscale;
intin[3] = halign;
intin[4] = valign;
while(intin[tmp++] = (WORD)*fname++);

contrl[0] = 5;

7.32 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

contrl[1] = 2;
contrl[3] = --tmp;
contrl[5] = 23;
contrl[6] = handle;

ptsin[0] = pxy[0];
ptsin[1] = pxy[1];
ptsin[2] = pxy[2];
ptsin[3] = pxy[3];

vdi();

COMMENTS A flag indicating whether the device supports scaling can be found in vq_extnd().
This call used with the memory driver can provide image scaling for transfer to
the screen with vrt_cpyfm() .

SEE ALSO vq_scan()

v_cellarray()
VOID v_cellarray(handle, pxy, rowlen, elements, num_rows, wrmode, colarray)
WORD handle;
WORD *pxy;
WORD rowlen, elements, num_rows, wrmode;
WORD *colarray;

v_cellarray() outputs an array of colored cells.

OPCODE 10

AVAILABILITY Not supported by any current drivers.

PARAMETERS handle specifies a valid workstation handle. pxy points to a WORD array with 4
entries specifying a VDI format rectangle giving the extent of the array to output.

rowlen specifies the length of each color array row. elements specifies the total
number of color array elements. num_rows specifies the number of rows in the
color array. wrmode specifies a valid writing mode (1–4) and colarray points to
an array of WORDs (num_rows * elements) long.

BINDING WORD i;

contrl[0] = 10;
contrl[1] = 2;
contrl[3] = num_rows * elements;
contrl[6] = handle;
contrl[7] = rowlen;
contrl[8] = elements;
contrl[9] = num_rows;

v_circle() – 7.33

T H E A T A R I C O M P E N D I U M

contrl[10] = wrt_mode;

for(i = 0;i < (num_rows * elements);i++)
intin[i] = colarray;

ptsin[0] = pxy[0];
ptsin[1] = pxy[1];
ptsin[2] = pxy[2];
ptsin[3] = pxy[3];

vdi();

CAVEATS This function is not guaranteed available in any driver and should therefore be
avoided unless you are sure the driver you are utilizing understands it.

SEE ALSO vq_cellarray()

v_circle()
VOID v_circle(handle, x, y, radius)
WORD handle, x, y, radius;

v_circle() outputs a filled circle.

OPCODE 11

SUB-OPCODE 4

AVAILABILITY Supported by all drivers. This function composes one of the 10 VDI GDP’s
(Generalized Drawing Primitives). Although all current drivers support all
GDP’s, their availability is not guaranteed and may vary. To check for a particular
GDP refer to the table returned by v_opnvwk() or v_opnwk().

PARAMETERS handle specifies a valid workstation. x and y specify the center of a circle with a
radius of radius.

BINDING contrl[0] = 11;
contrl[1] = 3;
contrl[3] = 0;
contrl[5] = 4;
contrl[6] = handle;

ptsin[0] = x;
ptsin[1] = y;
ptsin[2] = ptsin[3] = 0;

vdi();

SEE ALSO vsf_color(), vsf_interior(), vsf_style(), vsf_udpat()

7.34 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

v_clear_disp_list()
VOID v_clear_disp_list(handle)
WORD handle;

v_clear_disp_list() clears the display list of a workstation.

OPCODE 5

SUB-OPCODE 22

AVAILABILITY Supported by printer, plotter, metafile, and camera drivers.

PARAMETERS handle specifies a valid workstation handle.

BINDING contrl[0] = 5;
contrl[1] = contrl[3] = 0;
contrl[5] = 22;
contrl[6] = handle;

vdi();

COMMENTS v_clear_disp_list() is essentially the same as v_clrwk() except that no form feed
is issued.

SEE ALSO v_clrwk()

v_clrwk()
VOID v_clrwk(handle)
WORD handle;

v_clrwk() clears a physical workstation.

OPCODE 3

AVAILABILITY Supported by all drivers.

PARAMETERS handle specifies a valid workstation.

BINDING contrl[0] = 3;
contrl[1] = contrl[3] = 0;
contrl[6] = handle;

v_clsvwk() – 7.35

T H E A T A R I C O M P E N D I U M

vdi();

COMMENTS Physical workstations are cleared automatically when they are opened.

This call will generate a form feed on page-oriented devices.

Using this command on a virtual workstation will clear the underlying physical
workstation. This is generally not recommended because it will effect all virtual
workstations not simply your own.

SEE ALSO v_clear_disp_list(), v_updwk()

v_clsvwk()
VOID v_clsvwk(handle)
WORD handle;

v_clsvwk() closes a virtual workstation.

OPCODE 101

AVAILABILITY Supported by all drivers.

PARAMETERS handle specifies a valid virtual workstation to close.

BINDING contrl[0] = 101;
contrl[1] = contrl[3] = 0;
contrl[6] = handle;

vdi();

SEE ALSO v_opnvwk()

v_clswk()
VOID v_clswk(handle)
WORD handle;

v_clswk() closes a physical workstation.

OPCODE 2

AVAILABILITY Available only with some form of GDOS.

7.36 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

PARAMETERS handle specifies a valid physical workstation to close.

BINDING contrl[0] = 2;
contrl[1] = contrl[3] = 0;
contrl[6] = handle;

vdi();

SEE ALSO v_opnvwk()

v_contourfill()
VOID v_contourfill(handle, x, y, color)
WORD handle, x, y, color;

v_countourfill() outputs a ‘seed’ fill.

OPCODE 103

AVAILABILITY Supported by all current screen, printer and metafile drivers. The availability of
this call can be checked for using vq_extnd().

PARAMETERS handle specifies a valid workstation handle. x and y specify the starting point for
the fill. If color is OTHER_COLOR (-1) then the fill continues in all directions
until a color other than that found in x and y is found. If color is positive then the
fill continues in all directions until color color is found.

BINDING contrl[0] = 103;
contrl[1] = contrl[3] = 0;
contrl[6] = handle;

intin[0] = color;

ptsin[0] = x;
ptsin[1] = y;

vdi();

COMMENTS In true-color mode if a positive value for color is used, the fill spreads until a
pixel is found with the same color as ‘virtual pen’ color.

SEE ALSO vsf_color(), vsf_interior(), vsf_style(), vsf_udpat()

v_curdown() – 7.37

T H E A T A R I C O M P E N D I U M

v_curdown()
VOID v_curdown(handle)
WORD handle;

v_curdown() moves the text cursor down one line.

OPCODE 5

SUB-OPCODE 5

AVAILABILITY Supported by all screen drivers.

PARAMETERS handle specifies a valid workstation handle.

BINDING contrl[0] = 5;
contrl[1] = contrl[3] = 0;
contrl[5] = 5;
contrl[6] = handle;

vdi();

COMMENTS This call is equivalent to the ESC-B VT-52 code.

SEE ALSO v_curup()

v_curhome()
VOID v_curdown(handle)
WORD handle;

v_curhome() moves the text cursor to the upper-left of the screen.

OPCODE 5

SUB-OPCODE 8

AVAILABILITY Supported by all screen drivers.

PARAMETERS handle specifies a valid workstation handle.

BINDING contrl[0] = 5;
contrl[1] = contrl[3] = 0;
contrl[5] = 8;

7.38 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

contrl[6] = handle;

vdi();

COMMENTS This call is equivalent to the ESC-H VT-52 code.

v_curleft()
VOID v_curleft(handle)
WORD handle;

v_curleft() moves the text cursor left one character position.

OPCODE 5

SUB-OPCODE 7

AVAILABILITY Supported by all screen drivers.

PARAMETERS handle is a valid workstation handle.

BINDING contrl[0] = 5;
contrl[1] = contrl[3] = 0;
contrl[5] = 7;
contrl[6] = handle;

vdi();

COMMENTS This call is equivalent to the ESC-D VT-52 code.

SEE ALSO v_curright()

v_curright()
VOID v_curright(handle)
WORD handle;

v_curright() moves the text cursor one position to the right.

OPCODE 5

SUB-OPCODE 6

AVAILABILITY Supported by all screen drivers.

v_curtext() – 7.39

T H E A T A R I C O M P E N D I U M

PARAMETERS handle specifies a valid workstation handle.

BINDING contrl[0] = 5;
contrl[1] = contrl[3] = 0;
contrl[5] = 6;
contrl[6] = handle;

vdi();

COMMENTS This call is equivalent to the ESC-C VT-52 code.

SEE ALSO v_curleft()

v_curtext()
VOID v_curtext(handle, str)
WORD handle;
char *str;

v_curtext() outputs a line of text to the screen in text mode.

OPCODE 5

SUB-OPCODE 12

AVAILABILITY Supported by all screen drivers.

PARAMETERS handle is a valid workstation handle. str is a character pointer to a string no more
than 127 characters long.

BINDING WORD i = 0;

while(intin[i++] = (WORD)*str++);

intin[i] = 0;
contrl[0] = 5;
contrl[1] = 0;
contrl[3] = --i;
contrl[5] = 12;
contrl[6] = handle;

vdi();

COMMENTS The line of text must not exceed the maximum length of the intin array as returned
by vq_extnd() or the maximum length of your compilers’ array.

SEE ALSO vs_curaddress(), v_rvon(), v_rvoff()

7.40 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

v_curup()
VOID v_curup(handle)
WORD handle;

v_curup() moves the text cursor up one line.

OPCODE 5

SUB-OPCODE 4

AVAILABILITY Supported by all screen drivers.

PARAMETERS handle specifies a valid workstation handle.

BINDING contrl[0] = 5;
contrl[1] = contrl[3] = 0;
contrl[5] = 4;
contrl[6] = handle;

vdi();

COMMENTS This call is equivalent to the ESC-A VT-52 code.

SEE ALSO v_curdown()

v_dspcur()
VOID v_dspcur(handle, x, y)
WORD handle, x, y;

v_dspcur() displays the mouse pointer on screen at the specified position.

OPCODE 5

SUB-OPCODE 18

AVAILABILITY Supported by all screen drivers.

PARAMETERS handle specifies a valid workstation handle. x and y specify the screen
coordinates of where to display the mouse pointer.

v_eeol() – 7.41

T H E A T A R I C O M P E N D I U M

BINDING contrl[0] = 5;
contrl[1] = 1
contrl[3] = 0;
contrl[5] = 18;
contrl[6] = handle;

ptsin[0] = x;
ptsin[1] = y;

vdi();

COMMENTS This call will render a mouse cursor on screen regardless of its current ‘show’
status. Normally a function will use either graf_mouse() if using the AES or
v_show_c() if using the VDI .

SEE ALSO v_rmcur(), graf_mouse(), v_show_c()

v_eeol()
VOID v_eeol(handle)
WORD handle;

v_eeol() erases the text line from the current cursor position rightwards.

OPCODE 5

SUB-OPCODE 10

AVAILABILITY Supported by all screen drivers.

PARAMETERS handle specifies a valid workstation handle.

BINDING contrl[0] = 5;
contrl[1] = contrl[3] = 0;
contrl[5] = 10;
contrl[6] = handle;

vdi();

COMMENTS This call is equivalent to the ESC-K VT-52 code.

SEE ALSO v_eeos()

7.42 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

v_eeos()
WORD v_eeos(handle)
WORD handle;

v_eeos() erases the current screen of text from the cursor position.

OPCODE 5

SUB-OPCODE 9

AVAILABILITY Supported by all screen drivers.

PARAMETERS handle specifies a valid workstation handle.

BINDING contrl[0] = 5;
contrl[1] = contrl[3] = 0;
contrl[5] = 9;
contrl[6] = handle;

vdi();

COMMENTS This call is equivalent to the ESC-J VT-52 code.

SEE ALSO v_eeol()

v_ellarc()
VOID v_ellarc(handle, x, y, xradius, yradius, startangle, endangle)
WORD handle, x, y, xradius, yradius, startangle, endangle;

v_ellarc() outputs an elliptical arc segment.

OPCODE 11

SUB-OPCODE 6

AVAILABILITY Supported by all drivers. This function composes one of the 10 VDI GDP’s
(Generalized Drawing Primitives). Although all current drivers support all
GDP’s, their availability is not guaranteed and may vary. To check for a particular
GDP refer to the table returned by v_opnvwk() or v_opnwk().

PARAMETERS handle specifies a valid workstation handle. x and y specify the coordinates of the

v_ellipse() – 7.43

T H E A T A R I C O M P E N D I U M

center of an arc with an X radius of xradius and a Y radius of yradius. Only the
portion of the arc which falls between the angles specified in startangle and
endangle will be drawn. Angles are specified in tenths of degrees as follows:

900

2700

01800

BINDING contrl[0] = 11;
contrl[1] = contrl[3] = 2;
contrl[5] = 6;
contrl[6] = handle;

intin[0] = startangle;
intin[1] = endangle;

ptsin[0] = x;
ptsin[1] = y;
ptsin[2] = xradius;
ptsin[3] = yradius;

vdi();

SEE ALSO v_ellipse(), v_ellpie(), vsl_color(), vsl_type(), vsl_width(), vsl_udsty()

v_ellipse()
VOID v_ellipse(handle, x, y, xradius, yradius)
WORD handle, x, y, xradius, yradius;

v_ellipse() outputs a filled ellipse.

OPCODE 11

SUB-OPCODE 5

AVAILABILITY Supported by all drivers. This function composes one of the 10 VDI GDP’s
(Generalized Drawing Primitives). Although all current drivers support all
GDP’s, their availability is not guaranteed and may vary. To check for a particular
GDP refer to the table returned by v_opnvwk() or v_opnwk().

PARAMETERS handle specifies a valid workstation handle. x and y specify the center point of an
arc with an X radius of xradius and a Y radius of yradius.

7.44 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

BINDING contrl[0] = 11;
contrl[1] = 2;
contrl[3] = 0;
contrl[5] = 5;
contrl[6] = handle;

ptsin[0] = x;
ptsin[1] = y;
ptsin[2] = xradius;
ptsin[3] = yradius;

vdi();

SEE ALSO v_ellpie(), v_ellarc(), vsf_color(), vsf_interior(), vsf_style(), vsf_udpat(),
vs_perimeter()

v_ellpie()
VOID v_ellpie(handle, x, y, xradius, yradius, startangle, endangle)
WORD handle, x, y, xradius, yradius, startangle, endangle;

v_ellpie() outputs a filled elliptical pie segment.

OPCODE 11

SUB-OPCODE 7

AVAILABILITY Supported by all drivers. This function composes one of the 10 VDI GDP’s
(Generalized Drawing Primitives). Although all current drivers support all
GDP’s, their availability is not guaranteed and may vary. To check for a particular
GDP refer to the table returned by v_opnvwk() or v_opnwk().

PARAMETERS handle specifies a valid workstation handle. x and y specify the center coordinates
of an elliptical pie segment to draw with an X radius of xradius and a Y radius of
yradius. Only the portion of the arc will be drawn falling between the angles
specified in startangle and endangle (as shown below). The ends of this arc is
connected to the center point with lines forming the pie segment.

900

2700

01800

v_enter_cur() – 7.45

T H E A T A R I C O M P E N D I U M

BINDING contrl[0] = 11;
contrl[1] = contrl[3] = 2;
contrl[5] = 7;
contrl[6] = handle;

intin[0] = startangle;
intin[1] = endangle;

ptsin[0] = x;
ptsin[1] = y;
ptsin[2] = xradius;
ptsin[3] = yradius;

vdi();

SEE ALSO v_ellarc(), v_ellipse(), vsf_color(), vsf_style(), vsf_interior(), vsf_udpat(),
vs_perimeter()

v_enter_cur()
VOID v_enter_cur(handle)
WORD handle;

v_enter_cur() clears the screen to color 0, removes the mouse cursor and enters
text mode.

OPCODE 5

SUB-OPCODE 3

AVAILABILITY Supported by all screen drivers.

PARAMETERS handle specifies a valid workstation handle.

BINDING contrl[0] = 5;
contrl[1] = contrl[3] = 0;
contrl[5] = 3;
contrl[6] = handle;

vdi();

CAVEATS You should check that the left mouse button has been released with vq_mouse()
prior to calling this function. If the button is depressed when you call this function
the VDI will lock waiting for it to be released after v_exit_cur().

COMMENTS This call is used by a GEM application to prepare for executing a TOS
application when not running under MultiTOS .

7.46 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

SEE ALSO v_exit_cur()

v_exit_cur()
VOID v_exit_cur(handle)
WORD handle;

v_exit_cur() exits text mode and restores the mouse pointer.

OPCODE 5

SUB-OPCODE 2

AVAILABILITY Supported by all screen drivers.

PARAMETERS handle specifies a valid workstation handle.

BINDING contrl[0] = 5;
contrl[1] = contrl[3] = 0;
contrl[5] = 2;
contrl[6] = handle;

vdi();

CAVEATS See v_enter_cur().

COMMENTS To completely restore the screen you should call form_dial(FMD_FINISH , sx, sy,
sw, sh) where sx, sy, sw, and sh are the coordinates of the screen.

SEE ALSO v_enter_cur()

v_fillarea()
VOID v_fillarea(handle, count, pxy)
WORD handle, count;
WORD *pxy;

v_fillarea() outputs a filled polygon.

OPCODE 9

AVAILABILITY Supported by all drivers.

v_flushcache() – 7.47

T H E A T A R I C O M P E N D I U M

PARAMETERS handle specifies a valid workstation handle. count specifies the number of
vertices in the polygon to output. pxy should point to an array of coordinate pairs
with the first WORD being the first X point, the second WORD being the first Y
point and so on.

BINDING WORD i;

contrl[0] = 9;
contrl[1] = count;
contrl[3] = 0;
contrl[6] = handle;

for(i = 0;i < count*2;i++)
ptsin[i] = pxy[i];

vdi();

COMMENTS This function will automatically connect the first point with the last point.

SEE ALSO v_pline(), v_contourfill()

v_flushcache()
VOID v_flushcache(handle)
WORD handle;

v_flushcache() flushes the character bitmap portion of the cache.

OPCODE 251

AVAILABILITY Available only with FSMGDOS and SpeedoGDOS.

PARAMETERS handle specifies a valid workstation handle.

BINDING contrl[0] = 251;
contrl[1] = contrl[3] = 0;
contrl[6] = handle;

vdi();

SEE ALSO v_loadcache(), v_savecache()

7.48 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

v_fontinit()
VOID v_fontinit(fptr_high, fptr_low)
WORD fptr_high, fptr_low;

v_fontinit() allows replacement of the built-in system font.

OPCODE 5

SUB-OPCODE 102

AVAILABILITY All TOS versions.

PARAMETERS fptr_high and fptr_low are the high and low WORDs of a pointer to a Line-A
compatible font header structure in Motorola (Big-Endian) format which contains
information about the font to be used as a replacement for the system font.

BINDING contrl[0] = 5;
contrl[1] = 0;
contrl[3] = 2;
contrl[5] = 102;
contrl[6] = handle;

intin[0] = fptr_high;
intin[1] = fptr_low;

vdi();

COMMENTS This function has never been officially documented though it exists in all current
versions of TOS.

v_form_adv()
VOID v_form_adv(handle)
WORD handle;

v_form_adv() outputs the current page without clearing the display list.

OPCODE 5

SUB-OPCODE 20

AVAILABILITY Supported by all drivers.

PARAMETERS handle specifies a valid workstation handle.

v_ftext() – 7.49

T H E A T A R I C O M P E N D I U M

BINDING contrl[0] = 5;
contrl[1] = contrl[3] = 0;
contrl[5] = 20;
contrl[6] = handle;

vdi();

COMMENTS This function is useful if you wish to print a new page containing the same objects
as on the previous page.

SEE ALSO v_updwk()

v_ftext()
VOID v_ftext(handle, x, y, str)
WORD handle, x, y;
char *str;

v_ftext() outputs outline text taking spacing remainders into consideration.

OPCODE 241

AVAILABILITY Available only with FSMGDOS or SpeedoGDOS.

PARAMETERS handle specifies a valid workstation handle. x and y specify the starting
coordinate of the NULL -terminated text string (see vst_alignment()) pointed to
by str to print.

BINDING WORD i = 0;

while(intin[i++] = (WORD)*str++);

contrl[0] = 241;
contrl[1] = 1;
contrl[3] = --i;
contrl[6] = handle;

ptsin[0] = x;
ptsin[1] = y;

vdi();

COMMENTS The text contained in str (including its NULL byte) should not exceed the
maximum allowable size of the intin array (as indicated in the work_out array) or
the size of the intin array allocated by your compiler.

To output 16-bit Speedo character indexes, use v_ftext16().

7.50 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

This function produces output more properly spaced than with v_gtext() because
it takes the remainder amounts from vqt_f_extent() into consideration.

SEE ALSO v_ftext(), v_ftext_offset(), v_ftext_offset16(), v_gtext(), vst_alignment(),
vst_color(), vst_effects(), vst_arbpt(), vst_height(), vst_font(), vqt_f_extent(),
vst_point()

v_ftext16()
VOID v_ftext16(handle, x, y, wstr, wstrlen)
WORD handle, x, y;
WORD *wstr;
WORD wstrlen;

v_ftext16() is a variant binding of v_ftext() that outputs 16-bit Speedo character
text rather than 8-bit ASCII text.

OPCODE 241

AVAILABILITY Available only with SpeedoGDOS.

PARAMETERS handle specifies a valid workstation handle. x and y specify the starting
coordinate of the location to output text. wstr points to a NULL -terminated text
string composed of WORD-sized Speedo characters. wstrlen specifies the length
of the text string.

BINDING WORD i;

for(i = 0; i < wstrlen; i++)
intin[i] = wstr[i];

contrl[0] = 241;
contrl[1] = 1;
contrl[3] = wstrlen;
contrl[6] = handle;

ptsin[0] = x;
ptsin[1] = y;

vdi();

COMMENTS This function should only be used when vst_charmap() has been used to indicate
that WORD-sized Speedo character indexes should be recognized rather than 8-
bit ASCII.

The text contained in wstr (including its NULL byte) should not exceed the
maximum allowable size of the intin array (as indicated in the work_out array) or

v_ftext_offset() – 7.51

T H E A T A R I C O M P E N D I U M

the size of the intin array allocated by your compiler.

CAVEATS Current versions of SpeedoGDOS become confused when the space character
(index 0) is encountered in the string. It is suggested that one of the three space
characters (of varying widths) at indexes 560-562 be used instead.

SEE ALSO v_ftext(), v_ftext_offset(), v_ftext_offset16(), v_gtext(), vst_alignment(),
vst_color(), vst_effects(), vst_arbpt(), vst_height(), vst_font(), vqt_f_extent(),
vst_point()

v_ftext_offset()
VOID v_ftext_offset(handle, x, y, str, offset)
WORD handle, x, y;
char *str;
WORD *offset;

v_ftext_offset() is a variant binding of v_ftext() available under SpeedoGDOS
which allows an offset vector for each character to be specified.

OPCODE 241

AVAILABILITY Available only with SpeedoGDOS.

PARAMETERS handle specifies a valid workstation handle. x and y give the point where the
string will be rendered. offset points to an array of WORDs which contains one x
and y offset value for each character in str.

BINDING WORD i = 0;

while(intin[i++] = (WORD)*str++);
--i;

ptsin[0] = x;
ptsin[1] = y;

for(j = 0; j < i * 2;j++)
ptsin[j + 2] = offset[j];

contrl[0] = 241;
contrl[1] = i + 1;
contrl[3] = i;
contrl[6] = handle;

vdi();

COMMENTS The text contained in str (including its NULL byte) should not exceed the
maximum allowable size of the intin array (as indicated in the work_out array) or

7.52 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

the size of the intin array allocated by your compiler.

To output 16-bit Speedo character indexes, use v_ftext_offset16().

SEE ALSO v_ftext_offset16(), v_ftext(), v_gtext()

v_ftext_offset16()
VOID v_ftext_offset(handle, x, y, wstr, wstrlen, offset)
WORD handle, x, y;
WORD *wstr;
WORD wstrlen;
WORD *offset;

v_ftext_offset16() is a variant binding of v_ftext_offset() which allows 16-bit
Speedo character strings to be output rather than 8-bit ASCII codes.

OPCODE 241

AVAILABILITY Available only with SpeedoGDOS.

PARAMETERS handle specifies a valid workstation handle. x and y give the point where the
string will be rendered. offset points to an array of WORDs which contains one x
and y offset value for each character in wstr.

BINDING WORD i;

for(i = 0;i < wstrlen; i++)
intin[i] = wstr[i];

ptsin[0] = x;
ptsin[1] = y;

for(j = 0; j < i * 2;j++)
ptsin[j + 2] = offset[j];

contrl[0] = 241;
contrl[1] = wstrlen + 1;
contrl[3] = wstrlen;
contrl[6] = handle;

vdi();

COMMENTS This function should only be used when vst_charmap() has been used to indicate
that WORD sized Speedo character indexes should be recognized rather than 8-bit
ASCII.

The text contained in wstr (including its NULL byte) should not exceed the

v_getbitmap_info() – 7.53

T H E A T A R I C O M P E N D I U M

maximum allowable size of the intin array (as indicated in the work_out array) or
the size of the intin array allocated by your compiler.

CAVEATS Current versions of SpeedoGDOS become confused when the space character
(index 0) is encountered in the string. It is suggested that one of the three space
characters (of varying widths) at indexes 560-562 be used instead.

SEE ALSO v_ftext16(), v_ftext_offset()

v_getbitmap_info()
VOID v_getbitmap_info(handle, ch, advx, advy, xoff, yoff, width, height, bitmap)
WORD handle, ch;
fix31 *advx, *advy, *xoff, *yoff;
WORD *width, *height;
VOID *bitmap;

v_getbitmap_info() returns placement information for the bitmap of a character
based on the current character font, size, and alignment.

OPCODE 239

AVAILABILITY Available only with SpeedoGDOS1.

PARAMETERS handle specifies a valid workstation handle. ch is the character to return
information about.

The fix31 variables pointed to by advx, advy, xoff, and yoff will be filled in with
the x and y advance and offset vectors respectively. The WORDs pointed to by
width and height will be filled in with the width and height of the bitmap pointed
to by the value returned in bitmap.

BINDING contrl[0] = 239;
contrl[1] = 0;
contrl[3] = 1;
contrl[6] = handle;

intin[0] = ch;

vdi();

*width = intout[0];
*height = intout[1];
*advx = *(fix31 *)&intout[2];

1This call did exist in FSMGDOS, however the call had a completely different calling format. Atari changed the existing call as no
FSMGDOS program had yet been written to utilize it.

7.54 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

*advy = *(fix31 *)&intout[4];
*xoff = *(fix31 *)&intout[6];
*yoff = *(fix31 *)&intout[8];
*bitmap = *(void *)&intout[10];

COMMENTS The advance vector represents the amount to add to the current point to properly
place the character. The offset vector, when added to the current point, give the
location of the upper-left corner of the bitmap.

v_getoutline()
VOID v_getoutline(handle, ch, xyarray, bezarray, maxverts, numverts)
WORD handle, ch;
WORD *xyarray;
char *bezarray;
WORD maxverts;
WORD *numverts;

v_getoutline() returns information about an SpeedoGDOS character required to
generate the character with bezier curves.

OPCODE 243

AVAILABILITY Available only with SpeedoGDOS2.

PARAMETERS handle specifies a valid workstation handle. ch specifies the character to return
information about. The arrays pointed to by xyarray and bezarray are filled in
with the bezier information for the character. The definition of xyarray and
bezarray is given in the binding for v_bez().

maxverts should indicate the maximum number of vertices the buffer can hold. The
WORD pointed to by numverts will be filled in with the actual number of vertices
for the character.

BINDING contrl[0] = 243;
contrl[1] = 0;
contrl[3] = 6;
contrl[6] = handle;

intin[0] = ch;
intin[1] = maxverts;
*(WORD *)&intin[2] = xyarray;
*(WORD *)&intin[4] = bezarray;

vdi();

2This call was present under FSMGDOS, however it’s binding has dramatically changed. Applications using this binding will not operate
under the older FSMGDOS.

v_get_pixel() – 7.55

T H E A T A R I C O M P E N D I U M

*numverts = intout[0];

v_get_pixel()
VOID v_get_pixel(handle, x, y, pindex, vindex)
WORD handle, x, y;
WORD *pindex, *vindex;

v_get_pixel() returns the color value for a specified coordinate on the screen.

OPCODE 105

AVAILABILITY Supported by all screen drivers.

PARAMETERS handle specifies a valid workstation handle. x any y specify the coordinate to
return color information for.

In a palette-based mode the WORD pointed to by pindex will contain the
hardware register index of the color and the WORD pointer to by vindex will
contain the VDI index of the color.

In 16-bit true-color modes, pindex will be 0 and vindex will return the 16-bit
RGB pixel value in the format {RRRR RGGG GGGB BBBB}.

In 32-bit color modes, the lower byte of vindex will contain the 8 bits of red data,
the upper byte of pindex will contain the 8 bits of green data, and the lower byte of
pindex will contain the 8 bits of blue data. The upper byte of vindex is reserved
for non-color data.

BINDING contrl[0] = 105;
contrl[1] = 1;
contrl[3] = 0;
contrl[6] = handle;

ptsin[0] = x;
ptsin[1] = y;

vdi();

*pindex = intout[0];
*vindex = intout[1];

7.56 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

v_gtext()
VOID v_gtext(handle, x, y, str)
WORD handle, x, y;
char *str;

v_gtext() outputs graphic text.

OPCODE 8

AVAILABILITY Supported by all drivers.

PARAMETERS handle specifies a valid workstation handle. x and y specify the starting
coordinates of the text (see vst_alignment()). str is a pointer to a NULL -
terminated character string to print.

BINDING WORD i = 0;

while(intin[i++] = (WORD)*str++);

contrl[0] = 8;
contrl[1] = 1;
contrl[3] = --i;
contrl[6] = handle;

ptsin[0] = x;
ptsin[1] = y;

vdi();

COMMENTS The text contained in str (including its NULL byte) should not exceed the
maximum allowable size of the intin array (as indicated in the work_out array) or
the size of the intin array allocated by your compiler.

Using this function to output outline text with FSMGDOS is possible to remain
backward-compatible but not recommended as it will introduce small errors as
spacing remainders are lost.

SEE ALSO v_ftext(), v_ftext_offset(), vst_color(), vst_effects(), vst_alignment(),
vst_height(), vst_point()

v_hardcopy() – 7.57

T H E A T A R I C O M P E N D I U M

v_hardcopy()
VOID v_hardcopy(handle)
WORD handle;

v_hardcopy() invokes the ALT-HELP screen dump.

OPCODE 5

SUB-OPCODE 17

AVAILABILITY Supported by screen drivers running under ST compatible resolutions.

PARAMETERS handle specifies a valid workstation handle.

BINDING contrl[0] = 5;
contrl[1] = contrl[3] = 0;
contrl[5] = 17;
contrl[6] = handle;

vdi();

CAVEATS This function works in only ST compatible screen modes and should thus be
avoided.

SEE ALSO Scrdmp()

v_hide_c()
VOID v_hide_c(handle)
WORD handle;

v_hide_c() hides the mouse cursor.

OPCODE 123

AVAILABILITY Supported by all screen drivers.

PARAMETERS handle specifies a valid workstation handle.

BINDING contrl[0] = 123;
contrl[1] = contrl[3] = 0;
contrl[6] = handle;

vdi();

7.58 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

COMMENTS This call is nested. For each time you call this function you must call v_show_c()
an equal number of times to show the mouse.

SEE ALSO v_show_c(), graf_mouse()

v_justified()
VOID v_justified(handle, x, y, str, length, wflag, cflag)
WORD handle, x, y;
char *str;
WORD length, wflag, cflag;

v_justified() outputs justified graphics text.

OPCODE 11

SUB-OPCODE 10

AVAILABILITY Supported by all drivers. This function composes one of the 10 VDI GDP’s
(Generalized Drawing Primitives). Although all current drivers support all
GDP’s, their availability is not guaranteed and may vary. To check for a particular
GDP refer to the table returned by v_opnvwk() or v_opnwk().

PARAMETERS handle specifies a valid workstation handle. x and y specify the starting
coordinates at which to draw the NULL -terminated text string (see
vst_alignment()) pointed to by str. length specifies the pixel length of the area to
justify on.

wflag and cflag specify the type of justification to perform between words and
characters respectively. A value of NOJUSTIFY (0) indicates no justification
whereas a value of JUSTIFY (1) indicates to perform justification.

BINDING WORD i = 0;

while(intin[i++] = (WORD)*str++);

contrl[0] = 11;
contrl[1] = 2;
contrl[3] = --i;
contrl[5] = 10;
contrl[6] = handle;

intin[0] = wflag;
intin[1] = cflag;

ptsin[0] = x;

v_killoutline() – 7.59

T H E A T A R I C O M P E N D I U M

ptsin[1] = y;
ptsin[2] = length;
ptsin[3] = 0;

vdi();

COMMENTS This call does not take into account remainder information from outline fonts.

SEE ALSO v_gtext(), v_ftext(), vst_color(), vst_font(), vst_effects(), vst_alignment(),
vst_point(), vst_height()

v_killoutline()
VOID v_killoutline(handle, outline)
WORD handle;
FSMOUTLINE outline;

v_killoutline() releases an outline from memory.

OPCODE 242

AVAILABILITY Available only with FSMGDOS or SpeedoGDOS.

COMMENTS Under FSMGDOS this call was required to release memory allocated for an
outline returned from v_getoutline(). With SpeedoGDOS, this call is no longer
required and is thus not documented further.

SEE ALSO v_getoutline()

v_loadcache()
WORD v_loadcache(handle, fname, mode)
WORD handle;
char *fname;
WORD mode;

v_loadcache() loads a previously saved cache file from disk.

OPCODE 250

AVAILABILITY Supported only by FSMGDOS and SpeedoGDOS.

PARAMETERS handle specifies a valid workstation handle. fname specifies the GEMDOS file

7.60 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

specification of the cache file to load. mode specifies whether current data will be
flushed first. A value of 0 will append the loaded cache to the current cache
whereas a value of 1 will flush the cache prior to loading.

BINDING WORD i = 1;

intin[0] = mode;
while(intin[i++] = (WORD)*fname++);

contrl[0] = 250;
contrl[1] = 0;
contrl[3] = --i;
contrl[6] = handle;

vdi();

return intout[0];

RETURN VALUE v_loadcache() returns 0 if successful or -1 if an error occurred.

COMMENTS This command only affects the cache responsible for storing bitmaps created from
outline characters.

SEE ALSO v_savecache(), v_flushcache()

v_meta_extents()
VOID v_meta_extents(handle, xmin, ymin, xmax, ymax)
WORD handle, xmin, ymin, xmax, ymax;

v_meta_extents() embeds placement information for a metafile.

OPCODE 5

SUB-OPCODE 98

AVAILABILITY Supported by all metafile drivers.

PARAMETERS handle specifies a valid workstation handle. xmin and ymin specify the upper left
corner of the bounding box of the metafile. xmax and ymax specify the lower left
corner.

BINDING contrl[0] = 5;
contrl[1] = 2;
contrl[3] = 0;
contrl[5] = 98;
contrl[6] = handle;

ptsin[0] = xmin;

v_opnvwk() – 7.61

T H E A T A R I C O M P E N D I U M

ptsin[1] = ymin;
ptsin[2] = xmax;
ptsin[3] = ymax;

vdi();

COMMENTS Parameters sent to this call should be specified in whatever coordinate system the
metafile is currently using.

SEE ALSO vm_pagesize()

v_opnvwk()
VOID v_opnvwk(work_in, handle, work_out)
WORD *work_in, *handle, *work_out;

v_opnvwk() opens a virtual VDI workstation.

OPCODE 100

AVAILABILITY Supported by all drivers.

PARAMETERS work_in is a pointer to an array of 11 WORDs which define the inital defaults for
the workstation as follows:

work_in[x] Meaning

0 Device identification number. This indicates the
physical device ID of the device (the line number
of the driver in ASSIGN.SYS when using GDOS).
For screen devices you should normally use the
value Getrez() + 2, however, a value of 1 is
acceptable if not using any loaded fonts.

1 Default line type (same as vsl_type()).

2 Default line color (same as vsl_color()).

3 Default marker type (same as vsm_type()).

4 Default marker color (same as vsm_color()).

5 Default font (same as vst_font()).

6 Default text color (same as vst_color()).

7 Default fill interior.

8 Default fill style.

9 Default fill color.

7.62 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

10 Coordinate type flag. A value of 0 specifies NDC
‘Normalized Device Coordinates’ coordinates
whereas a value of 2 specifies RC ‘Raster
Coordinates’. All other values are reserved. NDC
coordinates are only available when using external
drivers with GDOS.

handle should be set to the current handle (not the device ID) of the physical
workstation for this device. For screen devices this is the value returned by
graf_handle(). On exit handle will be filled in the VDI workstation handle
allocated, if successful, or 0 if the workstation could not be opened.

work_out points to an array of 57 WORDs which on exit will be filled in by the
VDI with information regarding the allocated workstation as follows (a structure
name is listed beside its array member for those using the ‘C’ style
VDI_Workstation structure instead of the array):

work_out[x]
VDI Structure

Member Meaning
0 xres Width of device in pixels - 1.

1 yres Height of device in pixels - 1.

2 noscale Device coordinate units flag:
0 = Device capable of producing a precisely scaled

image (screen, printer, etc...)
1 = Device not capable of producing a precisely scaled

image (film recorder, etc...)
3 wpixel WIdth of pixel in microns (1/25400 inch).

4 hpixel Height of pixel in microns (1/25400 inch).

5 cheights Number of character heights (0 = continuous scaling).

6 linetypes Number of line types.

7 linewidths Number of line widths (0 = continous scaling).

8 markertypes Number of marker types.

9 markersizes Number of marker sizes (0 = continuous scaling).

10 faces Number of faces supported by the device.

11 patterns Number of available patterns.

12 hatches Number of available hatches.

13 colors Number of predefined colors/pens (ST High = 2, ST
Medium = 4, TT Low = 256, True Color = 256).

14 ngdps Number of supported GDP’s

v_opnvwk() – 7.63

T H E A T A R I C O M P E N D I U M

15-24 cangdps[10] cangdps[0 – (ngdps - 1)] contains a list of the GDP’s the
device supports as follows:

1 = Bar
2 = Arc
3 = Pie Slice
4 = Circle
5 = Ellipse
6 = Elliptical Arc
7 = Elliptical Pie
8 = Rounded Rectangle
9 = Filled Rounded Rectangle
10 = Justified Graphics Text

25-34 gdpattr[10] For each GDP as listed above, gdpattr[0 – (ngdps - 1)]
indicates the attributes which are applied to that GDP as
follows:

1 = Polyline (vsl_...)
2 = Polymarker (vsm_...)
3 = Text (vst_...)
4 = Fill Area (vsf_...)
5 = None

35 cancolor Color capability flag.
0 = No
1 = Yes

36 cantextrot Text rotation flag.
0 = No
1 = Yes

37 canfillarea Fill area capability flag.
0 = No
1 = Yes

38 cancellarray Cell array capability flag.
0 = No
1 = Yes

39 palette Number of available colors in palette.
0 = > 32767 colors
2 = Monochrome
>2 = Color

40 locators Number of locator devices.
1 = Keyboard only.
2 = Keyboard and other.

41 valuators Number of valuator devices.
1 = Keyboard only.
2 = Keyboard and other.

42 choicedevs Number of choice devices.
1 = Function keys.
2 = Function keys + keypad.

43 stringdevs Number of string devices.
1 = Keyboard.

44 wstype Workstation type.
0 = Output only
1 = Input only
2 = Input/Output
3 = Metafile

45 minwchar Minimum character width in pixels.

46 minhchar Minimum character height in pixels.

47 maxwchar Maximum character width in pixels.

7.64 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

48 maxhchar Maximum character height in pixels.

49 minwline Minimum line width.

50 zero5 Reserved (0).

51 maxwline Maximum line width.

52 zero7 Reserved (0).

53 minwmark Minimum marker width.

54 minhmark Minimum marker height.

55 maxwmark Maximum marker width.

56 maxhmark Maximum marker height.

BINDING WORD i;

contrl[0] = 100;
contrl[1] = 0;
contrl[3] = 11;
contrl[6] = *handle;

for(i = 0;i < 11;i++)
intin[i] = work_in[i];

vdi();

*handle = contrl[6];

for(i = 0;i < 45;i++)
work_out[i] = intout[i];

for(i = 0;i < 13;i++)
work_out[45+i] = intout[i];

CAVEATS The VDI included with TOS versions less than 2.06 sometimes returned the same
handle for consecutive calls using the same physical handle.

COMMENTS Using multiple virtual workstations provides the benefit of being able to define
multiple sets of default line types, text faces, etc... without having to constantly set
them.

The VDI_Workstation structure method is the recommended method of using this
function. See the VDI entry for V_Opnwk() and V_Opnvwk().

Desk accessories running under TOS versions below 1.4 should not leave a
workstation open across any call which might surrender control to GEM
(evnt_button(), evnt_multi(), etc...). This could give GEM time to change
screen resolutions and TOS versions below 1.4 did not release memory allocated
by a desk accessory (including workstations) when a resolution change occurred.

SEE ALSO v_opnwk(), vq_extend(), v_clsvwk(), V_Opnvwk()

V_Opnvwk() – 7.65

T H E A T A R I C O M P E N D I U M

V_Opnvwk()
WORD V_Opnvwk(dev)
VDI_Workstation dev;

V_Opnvwk() is not a component of the VDI , rather an interface binding designed
to simplify working with virtual screen workstations. It will open a virtual screen
workstation with a VDI_Workstation structure as a parameter rather than
work_in and work_out arrays.

OPCODE N/A

AVAILABILITY User-defined.

PARAMETERS ws is a pointer to a VDI_Workstation structure defined as follows (for the
meaning of each structure member, refer to v_opnvwk()):

typedef struct
{

WORD handle, dev_id;
WORD wchar, hchar, wbox, hbox;
WORD xres, yres;
WORD noscale;
WORD wpixel, hpixel;
WORD cheights;
WORD linetypes, linewidths;
WORD markertypes, markersizes;
WORD faces, patterns, hatches, colors;
WORD ngdps;
WORD cangdps[10];
WORD gdpattr[10];
WORD cancolor, cantextrot;
WORD canfillarea, cancellarray;
WORD palette;
WORD locators, valuators;
WORD choicedevs, stringdevs;
WORD wstype;
WORD minwchar, minhchar;
WORD maxwchar, maxwchar;
WORD minwline;
WORD zero5;
WORD maxwline;
WORD zero7;
WORD minwmark, minhmark;
WORD maxwmark, maxhmark;
WORD screentype;
WORD bgcolors, textfx;
WORD canscale;
WORD planes, lut;
WORD rops;
WORD cancontourfill, textrot;
WORD writemodes;
WORD inputmodes;

7.66 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

WORD textalign, inking, rubberbanding;
WORD maxvertices, maxintin;
WORD mousebuttons;
WORD widestyles, widemodes;
WORD reserved[38];

} VDI_Workstation;

BINDING WORD
V_Opnvwk(dev)
VDI_Workstation dev;
{

WORD i, in[11];

in[0] = Getrez() + 2;
dev->dev_id = in[0];
for(i = 1;i < 10; in[i++] = 1);
in[10] = 2;
i = graf_handle(&dev->wchar,

&dev->hchar, &dev->wbox,
&dev->hbox);

v_opnvwk(in, &i, &dev->xres);
dev->handle = i;

if(i)
vq_extnd(i, 1, &dev->screentype);

return (i);
}

RETURN VALUE V_Opnvwk() returns 0 if non-successful or the workstation handle otherwise.

COMMENTS This function definition is adapted from an article which appeared in the ‘Atari
.RSC’ developers newsletter (Nov ‘90 - Jan ‘91).

SEE ALSO v_opnvwk(), V_Opnwk(), vq_extnd()

v_opnwk()
VOID v_opnwk(work_in, handle, work_out)
WORD *work_in, *handle, *work_out;

v_opnwk() opens a physical workstation.

OPCODE 1

AVAILABILITY Available only with some form of GDOS.

PARAMETERS All parmeters for this function are consistent with v_opnvwk() except as follows:

On entry, handle does not need to contain any specific value. On return, however,

V_Opnwk() – 7.67

T H E A T A R I C O M P E N D I U M

it will contain a workstation handle if successful or 0 if the call failed.

BINDING WORD i;

contrl[0] = 1;
contrl[1] = 0;
contrl[3] = 11;

for(i = 0;i < 11;i++)
intin[i] = work_in[i];

vdi();

*handle = contrl[6];

for(i = 0;i < 45;i++)
work_out[i] = intout[i];

for(i = 0;i < 13;I++)
work_out[45+i] = ptsout[i];

COMMENTS Physical workstations should be opened when needed and closed immediately
afterwards. For example, a word processor should not open the printer
workstation when the application starts and close it when it ends. If this is done,
the user will be unable to change printers with the Printer Setup CPX(s).

SEE ALSO V_Opnwk(), v_opnvwk(), vq_extnd()

V_Opnwk()
WORD V_Opnwk(devno, dev)
WORD devno;
VDI_Workstation dev;

V_Opnwk() is not a component of the VDI , rather an interface binding designed to
simplify working with VDI workstations. It will open a physical workstation using
a VDI_Workstation structure rather than work_in and work_out.

OPCODE N/A

AVAILABILITY User-defined.

PARAMETERS devno specifies the device ID of the device to open. Valid values for devno
follow:

1-10 = Screen (loaded device drivers only)
11-20 = Plotters
21-30 = Printers
31-40 = Metafile Drivers

7.68 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

41-50 = Camera Drivers
51-60 = Tablet Drivers
61-70 = Memory Drivers

ws is a VDI_Workstation structure as defined in V_Opnvwk().

BINDING WORD
V_Opnvwk(devno, dev)
WORD devno;
VDI_Workstation dev;
{

WORD i, in[11];

in[0] = dev->dev_id = devno;
for(i = 1;i < 10; in[i++] = 1);
in[10] = 2;
i = devno;

v_opnvwk(in, &i, &dev->xres);
dev->handle = i;

if(i)
vq_extnd(i, 1, &dev->screentype);

return (i);
}

RETURN VALUE V_Opnwk() returns a workstation handle if successful or 0 if the call failed.

COMMENTS This function definition is adapted from an article which appeared in the ‘Atari
.RSC’ developers newsletter (Nov ‘90 - Jan ‘91).

SEE ALSO v_opnwk(), vq_extnd(), v_opnvwk(), V_Opnvwk()

v_output_window()
VOID v_output_window(handle, pxy)
WORD handle;
WORD *pxy;

v_output_window() outputs a specified portion of the current page.

OPCODE 5

SUB-OPCODE 22

AVAILABILITY Supported by all printer and metafile drivers under any type of GDOS.

PARAMETERS handle specifies a valid workstation handle. pxy is a pointer to an array of four

v_pgcount() – 7.69

T H E A T A R I C O M P E N D I U M

WORDs in VDI rectangle format which specifies the bounding extents of the
current page to output.

BINDING contrl[0] = 5;
contrl[1] = 2;
contrl[3] = 0;
contrl[5] = 21;
contrl[6] = handle;

ptsin[0] = pxy[0];
ptsin[1] = pxy[1];
ptsin[2] = pxy[2];
ptsin[3] = pxy[3];

vdi();

CAVEATS Some printer drivers ignore the sides of the bounding box specified and print the
entire width of the page.

COMMENTS This call is similar to v_updwk() except that only a portion of the page is output.

SEE ALSO v_updwk()

v_pgcount()
VOID v_pgcount(handle, numcopies)
WORD handle, numcopies;

v_pgcount() is used to cause the laser printer to output multiple copies of the
current page.

OPCODE 5

SUB-OPCODE 2000

AVAILABILITY Supported only with some laser printer drivers (for instance the Atari laser printer
driver) under some form of GDOS.

PARAMETERS handle specifies a valid workstation handle. numcopies specifies the number of
copies to print minus one. A value of 0 means print one copy, a value of 1, two
copies, and so on.

BINDING contrl[0] = 5;
contrl[1] = 0;
contrl[3] = 1;
contrl[5] = 2000;
contrl[6] = handle;

intin[0] = numcopies;

7.70 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

vdi();

COMMENTS This call is preferred over repeatedly calling v_updwk() and v_form_adv() as
this method forces the printer data to be resent for each page.

v_pieslice()
VOID v_pieslice(handle, x, y, radius, startangle, endangle)
WORD handle, x, y, radius, startangle, endangle;

v_pieslice() outputs a filled pie segment.

OPCODE 11

SUB-OPCODE 3

AVAILABILITY Supported by all drivers. This function composes one of the 10 VDI GDP’s
(Generalized Drawing Primitives). Although all current drivers support all
GDP’s, their availability is not guaranteed and may vary. To check for a particular
GDP refer to the table returned by v_opnvwk() or v_opnwk().

PARAMETERS handle specifies a valid workstation handle. x and y specify the center of a
circlular segment of radius radius which is drawn between the angles of
startangle and endangle (specified in tenths of degrees - legal values illustrated
below) and connected to the center point.

900

2700

01800

BINDING contrl[0] = 11;
contrl[1] = 4;
contrl[3] = 2;
contrl[5] = 3;
contrl[6] = handle;

ptsin[0] = x;
ptsin[1] = y;
ptsin[2] = ptsin[3] = ptsin[4] = ptsin[5] = 0
ptsin[6] = radius;

intin[0] = startangle;

v_pline() – 7.71

T H E A T A R I C O M P E N D I U M

intin[1] = endangle;

vdi();

SEE ALSO v_ellpie(), vsf_color(), vsf_style(), vsf_interior(), vsf_udpat(), vsf_perimeter()

v_pline()
VOID v_pline(handle, count, pxy)
WORD handle, count;
WORD *pxy;

v_pline() outputs a polyline (group of one or more lines).

OPCODE 6

AVAILABILITY Supported by all drivers.

PARAMETERS handle specifies a valid workstation handle. count specifies the number of
vertices in the line path (2 to plot a single line). pxy points to a WORD array with
count * 2 elements containing the vertices to plot as in (X1, Y1), (X2, Y2), etc...

BINDING WORD i;

contrl[0] = 6;
contrl[1] = count;
contrl[3] = 0;
contrl[6] = handle;

for(i = 0;i < (count*2);i++)
ptsin[i] = count[i];

vdi();

COMMENTS To draw a single point with this function, pxy[2] should equal pxy[0], pxy[3]
should equal pxy[1], and count should be 2.

SEE ALSO v_fillarea(), vsl_color(), vsl_type(), vsl_udsty(), vsl_ends()

7.72 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

v_pmarker()
VOID v_pmarker(handle, count, pxy)
WORD handle, count;
WORD *pxy;

v_pmarker() outputs one or several markers.

OPCODE 7

AVAILABILITY Supported by all drivers.

PARAMETERS handle specifies a valid workstation. count specifies the number of markers to
plot. pxy points to a WORD array with (count * 2) elements containing the
vertices of the markers to plot as in (X1, Y1), (X2, Y2), etc...

BINDING WORD i;

contrl[0] = 7;
contrl[1] = count;
contrl[3] = 0;
contrl[6] = handle;

for(i = 0;i < (count * 2); i++)
ptsin[i] = pxy[i];

vdi();

COMMENTS Single points may be plotted quickly with this function when the proper marker
type is selected with vsm_type().

SEE ALSO vsm_type(), vsm_height(), vsm_color()

v_rbox()
VOID v_rbox(handle, pxy)
WORD handle;
WORD *pxy;

v_rbox() outputs a rounded box (not filled).

OPCODE 11

SUB-OPCODE 8

v_rfbox() – 7.73

T H E A T A R I C O M P E N D I U M

AVAILABILITY Supported by all drivers. This function composes one of the 10 VDI GDP’s
(Generalized Drawing Primitives). Although all current drivers support all
GDP’s, their availability is not guaranteed and may vary. To check for a particular
GDP refer to the table returned by v_opnvwk() or v_opnwk().

PARAMETERS handle specifies a valid workstation handle. pxy points to an array of 4 WORDs
containing the VDI format rectangle of the rounded box to output.

BINDING contrl[0] = 11;
contrl[1] = 2;
contrl[3] = 0;
contrl[5] = 8;
contrl[6] = handle;

ptsin[0] = pxy[0];
ptsin[1] = pxy[1];
ptsin[2] = pxy[2];
ptsin[3] = pxy[3];

vdi();

CAVEATS There is no way to define to size of the ‘roundness’ of the corners.

SEE ALSO v_rfbox(), v_bar(), vsl_type(), vsl_color(), vsl_udsty(), vsl_ends()

v_rfbox()
VOID v_rfbox(handle, pxy)
WORD handle;
WORD *pxy;

v_rfbox() outputs a filled rounded-rectangle.

OPCODE 11

SUB-OPCODE 9

AVAILABILITY Supported by all drivers. This function composes one of the 10 VDI GDP’s
(Generalized Drawing Primitives). Although all current drivers support all
GDP’s, their availability is not guaranteed and may vary. To check for a particular
GDP refer to the table returned by v_opnvwk() or v_opnwk().

PARAMETERS handle specifies a valid workstation handle. pxy points to an array of four
WORDs which specify the VDI format rectangle of the rounded-rectangle to
output.

BINDING contrl[0] = 11;

7.74 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

contrl[1] = 2;
contrl[3] = 0;
contrl[5] = 9;
contrl[6] = handle;

ptsin[0] = pxy[0];
ptsin[1] = pxy[1];
ptsin[2] = pxy[2];
ptsin[3] = pxy[3];

vdi();

CAVEATS There is no way to specify the ‘roundness’ of the rectangle.

SEE ALSO v_rbox(), v_bar(), vsf_color(), vsf_style(), vsf_interior(), vsf_udpat()

v_rmcur()
VOID v_rmcur(handle)
WORD handle;

v_rmcur() removes the last mouse cursor displayed.

OPCODE 5

SUB-OPCODE 19

AVAILABILITY Supported by all screen drivers.

PARAMETERS handle specifies a valid workstation handle.

BINDING contrl[0] = 5;
contrl[1] = contrl[3] = 0;
contrl[5] = 19;
contrl[6] = handle;

vdi();

COMMENTS v_rmcur() should only be used in conjunction with v_dspcur() when the mouse is
moved manually. graf_mouse() or v_hide_c() should be used unless this is your
intention.

SEE ALSO v_hide_c(), graf_mouse()

v_rvoff() – 7.75

T H E A T A R I C O M P E N D I U M

v_rvoff()
VOID v_rvoff(handle)
WORD handle;

v_rvoff() causes alpha screen text to be displayed in normal video (as opposed to
inverse).

OPCODE 5

SUB-OPCODE 14

AVAILABILITY Supported by all screen drivers.

PARAMETERS handle specifies a valid workstation handle.

BINDING contrl[0] = 5;
contrl[1] = contrl[3] = 0;
contrl[5] = 14;
contrl[6] = handle;

vdi();

COMMENTS This call is equivalent to the ESC-Q VT-52 code.

SEE ALSO v_rvon(), v_curtext()

v_rvon()
VOID v_rvon(handle)
WORD handle;

v_rvon() causes alpha screen text to be displayed in inverse mode.

OPCODE 5

SUB-OPCODE 13

AVAILABILITY Supported by all screen devices.

PARAMETERS handle specifies a valid workstation handle.

BINDING contrl[0] = 5;
contrl[1] = contrl[3] = 0;

7.76 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

contrl[5] = 13;
contrl[6] = handle;

vdi();

COMMENTS This call is equivalent to the ESC-P VT-52 code.

SEE ALSO v_rvoff(), v_curtext()

v_savecache()
WORD v_savecache(handle, fname)
WORD handle;
char *fname;

v_savecache() saves the current outline cache.

OPCODE 249

AVAILABILITY Available only with FSMGDOS or SpeedoGDOS.

PARAMETERS handle specifies a valid workstation handle. fname specifies the GEMDOS file
specification of the cache file to save.

BINDING WORD i = 0;

while(intin[i++] = (WORD)*fname++);

contrl[0] = 249;
contrl[1] = 0;
contrl[3] = --i;
contrl[6] = handle;

vdi();

return intout[0];

RETURN VALUE v_savecache() returns 0 if successful or -1 if an error occurred.

COMMENTS This call only saves the portion of the cache responsible for storing bitmaps
created from outlines.

SEE ALSO v_loadcache(), v_flushcache()

v_set_app_buff() – 7.77

T H E A T A R I C O M P E N D I U M

v_set_app_buff()
VOID v_set_app_buff(but, nparagraphs)
VOID * buf;
WORD nparagraphs;

v_set_app_buff() designates memory for use by the bezier generation routines.

OPCODE -1

SUB-OPCODE 6

AVAILABILITY Available only with FONTGDOS, FSMGDOS or SpeedoGDOS.

PARAMETERS buf specifies the address of a buffer which the bezier generator routines may
safely use. nparagraphs specifies the size of the buffer in ‘paragraphs’ (16 bytes).

BINDING contrl[0] = -1;
contrl[1] = 0;
contrl[3] = 2;
contrl[5] = 6;

*(VOID *)&intin[0] = buf;
intin[2] = nparagraphs;

vdi();

COMMENTS Before the application exits, it should call v_set_app_buff(NULL, 0) to
‘unmark’ memory. The application is then responsible for deallocating the
memory.

In the absence of this call the first v_bez() or v_bezfill() call will allocate its own
buffer of 8K. Atari documentation recommends a size of about 9K depending on
the extents of the bezier you wish to generate.

SEE ALSO v_bez()

v_show_c()
VOID v_show_c(handle, reset)
WORD handle, reset;

v_show_c() ‘unhides’ the mouse cursor.

OPCODE 122

7.78 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

AVAILABILITY Supported by all screen drivers.

PARAMETERS handle specifies a valid workstation handle. If reset is 0 the mouse will be
displayed regardless of the number of times it was ‘hidden’. Otherwise, the call
will only display the cursor if the function has been called an equal number of
times compared to v_hide_c().

BINDING contrl[0] = 122;
contrl[1] = 0;
contrl[3] = 1;
contrl[6] = handle;

intin[0] = reset;

vdi();

CAVEATS While it may be tempting to always use a reset value of 0, it is not recommended.
Doing so may confuse the system so that when the critical error handler is called,
the mouse is not displayed.

SEE ALSO v_hide_c(), graf_mouse()

v_updwk()
VOID v_updwk(handle)
WORD handle;

v_updwk() outputs the current page to the specified device.

OPCODE 4

AVAILABILITY Supported by all printer, metafile, plotter, and camera devices when using any
form of GDOS.

PARAMETERS handle specifies a valid workstation handle.

BINDING contrl[0] = 4;
contrl[1] = contrl[3] = 0;
contrl[6] = handle;

vdi();

COMMENTS This call does not cause the ‘page’ to be ejected. You must use either v_clrwk() or
v_form_adv() to accomplish that.

SEE ALSO v_clrwk(), v_form_adv()

v_write_meta() – 7.79

T H E A T A R I C O M P E N D I U M

v_write_meta()
VOID v_write_meta(handle, intin_len, intin , ptsin_len, ptsin)
WORD handle, intin_len;
WORD * intin ;
WORD ptsin_len;
WORD *ptsin;

v_write_meta() writes a customized metafile sub-opcode.

OPCODE 5

SUB-OPCODE 99

AVAILABILITY Supported by all metafile drivers.

PARAMETERS handle specifies a valid workstation handle. intin points to an array of WORDs
with intin_len (0-127) elements. ptsin points to an array of WORDs with
ptsin_len (0-127) elements. ptsin is not required to be of any length, however,
intin should be at least one word long to specify the sub-opcode in intin[0] . Sub-
opcodes 0-100 are reserved for use by Atari. Several pre-defined sub-opcodes in
this range already exist as follows:

Sub-Opcode:
intin[0] Meaning

10 Start group.

11 End group.

49 Set no line style.

50 Set attribute shadow on.

51 Set attribute shadow off.

80 Start draw area type primitive.

81 End draw area type primitive.

BINDING WORD i;

contrl[0] = 5;
contrl[1] = ptsin_len;
contrl[3] = intin_len;
contrl[5] = 99;
contrl[6] = handle;

for(i = 0;i < intin_len; i++)
intin[i] = m_intin[i];

for(i = 0;i < ptsin_len; i++)
ptsin[i] = m_ptsin[i];

7.80 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

vdi();

COMMENTS Metafile readers should ignore and safely skip any opcodes not understood.

vex_butv()
VOID vex_butv(handle, butv, old_butv)
WORD handle;
WORD (*butv)((WORD) bstate);
WORD (** old_butv)((WORD) bstate);

vex_butv() installs a routine which is called by the VDI every time a mouse
button is pressed.

OPCODE 125

AVAILABILITY Supported by all screen drivers.

PARAMETERS handle specifies a valid physical workstation handle. butv points to a user-defined
button-click handler routine. The address pointed to by old_butv will be filled in
with the address of the old button-click handler.

BINDING contrl[0] = 125;
contrl[1] = contrl[3] = 0;
contrl[6] = handle;
contrl[7] = (WORD)((LONG)butv >> 16);
contrl[8] = (WORD)((LONG)butv);

vdi();

*(LONG *)old_butv = (LONG)(((LONG)contrl[9] << 16) |
(LONG)contrl[10]);

COMMENTS Upon entry to butv, the mouse status is contained in 68x00 register D0 (in the same
format as the button return value in vq_mouse()). A ‘C’ handler should, therefore,
be sure to specify register calling parameters for this function. Any registers which
will be modifed should be saved and restored upon function exit. The routine may
call the BIOS and/or XBIOS sparingly but should not call the AES, VDI , or
GEMDOS.

SEE ALSO vex_curv(), vex_motv()

vex_curv() – 7.81

T H E A T A R I C O M P E N D I U M

vex_curv()
VOID vex_curv(handle, curv, old_curv)
WORD handle;
WORD (*curv)((WORD) mx, (WORD) my);
WORD (** old_curv)((WORD) mx, (WORD) my);

vex_curv() installs a routine which is called every time the mouse cursor is drawn
allowing a customized mouse rendering routine to replace that of the system.

OPCODE 126

AVAILABILITY Supported by all screen devices.

PARAMETERS handle specifies a valid physical workstation handle. curv points to a user defined
function which will be called every time the mouse is to be refreshed. old_curv is
the address of a pointer to the old rendering routine which will be filled in by the
function on exit.

BINDING contrl[0] = 126;
contrl[1] = contrl[3] = 0;
contrl[6] = handle;
contrl[7] = (WORD)((LONG)curv >> 16);
contrl[8] = (WORD)((LONG)curv);

vdi();

*(LONG *)old_curv = (LONG)(((LONG)contrl[9] << 16) |
(LONG)contrl[10]);

COMMENTS Upon entry to curv, the mouse’s X and Y location on screen is contained in 68x00
registers D0 and D1 respectively. A ‘C’ handler should, therefore, be sure to
specify register calling parameters for this function. Any registers which will be
modifed should be saved and restored upon function exit. The routine may call the
BIOS and/or XBIOS sparingly but should not call the AES, VDI , or GEMDOS.

SEE ALSO vex_butv(), vex_motv()

7.82 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

vex_motv()
VOID vex_motv(handle, motv, old_motv)
WORD handle;
WORD (*motv)((WORD) mx, (WORD) my);
WORD (** old_motv)((WORD) mx, (WORD) my);

vex_motv() installs a user routine which is called every time the mouse pointer is
moved.

OPCODE 126

AVAILABILITY Supported by all screen drivers.

PARAMETERS handle specifies a valid physical workstation handle. motv points to a user-
defined routine which is called every time the mouse is moved. old_motv is an
address to a pointer which will be filled in containing the address of the old
function.

BINDING contrl[0] = 126;
contrl[1] = contrl[3] = 0;
contrl[6] = handle;
contrl[7] = (WORD)((LONG)motv >> 16);
contrl[8] = (WORD)((LONG)motv);

vdi();

*(LONG *)old_motv = (LONG)(((LONG)contrl[9] << 16) |
(LONG)contrl[10]);

COMMENTS Upon entry to motv, the mouse’s new X and Y location is contained in 68x00
registers D0 and D1 respectively. A ‘C’ handler should, therefore, be sure to
specify register calling parameters for this function. Any registers which will be
modifed should be saved and restored upon function exit. The routine may call the
BIOS and/or XBIOS sparingly but should not call the AES, VDI , or GEMDOS.
The routine may modify the contents of D0 and D1 as necessary to affect the
movement of the mouse (one way of implementing a mouse accelerator).

SEE ALSO vex_curv(), vex_butv()

vex_timv() – 7.83

T H E A T A R I C O M P E N D I U M

vex_timv()
VOID vex_timv(handle, timv, old_timv, mpt)
WORD handle;
VOID (* timv)(VOID);
VOID (** old_timv)(VOID);
WORD *mpt;

vex_timv() installs a user-defined routine that will be called at each timer tick
(currently once every 50 milliseconds).

OPCODE 118

AVAILABILITY Supported by all screen drivers.

PARAMETERS handle specifies a valid physical workstation handle. timv should point to a user-
defined timer tick routine. old_timv is an address to a pointer which will be filled
in with the old timer tick routine. mpt is a pointer to a WORD which will be filled
in with the value representing the current number of milliseconds per timer tick.

BINDING contrl[0] = 118;
contrl[1] = contrl[3] = 0;
contrl[6] = handle;
contrl[7] = (WORD)((LONG)timv >> 16);
contrl[8] = (WORD)((LONG)timv);

vdi();

*(LONG *)old_timv = (LONG)(((LONG)contrl[9] << 16) |
(LONG)contrl[10]);

COMMENTS Any registers which will be modifed should be saved and restored upon function
exit. The routine may call the BIOS and/or XBIOS sparingly but should not call
the AES, VDI , or GEMDOS. The routine should fall through to the old routine.
As this vector is jumped through quite often, the routine should be very simple to
avoid system performance slowdowns.

vm_coords()
VOID vm_coords(handle, xmin, ymin, xmax, ymax)
WORD handle, xmin, ymin, xmax, ymax;

vm_coords() allows the use of variable coordinate systems with metafiles.

OPCODE 5

7.84 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

SUB-OPCODES 99, 1

AVAILABILITY Supported by all metafile drivers.

PARAMETERS handle specifies a valid workstation handle. xmin and ymin specify the coordinate
pair which provides an anchor for the upper-left point of the coordinate system.
xmax and ymax specify the coordinate pair which provides an anchor for the
lower-right point of the coordinate system.

BINDING contrl[0] = 5;
contrl[1] = 0;
contrl[3] = 5;
contrl[5] = 99;
contrl[6] = handle;

intin[0] = 1;
intin[1] = xmin;
intin[2] = ymin;
intin[3] = xmax;
intin[4] = ymax;

vdi();

COMMENTS Use of this function allows the use of practically any coordinate system with a
limit of (-32768, -32768), (32767, 32767).

Metafiles default to a coordinate space of (0, 32767), (32767, 0).

SEE ALSO vm_pagesize(), v_meta_extents()

vm_filename()
VOID vm_filename(handle, fname)
WORD handle;
char *fname;

vm_filename() allows specfying a user-defined filename for metafile output.

OPCODE 5

SUB-OPCODE 100

AVAILABILITY Supported by all metafile drivers.

PARAMETERS handle specifys a valid workstation handle. fname points to a NULL -terminated
GEMDOS filename which all metafile output should be redirected to.

vm_pagesize() – 7.85

T H E A T A R I C O M P E N D I U M

BINDING WORD i = 0;

while(intin[i++] = (WORD)*fname++);

contrl[0] = 5;
contrl[1] = 0;
contrl[3] = --i;
contrl[5] = 100;
contrl[6] = handle;

vdi();

CAVEATS When a metafile is opened, the default file ‘GEMFILE.GEM’ is created in the
current GEMDOS path on the current drive and is not deleted as a result of this
call. You will need to manually delete it yourself.

COMMENTS This call should be made immediately after a v_opnwk() to a metafile handle if
you wish to use an alternate filename to prevent data from being lost.

vm_pagesize()
VOID vm_pagesize(handle, pwidth, pheight)
WORD handle, pwidth, pheight;

vm_pagesize() specifys a metafile’s source page size.

OPCODE 5

SUB-OPCODES 99, 0

AVAILABILITY Supported by all metafile drivers.

PARAMETERS handle specifies a valid workstation handle. pwidth specifies the width of the
page which the metafile was originally placed on in tenths of a millimeter. pheight
specifies the height of the page which the metafile was originally placed on in
tenths of a millimeter.

BINDING contrl[0] = 5;
contrl[1] = 0;
contrl[3] = 2;
contrl[5] = 99;
contrl[6] = handle;

intin[0] = 0;
intin[1] = pwidth;
intin[2] = pheight;

vdi();

7.86 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

COMMENTS A metafile originally designed on an 8.5” x 11” page would have a pwidth value
of 2159 and a pheight value of 2794.

SEE ALSO v_meta_extents()

vq_cellarray()
VOID vq_cellarray(handle, pxy, rowlen, num_rows, elements, rows_used, status, colarray)
WORD handle;
WORD *pxy;
WORD rowlen, num_rows;
WORD *elements, *rows_used, *status, *colarray;

vq_cellarray() returns the cell array definitions of specified pixels.

OPCODE 27

AVAILABILITY Not supported by any known drivers.

PARAMETERS handle specifies a valid workstation handle. pxy points to an array of 4 WORDs
which specify a VDI format rectangle. row_length specifies the length of each
row in the color array. num_rows specifies the number of total rows in the color
array.

Upon return, the WORD pointed to by elements will indicate the number of array
elements used per row. In addition, rows_used will be filled in with actual
number of rows used by the color array and the WORD pointed to by status will
be filled in with 0 if the operation was successful or 1 if at least one element could
not be determined. Finally, the WORD array (with (num_rows * row_length)
elements) pointed to by colarray will be filled in with the color index array stored
one row at a time. On return colarray will actually contain
(elements * rows_used) valid elements.

BINDING WORD i;

contrl[0] = 27;
contrl[1] = 2;
contrl[3] = 0;
contrl[6] = handle;
contrl[7] = row_length;
contrl[8] = num_rows;

ptsin[0] = pxy[0];
ptsin[1] = pxy[1];
ptsin[2] = pxy[2];
ptsin[3] = pxy[3];

vq_chcells() – 7.87

T H E A T A R I C O M P E N D I U M

vdi();

*el_used = contrl[9];
*rows_used = contrl[10];
*status = contrl[11];

for(i = 0;i < contrl[4];i++)
colarray[i] = intout[i];

CAVEATS No driver types are required to utilize this function. It is therefore recommended
that it be avoided unless your application is aware of the capabilities of the driver.

SEE ALSO v_cellarray()

vq_chcells()
VOID vq_chcells(handle, rows, columns)
WORD handle;
WORD * rows, *columns;

vq_chcells() returns the current number of columns and rows on the alpha text
mode of the device.

OPCODE 5

SUB-OPCODE 1

AVAILABILITY Supported by all screen and printer drivers.

PARAMETERS handle specifies a valid workstation handle. rows and columns each point to a
WORD which will be filled in with the current number of rows and columns of
the device (in text mode).

BINDING contrl[0] = 5;
contrl[1] = contrl[3] = 0;
contrl[5] = 1;
contrl[6] = handle;

vdi();

*rows = intout[0];
*columns = intout[1];

SEE ALSO v_curtext()

7.88 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

vq_color()
WORD vq_color(handle, index, flag, rgb)
WORD handle, index, flag;
WORD * rgb;

vq_color() returns RGB information for a particular VDI color index.

OPCODE 26

AVAILABILITY Supported by all drivers.

PARAMETERS handle specifies a valid workstation handle. index specifies the VDI color index
of which you wish to inquire. rgb points to an array of 3 WORDs which will be
filled in with the red, green, and blue values (0-1000) of the color index. The
values returned in the RGB array are affected by the value of flag as follows:

Name flag Values returned in rgb

COLOR_REQUESTE
D

0 Return the values as last requested by the user (ie: not
mapped to the actual color value displayed).

COLOR_ACTUAL 1 Return the values as the actual color being displayed.

BINDING contrl[0] = 26;
contrl[1] = 0;
contrl[3] = 2;
contrl[6] = handle;

intin[0] = index;
intin[1] = flag;

vdi();

rgb[0] = intout[1];
rgb[1] = intout[2];
rgb[2] = intout[3];

return intout[0];

RETURN VALUE vq_color() returns -1 if the specified index is out of range for the device.

COMMENTS Some drivers for color printers do not allow you to modify the color of each
register. A simple test will allow you to determine if the driver will allow you to
change index colors as follows:

• Call vq_color() with a flag value of 0 and save the return.
• Call vs_color() to modify that color index by a signifigant value.
• Call vq_color() with a flag value of 0 and compare with what you set.
• Restore the old value.

vq_curaddress() – 7.89

T H E A T A R I C O M P E N D I U M

• If equivalent values are returned, you may modify each color index.

SEE ALSO vs_color()

vq_curaddress()
VOID vq_curaddress(handle, row, column)
WORD handle;
WORD * row, *column;

vq_curaddress() returns the current position of the alpha text cursor.

OPCODE 5

SUB-OPCODE 15

AVAILABILITY Supported by all screen drivers.

PARAMETERS handle specifies a valid workstation handle. The WORDs pointed to by row and
column will be filled in with the current row and column respectively of the text
cursor in alpha mode.

BINDING contrl[0] = 5;
contrl[1] = contrl[3] = 0;
contrl[5] = 15;
contrl[6] = handle;

vdi();

*row = intout[0];
*column = intout[1];

SEE ALSO v_curtext(), vq_chcells()

vq_extnd()
VOID vq_extnd(handle, mode, work_out)
WORD handle, mode;
WORD *work_out;

vq_extnd() returns extra information about a particular workstation.

OPCODE 102

7.90 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

AVAILABILITY Supported by all drivers.

PARAMETERS handle specifies a valid workstation handle. If mode is set to 0 then this call fills
in the array pointed to by work_out with the same 57 WORDs which are returned
by either v_opnwk() or v_opnvwk(). If mode is 1 then the 57 WORDs of
work_out are filled in with other information as follows:

work_out[x]
VDI Structure

Member Meaning
0 screentype Type of display screen:

0 = Not screen.
1 = Separate alpha/ graphic controllers and displays.
2 = Separate alpha/ graphic controllers with common

screen.
3 = Common alpha/ graphic controllers with separate

image memory.
4 = Common alpha/ graphic controllers and image

memory.
(All known devices either return 0 or 4.)

1 bgcolors Number of background colors available.

2 textfx Text effects supported. (Same bitmask as with
vst_effects()).

3 canscale Scaling of rasters:
0 = Can’t scale.
1 = Can scale.

4 planes Number of planes.

5 lut Lookup table supported:
0 = Table not supported.
1 = Table supported.

(True color modes return a value of 0 for lut and >2 for
colors in v_opnvwk()).

See the caveat listed below.
6 rops Performance factor. Number of 16x16 raster operations per

second.
7 cancontourfill v_contourfill() availability:

0 = Not available.
1 = Available.

8 textrot Character rotation capability:
0 = None.
1 = 90 degree increments.
2 = Any angle of rotation.

9 writemodes Number of writing modes available.

10 inputmodes Highest level of input modes available:
0 = None.
1 = Request.
2 = Sample.

11 textalign Text alignment capability flag:
0 = Not available.
1 = Available.

12 inking Inking capability flag.
0 = Device can’t ink.
1 = Device can ink.

vq_extnd() – 7.91

T H E A T A R I C O M P E N D I U M

13 rubberbanding Rubberbanding capability flag:
0 = No rubberbanding.
1 = Rubberbanded lines.
2 = Rubberbanded lines and rectangles.

14 maxvertices Maximum vertices for polyline, polymarker, or filled area (-1
= no maximum).

15 maxintin Maximum length of intin array (-1 = no maximum).

16 mousebuttons Number of mouse buttons.

17 widestyles Styles available for wide lines?
0 = No
1 = Yes

18 widemodes Writing modes available for wide lines?
0 = No
1 = Yes

19-56 reserved1 Reserved for future use.

BINDING WORD i;

contrl[0] = 102;
contrl[1] = 0;
contrl[3] = 1;
contrl[6] = handle;

intin[0] = mode;

vdi();

for(i = 0;i < 45;i++)
work_out[i] = intout[i];

for(i = 0;i < 13;i++)
work_out[45+i] = ptsout[i];

COMMENTS See the entry for V_Opnwk() and V_Opnvwk() to see how the vq_extnd()
information and v_opn/v/wk() calls are integrated into a ‘C’ style structure.

CAVEATS The lut member of the VDIWORK structure was originally misdocumented by
Atari with the values reversed. The Falcon030 as well as some third-party true-
color boards return the correct values. Some older boards may not, however.

One alternative method of determining if the current screen is not using a software
color lookup table (i.e. true color) is to compare the value for 2 ^ planes with the
number of colors in the palette found in colors. If this number is different, the VDI
is not using a software color lookup table.

SEE ALSO v_opnwk(), v_opnvwk(), V_Opnwk(), V_Opnvwk()

7.92 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

vq_gdos()
ULONG vq_gdos(VOID)

vq_gdos() determines the availability and type of GDOS present.

OPCODE N/A

AVAILABILITY Supported in ROM by all Atari computers.

BINDING ; Correct binding for vq_gdos. Some compilers
; use the name vq_vgdos for the new version
; and vq_gdos for the old version which
; looked like:
; move.w #-2,d0
; trap #2
; cmp.w #-2,d0
; sne d0
; ext.w d0

_vq_gdos:

move.w #-2,d0
trap #2
rts

RETURN VALUE Currently one of the following values are returned:

Name Value GDOS Type

GDOS_NONE -2 GDOS not installed.

— Any other value. GDOS 1.0, 1.1, or 1.2 installed.

GDOS_FNT 0x5F464E54 (‘_FNT’) FONTGDOS installed.

GDOS_FSM 0x5F46534D (‘_FSM’) FSMGDOS installed.

COMMENTS Calling a GDOS function without GDOS loaded is fatal and will cause a system
crash.

To determine whether FSMGDOS or SpeedoGDOS is loaded look for the
‘FSMC’ cookie in the cookie jar. The cookie value points to a longword which
will contain either ‘_FSM’ or ‘_SPD’.

vq_key_s() – 7.93

T H E A T A R I C O M P E N D I U M

vq_key_s()
VOID vq_key_s(handle, status)
WORD handle;
WORD *status;

vq_key_s() returns the current shift-key status.

OPCODE 128

AVAILABILITY Supported by all Atari computers.

PARAMETERS handle specifies a valid workstation handle. status points to a WORD which is
filled in on function exit with a bit mask containing the current shift key status as
follows:

Name Bit Meaning

K_RSHIFT 0 Right shift key depressed

K_LSHIFT 1 Left shift key depressed

K_CTRL 2 Control key depressed

K_ALT 3 Alternate key depressed

BINDING contrl[0] = 128;
contrl[1] = contrl[3] = 0;
contrl[6] = handle;

vdi();

*status = intout[0];

SEE ALSO graf_mkstate()

vq_mouse()
VOID vq_mouse(handle, mb, mx, my)
WORD handle;
WORD *mb, *mx, *my;

vq_mouse() returns information regarding the current state of the mouse.

OPCODE 124

AVAILABILITY Supported by all screen drivers.

7.94 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

PARAMETERS handle specifies a valid workstation handle. mb points to a WORD which will be
filled in upon function exit with a bit mask indicating the current status of the
mouse buttons as follows:

Name Mask Meaning

LEFT_BUTTON 0x01 Left mouse button

RIGHT_BUTTON 0x02 Right mouse button

MIDDLE_BUTTON 0x04 Middle button (this button would be the first
button to the left of the rightmost button on the
device).

— 0x08
.
.

Other buttons (0x08 is the mask for the button to
the immediate left of the middle button. Masks
continue leftwards).

mx and my both point to WORDs which will be filled in upon function exit with
the current position of the mouse pointer.

BINDING contrl[0] = 124;
contrl[1] = contrl[3] = 0;
contrl[6] = handle;

vdi();

*mb = intout[0];
*mx = ptsout[0];
*my = ptsout[1];

SEE ALSO graf_mkstate(), v_key_s()

vq_scan()
VOID vq_scan(handle, grh, passes, alh, apage, div)
WORD handle;
WORD *grh, *passes, *alh, *apage, *div;

vq_scan() returns information regarding printer banding.

OPCODE 5

SUB-OPCODE 24

AVAILABILITY Supported by all printer drivers.

PARAMETERS handle specifies a valid workstation handle. passes specifies the number of
graphic passes per printer page.

vq_tabstatus() – 7.95

T H E A T A R I C O M P E N D I U M

The value obtained through the formula grh/div specifies the number of graphics
scan lines per pass. The value obtained by the formula alh/div specifies the
number of graphic scan lines per alpha text line. apage specifies the number of
alpha lines per page.

BINDING contrl[0] = 5;
contrl[1] = contrl[3] = 0;
contrl[5] = 24;
contrl[6] = handle;

vdi();

*grh = intout[0];
*passes = intout[1];
*alh = intout[2];
*apage = intout[3];
*div = intout[4];

COMMENTS This call has been previously mis-documented.

vq_tabstatus()
WORD vq_tabstatus(handle)
WORD handle;

vq_tabstatus() determines the availability of a tablet device.

OPCODE 5

SUB-OPCODE 16

AVAILABILITY Supported by all screen drivers.

PARAMETERS handle specifies a valid workstation handle.

BINDING contrl[0] = 5;
contrl[1] = contrl[3] = 0;
contrl[5] = 16;
contrl[6] = handle;

vdi();

return intout[0];

RETURN VALUE vq_tabstatus() returns 0 if no tablet is available or 1 if a tablet device is present.

SEE ALSO vq_tdimensions(), vt_origin(), vt_axis(), vt_resolution(), vt_alignment()

7.96 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

vq_tdimensions()
VOID vq_tdimensions(handle, xdim, ydim)
WORD handle;
WORD *xdim, *ydim;

vq_tdimensions() returns the scanning dimensions of the attached graphics tablet.

OPCODE 5

SUB-OPCODE 84

AVAILABILITY Supported by all tablet drivers.

PARAMETERS handle specifies a valid workstation handle. xdim and ydim point to WORDs
which upon function exit will contain the X and Y dimensions of the tablet
scanning area specified in tenths of an inch.

BINDING contrl[0] = 5;
contrl[1] = contrl[3] = 0;
contrl[5] = 84;
contrl[6] = handle;

vdi();

*xdim = intout[0];
*ydim = intout[1];

SEE ALSO vq_tabstatus()

vqf_attributes()
VOID vqf_attributes(handle, attr)
WORD handle;
WORD *attr;

vqf_attributes() returns information regarding the current fill attributes.

OPCODE 37

AVAILABILITY Supported by all devices.

PARAMETERS handle specifies a valid workstation handle. attr points to an array of five
WORDs which upon exit will be filled in as follows:

vqin_mode() – 7.97

T H E A T A R I C O M P E N D I U M

attr[x] Meaning

0 Current fill area interior type (see vsf_interior()).

1 Current fill area color (see vsf_color()).

2 Current fill area style (see vsf_style()).

3 Current writing mode (see vswr_mode()).

4 Current perimeter status (see vsf_perimeter()).

BINDING contrl[0] = 37;
contrl[1] = contrl[3] = 0;
contrl[6] = handle;

vdi();

attr[0] = intout[0];
attr[1] = intout[1];
attr[2] = intout[2];
attr[3] = intout[3];
attr[4] = intout[4];

SEE ALSO vqt_attributes(), vql_attributes(), vqm_attributes()

vqin_mode()
VOID vqin_mode(handle, dev, mode)
WORD handle, dev;
WORD *mode;

vqin_mode() returns the input status of the specified VDI device.

OPCODE 115

AVAILABILITY Supported by all Atari computers.

PARAMETERS handle specifies a valid workstation handle. mode points to a WORD which upon
exit will be filled in with 1 if the specified device is in request mode or 2 if in
sample mode. dev specifies the device to inquire as follows:

Name dev Device

LOCATOR 1 Locator (Mouse, Mouse Buttons, and Keyboard)

VALUATOR 2 Valuator (not currently defined)

CHOICE 3 Choice (not currently defined)

STRING 4 String (Keyboard)

BINDING contrl[0] = 115;

7.98 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

contrl[1] = 0
contrl[3] = 1;
contrl[6] = handle;

intin[0] = dev;

vdi();

*mode = intout[0];

SEE ALSO vsin_mode()

vql_attributes()
VOID vql_attributes(handle, attr)
WORD handle;
WORD *attr;

vql_attributes() returns information regarding current settings which affects line
drawing functions.

OPCODE 36

AVAILABILITY Supported by all drivers.

PARAMETERS handle specifies a valid workstation handle. attr is an array of 6 WORDs which
describe the current parameters for line drawing as follows:

attr[x] Meaning

0 Line type (see vsl_type()).

1 Line color (see vsl_color()).

2 Writing mode (see vswr_mode()).

3 End style for start of lines (see vsl_ends()).

4 End style for end of lines (see vsl_ends()).

5 Current line width (see vsl_width()).

BINDING contrl[0] = 36;
contrl[1] = contrl[3] = 0;
contrl[6] = handle;

vdi();

attr[0] = intout[0];
attr[1] = intout[1];
attr[2] = intout[2];
attr[3] = intout[3];
attr[4] = intout[4];

vqm_attributes() – 7.99

T H E A T A R I C O M P E N D I U M

attr[5] = intout[5];

SEE ALSO vqm_attributes(), vqt_attributes(), vqf_attributes()

vqm_attributes()
VOID vqm_attributes(handle, attr)
WORD handle;
WORD *attr;

vqm_attributes() returns information regarding current settings which apply to
polymarker output.

OPCODE 36

AVAILABILITY Supported by all drivers.

PARAMETERS handle specifies a valid workstation handle. attr points to an array of 5 WORDs
which specify the current polymarker attributes as follows:

attr[x] Meaning

0 Marker type (see vsm_type()).

1 Marker color (see vsm_color()).

2 Writing mode (see vswr_mode()).

3 Polymarker width (see vsm_height()).

4 Polymarker height (see vsm_height()).

BINDING contrl[0] = 36;
contrl[1] = contrl[3] = 0;
contrl[6] = handle;

vdi();

attr[0] = intout[0];
attr[1] = intout[1];
attr[2] = intout[2];
attr[3] = intout[3];
attr[4] = intout[4];

SEE ALSO vql_attributes(), vqt_attributes(), vqf_attributes()

7.100 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

vqp_error()
WORD vqp_error(handle)
WORD handle;

vqp_error() returns error information for the camera driver.

OPCODE 5

SUB-OPCODE 96

AVAILABILITY Supported by all camera drivers.

PARAMETERS handle specifies a valid workstation handle.

BINDING contrl[0] = 5;
contrl[1] = contrl[3] = 0;
contrl[5] = 96;
contrl[6] = handle;

vdi();

return intout[0];

RETURN VALUE vqp_error() returns the current error state as follows:

Return Value Error State

0 No error.

1 Open dark slide for print film.

2 No port at location specified by driver.

3 Palette not found at specified port.

4 Video cable disconnected.

5 Memory allocation error.

6 Inadequate memory for buffer.

7 Memory not freed.

8 Driver file not found.

9 Driver file is not correct type.

10 Prompt user to process print film.

COMMENTS Use of this function does not stop the generation of on-screen messages. You must
use vsp_message() to accomplish that.

SEE ALSO vsp_message()

vqp_films() – 7.101

T H E A T A R I C O M P E N D I U M

vqp_films()
VOID vqp_films(handle, films)
WORD handle;
char *films;

vqp_films() returns strings which represent up to five possible film types for the
camera driver to utilize.

OPCODE 5

SUB-OPCODE 91

AVAILABILITY Supported by all camera drivers.

PARAMETERS handle specifies a valid workstation handle. films is a character pointer to a
buffer at least 125 characters in length. Upon return films will be filled in with 5
character strings. Bytes 0-24 will contain a string for the first type of film, bytes
25-49 will contain a string for the second type, and so on. These strings are not
NULL -terminated but are padded with spaces.

BINDING WORD i;

contrl[0] = 5;
contrl[1] = contrl[3] = 0;
contrl[5] = 91;
contrl[6] = handle;

vdi();

for(i = 0;i < 125;i++)
films[i] = (char)intout[i];

SEE ALSO vqp_state()

vqp_state()
VOID vqp_state(handle, port, film , lightness, interlace, planes, indices)
WORD handle;
WORD *port, *film , *lightness, *interlace, *planes, *indices;

vqp_state() returns information regarding the current state of the palette driver.

OPCODE 5

7.102 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

SUB-OPCODE 92

AVAILABILITY Supported by all camera drivers.

PARAMETERS handle specifies a valid workstation handle. The rest of the parameters are all
WORDs which are filled in as follows:

Parameter Meaning

port Communication port number.

film Film type (0 – 4).

lightness Lightness (-3 – 3). A value of 0 specifies the current f-stop setting. A value of
three results in an exposure half as long as normal while a value of 3 results
in an exposure twice as long as normal.

interlace Interlace mode. A value of 0 is non-interlaced, 1 is interlaced.

planes Number of planes (1 – 4)

indices This is actually a WORD array with at least 16 members. (2 ^ planes)
members will be filled in with color codes for the driver. indices[0] and
indices[1] will specify the first color, indices[2] and indices[2] the second,
and so on.

BINDING WORD i;

contrl[0] = 5;
contrl[1] = contrl[3] = 0;
contrl[5] = 92;
contrl[6] = handle;

vdi();

*port = intout[0];
*film = intout[1];
*lightness = intout[2];
*interlace = intout[3];
*planes = intout[4];

for(i = 0;i < 21;i++)
indices[i] = intout[5 + i];

SEE ALSO vsp_state()

vqt_advance()
VOID vqt_advance(handle, wch, advx, advy, xrem, yrem)
WORD handle, wch;
WORD *advx, *advy, *xrem, *yrem;

vqt_advance() returns the advance vector and remainder for a character.

vqt_advance32() – 7.103

T H E A T A R I C O M P E N D I U M

OPCODE 247

AVAILABILITY Available only with FSMGDOS or SpeedoGDOS.

PARAMETERS handle specifies a valid workstation handle. wch contains the character which you
desire information for. Upon return the WORDs pointed to by advx, advy, xrem,
and yrem will be filled in with the correct advance vector and remainders.

BINDING contrl[0] = 247;
contrl[1] = 0;
contrl[3] = 1;
contrl[6] = handle;

intin[0] = wch;

vdi();

*advx = ptsout[0];
*advy = ptsout[1];
*xrem = ptsout[2];
*yrem = ptsout[3];

COMMENTS advx and advy, when added to the position where the character was rendered will
indicate the position to draw the next character. This advance vector works in all
directions with all character rotations. xrem and yrem give the remainder value as
a modulus of 16384. These remainders should be summed by an application an
managed to nudge the advance vector by a pixel when necessary.

SEE ALSO vqt_width(), vqt_extent(), vqt_f_extent()

vqt_advance32()
VOID vqt_advance32(handle, wch, advx, advy)
WORD handle, wch;
fix31 *advx, *advy;

vqt_advance32() is a variation of the binding for vqt_advance() which returns
the advance vector and remainder for a character as two fix31 values..

OPCODE 247

AVAILABILITY Available only with SpeedoGDOS.

PARAMETERS handle specifies a valid workstation handle. wch contains the character which you
desire information for. Upon return the fix31s pointed to by advx and advy will be
filled in with the correct advance vector.

7.104 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

BINDING contrl[0] = 247;
contrl[1] = 0;
contrl[3] = 1;
contrl[6] = handle;

intin[0] = wch;

vdi();

*advx = (fix31)((ptsout[4] << 16) | ptsout[5]);
*advy = (fix31)((ptsout[6] << 16) | ptsout[7]);

COMMENTS advx and advy, when added to the position where the character was rendered will
indicate the position to draw the next character. This advance vector works in all
directions with all character rotations.

SEE ALSO vqt_width(), vqt_extent(), vqt_f_extent()

vqt_attributes()
VOID vqt_attributes(handle, attr)
WORD handle;
WORD *attr;

vqt_attributes() returns information regarding the current attributes which affect
text output.

OPCODE 38

AVAILABILITY Supported by all drivers.

PARAMETERS handle specifies a valid workstation handle. attr points to an array containing 10
WORDs which are filled in upon function exit as follows:

attr[x] Meaning

0 Text face (see vst_font()).

1 Text color (see vst_color()).

2 Text rotation (see vst_rotation()).

3 Horizontal alignment (see vst_alignment()).

4 Vertical alignment (see vst_alignment()).

5 Writing mode (see vswr_mode()).

6 Character width (see vst_height()).

7 Character height (see vst_height()).

8 Character cell width (see vst_height()).

9 Character cell height (see vst_height()).

vqt_cachesize() – 7.105

T H E A T A R I C O M P E N D I U M

BINDING contrl[0] = 38;
contrl[1] = contrl[3] = 0;
contrl[6] = handle;

vdi();

attr[0] = intout[0];
attr[1] = intout[1];
attr[2] = intout[2];
attr[3] = intout[3];
attr[4] = intout[4];
attr[5] = intout[5];
attr[6] = intout[6];
attr[7] = intout[7];
attr[8] = intout[8];
attr[9] = intout[9];

COMMENTS The values pertaining to character and cell width and have limited usefulness as
they are only constant with non-proportional fonts.

SEE ALSO vql_attributes(), vqm_attributes(), vqf_attributes()

vqt_cachesize()
WORD vqt_cachesize(handle, which, size)
WORD handle, which;
LONG * size;

vqt_cachesize() returns the size of the largest allocatable block of memory in one
of two caches.

OPCODE 255

AVAILABILITY Available only with FSMGDOS or SpeedoGDOS.

PARAMETERS handle specifies a valid workstation handle. which specifies which cache. A
value of CACHE_CHAR (0) selects the character bitmap cache. A value of
CACHE_MISC (1) selects the miscellaneous cache. The LONG pointed to by
size will be filled in upon function exit with the size of the largest allocatable
block of memory in the selected cache.

BINDING contrl[0] = 255;
contrl[1] = 0;
contrl[3] = 1;
contrl[6] = handle;

intin[0] = which;

vdi();

7.106 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

*size = (LONG)(((LONG)intin[0] << 16) | (LONG)intin[1]);

COMMENTS An application can estimate the amount of memory required to generate a character
and print a warning message if the user attempts to exceed it. FSMGDOS will
simply print a message on screen (you can intercept this with vst_error()) and ask
the user to reboot. You can estimate the amount of memory required for a
particular character in the character bitmap cache with the formula:

(width in pixels + 7)/8 * height in pixels

Likewise, you can estimate the amount of memory needed for the miscellaneous
cache as:

84 * (width + height)

SEE ALSO vst_error(), v_flushcache()

vqt_devinfo()
VOID vqt_devinfo(handle, devid, exists, devstr)
WORD handle, devid;
WORD *exists;
char *devstr;

vqt_devinfo() determines if a particular device ID is available, and if so, the
name of the device driver.

OPCODE 248

AVAILABILITY Available only with FONTGDOS, FSM, or SpeedoGDOS.

PARAMETERS handle specifies a valid workstation handle. devid specifies the device ID as
listed in the ‘ASSIGN.SYS’ file. exists is a pointer to a WORD which will be
filled in with DEV_INSTALLED (1) if a device is installed with the specified ID
number or DEV_MISSING (0) if not. If the device does exist, the character buffer
pointer to by devstr will be filled in with the filename of the device padded with
spaces to the standard GEMDOS 8 + 3 format.

BINDING WORD i;

contrl[0] = 248;
contrl[1] = 0;
contrl[3] = 1;
contrl[6] = handle;

intin[0] = devid;

vqt_extent() – 7.107

T H E A T A R I C O M P E N D I U M

vdi();

*exists = ptsout[0];

for(i = 0;i < contrl[4];i++)
devstr[i] = (char)intout[i];

vqt_extent()
VOID vqt_extent(handle, str, pts)
WORD handle;
char *str;
WORD *pts;

vqt_extent() returns the pixel extent of a string of text.

OPCODE 116

AVAILABILITY Supported by all drivers.

PARAMETERS handle specifies a valid workstation handle. str points to a text string to return
extent information for. pts points to an array of 8 WORDs which will be filled in
as follows:

The Atari Compendium
4

1

3

2

pts[x] Meaning

0 X coordinate of point 1.

1 Y coordinate of point 1.

2 X coordinate of point 2.

3 Y coordinate of point 2.

4 X coordinate of point 3.

5 Y coordinate of point 3.

6 X coordinate of point 4.

7 Y coordinate of point 4.

BINDING WORD i = 0;

while(intin[i++] = (WORD)*str++);

contrl[0] = 116;
contrl[1] = 0;
contrl[3] = --i;

7.108 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

contrl[6] = handle;

vdi();

pts[0] = ptsout[0];
pts[1] = ptsout[1];
pts[2] = ptsout[2];
pts[3] = ptsout[3];
pts[4] = ptsout[4];
pts[5] = ptsout[5];
pts[6] = ptsout[6];
pts[7] = ptsout[7];

COMMENTS This function will also output correct bounding information for rotated text. It is
recommended that vqt_f_extent() be used for outline fonts as it takes special
factors into consideration which makes its output more accurate.

SEE ALSO vqt_f_extent(), vqt_advance(), vqt_width()

vqt_f_extent()
VOID vqt_f_extent(handle, str, pts)
WORD handle;
char *str;
WORD *pts;

vqt_f_extent() returns the bounding box required to enclose the specified string of
text.

OPCODE 240

AVAILABILITY Available only with FSMGDOS or SpeedoGDOS.

PARAMETERS Same as vqt_extent().

BINDING WORD i = 0;

while(intin[i++] = (WORD)*str++);

contrl[0] = 240;
contrl[1] = 0;
contrl[3] = --i;
contrl[6] = handle;

vdi();

pts[0] = ptsout[0];
pts[1] = ptsout[1];
pts[2] = ptsout[2];
pts[3] = ptsout[3];
pts[4] = ptsout[4];

vqt_f_extent16() – 7.109

T H E A T A R I C O M P E N D I U M

pts[5] = ptsout[5];
pts[6] = ptsout[6];
pts[7] = ptsout[7];

COMMENTS As opposed to vqt_extent(), vqt_f_extent() calculates the remainders generated
by outline fonts therefore providing more accurate results.

SEE ALSO vqt_extent(), vqt_width(), vqt_advance()

vqt_f_extent16()
VOID vqt_f_extent(handle, wstr, wstrlen, pts)
WORD handle;
WORD *wstr;
WORD wstrlen;
WORD *pts;

vqt_f_extent16() is a variant binding of vqt_f_extent() that returns the bounding
box required to enclose the specified string of 16-bit Speedo character indexed
text.

OPCODE 240

AVAILABILITY Available only with FSMGDOS or SpeedoGDOS.

PARAMETERS handle specifies a valid workstation handle. wstr points to a 16-bit text string
composed of Speedo character indexes. wstrlen indicates the length of wstr. The
array pointed to by pts is filled in with the same values as vqt_extent().

BINDING WORD i;

for(i = 0; i < wstrlen; i++)
intin[i] = wstr[i];

contrl[0] = 240;
contrl[1] = 0;
contrl[3] = wstrlen;
contrl[6] = handle;

vdi();

pts[0] = ptsout[0];
pts[1] = ptsout[1];
pts[2] = ptsout[2];
pts[3] = ptsout[3];
pts[4] = ptsout[4];
pts[5] = ptsout[5];
pts[6] = ptsout[6];
pts[7] = ptsout[7];

7.110 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

COMMENTS This variation of the vqt_f_extent() binding should only be used when
SpeedoGDOS has been properly configured with vst_charmap().

SEE ALSO vqt_extent(), vqt_width(), vqt_advance()

vqt_fontheader()
VOID vqt_fontheader(handle, buffer, pathname)
WORD *handle;
char *buffer, *pathname;

vqt_fontheader() returns font-specific information for the currently selected
Speedo font.

OPCODE 234

AVAILABILITY Available only with SpeedoGDOS.

PARAMETERS handle specifies a valid workstation handle. buffer should point to a buffer of at
least 421 bytes into which the font header will be copied. pathname should point
to a buffer of at least 128 bytes into which the full pathname of the font’s
corresponding ‘.TDF’ file will be copied.

BINDING WORD i;

contrl[0] = 234;
contrl[1] = 0;
contrl[3] = 2;
contrl[6] = handle;

vdi();

for(i = 0; i < contrl[4]; i++)
pathname[i] = (char)intout[i];

COMMENTS The font header format and ‘.TDF’ file contents are contained in Appendix G:
Speedo Fonts.

SEE ALSO vqt_fontinfo()

vqt_fontinfo() – 7.111

T H E A T A R I C O M P E N D I U M

vqt_fontinfo()
VOID vqt_fontinfo(handle, first, last, dist, width, effects)
WORD handle;
WORD * first, *last, *dist, *width, *effects;

vqt_fontinfo() returns information regarding the current text font.

OPCODE 131

AVAILABILITY Supported by all drivers.

PARAMETERS handle specifies a valid workstation handle. first and last each point to a WORD
which will be filled in with the first and last character in the font respectively. dist
points to an array of 5 WORDs which indicate the distances between the baseline
and the point indicated as follows:

gG Baseline

dist[0]
dist[1]

dist[2]
dist[3]
dist[4]

width specifies the width of the largest cell in the font in pixels not including
effects. effects points to an array of 3 WORDs which contain information relating
to the offsets of the font when printed with the current effects.

T
effects[1]

effects[0]

effects[2] = effects[0] + effects[1]

effects[0] specifies the number of X pixels of the left slant. effects[1] specifies
the number of X pixels of the right slant. effects[2] specifies the extra number of X

7.112 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

pixels to add to compensate for the special effects.

BINDING contrl[0] = 131;
contrl[1] = contrl[3] = 0;
contrl[6] = handle;

vdi();

*first = intout[0];
*last = intout[1];
*width = ptsout[0];
dist[0] = ptsout[1];
dist[1] = ptsout[3];
dist[2] = ptsout[5];
dist[3] = ptsout[7];
effects[0] = ptsout[2];
effects[1] = ptsout[4];
effects[2] = ptsout[6];

CAVEATS SpeedoGDOS is not capable of generating values for dist[1] or dist[2] so dist[1]
is set to equal dist[0] and dist[2] is set to equal dist[3].

SEE ALSO vqt_width()

vqt_get_table()
VOID vqt_get_table(handle, map)
WORD handle;
VOID ** map;

vqt_get_table() returns pointers to seven tables which map the Atari character set
to the Bitstream character indexes.

OPCODE 254

AVAILABILITY Available only with SpeedoGDOS.

PARAMETERS handle specifies a valid workstation handle. The location pointed to by map will
be filled in with a pointer to seven internal tables, each 224 WORD size entries
long mapping ASCII characters 32–255 to Bitstream character indexes.

The tables are defined as follows:

Position Table

1st Master mapping.

2nd Bitstream International Character Set

3rd Bitstream International Symbol Set

vqt_name() – 7.113

T H E A T A R I C O M P E N D I U M

4th Bitstream Dingbats Set

5th PostScript Text Set

6th PostScript Symbol Set

7th PostScript Dingbats Set

BINDING contrl[0] = 254;
contrl[1] = contrl[3] = 0;
contrl[6] = handle;

vdi();

*(VOID *)map = ((LONG)(intout[0] << 16) | (LONG)intout[1]);

COMMENTS Use of this call allows access to characters outside of the ASCII range but care
must be taken to as this call affects all applications.

vqt_name()
WORD vqt_name(handle, index, fontname)
WORD handle;
WORD index;
char *fontname;

vqt_name() returns the name of the specified font.

OPCODE 130

AVAILABILITY Supported by all drivers.

PARAMETERS handle specifies a valid workstation handle. fontname points to a character buffer
of at least 33 characters which will be filled in with the name of font index and a
flag which distinguishes bitmap and outline fonts. fontname[0–31] will contain the
name of the font (not necessarily NULL -terminated).

If FSMGDOS or SpeedoGDOS is installed, fontname[32] will contain a flag
equalling OUTLINE_FONT (1) if the specified font is an outline font or
BITMAP_FONT (0) if it is a bitmap font.

BINDING WORD i;

contrl[0] = 130;
contrl[1] = 0;
contrl[3] = 1;
contrl[6] = handle;

intin[0] = index;

vdi();

7.114 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

for(i = 0;i < 33;i++)
fontname[i] = intout[i + 1];

return intout[0];

RETURN VALUE vqt_name() returns the unique code value which identifies this font (and is passed
to vst_font()).

SEE ALSO vst_load_fonts(), vst_font()

vqt_pairkern()
VOID vqt_pairkern(handle, char1, char2, x, y)
WORD char1, char2;
fix31 *x, *y;

vqt_pairkern() returns adjustment vector information for the kerning of a
character pair.

OPCODE 235

AVAILABILITY Available only with SpeedoGDOS.

PARAMETERS handle specifies a valid workstation handle. char1 and char2 specify the left and
right members of the character pair to inquire. x and y will be filled with the
adjustment vector for the specified character pair.

BINDING contrl[0] = 235;
contrl[1] = 0;
contrl[3] = 2;
contrl[6] = handle;

intin[0] = char1;
intin[1] = char2;

vdi();

*x = ((LONG)ptsout[0] << 16) | ptsout[1];
*y = ((LONG)ptsout[2] << 16) | ptsout[3];

SEE ALSO vqt_trackkern(), vst_kern()

vqt_trackkern() – 7.115

T H E A T A R I C O M P E N D I U M

vqt_trackkern()
VOID vqt_trackkern(handle, x, y)
fix31 *x, *y;

vqt_trackkern() returns the horizontal and vertical adjustment vector for track
kerning.

OPCODE 234

AVAILABILITY Available only with SpeedoGDOS.

PARAMETERS handle specifies a valid workstation handle. x and y are the horizontal and vertical
adjustment vectors currently used to modify character spacing in track kerning.

BINDING contrl[0] = 234;
contrl[1] = 0;
contrl[3] = 0;
contrl[6] = handle;

vdi();

*x = ((LONG)ptsout[0] << 16) | ptsout[1];
*y = ((LONG)ptsout[2] << 16) | ptsout[2];

SEE ALSO vqt_pairkern(), vst_kern()

vqt_width()
WORD vqt_width(handle, wch, cellw, left, right)
WORD handle, wch;
WORD *cellw, *left, *right;

vqt_width() returns information regarding the width of a character cell.

OPCODE 117

AVAILABILITY Supported by all drivers.

PARAMETERS handle specifies a valid workstation handle. The lower eight bits of wch specify
the ASCII character to return width information about. The following three values
are each WORDs which are filled in by the function upon return with information
about the width of the specified character in pixels as illustrated here.

7.116 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

G
left right

cellw

BINDING contrl[0] = 117;
contrl[1] = 0;
contrl[3] = 1;
contrl[6] = handle;

intin[0] = wch;

vdi();

*cellw = ptsout[0];
*left = ptsout[2];
*right = ptsout[4];

return intout[0];

RETURN VALUE vqt_width() returns wch or -1 if an error occurred.

CAVEATS vqt_width() does not take into account remainders when dealing with outline
fonts. It is therefore recommended that vqt_advance() be used instead when
inquiring about outline fonts.

SEE ALSO vqt_advance()

vr_recfl() – 7.117

T H E A T A R I C O M P E N D I U M

vr_recfl()
VOID vr_recfl(handle, pxy)
WORD handle;
WORD *pxy;

vr_recfl() outputs a filled rectangle.

OPCODE 114

AVAILABILITY Supported by all drivers.

PARAMETERS handle specifies a valid workstation handle. pxy points to an array of 4 WORDs
which give a VDI format rectangle of the object to draw.

BINDING contrl[0] = 114;
contrl[1] = 2;
contrl[3] = 0;
contrl[6] = handle;

ptsin[0] = pxy[0];
ptsin[1] = pxy[1];
ptsin[2] = pxy[2];
ptsin[3] = pxy[3];

vdi();

COMMENTS vr_recfl() , as opposed to v_bar(), never draws an outline regardless of the
settings of vsf_perimeter().

SEE ALSO v_bar()

vr_trnfm()
VOID vr_trnfm(handle, src, dest)
WORD handle;
MFDB * src, *dest;

vr_trnfm() transforms a memory block from device-independent to device-
dependent and vice-versa.

OPCODE 110

AVAILABILITY Supported by all drivers.

7.118 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

PARAMETERS handle specifies a valid workstation handle. src specifies the MFDB (as defined
in vro_cpyfm()) wheras dest specifies the MFDB of the destination.

BINDING contrl[0] = 110;
contrl[1] =contrl[3] = 0;
contrl[6] = handle;
contrl[7] = (WORD)((LONG)src >> 16);
contrl[8] = (WORD)src;
contrl[9] = (WORD)((LONG)dest >> 16);
contrl[10] = (WORD)dest;

vdi();

CAVEATS While vr_trnfm() will work for in-place transformations, this process can be
time-consuming for large forms.

This call will not translate between forms with multiple planes. For instance, you
can not translate a 2 plane device-independent image to an 8-plane device-specific
image.

COMMENTS To stay compatible with future hardware developments it is recommended that all
images be initially either stored or manually translated to device-independent
format and subsequently converted with this function to match the planar
configuration of the device.

When this call is used to transform forms with either 2 or 4 bit planes, color
translation is performed on each pixel as follows:

Four-Plane Transformations Two Plane

Device VDI Device VDI Device VDI

0000 0 1000 9 00 0

0001 2 1001 10 01 2

0010 3 1010 11 10 3

0011 6 1011 14 11 1

0100 4 1100 12

0101 7 1101 15

0110 5 1110 13

0111 8 1111 1

SEE ALSO vro_cpyfm()

vro_cpyfm() – 7.119

T H E A T A R I C O M P E N D I U M

vro_cpyfm()
VOID vro_cpyfm(handle, mode, pxy, src, dest)
WORD handle, mode;
WORD *pxy;
MFDB * src, *dest;

vro_cpyfm() ‘blits’ a screen or memory block from one location to another.

OPCODE 109

AVAILABILITY Supported by all screen drivers.

PARAMETERS handle specifies valid workstation handle. mode specifies the writing mode as
follows:

Name Mode Result

ALL_WHITE 0 All zeros.

S_AND_D 1 source AND destination

S_AND_NOTD 2 source AND (NOT destination)

S_ONLY 3
(Replace mode)

source

NOTS_AND_D 4
(Erase mode)

(NOT source) AND destination

D_ONLY 5 destination

S_XOR_D 6
(XOR Mode)

source XOR destination

S_OR_D 7 source OR destination

NOT_SORD 8 NOT (source OR destination)

NOT_SXORD 9 NOT (source XOR destination)

NOT_D 10 NOT destination

S_OR_NOTD 11 source OR (NOT destination)

NOT_S 12 NOT source

NOTS_OR_D 13 (NOT source) OR destination

NOT_SANDD 14 NOT (source AND destination)

ALL_BLACK 15 All ones.

pxy points to an array of eight WORDs. pxy[0–3] contains the bounding rectangle
of the source block. pxy[4–7] contains the bounding rectangle of the destination
block. src and dest each point to an MFDB structure which describes the source
and destination memory form. MFDB is defined as follows:

typedef struct
{

7.120 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

/* Memory address (NULL = current screen). If you specify
a value of NULL, the rest of the structure will be filled
out for you. */
VOID *fd_addr;

/* Form width in pixels */
WORD fd_width;

/* Form height in pixels */
WORD fd_height;

/* Form width in WORDs (fd_width + 15)/16 */
WORD fd_wdwidth;

/* Format (0 = device-specific, 1 = VDI format) */
WORD fd_stand;

/* Number of memory planes */
WORD fd_planes;

/* Reserved (set to 0) */
WORD reserved1;
WORD reserved2;
WORD reserved3;

} MFDB;

BINDING contrl[0] = 109;
contrl[1] = 4;
contrl[3] = 1;
contrl[6] = handle;
contrl[7] = (WORD)((LONG)src >> 16);
contrl[8] = (WORD)src;
contrl[9] = (WORD)((LONG)dest >> 16);
contrl[10] = (WORD)dest;

intin[0] = mode;

ptsin[0] = pxy[0];
ptsin[1] = pxy[1];
ptsin[2] = pxy[2];
ptsin[3] = pxy[3];
ptsin[4] = pxy[4];
ptsin[5] = pxy[5];
ptsin[6] = pxy[6];
ptsin[7] = pxy[7];

vdi();

COMMENTS To ‘blit’ a single-plane form to a multi-plane destination, use vrt_cpyfm() .

SEE ALSO vr_trnfm(), vrt_cpyfm()

vrq_choice() – 7.121

T H E A T A R I C O M P E N D I U M

vrq_choice()
VOID vrq_choice(handle, start, final)
WORD handle, start;
WORD * final ;

vrq_choice() accepts input from the ‘choice’ device in request mode.

OPCODE 30

AVAILABILITY This call is not guaranteed to be available with any driver and its use should
therefore be restricted.

PARAMETERS handle specifies a valid workstation handle. start indicates the starting value for
the choice device (1–???). final points to a WORD which will be filled in upon
exit with the results of the request.

BINDING contrl[0] = 30;
contrl[1] = 0;
contrl[3] = 1;
contrl[6] = handle;

intin[0] = start;

vdi();

*final = intout[0];

COMMENTS Input is sampled until a key is pressed.

SEE ALSO vsm_choice(), vsin_mode()

vrq_locator()
VOID vrq_locator(handle, mx, my, xout, yout, term)
WORD handle, mx, my;
WORD *xout, *yout, *term;

vrq_locator() inputs information from the ‘locator’ device in request mode.

OPCODE 28

AVAILABILITY This call is not guaranteed to be available with any driver and its use should
therefore be restricted.

7.122 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

PARAMETERS handle specifies a valid workstation handle. To start, the mouse cursor is
displayed at the location given by mx and my. When a key or mouse button is
pressed, the call returns. The final location of the mouse pointer is filled into the
2 WORDs pointed to by xout and yout. The WORD pointed to by term is filled
in with the ASCII key of the character that terminated input, 32 (0x20) if the left
mouse button was struck, or 33 (0x21) if the right mouse button was struck.

BINDING contrl[0] = 28;
contrl[1] = 1;
contrl[3] = 0;
contrl[6] = handle;

ptsin[0] = mx;
ptsin[1] = my;

vdi();

*term = intout[0];

*xout = ptsout[0];
*yout = ptsout[1];

COMMENTS Using this function will confuse the AES’s mouse input functions.

SEE ALSO vsm_locator(), vsin_mode()

vrq_string()
VOID vrq_string(handle, maxlen, echo, outxy, str)
WORD handle, maxlen, echo;
WORD *outxy;
char *str;

vrq_string() waits for input from the ‘string’ device in request mode.

OPCODE 31

AVAILABILITY This call is not guaranteed to be available with any driver and its use should
therefore be restricted.

PARAMETERS handle specifies a valid workstation handle. This call inputs characters from the
keyboard into the buffer pointed to by str up to maxlen + 1 characters. If echo is
set to 1, characters are echoed to the screen at the location given by the two
WORDs pointed to by outxy. If echo is set to 0, no echoing is performed.

BINDING WORD i;

contrl[0] = 31;

vrq_valuator() – 7.123

T H E A T A R I C O M P E N D I U M

contrl[1] = 1;
contrl[3] = 2;
contrl[6] = handle;

intin[0] = maxlen;
intin[1] = echo;

ptsin[0] = outxy[0];
ptsin[1] = outxy[1];

vdi();

for(i = 0;i < contrl[4];i++)
str[i] = (char)intout[i];

CAVEATS The echo parameter is not functional. Character output is never echoed. However,
outxy must point to valid memory space or a crash will occur.

COMMENTS Though this binding does not allow for it, if maxlen is specified as negative, then
as many as |maxlen| + 1 characters will be read as keycodes rather than ASCII
codes. The values in intout will occupy the full WORD rather than just the lower
eight bits. A custom binding could be used to take advantage of this.

SEE ALSO vsin_mode(), vsm_string()

vrq_valuator()
VOID vrq_valuator(handle, start, *final , *term)
WORD handle, start;
WORD * final , *term;

vrq_valuator() accepts for input from the valuator device until a terminating
character is entered in request mode.

OPCODE 29

AVAILABILITY This call is not guaranteed to be available with any driver and its use should
therefore be restricted.

PARAMETERS handle specifies a valid workstation handle. start specifies the initial value of the
valuator device (1–100). When a terminating character has been struck, the
WORD pointed to by final will be filled in with the final value of the valuator and
the WORD pointed to by term will be filled in with whatever ASCII character
caused termination.

BINDING contrl[0] = 29;
contrl[1] = 0;
contrl[3] = 1;
contrl[6] = handle;

7.124 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

intin[0] = start;

vdi();

*final = intout[0];
*term = intout[1];

COMMENTS The ‘valuator’ is typically the up and down arrow keys. Each key increments or
decrements the value by 10 unless the shift key is held in which case it is
incremented or decremented by 1.

SEE ALSO vsm_valuator(), vsin_mode()

vrt_cpyfm()
VOID vrt_cpyfm(handle, mode, pxy, src, dest, colors)
WORD handle, mode;
WORD *pxy;
MFDB * src, *dest;
WORD *colors;

vrt_cpyfm() ‘blits’ a single-plane source form to a multiple-plane destination.

OPCODE 121

AVAILABILITY Supported by all screen drivers.

PARAMETERS handle specifies a valid workstation handle. mode specifies the writing mode (1–
4, see vswr_mode()). pxy, src, and dest are defined the same as in vro_cpyfm().
colors points to a 2 WORD array which specifies the colors to apply to the
‘blitted’ image. colors[0] is applied to all set bits in the source image and
colors[1] is applied to all of the cleared bits.

BINDING contrl[0] = 121;
contrl[1] = 4;
contrl[3] = 3;
contrl[6] = handle;
contrl[7] = (WORD)((LONG)src >> 16);
contrl[8] = (WORD)src;
contrl[9] = (WORD)((LONG)dest >> 16);
contrl[10] = (WORD)dest;

intin[0] = mode;
intin[1] = colors[0];
intin[2] = colors[1];

ptsin[0] = pxy[0];
ptsin[1] = pxy[1];

vs_clip() – 7.125

T H E A T A R I C O M P E N D I U M

ptsin[2] = pxy[2];
ptsin[3] = pxy[3];
ptsin[4] = pxy[4];
ptsin[5] = pxy[5];
ptsin[6] = pxy[6];
ptsin[7] = pxy[7];

vdi();

COMMENTS The source form must be a monoplane form.

SEE ALSO vro_cpyfm()

vs_clip()
VOID vs_clip(handle, flag, pxy)
WORD handle, flag;
WORD *pxy;

vs_clip() defines the global clipping rectangle and state for the specified
workstation.

OPCODE 129

AVAILABILITY Supported by all drivers.

PARAMETERS handle specifies a valid workstation handle. flag is set to CLIP_OFF (0) to turn
off clipping or CLIP_ON (1) to enable clipping. If flag is CLIP_ON (1) then pxy
should point to a 4 WORD array containing a VDI format rectangle which will
serve as the clipping rectangle, otherwise, pxy can be NULL .

BINDING contrl[0] = 129;
contrl[1] = 2;
contrl[3] = 1;
contrl[6] = handle;

if(intin[0] = flag) {
ptsin[0] = pxy[0];
ptsin[1] = pxy[1];
ptsin[2] = pxy[2];
ptsin[3] = pxy[3];

}

vdi();

COMMENTS All VDI calls are clipped to that workstations current clipping rectangle.

7.126 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

vs_color()
VOID vs_color(handle, color, rgb)
WORD handle, color;
WORD * rgb;

vs_color() sets the color of a palette index.

OPCODE 14

AVAILABILITY Supported by all devices.

PARAMETERS handle specifies a valid workstation handle. color specifies the color register of
the color to modify. rgb points to an array of three WORDs which contain the red,
green, and blue values respectively (0–1000) which will be used to map the color
index to the closest color value possible.

BINDING contrl[0] = 14;
contrl[1] = 0;
contrl[3] = 4;
contrl[6] = handle;

intin[0] = color;
intin[1] = rgb[0];
intin[2] = rgb[1];
intin[3] = rgb[2];

vdi();

SEE ALSO Esetcolor(), Setcolor()

vs_curaddress()
VOID vs_curaddress(handle, row, column)
WORD handle, row, column;

vs_curaddress() sets the position of the alpha screen text cursor.

OPCODE 5

SUB-OPCODE 11

AVAILABILITY Supported by all screen drivers.

PARAMETERS handle specifies a valid workstation handle. row and column specify the new

vs_palette() – 7.127

T H E A T A R I C O M P E N D I U M

coordinates of the text cursor.

BINDING contrl[0] = 5;
contrl[1] = 0;
contrl[3] = 2;
contrl[5] = 11;
contrl[6] = handle;

intin[0] = row;
intin[1] = column;

vdi();

COMMENTS This call is equivalent to the ESC-Y VT-52 code.

SEE ALSO vq_curaddress()

vs_palette()
VOID vs_palette(handle, mode)
WORD handle, mode;

vs_palette() selects a CGA palette.

OPCODE 5

SUB-OPCODE 60

AVAILABILITY This call was originally designed for use on IBM CGA-based computers. Its
usefulness and availability are not guaranteed under any driver so it should thus be
avoided.

PARAMETERS handle specifies a valid workstation handle. A mode value of 0 selects a palette
of red, green, and blue. A mode value of 1 selects a palette of cyan, magenta, and
white.

BINDING contrl[0] = 5;
contrl[1] = 0;
contrl[3] = 1;
contrl[5] = 60;
contrl[6] = handle;

intin[0] = mode;

vdi();

7.128 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

vsc_form()
VOID vsc_form(handle, newform)
MFORM * newform;

vsc_form() alters the appearance of the mouse pointer.

OPCODE 111

AVAILABILITY Supported by all screen drivers.

PARAMETERS handle specifies a valid workstation handle. newform points to a MFORM
structure defined as follows:

typedef struct
{

WORD mf_xhot; /* X ‘hot spot’ */
WORD mf_yhot; /* Y ‘hot spot’ */
WORD mf_nplanes; /* Number of planes (must be 1) */
WORD mf_fg; /* Foreground color (should be 0) */
WORD mf_bg; /* Background color (should be 1) */
WORD mf_mask[16]; /* 16 WORDs of mask*/
WORD mf_data[16]; /* 16 WORDs of data */

} MFORM;

BINDING WORD i;

contrl[0] = 111;
contrl[1] = 0;
contrl[3] = 37;
contrl[6] = handle;

for(i = 0;i < 37;i++)
intin[i] = ((WORD *)newform)[i];

vdi();

SEE ALSO graf_mouse()

vsf_color()
WORD vsf_color(handle, color)
WORD handle, color;

vsf_color() changes the current fill color.

vsf_interior() – 7.129

T H E A T A R I C O M P E N D I U M

OPCODE 25

AVAILABILITY Supported by all drivers.

PARAMETERS handle specifies a valid workstation handle. color specifies the new fill color
index.

BINDING contrl[0] = handle;
contrl[1] = 0;
contrl[3] = 1;
contrl[6] = handle;

intin[0] = color;

vdi();

RETURN VALUE vsf_color() returns the actual color set (within bounds).

SEE ALSO vst_color(), vsm_color(), vsl_color(), vsf_attributes()

vsf_interior()
WORD vsf_interior(handle, interior)
WORD handle, interior;

vsf_interior() sets the interior type for filled objects.

OPCODE 23

AVAILABILITY Supported by all drivers.

PARAMETERS handle specifies a valid workstation handle. interior specifies the interior type as
follows:

Name interior Meaning

FIS_HOLLOW 0 Hollow interior (color index 0).

FIS_SOLID 1 Solid interior (as set by vsf_color()).

FIS_PATTERN 2 Patterned fill. (style set by vsf_style()).

FIS_HATCH 3 Hatched fill. (style set by vsf_style()).

FIS_USER 4 User-defined fill (as set by vsf_udpat()).

BINDING contrl[0] = 23;
contrl[1] = 0;
contrl[3] = interior;
contrl[6] = handle;

7.130 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

intin[0] = interior;

vdi();

RETURN VALUE This call returns the color value actually set (within bounds).

SEE ALSO vsf_style()

vsf_perimeter()
WORD vsf_perimeter(handle, flag)
WORD handle, flag;

vsf_perimeter() sets whether a border will be drawn around most VDI objects.

OPCODE 104

AVAILABILITY Supported by all drivers.

PARAMETERS handle specifies a valid workstation handle. flag is set to PERIMETER_OFF (0)
to turn off perimeter drawing and PERIMETER_ON (1) to enable it.

BINDING contrl[0] = 104;
contrl[1] = 0;
contrl[3] = 1;
contrl[6] = handle;

vdi();

RETURN VALUE This function returns the new value of the perimeter visibility flag.

vsf_style()
WORD vsf_style(handle, style)
WORD handle, style;

vsf_style() defines the style of fill pattern applied to filled objects.

OPCODE 24

AVAILABILITY Supported by all drivers.

PARAMETERS handle specifies a valid workstation handle. style specifies the pattern or hatch
index depending upon the last setting of vsf_interior() . Valid pattern indexes are

vsf_style() – 7.131

T H E A T A R I C O M P E N D I U M

as follows:

Valid hatch indexes are as follows:

BINDING contrl[0] = 24;
contrl[1] = 0;
contrl[3] = 1;
contrl[6] = handle;

intin[0] = style;

vdi();

RETURN VALUE This call returns the actual style set by the call.

COMMENTS The interior type should be set first with vsf_interior() .

SEE ALSO vsf_interior()

7.132 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

vsf_udpat()
VOID vsf_udpat(handle, pattern, planes)
WORD handle;
WORD *planes;
WORD planes;

vsf_udpat() creates the user-defined fill pattern.

OPCODE 112

AVAILABILITY Supported by all drivers.

PARAMETERS handle specifies a valid workstation handle. In palette-based modes, pattern
points to an array of (16 * planes) WORDs which provide the bit pattern for the
fill.

In true-color modes, pattern points to a 16x16 array of LONGs (256 in total)
which each contain 32-bit color information. planes specifies the number of color
planes for the fill. Use 1 for a monochrome fill on any display, a value equal to the
number of planes on the current device for a palette-based color fill or 32 for a
true-color display.

BINDING WORD i;

contrl[0] = 112;
contrl[1] = 0;
contrl[3] = (16 * planes);
contrl[6] = handle;

for(i = 0;i < (16 * planes);i++)
intin[i] = pattern[i];

vdi();

SEE ALSO vsf_interior()

vsin_mode()
WORD vsin_mode(handle, device, mode)
WORD handle, device, mode;

vsin_mode() chooses between request or sample mode for the specified
device.

vsl_color() – 7.133

T H E A T A R I C O M P E N D I U M

OPCODE 33

AVAILABILITY Supported in ROM by all Atari computers.

PARAMETERS handle specifies a valid workstation handle. A mode value of
REQUEST_MODE (1) sets the device to operate in request mode whereas a
value of SAMPLE_MODE (2) operates the device in sample mode. Valid
devices are:

Name device Device

LOCATOR 1 Locator

VALUATOR 2 Valuator

CHOICE 3 Choice

STRING 4 String

BINDING contrl[0] = 33;
contrl[1] = 0;
contrl[3] = 2;
contrl[6] = handle;

intin[0] = device;
intin[1] = mode;

vdi();

return intout[0];

RETURN VALUE vsin_mode() returns mode.

COMMENTS Using this function will cause the AES to function improperly.

SEE ALSO vrq_valuator(), vrq_string(), vrq_choice(), vrq_locator(), vsm_valuator(),
vsm_string(), vsm_choice(), vsm_locator()

vsl_color()
WORD vsl_color(handle, color)
WORD handle, color;

vsl_color() sets the color for line-drawing functions and objects with perimeters.

OPCODE 17

AVAILABILITY Supported by all drivers.

7.134 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

PARAMETERS handle specifies a valid workstation handle. color specifies the new color to
define for line-drawing.

BINDING contrl[0] = 17;
contrl[1] = 0;
contrl[3] = 1;
contrl[6] = handle;

intin[0] = color;

vdi();

return intout[0];

RETURN VALUE This function returns the new color set (within bounds).

SEE ALSO vst_color(), vsm_color(), vsf_color()

vsl_ends()
VOID vsl_ends(handle, start, end)
WORD handle, start, end;

vsl_ends() sets the style of end point for the starting and ending points of lines
drawn by the VDI in line-drawing functions and perimeter drawing.

OPCODE 108

AVAILABILITY Supported by all drivers.

PARAMETERS handle specifies a valid workstation handle. start and end specify the type of end
cap to use at the start and end of lines respectively as follows:

Name start/end Shape

SQUARE 0

ARROWED 1

ROUND 2

BINDING contrl[0] = 108;
contrl[1] = 0;
contrl[3] = 2;
contrl[6] = handle;

vsl_type() – 7.135

T H E A T A R I C O M P E N D I U M

intin[0] = start;
intin[1] = end;

vdi();

SEE ALSO vsl_type()

vsl_type()
WORD vsl_type(handle, type)
WORD handle, type;

vsl_type() defines the style of line used in line-drawing functions and perimeter
drawing.

OPCODE 15

AVAILABILITY Supported by all drivers.

PARAMETERS handle specifies a valid workstation handle. type defines the style of line as
follows:

Name type Style

SOLID 0

LDASHED 1

DOTTED 2

DASHDOT 3

DASH 4

DASHDOTDOT 5

USERLINE 6
User-defined with vsl_udsty() .

BINDING contrl[0] = 15;
contrl[1] = 0;
contrl[3] = 1;
contrl[6] = handle;

7.136 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

intin[0] = type;

vdi();

return intout[0];

RETURN VALUE vsl_style() returns the newly set line type.

SEE ALSO vsl_udsty()

vsl_udsty()
VOID vsl_udsty(handle, pattern)
WORD handle, pattern;

vsl_udsty() sets the user-defined line type.

OPCODE 113

AVAILABILITY Supported by all drivers.

PARAMETERS handle specifies a valid workstation handle. pattern is a WORD which defines
the USERLINE style. It is essentially a bit mask which is applied to a solid line
and repeated along the length of the line. A value of 0xFFFF would create a solid
line. A value of 0xAAAA would produce a line where every other pixel was set.

BINDING contrl[0] = 113;
contrl[1] = 0;
contrl[3] = 1;
contrl[6] = handle;

intin[0] = pattern;

vdi();

COMMENTS You must call vsl_style(handle, 6) to actually utilize this style.

SEE ALSO vsl_style()

vsl_width() – 7.137

T H E A T A R I C O M P E N D I U M

vsl_width()
VOID vsl_width(handle, width)
WORD handle, width;

vsl_width() determines the width of lines drawn with line-drawing functions and
as perimeters to other objects.

OPCODE 16

AVAILABILITY Supported by all drivers.

PARAMETERS handle specifies a valid workstation handle. width specifes the width future lines
drawn will be.

BINDING contrl[0] = 16;
contrl[1] = 0;
contrl[3] = 1;
contrl[6] = handle;

intin[0] = width;

vdi();

COMMENTS The VDI is only capable of drawing lines an odd number of pixels thick. Values
will be rounded down to the first odd number.

Setting a line width higher than 1 may nullify line styles other than solid. Check
vq_extnd() for details.

SEE ALSO vq_extnd()

vsm_choice()
WORD vsm_choice(handle, xout)
WORD handle;
WORD *xout;

vsm_choice() returns the current value of the ‘choice’ device.

OPCODE 30

AVAILABILITY This call is not guaranteed to be available with any driver and its use should
therefore be restricted.

7.138 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

PARAMETERS handle specifies a valid workstation handle. xout points to a WORD which is
filled in on function exit with the current value of the choice device.

BINDING contrl[0] = 30;
contrl[1] = contrl[3] = 0;
contrl[6] = handle;

vdi();

*xout = intout[0];

return contrl[4];

RETURN VALUE vsm_choice() returns 1 if an input from the ‘choice’ device was made or 0
otherwise.

SEE ALSO vsin_mode(), vrq_choice()

vsm_color()
WORD vsm_color(handle, color)
WORD handle, color;

vsm_color() defines the color used to render markers.

OPCODE 20

AVAILABILITY Supported by all drivers.

PARAMETERS handle specifies a valid workstation handle. color specifies the new color to
define for markers.

BINDING contrl[0] = 20;
contrl[1] = 0;
contrl[3] = 1;
contrl[6] = handle;

vdi();

return intout[0];

RETURN VALUE vsm_color() returns the new marker color actually set (within bounds).

SEE ALSO v_pmarker(), vsl_color(), vst_color(), vsf_color()

vsm_height() – 7.139

T H E A T A R I C O M P E N D I U M

vsm_height()
WORD vsm_height(handle, size)
WORD handle, size;

vsm_height() sets the height of markers.

OPCODE 19

AVAILABILITY Supported by all drivers.

PARAMETERS handle specifies a valid workstation handle. size specifies the height (and width)
of markers to draw in pixels.

BINDING contrl[0] = 19;
contrl[1] = 0;
contrl[3] = 1;
contrl[6] = handle;

intin[0] = size;

vdi();

return intout[0];

RETURN VALUE vsm_height() returns the marker height actually set.

COMMENTS The DOT marker is not affected by this call. It is always one pixel high and wide.

SEE ALSO v_pmarker()

vsm_locator()
WORD vsm_locator(handle, mx, my, xout, yout, term)
WORD handle, mx, my;
WORD *xout, *yout, *term;

vsm_locator() receives data from the ‘locator’ device in sample mode.

OPCODE 28

AVAILABILITY This call is not guaranteed to be available with any driver and its use should
therefore be restricted.

PARAMETERS handle specifies a valid workstation handle. The mouse pointer is initially drawn

7.140 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

at location (mx, my). The call returns with the final position of the mouse in the
WORDs pointed to by xout and yout.

The WORD pointed to by term will be filled in with a value which specifies the
ASCII value of the key pressed. term will be set to 0x20 if the left mouse button
was pressed or 0x21 if the right mouse button was pressed.

BINDING contrl[0] = 28;
contrl[1] = 1;
contrl[3] = 0;
contrl[6] = handle;

ptsin[0] = mx;
ptsin[1] = my;

vdi();

*xout = ptsout[0];
*yout = ptsout[1];

*term = intout[0];

return ((contrl[4] << 1) | contrl[2]);

RETURN VALUE vsm_locator() returns one of the following based on its result:

Return Value Meaning

0 Mouse has not moved nor was any key pressed.

1 Mouse has been moved (xout and yout are valid).

2 Key or mouse button has been struck (term is valid).

3 Mouse has moved and a key or mouse button has been struck (xout, yout,
and term are valid).

CAVEATS Using this call will confuse the AES.

SEE ALSO vrq_locator(), vsin_mode()

vsm_string()
WORD vsm_string(handle, maxlen, echo, echoxy, str)
WORD handle, maxlen, echo;
WORD *echoxy;
char *str;

vsm_string() retrieves input from the ‘string’ device.

OPCODE 31

vsm_type() – 7.141

T H E A T A R I C O M P E N D I U M

AVAILABILITY This call is not guaranteed to be available with any driver and its use should
therefore be restricted.

PARAMETERS handle specifies a valid workstation handle. This call inputs characters from the
keyboard into the buffer pointed to by str up to (maxlen + 1) characters. If echo is
set to 1, characters are echoed to the screen at the location given by the two
WORDs pointed to by outxy. If echo is set to 0, no echoing is performed.

BINDING WORD i;

contrl[0] = 31;
contrl[1] = 1;
contrl[3] = 2;
contrl[6] = handle;

intin[0] = maxlen;
intin[1] = echo;

ptsin[0] = echoxy[0];
ptsin[1] = echoxy[1];

vdi();

for(i = 0;i < contrl[4];i++)
str[i] = (char)intout[i];

return contrl[4];

RETURN VALUE vsm_string() returns the number of characters actually read.

CAVEATS Using this function will confuse the AES.

COMMENTS Though this binding does not allow for it, if maxlen is specified as negative, then
as many as (|maxlen| + 1) characters will be read as keycodes rather than ASCII
codes. The values in intout will occupy the full WORD rather than just the lower
eight bits. A custom binding could be used to take advantage of this.

SEE ALSO vsin_mode()

vsm_type()
WORD vsm_type(handle, type)
WORD handle, type;

vsm_type() sets the current type of marker.

OPCODE 18

7.142 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

AVAILABILITY Supported by all drivers.

PARAMETERS handle specifies a valid workstation handle. type changes the marker type as follows:

Name type Shape

MRKR_DOT 1 Single Pixel

MRKR_PLUS 2

MRKR_ASTERISK 3

MRKR_BOX 4

MRKR_CROSS 5

MRKR_DIAMOND 6

— 7... Device Dependent

BINDING contrl[0] = 18;
contrl[1] = 0;
contrl[3] = type;
contrl[6] = handle;

intin[0] = type;

vdi();

RETURN VALUE vsm_type() returns the type of marker actually set.

vsm_valuator() – 7.143

T H E A T A R I C O M P E N D I U M

SEE ALSO v_pmarker()

vsm_valuator()
VOID vsm_valuator(handle, x, xout, term, status)
WORD handle, x;
WORD *xout, *term, *status;

vsm_valuator() retrieves input from the ‘valuator’ device in sample mode.

OPCODE 29

AVAILABILITY This call is not guaranteed to be available with any driver and its use should
therefore be restricted.

PARAMETERS handle specifies a valid workstation handle. x sets the intial value of the
‘valuator’. The WORD pointed to by xout is filled in with the final value of the
device. If a key was pressed its ASCII code is returned in the WORD pointed to
by term. The WORD pointed to by status contains a value as follows:

status Meaning

0 No input was taken.

1 Valuator changed.

2 Key press occurred.

BINDING contrl[0] = 29;
contrl[1] = 0;
contrl[3] = 1;
contrl[6] = handle;

intin[0] = x;

vdi();

*xout = intout[0];
*term = intout[1];

*status = contrl[4];

SEE ALSO vsin_mode(), vrq_valuator()

7.144 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

vsp_message()
VOID vsp_message(handle)
WORD handle;

vsp_message() causes the suppression of palette driver messages from the screen.

OPCODE 5

SUB-OPCODE 95

AVAILABILITY Supported by all camera drivers.

PARAMETERS handle specifies a valid workstation handle.

BINDING contrl[0] = 5;
contrl[1] = contrl[3] = 0;
contrl[5] = 95;
contrl[6] = handle;

vdi();

SEE ALSO vqp_error()

vsp_save()
VOID vsp_save(handle)
WORD handle;

vsp_save() saves the current state of the driver to disk.

OPCODE 5

SUB-OPCODE 94

AVAILABILITY Supported by all camera drivers.

PARAMETERS handle specifies a valid workstation handle.

BINDING contrl[0] = 5;
contrl[1] = contrl[3] = 0;
contrl[5] = 94;
contrl[6] = handle;

vdi();

vsp_state() – 7.145

T H E A T A R I C O M P E N D I U M

vsp_state()
VOID vsp_state(handle, port, film , lightness, interlace, planes, indexes)
WORD handle, port, film , lightness, interlace, planes;
WORD * indexes;

vsp_state() sets the palette driver state.

OPCODE 5

SUB-OPCODE 93

AVAILABILITY Supported by all camera drivers.

PARAMETERS handle specifies a valid workstation handle. port specifies the communication
port number of the camera device. film specifies the index of the desired type of
film (0–4).

lightness specifies the modification to apply to the camera’s default f-stop setting
(-3–3). A value of 0 uses the default setting. A value of -3 results in an exposure of
half of the default length whereas a value of 3 doubles the exposure time. interlace
is set to 0 for non-interlaced or 1 for interlaced output.

planes specifies the number of planes to output (1–4). indexes points to an array of
16 WORDs which define the color codes for the palette.

BINDING WORD i;

contrl[0] = 5;
contrl[1] = 0;
contrl[3] = 20;
contrl[5] = 93;
contrl[6] = handle;

intin[0] = port;
intin[1] = film;
intin[2] = lightness;
intin[3] = interlace;
intin[4] = planes;
for(i = 0;i < 16;i++)

intin[i + 5] = indexes[i];

vdi();

SEE ALSO vqp_state()

7.146 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

vst_alignment()
VOID vst_alignment(handle, halign, valign, *hout, *vout)
WORD handle, halign, valign;
WORD *hout, *vout;

vst_alignment() affects the vertical and horizontal alignment of normal and
justified text.

OPCODE 39

AVAILABILITY Supported by all drivers.

PARAMETERS handle specifies a valid workstation handle. halign and valign affects where the
coordinate specified by v_gtext() or v_justified() actually applies to as follows:

Compendium

Left Justified (0) Center Justified (1) Right Justified(2)

halign:

valign:

Top (5)
Ascent Line (2)
Half Line (1)

Base Line (0)
Descent (4)
Bottom (3)

On return, the WORDs pointed to by hout and vout are filled in with the values
actually set.

BINDING contrl[0] = 39;
contrl[1] = 0;
contrl[3] = 2;
contrl[6] = handle;

intin[0] = halign;
intin[1] = valign;

vdi();

*hout = intout[0];
*vout = intout[1];

SEE ALSO v_gtext(), v_justified()

vst_arbpt() – 7.147

T H E A T A R I C O M P E N D I U M

vst_arbpt()
WORD vst_arbpt(handle, point, wchar, hchar, wcell, hcell)
WORD handle;
WORD point;
WORD *wchar, *hchar, *wcell, *hcell;

vst_arbpt() selects any point size for an outline font.

OPCODE 246

AVAILABILITY Available only with FSMGDOS or SpeedoGDOS.

PARAMETERS handle specifies a valid workstation handle. point specifies the point size at
which to render outline text.

Upon return, the WORDs pointed to by wchar, hchar, wcell, and hcell will be
filled in with the width and height of the character and the width and height of the
character cell respectively.

BINDING contrl[0] = 246;
contrl[1] = 0;
contrl[3] = 1;
contrl[6] = handle;

intin[0] = point;

vdi();

*wchar = ptsout[0];
*hchar = ptsout[1];
*wcell = ptsout[2];
*hcell = ptsout[3];

return intout[0];

RETURN VALUE vst_arbpt() returns the point size actually selected.

COMMENTS This call only works with outline fonts, however, it is not restricted by the point
sizes listed in the ‘ASSIGN.SYS’ file.

To specify a fractional point size, use vst_arbpt32().

SEE ALSO vst_arbpt32(), vst_point(), vst_height()

7.148 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

vst_arbpt32()
fix31 vst_arbpt(handle, point, wchar, hchar, wcell, hcell)
WORD handle;
fix31 point;
WORD *wchar, *hchar, *wcell, *hcell;

vst_arbpt32() selects a fractional point size for an outline font.

OPCODE 246

AVAILABILITY Available only with FSMGDOS or SpeedoGDOS.

PARAMETERS handle specifies a valid workstation handle. point specifies the point size at
which to render outline text as a fix31 value.

Upon return, the WORDs pointed to by wchar, hchar, wcell, and hcell will be
filled in with the width and height of the character and the width and height of the
character cell respectively.

BINDING contrl[0] = 246;
contrl[1] = 0;
contrl[3] = 2;
contrl[6] = handle;

intin[0] = (WORD)(point >> 16);
intin[1] = (WORD)(point & 0xFFFF);

vdi();

*wchar = ptsout[0];
*hchar = ptsout[1];
*wcell = ptsout[2];
*hcell = ptsout[3];

return (((fix31)intout[0] << 16) | (fix31)intout[1]);

RETURN VALUE vst_arbpt32() returns the point size actually selected.

COMMENTS This call only works with outline fonts, however, it is not restricted by the point
sizes listed in the ‘ASSIGN.SYS’ file.

SEE ALSO vst_arbpt(), vst_point(), vst_height()

vst_charmap() – 7.149

T H E A T A R I C O M P E N D I U M

vst_charmap()
VOID vst_charmap(handle, mode)
WORD handle, mode;

vst_charmap() chooses between the standard Atari ASCII interpretation of text
strings or translation of Bitstream character indexes.

OPCODE 236

AVAILABILITY Available only with SpeedoGDOS.

PARAMETERS handle specifies a valid workstation handle. mode should be MAP_ATARI (1) to
specify Atari ASCII characters or MAP_BITSTREAM (0) for Bitstream
mappings.

BINDING contrl[0] = 236;
contrl[1] = 0;
contrl[3] = 1;
contrl[6] = handle;

intin[0] = mode;

vdi();

COMMENTS Bitstream character indexes are WORD sized rather than BYTE sized. A list of
Bitstream character mappings can be found in Appendix G.

vst_color()
WORD vst_color(handle, color)
WORD handle, color;

vst_color() sets the current text color.

OPCODE 22

AVAILABILITY Supported by all drivers.

PARAMETERS handle specifies a valid workstation handle. color specifies the new color to
apply to text.

BINDING contrl[0] = 22;
contrl[1] = 0;
contrl[3] = 1;
contrl[6] = handle;

7.150 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

intin[0] = color;

vdi();

return intout[0];

RETURN VALUE vst_color() returns the text color actually set (within bounds).

SEE ALSO vsl_color(), vsm_color(), vsf_color()

vst_effects()
WORD vst_effects(handle, effects)
WORD handle, effects;

vst_effects() defines which special effects are to be applied to text.

OPCODE 106

AVAILABILITY Supported by all drivers.

PARAMETERS handle specifies a valid workstation handle. effects is a bit mask which specifies
one or more special effects to apply to text as follows:

Name Bit Meaning

THICKENED 0 Thickened

LIGHT 1 Lightened

SKEWED 2 Skewed

UNDERLINED 3 Underlined

OUTLINED 4 Outlined

SHADOWED 5 Shadowed (not currently supported)

BINDING contrl[0] = 106;
contrl[1] = 0;
contrl[3] = 1;
contrl[6] = handle;

intin[0] = effects;

vdi();

return intout[0];

RETURN VALUE vst_effects() returns the actual effects set by the call.

COMMENTS Special effects do not, in general, work well with outline text (besides

vst_error() – 7.151

T H E A T A R I C O M P E N D I U M

underlining). To compensate, most type families have bold and italic faces in
addition to the vst_skew() call.

SEE ALSO vst_skew()

vst_error()
VOID vst_error(handle, mode, error)
WORD handle, mode;
WORD *error;

vst_error() provides a method to obtain errors from GDOS and suppress text
messages on screen.

OPCODE 245

AVAILABILITY Available only with FONTGDOS, FSM, or SpeedoGDOS.

PARAMETERS handle specifies a valid workstation handle. mode specifies the error reporting
mode. A value of SCREEN_ERROR (1) (default) causes error messages to be
outputted to the screen as text.

A value of APP_ERROR (0) suppresses these messages and instead places an
error code in the WORD pointed to by error whenever an error occurs leaving it
up to the application to process errors correctly. Prior to making this call and after
each reported error, the application is responsible for resetting the value pointed
to by error to 0.The following is a list of possible error codes:

Name error Meaning

NO_ERROR 0 No error.

CHAR_NOT_FOUND 1 Character not found in font.

FILE_READERR 8 Error reading file.

FILE_OPENERR 9 Error opening file.

BAD_FORMAT 10 Bad file format.

CACHE_FULL 11 Out of memory/cache full.

MISC_ERROR -1 Miscellaneous error.

BINDING contrl[0] = 245;
contrl[1] = 0;
contrl[3] = 3;
contrl[6] = handle;

intin[0] = mode;
*(LONG *)&intin[1] = (LONG)error;

7.152 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

vdi();

COMMENTS Once setting the error mode to 0, an application should check the error variable
after each of the following calls:

v_gtext() v_justified() vst_point()
vst_height() vst_font() vst_arbpt()
vqt_advance() vst_setsize() vqt_fontinfo()
vqt_name() vqt_width() vqt_extent()
v_opnwk() v_opnvwk() vst_load_fonts()
vst_unload_fonts() v_ftext() vqt_f_extent()

vst_font()
WORD vst_font(handle, index)
WORD handle, index;

vst_font() sets the current text font.

OPCODE 21

AVAILABILITY Supported by all drivers.

PARAMETERS handle specifies a valid workstation handle. index specifies the index (as returned
by vqt_name()) of the font to enable.

BINDING contrl[0] = 21;
contrl[1] = 0;
contrl[3] = 1;
contrl[6] = handle;

intin[0] = index;

vdi();

return intout[0];

RETURN VALUE vst_font() returns the index of the font actually set.

SEE ALSO vqt_name()

vst_height() – 7.153

T H E A T A R I C O M P E N D I U M

vst_height()
VOID vst_height(handle, height, wchar, hchar, wcell, hcell)
WORD handle, height;
WORD *wchar, *hchar, *wcell, *hcell;

vst_height() sets the height of the current text face (in pixels).

OPCODE 12

AVAILABILITY Supported by all drivers.

PARAMETERS handle specifies a valid workstation handle. height specifies the height (in pixels)
at which to render text. Upon return, the WORDs pointed to by wchar, hchar,
wcell, and hcell will be filled in with the width and height of the character and the
width and height of the character cell respectively.

BINDING contrl[0] = 12;
contrl[1] = 1;
contrl[3] = 0;
contrl[6] = handle;

ptsin[0] = 0;
ptsin[1] = height; /* Passed in ptsin[1] because of VDI bug.

*/

vdi();

*wchar = ptsout[0];
*hchar = ptsout[1];
*wcell = ptsout[2];
*hcell = ptsout[3];

COMMENTS vst_height() works on both bitmap and outline fonts. The font will be scaled to fit
within the height given. This doesn’t always give good results with bitmap text.

SEE ALSO vst_point(), vst_arbpt()

vst_kern()
VOID vst_kern(handle, tmode, pmode, tracks, pairs)
WORD handle, tmode, pmode;
WORD * tracks, *pairs;

vst_kern() sets the track and pair kerning values.

7.154 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

OPCODE 237

AVAILABILITY Available only with SpeedoGDOS.

PARAMETERS handle specifies a valid workstation handle. tmode specifies the track kerning
mode as follows:

Name tmode Meaning

TRACK_NONE 0 No track kerning

TRACK_NORMAL 1 Normal track kerning

TRACK_TIGHT 2 Tight track kerning

TRACK_VERYTIGHT 3 Very tight track kerning

Setting pmode to PAIR_ON (1) turns pair kerning on. Setting it to PAIR_OFF (0)
turns pair kerning off.

The WORD pointed to by tracks is filled in with the track kerning mode actually
set. pairs points to a WORD which is filled in with the number of defined
character kerning pairs.

BINDING contrl[0] = 237;
contrl[1] = 0;
contrl[3] = 2;
contrl[6] = handle;

intin[0] = tmode;
intin[1] = pmode;

vdi();

*tracks = intout[0];
*pairs = intout[1];

SEE ALSO vqt_trackkern(), vqt_pairkern()

vst_load_fonts()
WORD vst_load_fonts(handle, rsrvd)
WORD handle, rsrvd;

vst_load_fonts() loads disk-based font information into memory.

OPCODE 119

AVAILABILITY Available with any form of GDOS.

vst_point() – 7.155

T H E A T A R I C O M P E N D I U M

PARAMETERS handle specifies a valid workstation handle. rsrvd is currently unused and must be
0.

BINDING contrl[0] = 119;
contrl[1] = 0;
contrl[3] = 1;
contrl[6] = handle;

intin[0] = rsrvd;

vdi();

RETURN VALUE vst_load_fonts() returns the number of extra fonts loaded.

COMMENTS Calling this function more than once before calling vst_unload_fonts() will return
0.

SEE ALSO vst_unload_fonts(), vqt_name()

vst_point()
WORD vst_point(handle, point, wchar, hchar, wcell, hcell)
WORD handle, height;
WORD *wchar, *hchar, *wcell, *hcell;

vst_point() sets the height of the current text face in points (1/72 inch).

OPCODE 107

AVAILABILITY Supported by all drivers.

PARAMETERS handle specifies a valid workstation handle. point specifies a valid point size to
set the current text face to. This means an appropriate bitmap font or a point size
enumerated in the ‘EXTEND.SYS’ file.

Upon return, the WORDs pointed to by wchar, hchar, wcell, and hcell will be
filled in with the width and height of the character and the width and height of the
character cell respectively.

BINDING contrl[0] = 107;
contrl[1] = 0;
contrl[3] = 1;
contrl[6] = handle;

intin[0] = point;

vdi();

7.156 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

*wchar = ptsout[0];
*hchar = ptsout[1];
*wcell = ptsout[2];
*hcell = ptsout[3];

return intout[0];

RETURN VALUE vst_point() returns the point size actually set.

COMMENTS If a point size which doesn’t exist for the current face is selected, the next valid
size down is selected.

SEE ALSO vst_arbpt(), vst_height()

vst_rotation()
WORD vst_rotation(handle, angle)
WORD handle, angle;

vst_rotation() sets the angle at which graphic text is drawn.

OPCODE 13

AVAILABILITY Supported by all drivers. For specific character rotation abilities, check the values
returned in vq_extnd().

PARAMETERS handle specifies a valid workstation handle. angle specifies the angle at which to
rotate text in tenths of degrees as follows:

900

2700

01800

BINDING contrl[0] = 13;
contrl[1] = 0;
contrl[3] = 1;
contrl[6] = handle;

intin[0] = angle;

vdi();

return intout[0];

vst_scratch() – 7.157

T H E A T A R I C O M P E N D I U M

RETURN VALUE vst_rotation() returns the value of rotation actually set.

COMMENTS Bitmap fonts may only be rotated at 0, 90, and 270 degrees. Outline fonts may be
rotated at any angle with FSM.

vst_scratch()
VOID vst_scratch(handle, mode)
WORD handle, mode;

vst_scratch() allows FSMGDOS or SpeedoGDOS to change its method of
allocating a scratch buffer for better efficiency.

OPCODE 244

AVAILABILITY Available only with FSMGDOS or SpeedoGDOS.

PARAMETERS handle specifies a valid workstation handle. mode specifies the scratch buffer
allocation mode as follows:

Name mode Meaning

SCRATCH_BOTH 0 Scratch buffers should be allocated which are large
enough for FSM/Speedo and bitmap fonts with any
combination of special effects.

SCRATCH_BITMAP 1 Scratch buffers should be allocated which are large
enough for FSM/Speedo fonts with no effects and
bitmap fonts with effects.

SCRATCH_NONE 2 Scratch buffers should be allocated which are large
enough for FSM/Speedo fonts and bitmap fonts with no
special effects.

BINDING contrl[0] = 244;
contrl[1] = 0;
contrl[3] = 1;
contrl[6] = handle;

intin[0] = mode;

vdi();

COMMENTS Atari recommends that at least mode 1 be set prior to a vst_load_fonts() call to
prevent scratch buffer overruns.

The size of the scratch buffer is based on the size of the largest point size specified in
the ‘EXTEND.SYS’ file. Attempting to add effects to a character higher in point size
than this will cause a buffer overrun.

7.158 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

vst_setsize()
WORD vst_setsize(handle, point, wchar, hchar, wcell, hcell)
WORD handle;
WORD point;
WORD *wchar, *hchar, *wcell, *hcell;

vst_setsize() sets the width of outline characters.

OPCODE 252

AVAILABILITY Available only with FSMGDOS or SpeedoGDOS.

PARAMETERS handle specifies a vaid workstation handle.

point specifies the width of the character in points (1/72 inch). A value for point
equivalent to the same point size specified in vst_arbpt() will result in a correctly
proportioned character.

Upon return, the WORDs pointed to by wchar, hchar, wcell, and hcell will be
filled in with the width and height of the character and the width and height of the
character cell respectively.

BINDING contrl[0] = 252;
contrl[1] = 0;
contrl[3] = 1;
contrl[6] = handle;

intin[0] = point;

vdi();

*wchar = ptsout[0];
*hchar = ptsout[1];
*wcell = ptsout[2];
*hcell = ptsout[3];

return intout[0];

RETURN VALUE vst_setsize() returns the size actually set.

COMMENTS This call only works with outline fonts. At the next vst_point(), vst_height(), or
vst_arbpt() the size will be reset to the correct proportions (width in points =
height in points).

To set a fractional size, use vst_setsize32().

vst_setsize32() – 7.159

T H E A T A R I C O M P E N D I U M

SEE ALSO vst_arbpt(), vst_setsize32()

vst_setsize32()
fix31 vst_setsize(handle, point, wchar, hchar, wcell, hcell)
WORD handle;
fix31 point;
WORD *wchar, *hchar, *wcell, *hcell;

vst_setsize() sets the width of outline characters as a fix31 fractional value.

OPCODE 252

AVAILABILITY Available only with SpeedoGDOS.

PARAMETERS handle specifies a vaid workstation handle.

point specifies the width of the character in points (1/72 inch). A value for point
equivalent to the same point size specified in vst_arbpt() will result in a correctly
proportioned character.

Upon return, the WORDs pointed to by wchar, hchar, wcell, and hcell will be
filled in with the width and height of the character and the width and height of the
character cell respectively.

BINDING contrl[0] = 252;
contrl[1] = 0;
contrl[3] = 2;
contrl[6] = handle;

intin[0] = (WORD)(point >> 8);
intin[1] = (WORD)point;

vdi();

*wchar = ptsout[0];
*hchar = ptsout[1];
*wcell = ptsout[2];
*hcell = ptsout[3];

return ((fix31)intout[0] << 16) | (fix31)intout[1];

RETURN VALUE vst_setsize32() returns the size actually set.

COMMENTS This call only works with outline fonts. At the next vst_point(), vst_height(), or
vst_arbpt() the size will be reset to the correct proportions (width in points =
height in points).

7.160 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

SEE ALSO vst_setsize(), vst_arbpt()

vst_skew()
WORD vst_skew(handle, skew)
WORD handle, skew;

vst_skew() sets the skew amount for fonts.

OPCODE 253

AVAILABILITY Available only with FSMGDOS or SpeedoGDOS.

PARAMETERS handle specifies a valid workstation handle. skew specifies the amount to skew in
tenths of degrees from -900 to 900. Negative values skew to the left and positive
values skew to the right. skew values of -900 or 900 will result in a flat line.

BINDING contrl[0] = 253;
contrl[1] = 0;
contrl[3] = 1;
contrl[6] = handle;

intin[0] = skew;

vdi();

return intout[0];

RETURN VALUE vst_skew() returns the skew value actually set.

COMMENTS This call should only be used with outline fonts. Note that this call generates a true
‘skew’ effect independent of that generated by vst_effects() which is an
algorithmic ‘skew’. The algorithmic ‘skew’ may be used on bitmap fonts but is
rather unpleasant applied to outline fonts.

SEE ALSO vst_effects()

vst_unload_fonts()
VOID vst_unload_fonts(handle, select)
WORD handle, select;

vst_unload_fonts() frees memory associated with disk-loaded fonts.

OPCODE 120

vswr_mode() – 7.161

T H E A T A R I C O M P E N D I U M

AVAILABILITY Available under any form of GDOS.

PARAMETERS handle specifies a valid workstation handle. select is reserved and should be 0.

BINDING contrl[0] = 120;
contrl[1] = 0;
contrl[3] = 1;
contrl[6] = handle;

intin[0] = select;

vdi();

SEE ALSO vst_load_fonts()

vswr_mode()
WORD vswr_mode(handle, mode)
WORD handle, mode;

vswr_mode() defines the writing mode for rendering VDI objects.

OPCODE 32

AVAILABILITY Supported by all drivers.

PARAMETERS handle specifies a valid workstation handle. mode specifies a writing mode as
follows:

Name mode Example

MD_REPLACE 1

+ =

MD_TRANS 2

+ =

7.162 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

MD_XOR 3

+ =

MD_ERASE 4

+ =

BINDING contrl[0] = 32;
contrl[1] = 0;
contrl[3] = 1;
contrl[6] = handle;

intin[0] = mode;

vdi();

return intout[0];

RETURN VALUE vswr_mode() returns the writing mode set.

COMMENTS In true-color modes, MD_ERASE and MD_TRANS work a little differently, they
write (or avoid writing on) whatever color is currently held in VDI color 0 (as
opposed to the actual register reference of 0).

vt_alignment()
VOID vt_alignment(handle, dx, dy)
WORD handle, dx, dy;

vt_alignment() allows an offset to be specifies that will be applied to all
coordinates output from the graphics tablet.

OPCODE 5

SUB-OPCODE 85

AVAILABILITY Supported by all tablet drivers.

PARAMETERS handle specifies a valid workstation handle. dx and dy are the delta offsets from

vt_axis() – 7.163

T H E A T A R I C O M P E N D I U M

(0, 0) to apply to values from the graphics tablet.

BINDING contrl[0] = 5;
contrl[1] = 0;
contrl[3] = 2;
contrl[5] = 85;
contrl[6] = handle;

intin[0] = dx;
intin[1] = dy;

vdi();

COMMENTS This call is used to ‘fine-tune’ the true starting point of the tablet.

SEE ALSO vt_origin()

vt_axis()
VOID vt_axis(handle, xres, yres, *xout, *yout)
WORD handle, xres, yres;
WORD *xout, *yout;

vt_axis() sets the horizontal and vertical resolution for the graphics tablet (in
lines).

OPCODE 5

SUB-OPCODE 82

AVAILABILITY Supported by all tablet drivers.

PARAMETERS handle specifies a valid workstation handle. xres and yres specify the new
horizontal and vertical resoultion of the tablet respectively. Upon return, the
WORDs pointer to by xout and yout are filled in with the resolution actually set.

BINDING contrl[0]= 5;
contrl[1] = 0;
contrl[3] = 2;
contrl[5] = 82;
contrl[6] = handle;

intin[0] = xres;
intin[1] = yres;

vdi();

*xout = intout[0];
*yout = intout[1];

7.164 – VDI/GDOS Function Reference

T H E A T A R I C O M P E N D I U M

SEE ALSO vt_alignment(), vt_origin()

vt_origin()
VOID vt_origin(handle, xorigin, yorigin)
WORD handle, xorigin, yorigin;

vt_origin() sets the origin point for the tablets’ upper-left point.

OPCODE 5

SUB-OPCODE 83

AVAILABILITY Supported by all tablet drivers.

PARAMETERS handle specifies a valid workstation handle. xorigin and yorigin specify the new
upper-left point recognized by the tablet.

BINDING contrl[0] = 5;
contrl[1] = 0;
contrl[3] = 2;
contrl[5] = 83;
contrl[6] = handle;

intin[0] = xorigin;
intin[1] = yorigin;

vdi();

SEE ALSO vt_axis(), vt_alignment()

vt_resolution()
VOID vt_resolution(handle, xres, yres, *xout, *yout)
WORD xres, yres;
WORD *xout, *yout;

vt_resolution() sets the horizontal and vertical resolution of the graphics tablet (in
lines per inch).

OPCODE 5

SUB-OPCODE 81

vt_resolution() – 7.165

T H E A T A R I C O M P E N D I U M

AVAILABILITY Supported by all tablet drivers.

PARAMETERS handle specifies a valid workstation handle. xres and yres specify the new
horizontal and vertical resolution values for the tablet respectively. Upon return,
the WORDs pointed to by xout and yout are filled in with the values actually set.

BINDING contrl[0] = 5;
contrl[1] = 0;
contrl[3] = 2;
contrl[5] = 81;
contrl[6] = handle;

intin[0] = xres;
intin[1] = yres;

vdi();

*xout = intout[0];
*yout = intout[1];

SEE ALSO vt_axis()

T H E A T A R I C O M P E N D I U M

– CHAPTER 8 –

LINE-A

Overview – 8.3

T H E A T A R I C O M P E N D I U M

Overview

The Line-A portion of the operating system is so named because it uses a special exception
vector of 680x0 processors triggered when the first nibble of the a command word is $A. On
Atari systems this vector is routed to the operating system ROMs and provides a low-level yet
high-speed graphics interface.

The Line-A system is included in this document for completeness only. It is recommended that
its use be avoided and that the counterpart VDI calls be used instead. Atari has not guaranteed
that it will maintain Line-A compatibility in future systems. Its functionality has already been
limited as video capabilities have advanced beyond its design.

The Line-A Variable Table

The Line-A opcode $A000 will return a pointer to an internal variable table in D0 and A0. This
table is used by the Line-A functions as a parameter passing mechanism as opposed to using the
stack or internal registers.

Members of the Line-A variable table are accessed via offsets from the base address. The
function, location, and size of documented variables are as follows:

Name Offse
t

Size Contents

RESERVED -910 LONG Reserved for future use.
CUR_FONT -906 LONG Pointer to the current font header.
RESERVED -902 92 BYTEs Reserved for future use.
M_POS_HX -856 WORD X Offset into the mouse form of the ‘hot spot’.
M_POS_HY -854 WORD Y Offset into the mouse form of the ‘hot spot’.
M_PLANES -852 WORD Writing mode for the mouse pointer (1 = VDI Mode, -1

= XOR Mode). Defaults to VDI mode.
M_CDB_BG -850 WORD Mouse pointer background color.
M_CDB_FG -848 WORD Mouse pointer foreground color.
MASK_FORM -846 32 WORDs Image and Mask for the mouse pointer. Data is stored

in the following format:

Line 0 Mask
Line 0 Image
Line 1 Mask
Line 1 Image
etc.

INQ_TAB -782 46 WORDs This area contains 45 WORDs of information returned
from a vq_extnd() of the physical screen workstation
plus one extra reserved WORD.

DEV_TAB -692 46 WORDs This area contains the first 45 WORDs of information
returned from a v_opnwk() of the physical screen
workstation plus one extra reserved WORD.

GCURX -602 WORD Current mouse pointer X position.
GCURY -600 WORD Current mouse pointer Y position.

8.4 - Line-A

T H E A T A R I C O M P E N D I U M

M_HID_CT -598 WORD Current mouse ‘hide’ count (number of times mouse
has been hidden, 0 = visible).

MOUSE_BT -596 WORD Bitmap of the current mouse button status.
REQ_COL -594 48 WORDs Contains 48 WORDs of RGB data for the first 16 VDI

color registers as would be returned by vq_color() .
SIZ_TAB -498 15 WORDs This table contains the final 12 WORDs of information

returned from a v_opnwk() of the physical screen
workstation plus 3 reserved WORDs.

RESERVED -468 WORD Reserved for future use.
RESERVED -466 WORD Reserved for future use.
CUR_WORK -464 LONG Pointer to the current VDI workstation attribute table.
DEF_FONT -460 LONG Pointer to the default font header.
FONT_RING -456 4 LONGs This area contains three pointers and a NULL . The first

two pointers point to linked lists of system font headers.
The third pointer points to the linked list of GDOS
based fonts.

FONT_COUNT -440 WORD Total number of fonts pointed to by the FONT_RING
pointers.

RESERVED -438 90 BYTEs Reserved for future use.
CUR_MS_STAT -348 BYTE Bitmap of mouse status since the last interrupt as

follows:

Bit Meaning
0 Left mouse status (0=up)
1 Right mouse status (0=up)
2 Reserved
3 Reserved
4 Reserved
5 Mouse move flag (1=moved)
6 Right mouse status flag

(0=hasn’t changed)
7 Left mouse status flag

(0=hasn’t changed)
RESERVED -347 BYTE Reserved for future use.
V_HID_CNT -346 WORD Number of times the text cursor has been hidden (0 =

visible).
CUR_X -344 WORD X position where mouse pointer will be drawn.
CUR_Y -342 WORD Y position where mouse pointer will be drawn.
CUR_FLAG -340 BYTE Mouse redraw flag (if non-zero, mouse pointer will be

redrawn at the next vertical blank interrupt).
MOUSE_FLAG -339 BYTE Mouse interrupt flag (0=disable interrupts)
RESERVED -338 LONG Reserved for future use.
V_SAV_XY -334 2 WORDs X and Y position of the text cursor as saved by the VT-

52 emulator.
SAVE_LEN -330 WORD Height of the form saved in SAVE_AREA in pixels.
SAVE_ADDR -328 LONG Address of the first WORD of screen data contained in

SAVE_AREA .
SAVE_STAT -324 LONG Save status flag as follows:

Bit Meaning
0 Save buffer valid? (0=no)
1 Width of save

(0=16 bits, 1=32 bits)
SAVE_AREA -322 256 BYTEs Save buffer for the mouse pointer,

The Line-A Variable Table – 8.5

T H E A T A R I C O M P E N D I U M

USER_TIM -66 LONG Pointer to a routine which occurs at each timer tick.
(use vex_timv() instead). Routine ends by jumping to
function pointed to by NEXT_TIM.

NEXT_TIM -62 LONG See above.
USER_BUT -58 LONG Pointer to a routine called each time a mouse button is

pressed (use vex_butv() instead).
USER_CUR -54 LONG Pointer to a routine called each time the mouse needs

to be rendered (use vex_curv() instead).
USER_MOT -50 LONG Pointer to routine called each time the mouse is moved

(use vex_motv() instead).
V_CEL_HT -46 WORD Current text cell height.
V_CEL_MX -44 WORD Number of text columns – 1.
V_CEL_MY -42 WORD Number of text rows – 1.
V_CEL_WR -40 WORD Number of bytes between character cells.
V_CEL_BG -38 WORD Text background color.
V_COL_FG -36 WORD Text foreground color.
V_CUR_AD -34 LONG Text cursor physical address.
V_CUR_OF -30 WORD Offset (in bytes) from physical screen address to the top

of the first text character.
V_CUR_XY -28 2 WORDs X and Y character position of the text cursor.
V_PERIOD -24 BYTE Current cursor blink rate.
V_CUR_CT -23 BYTE Countdown timer to next blink.
V_FNT_AD -22 LONG Pointer to system font data (monospaced).
V_FNT_ND -18 WORD Last ASCII character in font.
V_FNT_ST -16 WORD First ASCII character in font.
V_FNT_WD -14 WORD Width of the system font form in bytes.
V_REZ_HZ -12 WORD Horizontal pixel resolution.
V_OFF_AD -10 LONG Pointer to font offset table.
RESERVED -6 WORD Reserved for future use.
V_REZ_VT -4 WORD Vertical pixel resolution.
BYTES_LIN -2 WORD Bytes per screen line.
PLANES 0 WORD Number of planes in the current resolution.
WIDTH 2 WORD Width of the destination form in bytes.
CONTRL 4 LONG Pointer to the CONTRL array.
INTIN 8 LONG Pointer to the INTIN array.
PTSIN 12 LONG Pointer to the PTSIN array.
INTOUT 16 LONG Pointer to the INTOUT array.
PTSOUT 20 LONG Pointer to the PTSOUT array.
COLBIT0 24 WORD Color bit value used for plane 0.
COLBIT1 26 WORD Color bit value used for plane 1.
COLBIT2 28 WORD Color bit value used for plane 2.
COLBIT3 30 WORD Color bit value used for plane 3.
LSTLIN 32 WORD Last pixel draw flag (0=draw, 1=don’t draw). Used to

prevent the last pixel in a polyline segment drawn in
XOR mode from overwriting the first pixel in the next
line.

LNMASK 34 WORD Line draw pattern mask.
WMODE 36 WORD VDI writing mode.
X1 38 WORD X coordinate for point 1.
Y1 40 WORD Y coordinate for point 1.
X2 42 WORD X coordinate for point 2.
Y2 44 WORD Y coordinate for point 2.
PATPTR 46 LONG Fill-pattern pointer.

8.6 - Line-A

T H E A T A R I C O M P E N D I U M

PATMSK 50 WORD This value is AND’ed with the value in Y1 to give an
index into the current fill pattern for the current line.

MFILL 52 WORD Multiplane fill pattern flag (0=Mono).
CLIP 54 WORD Clipping flag (0=disabled).
XINCL 56 WORD Left edge of clipping rectangle.
XMAXCL 58 WORD Right edge of clipping rectangle.
YMINCL 60 WORD Top edge of clipping rectangle.
YMAXCL 62 WORD Bottom edge of clipping rectangle.
XDDA 64 WORD Text scaling accumulator (set to $8000 prior to blitting

text).
DDAINC 66 WORD Scaling increment. If SIZE1 is the actual point size and

SIZE2 is the desired point size then to scale up use:

DDAINC
SIZE SIZE

SIZE
=

−
256

2 1

1
*

()

To scale down use:

DDAINC
SIZE

SIZE
= 256

2

1
*

SCALDIR 68 WORD Text scaling direction (0=down, 1=up).
MONO 70 WORD Monospaced font flag.
SOURCEX 72 WORD X coordinate of character in font form.
SOURCEY 74 WORD Y coordinate of character in font form.
DESTX 76 WORD X position on screen to output character at.
DESTY 78 WORD Y position on screen to output character at.
DELX 80 WORD Width of the character to output.
DELY 82 WORD Height of the character to output.
FBASE 84 LONG Pointer to the font character image block.
FWIDTH 88 WORD Width of the font form in bytes.
STYLE 90 WORD Special effects flag bitmap as follows:

Bit Meaning
0 Thickening
1 Lightening
2 Skewing
3 Underlining

(not supported by Line-A)
4 Outlining

LITEMASK 92 WORD Mask to lighten text (usually $5555).
SKEWMASK 94 WORD Mask to skew text (usually $5555).
WEIGHT 96 WORD Width to thicken characters by.
ROFF 98 WORD Offset above baseline used for italicizing.
LOFF 100 WORD Offset below baseline used for italicizing.
SCALE 102 WORD Text scaling flag (0=no scale).
CHUP 104 WORD Character rotation angle in tenths of degrees

(supported only in 90 degree increments).
TEXTFG 106 WORD Text foreground color.
SCRTCHP 108 LONG Pointer to two contiguous scratch buffers used in

creating text special effects.
SCRPT2 112 WORD Offset from first buffer to second (in bytes).
TEXTBG 114 WORD Text background color.
COPYTRAN 116 WORD Copy raster mode (0=Opaque, 1=Transparent).

Line-A Font Headers – 8.7

T H E A T A R I C O M P E N D I U M

SEEDABORT 118 LONG Pointer to a routine called by the seedfill routine at each
line. If not needed during a seed fill you should point it to
a routine like the following:

seedabort:
sub.l d0,d0
rts

Line-A Font Headers

Raster system and GDOS fonts are linked to form a list of font headers which contain the
information needed to render text. Outline text generated by FSM is inaccessible in this manner.

Each monospaced font contains a font header, character and horizontal offset table, and font
form. All data types are in “Little Endian” (Intel format) and as such must be byte-swapped
before use.

The font form is a raster form with each character laid side-by-side on the horizontal plane. The
first character is WORD aligned but padding within the form only occurs at the end of a scanline
to force the next scanline to be WORD aligned.

Each font header contains a pointer to the next font in the list. The list is terminated by a NULL
pointer. The font header format is as follows:

Name Offset Type Contents
font_id 0 WORD Font ID number (must be unique).
point 2 WORD Point size of font.
name 4 32 BYTEs ASCII Name of font.
first_ade 36 UWORD First ASCII character in font.
last_ade 38 UWORD Last ASCII character in font.
top 40 UWORD Distance from the top line of the font to the baseline.
ascent 42 UWORD Distance from the ascent line of the font to the baseline.
half 44 UWORD Distance from the half line of the font to the baseline.
descent 46 UWORD Distance from the descent line of the font to the baseline.
bottom 48 UWORD Distance from the bottom line of the font to the baseline.
max_char_width 50 UWORD Width of the widest character in the font.
max_cell_width 52 UWORD Width of the widest character cell in the font.
left_offset 54 UWORD Amount character slants left when skewed.
right_offset 56 UWORD Amount character slants right when skewed.
thicken 58 UWORD Number of pixels to smear for thickening.
ul_size 60 UWORD Size of an appropriate underline for the font.
lighten 62 UWORD Mask for character lightening.
skew 64 UWORD Mask for character skewing.
flags 66 UWORD Font type flags.
hor_table 68 LONG Pointer to the horizontal offset table. The horizontal offset

table is an array of bytes with one entry per character
denoting the pixel offset to the character.

8.8 - Line-A

T H E A T A R I C O M P E N D I U M

off_table 72 LONG Pointer to the character offset table. The character offset
table is an array of WORDs with one entry per character
denoting the byte offset into the font form of the
character.

dat_table 76 LONG Pointer to the character data.
form_width 80 UWORD Width of the font form in bytes.
form_height 82 UWORD Height of the font form in pixels.
next_font 84 LONG Pointer to the next font in the list (0=no more fonts).
reserved 88 UWORD Reserved for future use.

Line-A Function Calling Procedure

Line-A functions are called by simply inserting the opcode into the instruction stream. For
example, the ‘Hide Mouse’ function is called with the following assembly language instruction:

dc.w $A00A

Generally, the Line-A initialization function is called ($A000) and the address of the variable
and/or font header tables are stored. Prior to each Line-A call variables are set as explained in
the Line-A Function Reference and the function is then called. There is no method of error
reporting available.

T H E A T A R I C O M P E N D I U M

LINE-A Function Reference

$A000 - Initialize – 8.11

T H E A T A R I C O M P E N D I U M

$A000 - Initialize
Return pointers to the Line-A variable structures.

EXAMPLE

BINDING

; Retrieve Line-A variable table address
; and store in A5 for other bindings

.dc.w $A000

.move.l a0,a5 ; Line-A variables

.move.l a1,a6 ; System font headers

RETURN VALUE The initialize function returns the following information:

Register Contents

D0 Pointer to Line-A variable table.

A0 Pointer to Line-A variable table.

A1 Pointer to a NULL terminated array of pointers to system font headers.

A2 Pointer to a longword array containing sixteen pointers which are addresses of
the actual Line-A functions in memory. For example, JSR’ing through the
pointer in the first array element has the same result as calling the Initialize
instruction by an exception except that the function must be called from
supervisor mode.

COMMENTS This call is required to return the address of the Line-A variable structure needed
for all other Line-A calls. All processes (including the VDI) share this structure
so don’t expect variables to remain constant between calls.

SEE ALSO v_opnvwk()

$A001 - Plot Pixel
Plot a single pixel at the specified coordinates.

PARAMETERS INTIN points to a WORD containing the color register of the pixel to plot at the
specified coordinates. PTSIN points to two WORDs which are the X and Y
coordinates respectively.

EXAMPLE

BINDING

; Plot a pixel at (10, 10) using color 1

move.l #intin,8(a5)
move.l #ptsin,12(a5)
.dc.w $A001

.data
intin:

.dc.w 1
ptsin:

8.12 – Line-A Function Reference

T H E A T A R I C O M P E N D I U M

.dc.w 10, 10

SEE ALSO v_pmarker()

$A002 - Get Pixel
Get the color register of the pixel at the specified coordinates.

PARAMETERS PTSIN points to two words which are the X and Y coordinates of the pixel to
read.

EXAMPLE

BINDING

; Read the color index of point (10, 10)

move.l #ptsin,12(a5)
.dc.w $A002

.data
ptsin:

.dc.w 10, 10

RETURN VALUE The color register of the pixel is returned in D0.

SEE ALSO v_getpixel()

$A003 - Arbitrary Line
Draw a line between any two coordinates.

PARAMETERS COLBIT0-4 are set appropriately to determine the line color. LSTLIN is a flag in
which a value of 0 specifies to draw the last point in each line or a value of 1
which specifies not to. LNMASK specifies the pattern mask to apply to the line.
WRMODE specifies the write mode of the function (0-3). (X1, Y1), and (X2, Y2)
give the starting and ending coordinates of the line.

EXAMPLE

BINDING

;Draw a solid line from (0, 0) to (100, 100)

move.w #1,24(a5) ; COLBIT 0
move.w #1,26(a5) ; COLBIT 1
move.w #1,28(a5) ; COLBIT 2
move.w #1,30(a5) ; COLBIT 3
move.w #0,32(a5) ; LSTLIN
move.w #$FFFF,34(a5) ; LNMASK
move.w #0,36(a5) ; WRMODE
move.w #0,38(a5) ; X1
move.w #0,40(a5) ; Y1
move.w #100,42(a5) ; X2
move.w #100,42(a5) ; Y2
.dc.w $A003

$A004 - Horizontal Line – 8.13

T H E A T A R I C O M P E N D I U M

CAVEATS LNMASK is modified as a result of this call.

SEE ALSO $A004, v_pline()

$A004 - Horizontal Line
Draw a horizontal line between the specified coordinates.

PARAMETERS COLBIT0-3 defines the color of the line and WRMODE determines the write mode
(0-3). (X1, Y1) and (X2, Y1) determine the starting and ending points of the line.
PATMSK is AND’ed with Y1 to determine a line index into the pattern pointed to
by PATPTR. PATMSK is normally the number of lines in the pattern (should be an
even power of 2) minus one. If MFILL is non-zero, WMODE is disregarded and
the fill is colored from the values in COLBIT0-3.

EXAMPLE

BINDING

;Draw a horizontal dashed line from (0, 10) to (100, 10)

move.w #1,24(a5) ; COLBIT 0
move.w #1,26(a5) ; COLBIT 1
move.w #1,28(a5) ; COLBIT 2
move.w #1,30(a5) ; COLBIT 3
move.w #0,36(a5) ; WRMODE
move.w #0,38(a5) ; X1
move.w #0,40(a5) ; Y1
move.w #100,42(a5) ; X2
move.l #pat,46(a5) ; PATPTR
move.w #0,50(a5) ; PATMSK
move.w #0,52(a5) ; MFILL
.dc.w $A004

SEE ALSO v_pline()

$A005 - Filled Rectangle
Draw a filled rectangle at the specified coordinates.

PARAMETERS CLIP is a flag which when set to 1 enables clipping and when set to 0 disables it.
All output of this function is confined to the region bounded by
(XMINCL, YMINCL) and (XMAXCL, YMAXCL). Other parameters are
consistent with the definitions given under $A004.

EXAMPLE

BINDING

; Draw a filled rectangle with its upper
; left corner at (0, 0) and its lower
; right corner at (100, 100). Clip the
; rectangle to within (10, 10) and
; (90, 90)

move.w #1,24(a5) ; COLBIT0

8.14 – Line-A Function Reference

T H E A T A R I C O M P E N D I U M

move.w #1,26(a5) ; COLBIT1
move.w #1,28(a5) ; COLBIT2
move.w #1,30(a5) ; COLBIT3
move.w #0,36(a5) ; WRMODE
move.w #0,38(a5) ; X1
move.w #0,40(a5) ; Y1
move.w #100,42(a5) ; X2
move.w #100,44(a5) ; Y2
move.l #stipple,46(a5) ; PATPTR
move.w #1,50(a5) ; PATMSK
move.w #0,52(a5) ; MFILL
move.w #1,54(a5) ; CLIP
move.w #10,56(a5) ; XMINCL
move.w #10,58(a5) ; YMINCL
move.w #90,60(a5) ; XMAXCL
move.w #90,62(a5) ; YMAXCL
.dc.w $A005

.data
stipple:

.dc.w $AAAA

.dc.w $5555

SEE ALSO v_bar(), vr_recfl()

$A006 - Filled Polygon
Draw a filled polygon line-by-line.

PARAMETERS PTSIN contains the X/Y coordinate pairs of the vertices of the polygon with the
last point being equal to the first. CONTRL[1] specifies the number of vertices.
The rest of the variables are consistent with previous usages.

EXAMPLE

BINDING

; Draw a filled polygon with vertices at
; (0, 0), (319, 120), and (25, 199).

move.l #ptsin,12(a5) ; PTSIN
move.l #contrl,4(a5) ; CONTRL
move.w #1,24(a5) ; COLBIT0
move.w #1,26(a5) ; COLBIT1
move.w #1,28(a5) ; COLBIT2
move.w #1,30(a5) ; COLBIT3
move.w #0,36(a5) ; WRMODE
move.w #stipple,46(a5) ; PATPTR
move.w #1,50(a5) ; PATLEN
move.w #0,52(a5) ; MFILL
move.w #0,54(a5) ; CLIP

; loop to draw the polygon
move.w #0,40(a5) ; upper Y line
move.w #199,d4 ; lowest Y line

; - upper Y line
loop:

.dc.w $A006
addq.w #1,40(a5)

$A007 - BitBlt – 8.15

T H E A T A R I C O M P E N D I U M

dbra d4,loop

.data
ptsin:

.dc.w 0, 0, 319, 120, 25, 199, 0, 0
contrl:

.dc.w 0, 3
stipple:

.dc.w $AAAA

.dc.w $5555

CAVEATS Register A0, X1, and X2 are destroyed as a result of this call.

SEE ALSO v_fillarea()

$A007 - BitBlt
Perform a bit-block transfer.

PARAMETERS The address of a BitBlt parameter block is passed in register A6. That structure is
defined with the following members:

Member Offset/Type Meaning

B_WD +0 (WORD) Width of block to blit (in pixels)

B_HT +2 (WORD) Height of block to blit (in pixels)

PLANE_CT† +4 (WORD) Number of bit planes to blit.

FG_COL† +6 (WORD) Bit array used to create index into OP_TAB . FG_COL
contributes its bit #’n’ (where ‘n’ is the plane number) to bit
#1 of the index used to select the operation code from
OP_TAB .

BG_COL† +8 (WORD) Bit array used to create index into OP_TAB . BG_COL
contributes its bit #’n’ (where ‘n’ is the plane number) to bit
#0 of the index used to select the operation code from
OP_TAB .

OP_TAB +10 (LONG) OP_TAB is a 4 byte array containing four logic operation
codes (0 to 16) to be applied to the image. The table is
indexed by using the bit in FG_COL and BG_COL
corresponding to the current plane as bit #1 and bit #0
respectively yielding an offset into OP_TAB of 0-3.

S_XMIN +14 (WORD) X pixel offset to source upper left.

S_YMIN +16 (WORD) Y pixel offset to source upper left.

S_FORM +18 (WORD) Address of the source form.

S_NXWD +22 (LONG) Number of bits per pixel.

S_NXLN +24 (WORD) Byte width of form.

S_NXPL +26 (WORD) Byte offset between planes (always 2).

D_XMIN +28 (WORD) X pixel offset to destination upper left.

D_YMIN +30 (WORD) Y pixel offset to destination upper left.

8.16 – Line-A Function Reference

T H E A T A R I C O M P E N D I U M

D_FORM +32 (LONG) Address of the destination form.

D_NXWD +36 (WORD) Number of bits per pixel.

D_NXLN +38 (WORD) Byte width of form.

D_NXPL +40 (WORD) Byte offset between planes (always 2).

P_ADDR +42 (LONG) Address of pattern buffer (0 = no pattern).

P_NXLN +46 (WORD) Bytes of pattern per line (should be even).

P_NXPL +48 (WORD) Bytes of pattern per plane (if using a single plane fill with a
multi-plane destination, this should be 0).

P_MASK +50 (WORD) P_MASK is found by the expression:

If P_NXLN = 2 ^ n then
P_MASK = (length in words - 1) << n

SPACE +52 (WORD) 24 bytes of blank space which must be reserved as work
area for the function.

†These members may be altered by this function.

EXAMPLE

BINDING

; Perform a blit using the information located
; at bprmblk

lea bprmblk,a6
.dc.w $A007

SEE ALSO vro_cpyfm(), vrt_cpyfm()

$A008 - TextBlt
Blit a single character to the screen.

PARAMETERS When performing this call, the following Line-A variables are evaluated:

Variable Meaning

WMODE Writing mode (see comments below).

CLIP,
XMINCL,
YMINCL,
XMAXCL,
YMAXCL

Standard clipping flags and extents.

XDDA Scaling accumulator (should be initialized to $8000 prior to each TextBlt call
when scaling).

DDAINC This amount specifies the fractional amount to scale the character outputted
by. If scaling down, this value may by found by the formula:

0x100 * scaled size / actual size
If scaling up, this value may be found with the formula:

0x100 * (scaled size - actual size) / actual size

This variable is only evaluated if scaling is active.
SCALDIR Scaling direction (1 = up, 0 = down).

$A008 - TextBlt – 8.17

T H E A T A R I C O M P E N D I U M

MONO If 1 set to monospacing mode, if 0 set to proportional spacing mode.

SOURCEX,
SOURCEY

SOURCEX is the pixel offset into the font form of the character you wish to
render. SOURCEY is usually 0 indicating that you wish to render the character
from the top.

DESTX,
DESTY

DESTX and DESTY specify the destination screen coordinates of the
character.

DELX, DELY DELX and DELY specify the width and height of the character to print.

FBASE Pointer to start of font data.

FWIDTH Width of font form.

STYLE STYLE is a mask of the following bits indicating special effects:
0x01 = Bold
0x02 = Light
0x04 = Italic
0x08 = Underlined
0x10 = Outlined

LITEMASK Mask used to lighten text (usually $5555).

SKEWMAS
K

Mask used to italicize text (usually $5555).

WEIGHT Width by which to thicken boldface text (should be set from font header).

ROFF Offset above character baseline when skewing (set from font header).

LOFF Offset below character baseline when skewing (from font header).

SCALE Scaling flag (0 = no scaling, 1 = scale text).

CHUP Character rotation vector (may be 0, 900, 1800, or 2700).

TEXTFG Text foreground color.

SCRTCHP Pointer to start of text special effects buffer (should be twice as large as the
largest distorted character and is only required when using a special effect).

SCRPT2 Offset of scaling buffer in SCRTCHP (midpoint).

TEXTBG Text background color.

EXAMPLE

BINDING

; Print a NULL-terminated string with
; no effects or clipping

move.w #0,36(a5) ; WMODE
move.w #0,54(a5) ; CLIP
move.w #1,106(a5) ; TEXTFG
move.w #0,114(a5) ; TEXTBG
move.w #100,76(a5) ; DESTX
move.w #100,78(a5) ; DESTY
move.w #4,90(a5) ; STYLE
move.w #0,102(a5) ; SCALE
move.w #1,70(a5) ; MONO

; Find the 8x8 font
move.w 4(a6),a6 ; Address of 8x8

; font
move.w 76(a6),84(a5) ; FBASE
move.w 80(a6),88(a5) ; FWIDTH
move.w 82(a6),82(a5) ; DELY

; Print the string
lea string,a2
move.l 72(a6),a3 ; offset table

8.18 – Line-A Function Reference

T H E A T A R I C O M P E N D I U M

moveq.l #0,d0
print:

move.b (a2)+,d0 ; Get next char
ble end
sub.w 36(a6),d0 ; Fix offset
lsl.w #1,d0 ; Double for

; WORD offset
move.w 0(a3,d0),72(a5) ; SOURCEX
move.w 2(a3,d0),d0 ; x of next char
sub.w 72(a5),d0 ; get true width
move.w d0,80(a5) ; DELX
moveq.l #0,74(a5) ; SOURCEY
movem.l a0-a2,-(sp) ; Save a0-a2
.dc.w $A008
movem.l (a7)+,a0-a2 ; Restore regs
bra print

end:
rts

.data
string:

.dc.b “The Atari Compendium”,0

COMMENTS The value for WMODE is a special case with TextBlt . Values from 0-3 translate
to the standard VDI modes. Values from 4-19 translate to the BitBlt modes 0-15.

SEE ALSO v_gtext()

$A009 - Show Mouse
Show the mouse cursor.

PARAMETERS No parameters required. Optionally, INTIN can be made to point to a WORD
value of 0 to force the mouse cursor to be displayed regardless of the number of
times it was hidden.

EXAMPLE

BINDING

; Show the mouse regardless of the number
; of times it was hidden

move.l #intin,8(a5) ; INTIN
.dc.w $A009

.data
intin:

.dc.w 0

COMMENTS ‘Show’ and ‘Hide’ mouse calls are nested, that is, in order to return the mouse
cursor to its original state, it must be ‘shown’ the same number of times it was
‘hidden’.

SEE ALSO v_show_c(), graf_mouse()

$A00A - Hide Mouse – 8.19

T H E A T A R I C O M P E N D I U M

$A00A - Hide Mouse
Hide the mouse cursor.

EXAMPLE

BINDING

; Remove the mouse from the screen

.dc.w $A00A

COMMENTS See ‘Show Mouse’.

SEE ALSO v_hide_c(), graf_mouse()

$A00B - Transform Mouse
Change the mouse’s form.

PARAMETERS On entry INTIN should point to a structure containing the new mouse form data.
The format of the structure is defined under the entry for vsc_form().

EXAMPLE

BINDING

; Change the mouse form to the data held in
; the newmouse structure.

move.b -339(a5),d0 ; Save old value
move.b #0,-339(a5) ; Disable mouse

; interrupts
move.l #newmouse,8(a5) ; INTIN
.dc.w $A00B
move.b d0,-339(a5) ; Restore

; MOUSE_FLAG

COMMENTS The old data can be saved from the information stored in the Line-A variable table
at offset -356. To avoid ‘mouse droppings’ you should disable mouse interrupts by
setting MOUSE_FLAG (offset -339) to 0 and restoring it when done.

SEE ALSO vsc_form(), graf_mouse()

$A00C - Undraw Sprite
Undraw a previously drawn sprite.

PARAMETERS Prior to calling this function, A2 should be loaded with a pointer to the ‘sprite
save block’ defined when drawing the sprite. For the format of this data, see
‘Draw Sprite’

EXAMPLE ; ‘Undraw’ sprite previously drawn from data

8.20 – Line-A Function Reference

T H E A T A R I C O M P E N D I U M

BINDING ; stored in savesprite.

lea savesprite,a2
.dc.w $A00C

CAVEATS Register A6 is destroyed as a result of this call.

COMMENTS When ‘undrawing’ sprites, they should be removed in reverse order of drawing to
avoid the possibility of creating garbage on screen.

$A00D - Draw Sprite
Draw a 16x16 sprite on the screen.

PARAMETERS Prior to calling this function, four 68x00 registers must be initialized. D0 and D1
should contain the horizontal and vertical position respectively of the coordinates
of the sprite to draw. This is relative to the ‘hot spot’ of the sprite as defined in the
sprite definition block.

A0 should contain a pointer to a sprite definition block defined as follows:

Offset/Type Meaning

0x0000
(WORD)

X offset of ‘hot spot’. This value is subtracted from the value given in D0 to
yield the actual screen position of the upper-left pixel.

0x0002
(WORD)

Y offset of ‘hot spot’. This value is subtracted from the value given in D1 to
yield the actual screen position of the upper-right pixel.

0x0004
(WORD)

Format flag. This value specifies the mode in which the mouse pointer will be
drawn. A value of 1 specifies ‘VDI mode’ whereas -1 specifies X-OR mode.
The default is 1.

0x0006
(WORD)

Background color of sprite.

0x0008
(WORD)

Foreground color of sprite.

0x000A
(32 WORDs)

Sprite form data. The bitmap data consists of two 16x16 rasters, one each
for the mask and data portion of the form. The data is presented in
interleaved format. The first WORD of the mask portion is first, followed by
the first WORD of the data portion, and so on.

Register A2 is a pointer to a buffer which will be used to save the screen area
where the sprite is drawn. The size of the buffer can be determined by the
following formula:

(10 + (VPLANES * 64))

EXAMPLE

BINDING

; Draw a sprite at (100, 100) whose data
; is stored at spritedef with a valid save
; buffer at savebuf.

move.w #100,d0 ; X position

$A00E - Copy Raster – 8.21

T H E A T A R I C O M P E N D I U M

move.w #100,d1 ; Y position
move.l #spritedef,a0 ; Sprite form
move.l #savebuf,a2 ; Save buffer
.dc.w $A00D

CAVEATS Register A6 is destroyed as a result of this call.

COMMENTS In order to avoid the mouse form running into any sprites you draw, the mouse
should be hidden before drawing and restored afterwards. It may also be
advisable to call Vsync() prior to each call to avoid screen flicker.

$A00E - Copy Raster
Copy a raster form using opaque or transparent mode.

PARAMETERS INTIN should point to a WORD array whose first entry specifies the write mode
of the operation. In transparent mode, this is a VDI standard mode (0-3), however
in opaque mode the full range of BitBlt modes (0-15) are available. In transparent
mode, the second and third array entries of INTIN contain the foreground and
background color of the destination copy respectively.

CONTRL should point to a memory buffer which is filled in with the source and
destination MFDB ’s (Memory Form Definition Block’s) at offsets 14 and 18
respectively. The structure of an MFDB is discussed under vro_cpyfm().

PTSIN should point to an array of 8 WORD’s containing the pixel offsets for the
blit in the order SX1, SY1, SX2, SY2, DX1, DY1, DX2, DY2.

COPYTRAN specifies the write mode. A value of 0 indicates an opaque copy
while a value of 1 indicates a transparent copy.

The settings for CLIP, XMINCL, YMINCL, XMAXCL, and YMAXCL are utilitized
by this call.

EXAMPLE

BINDING

; Copy a 32x32 raster form ‘myrast’ from a
; buffer in memory to the ST medium resolution
; screen at (100, 100) using transparent mode.

move.l #contrl,4(a5) ; CONTRL
move.l #srcmfdb,contrl+14
move.l #destmfdb,contrl+18

move.l #intin,4(a5) ; INTIN
move.l #ptsin,4(a5) ; PTSIN
move.w #1,116(a5) ; COPYTRAN
move.w #0,54(a5) ; CLIP

; Fill in some info for MFDB’s

8.22 – Line-A Function Reference

T H E A T A R I C O M P E N D I U M

move.l #myrast,srcmfdb ; Source raster
move.w #$02,-(sp) ; Physbase()
trap #14
addq.l #2,sp
move.l d0,destmfdb

.dc.w $A00E

.data
contrl:

.dc.w 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
intin:

.dc.w 0, 1, 0
ptsin:

.dc.w 0, 0, 15, 15, 100, 100, 115, 115
srcmfdb:

.dc.w 0, 0, 16, 16, 1, 0, 0, 0, 0, 0
destmfdb:

.dc.w 0, 0, 320, 200, 16, 0, 2, 0, 0, 0
myrast:

.dc.w $AAAA,$AAAA,$AAAA,$AAAA

.dc.w $5555,$5555,$5555,$5555

.dc.w $AAAA,$AAAA,$AAAA,$AAAA

.dc.w $5555,$5555,$5555,$5555

.dc.w $AAAA,$AAAA,$AAAA,$AAAA

.dc.w $5555,$5555,$5555,$5555

.dc.w $AAAA,$AAAA,$AAAA,$AAAA

.dc.w $5555,$5555,$5555,$5555

COMMENTS For a more indepth explanation, refer to the VDI calls parallel to these,
vro_cpyfm() and vrt_cpyfm() .

SEE ALSO vro_cpyfm(), vrt_cpyfm()

$A00F - Seed Fill
Seed fill an irregularly shaped region.

PARAMETERS INTIN points to a word value which specifies the mode of this function. If the
value is negative, color mode is used. In color mode, the fill spreads from the
initial point until it hits a color other than that of the initial point. If the value is
positive, outline mode is used. It then is interpreted as the VDI color index value
at which to stop the fill.

PTSIN points to an array of two WORDs which specify the X and Y coordinates
respectively of the inital fill point.

CUR_WORK should point to a WORD array of 16 words with the sixteenth
WORD being the fill color specified as a VDI color index.

WMODE specified the VDI writing mode of the fill (0-3). PATPTR and PATMSK

$A00F - Seed Fill – 8.23

T H E A T A R I C O M P E N D I U M

define the fill pattern (as defined in ‘Horizontal Line ’).

SEEDABORT points to a user routine which can abort the fill, if desired, when
called. This routine is called once for each line of the fill. It should zero register
D0 to continue or place a non-zero value in it to abort.

EXAMPLE

BINDING

; Seed fill an area starting at (100, 100)
; in color mode with a clip region defined
; as the VDI rectangle (50, 50), (200, 200).

move.l #intin,8(a5) ; INTIN
move.l #ptsin,12(a5) ; PTSIN
move.l #cur_work,-464(a5) ; CUR_WORK
move.l #seedabort,118(a5) ; SEEDABORT
move.w #0,36(a5) ; WMODE
move.l #stipple,46(a5) ; PATPTR
move.w #0,50(a5) ; PATMASK
move.w #0,52(a5) ; MFILL
move.w #50,56(a5) ; XMINCL
move.w #50,58(a5) ; YMINCL
move.w #200,60(a5) ; XMAXCL
move.w #200,62(a5) ; YMAXCL
.dc.w $A00F

seedabort:
moveq.l #0, d0 ; Clear D0
rts

.data
intin:

.dc.w -1
ptsin:

.dc.w 100, 100
cur_work:

.dc.w 0, 0, 0, 0, 0, 0, 0, 0

.dc.w 0, 0, 0, 0, 0, 0, 0, 1
stipple:

.dc.w $AAAA

.dc.w $5555

COMMENTS The clipping variables XMINCL, YMINCL, XMAXCL, and YMAXCL must always
be set as they are interpreted regardless of the clipping flag.

SEE ALSO v_contourfill()

T H E A T A R I C O M P E N D I U M

– CHAPTER 9 –

DESKTOP

Overview – 9.3

T H E A T A R I C O M P E N D I U M

Overview

The ‘Desktop’ is a GEM application that is started after the operating system is initialized and
all ‘\AUTO’ folder programs and desk accessories are loaded. The desktop is responsible for
providing basic file management and program launching abilities to the user.

Normally, the desktop is contained in ROM, however under MultiTOS , the desktop may be soft-
loaded by placing the following command line inside the ‘GEM.CNF’ file:

shell [new shell filename]

If the ‘shell’ command fails, the normal desktop is started.

If an installed shell program exits under MultiTOS , the OS will display a single menu from
which programs may be launched.

MultiTOS Considerations

Messages
The desktop may be sent messages using the AES’s shel_write() command. The desktop
currently recognizes two special messages as follows:

Message Number Meaning
SH_WDRAW 72 This message tells the desktop that files on a particular

drive have been modified so it can update the
information in any open windows.

msg[3] should contain the drive number (0 = A:, 1 = B:,
etc.). A value of -1 will force the desktop to update all of
its open windows.

AP_DRAGDROP 63 The desktop included with AES 4.1 now accepts all
drag & drop messages and places the dropped object
on the desktop.

Extendibility
The MultiTOS desktop allows the replacement of file copy, rename, and delete, and disk copy
and format commands. To replace the file commands, place the filename of an application
designed to replace them in the environment variable DESKCOPY. Likewise, a disk command
replacement application can be placed in the environment variable DESKFMT.

The file command replacement will be called with one of three command line formats as
follows:

1. Copy a file(s): -c [-options...] [filename(s)] [destination path]

2. Delete a file(s):-d [-options...] [filename(s)]

9.4 – Desktop

T h e A t a r i C o m p e n d i u m

3. Move a file(s): -m [-options...] [filename(s)] [destination path]

The following are valid options to appear on the command line:

Option Meaning
-A Confirm file copies.
-B Do not confirm file copies.
-C Confirm file deletes.
-D Do not confirm file deletes.
-E Confirm file overwrites.
-F Do not confirm file overwrites.
-R Prompt to rename destination file(s).

An application which is installed to replace disk operations will receive one of two command
lines as follows:

1. Format a drive (ex: A:): -f A:

2. Copy a disk (ex: A: to B:):-c A: B:

TOS Application Launching
When the user uses the desktop to launch a .TOS or .TTP application under MultiTOS , the
desktop looks for an environment variable called TOSRUN. If it finds one, it attempts to launch
whatever application is specified in that variable with the TOS filename as its parameters.

If the environment variable does not exist, it opens a pipe called ‘U:\PIPE\TOSRUN’ and writes
to it the filename and any parameters separated by spaces terminated by a NULL byte.

Desktop Files

DESKTOP.INF
The desktop in TOS versions less than 2.00 place configuration defaults such as window size
and position, drive icons, etc. in the DESKTOP.INF file. In addition, some control panel settings
(from CONTROL.ACC, not XCONTROL.ACC) are stored in the file as well.

The DESKTOP.INF file is in standard ASCII text format. This file was not designed to be edited
by the user or programmer, but, rather from the desktop itself and will not be discussed in detail.

NEWDESK.INF
As of TOS 2.00, the desktop now looks for a file called NEWDESK.INF rather than
DESKTOP.INF. This file contains the same information as its predecessor with some additions.
Icons which appear on the desktop or in windows may now be linked to icons in the
DESKICON.RSC file (as described below). Other entries are still reserved and should be left
unmodified.

Desktop Files – 9.5

T H E A T A R I C O M P E N D I U M

A creative install program wishing to install custom icons may do so by adding the icons to the
DESKICON.RSC file and adding information to NEWDESK.INF which points to the new icons.
The install application must be careful to avoid disturbing the original information and icons and
must not reorder the icons in the DESKICON.RSC file. The following two lines show example
entries in NEWDESK.INF that identify an icon for a file and folder respectively.

#I 2C 2C 000 @ *.TXT@ @
#D 1A 1A 000 @ FOLDER@ @

The ‘#I’ identifies a file icon and the ‘#D’ identifies a folder icon. The next two numbers should
be identical hexadecimal indexes to the icon in the DESKICON.RSC file. The entry ‘000’ is
unused and should be included only as a placeholder.

The filename specified on the line can contain wildcard characters and identify the file or folder
name(s) which are to be linked. All spaces and ‘@’ characters must appear exactly as above or
the system may behave strangely.

DESKICON.RSC
The DESKICON.RSC file is a standard GEM resource file (see Appendix C: Native File
Formats) with one object tree containing a BOX object at the ROOT (object #0) with the icons
as children. The position of the icons in the object tree determine their index as referenced by
the NEWDESK.INF file.

DESKCICN.RSC
This file is supported as of TOS 4.0 and is looked for before DESKICON.RSC. It has an
identical format except that it supports the new resource file format and contains color icons
rather than monochrome ones.

T H E A T A R I C O M P E N D I U M

— CHAPTER 10 —

XCONTROL

The Extensible Control Panel – 10.3

T H E A T A R I C O M P E N D I U M

The Extensible Control Panel

Overview
XCONTROL is a desk accessory which provides a shell for Control Panel Extensions
(CPX’s). Typical uses for CPX’s include:

• System Configuration (volume, key click, etc.)

• Hardware Configuration (serial port speed, disk access rate, etc.)

• TSR Configuration

Most CPX’s require only 512 bytes of system memory for header storage when not being
executed as they are loaded only when selected by the user.

Applications, games, and other programs not used for configuration purposes should not be
created as CPX’s.

CPX Executable Format
A CPX executable is identical to a standard GEMDOS executable with the exception of an
additional 512 byte header which precedes the standard 28 byte GEMDOS header. When
XCONTROL is initialized at boot time, the header of each CPX contained in the user’s
designated CPX directory is loaded and stored. The header data contains the following
information:

typedef struct _cpxhead
{

UWORD magic; /* Magic = 100 dec */

struct {
unsigned reserved : 13; /* Reserved */
unsigned resident : 1; /* Resident CPX if set */
unsigned bootinit : 1; /* Boot initialize if set*/
unsigned setonly : 1; /* Set only CPX if set */

} flags;

LONG cpx_id; /* CPX ID Value */
UWORD cpx_version; /* CPX Version */
char i_text[14]; /* Icon Text */
UWORD sm_icon[48]; /* Icon Bitmap 32x24 */
UWORD i_color; /* Icon Color */
char title[18]; /* Title (16 char max) */
UWORD t_color; /* Title text color */
char buffer[64]; /* User-storage */
char reserved[306]; /* Reserved */

} CPXHEAD;

Following the 512-byte CPX header the 28-byte GEMDOS header and executable follow.
CPX’s do not have a ‘main()’ function. Execution begins at the first instruction of the TEXT
segment. The first source file you should link should resemble the following:

.xref _cpx_init

10.4 – XCONTROL

T H E A T A R I C O M P E N D I U M

.text
cpxstart:

jmp _cpx_init

.end

Every CPX must have a cpx_init() function.

If you plan to store defaults back into the CPX using CPX_Save() (described later) you should
add to the first source file a statement allocating as much storage as you will need at the
beginning of the DATA segment. For example, the following is a complete stub for a CPX
requiring 10 LONGs of data for permanent storage.

.xref _cpx_init

.globl _save_vars

.text
cpxstart:

jmp _cpx_init

.data

_save_vars:
.dc.l 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

.end

XCONTROL Structures

CPXINFO
A pointer to a CPX’s CPXINFO structure must be returned by the cpx_init() function (‘Set
Only’ CPX’s return NULL). The CPXINFO structure is filled in with pointers to user functions
as follows:

typedef struct
{

WORD (*cpx_call)(GRECT *);
VOID (*cpx_draw)(GRECT *);
VOID (*cpx_wmove)(GRECT *);
VOID (*cpx_timer)(WORD *);
VOID (*cpx_key)(WORD, WORD, WORD *);
VOID (*cpx_button)(MRETS *, WORD *);
VOID (*cpx_m1)(MRETS *, WORD *);
VOID (*cpx_m2)(MRETS *, WORD *);
WORD (*cpx_hook)(WORD, WORD *, MRETS *, WORD *, WORD *);
WORD (*cpx_close)(WORD);

} CPXINFO;

Form CPX’s use only cpx_call() and (optionally) cpx_close(). Event CPX’s use the remaining
members. Members not being used should be set to NULL .

XCONTROL Structures – 10.5

T H E A T A R I C O M P E N D I U M

XCPB
A pointer to the “XControl Parameter Block” is passed to the cpx_call() function. This pointer
should be copied to a static variable on entry so that other functions may utilize its members.
XCPB is defined as follows:

typedef struct
{

WORD handle;
WORD booting;
WORD reserved;
WORD SkipRshFix;
VOID *reserve1;
VOID *reserve2;
VOID (*rsh_fix)(WORD, WORD, WORD, WORD, OBJECT *, TEDINFO *, char *,

ICONBLK *, BITBLK *, LONG *, LONG *, LONG *, VOID *);
VOID (*rsh_obfix)(OBJECT *, WORD);
WORD (*Popup)(char *items[], WORD, WORD, WORD,

GRECT *, GRECT *);
VOID (*Sl_size)(OBJECT *, WORD, WORD, WORD, WORD,

WORD, WORD);
VOID (*Sl_x)(OBJECT *, WORD, WORD, WORD, WORD, WORD,

void (*)();
VOID (*Sl_y)(OBJECT *, WORD, WORD, WORD, WORD, WORD,

void (*)());
VOID (*Sl_arrow)(OBJECT *, WORD, WORD, WORD, WORD,

WORD, WORD, WORD *, WORD, void (*)());
VOID (*Sl_dragx)(OBJECT *, WORD, WORD, WORD, WORD,

WORD *, void (*)());
VOID (*Sl_dragy)(OBJECT *, WORD, WORD, WORD, WORD,

WORD *, void (*)());
WORD (*Xform_do)(OBJECT *, WORD, WORD *);
GRECT * (*GetFirstRect)(GRECT *);
GRECT * (*GetNextRect)(VOID);
VOID (*Set_Evnt_Mask)(WORD, MOBLK *, MOBLK *, LONG);
WORD (*XGen_Alert)(WORD);
WORD (*CPX_Save)(VOID *, LONG);
VOID * (*Get_Buffer)(VOID);
WORD (*getcookie)(LONG, LONG *);
WORD Country_Code;
VOID (*MFSave)(WORD, MFORM *);

} XCPB;

Almost all of XCPB’s members are pointers to utility functions covered in the XCONTROL
Function Reference at the end of this chapter. The remaining utilized members have the
following meaning:

XCPB Member Meaning
handle This value contains the physical workstation

handle returned by graf_handle() to the Control
Panel for use in calling v_opnvwk() .

booting When XCONTROL is initializing as the result of a
power-on, reset, or resolution change, it loads
each CPX and calls its cpx_init() function with
booting set to TRUE. At all other times,
XCONTROL sets booting to FALSE .

10.6 – XCONTROL

T H E A T A R I C O M P E N D I U M

SkipRshFix When a CPX is first called after being loaded, its
SkipRshFix flag is set to FALSE . The application
should then use xcpb->rsh_fix() to fix its internal
resource tree. xcpb->rsh_fix() sets the CPX’s
SkipRshFlag to TRUE so that the CPX can skip
this step on subsequent calls.

Country_Code This value indicates the country which this version
of the Control Panel was compiled for as follows:

Country_Code Country
0 USA
1 Germany
2 France
3 United Kingdom
4 Spain
5 Italy
6 Sweden
7 Swiss (French)
8 Swiss (German)
9 Turkey
10 Finland
11 Norway
12 Denmark
13 Saudi Arabia
14 Holland

CPX Flavors

Boot Initialization
Any CPX which has its _cpxhead.bootinit flag set will have its cpx_init() function called when
XCONTROL initializes upon bootup. This provides a way for CPX’s to set system
configuration from data the user has saved in previous sessions.

cpx_init() is always called each time the user selects your CPX from the XCONTROL CPX list
prior to calling cpx_call(). If the CPX is being initialized at boot time, the xcpb->booting flag
will be TRUE.

Resident CPX’s
CPX’s which have their _cpxhead.resident flag set will be retained in memory after being
initialized at bootup. In general, this option should not be used unless absolutely necessary.

Resident CPX’s should be aware that variables stored in their DATA and BSS segments will
not be reinitialized each time the CPX is called.

CPX Flavors – 10.7

T H E A T A R I C O M P E N D I U M

Set-Only CPX’s
Set-Only CPX’s are designed to initialize system configuration options each time XCONTROL
initializes (during boot-ups and resolution changes) by calling the cpx_init() function. These
CPX’s will not appear in the XCONTROL list of CPX’s.

Form CPX’s
Every CPX must be either a ‘Form’ or ‘Event’ CPX. Most CPX’s will be Form CPX’s.

In a Form CPX, XCONTROL handles most user-interaction and messaging by relaying
messages through a callback function. XCONTROL is responsible for redraws (although the
CPX does have a hook to do non-AES object redraws) and form handling. A simple ‘C’ outline
for a Form CPX follows:

/* Example Form CPX Skeleton */

#include “skel.h”
#include “skel.rsh”
#include <cpxdata.h>

CPXINFO *cpx_init();
BOOLEAN cpx_call();

XCPB *xcpb;
CPXINFO cpxinfo;

CPXINFO
*cpx_init(Xcpb)
XCPB *Xcpb;
{

xcpb = Xcpb;

appl_init();

if(xcpb->booting)
{

/* CPX’s that do boot-time initialization do it here */

/* Returning TRUE here tells XCONTROL to retain the header
 * for later access by the user. If CPX is Set-Only,
 * return FALSE.
 */

return ((CPXINFO *) TRUE)
}
else
{

/* If you haven’t already done so, fix resource tree.
 *
 * DEFINE’s and variables are from an RSH file generated
 * by the Atari Resource Construction Set.
 */

if(!SkipRshFix)

10.8 – XCONTROL

T H E A T A R I C O M P E N D I U M

(*xcpb->rsh_fix)(NUM_OBS, NUM_FRSTR, NUM_FRIMG, NUM_TREE,
rs_object, rs_tedinfo, rs_strings, rs_iconblk, rs_bitblk,
rs_frstr, rs_frimg, rs_trindex, rs_imdope);

cpxinfo.cpx_call = cpx_call;
cpxinfo.cpx_draw = NULL;
cpxinfo.cpx_wmove = NULL;
cpxinfo.cpx_timer = NULL;
cpxinfo.cpx_key = NULL;
cpxinfo.cpx_button = NULL;
cpxinfo.cpx_m1 = NULL;
cpxinfo.cpx_m2 = NULL;
cpxinfo.cpx_hook = NULL;
cpxinfo.cpx_close = NULL;

/* Tell XCONTROL to send generic and keyboard
 * messages.
 */

return (&cpxinfo);
}

}

BOOLEAN
cpx_call(rect)
GRECT *rect;
{

/* Put MAINFORM tree in *tree for object macros */

OBJECT *tree = (OBJECT *)rs_trindex[MAINFORM];
WORD button, quit = FALSE;
WORD msg[8];

ObX(ROOT) = rect->g_x;
ObY(ROOT) = rect->g_y;

objc_draw(tree, ROOT, MAX_DEPTH, PTRS(rect));

do
{

button = (*xcpb->Xform_do)(tree, 0, msg);

/* Be sure and mask off double-clicks if you’re
 * not interested in them.
 */

if((button & 0x8000) && (button != 0xFFFF)) {
button &= 0x7FFF;

button &= 0x7FFF;

switch(button)
{

/* Check for EXIT or TOUCHEXIT resource objects */

case OK:
break;

case CANCEL:
break;

case -1:

CPX Flavors – 10.9

T H E A T A R I C O M P E N D I U M

switch(msg[0])
{

case WM_REDRAW:
break;

case AC_CLOSE:
quit = TRUE;
break;

case WM_CLOSED:
quit = TRUE;
break;

case CT_KEY:
break;

}
break;

}
} while(!quit);

return(FALSE);
}

Event CPX’s
CPX’s which are not possible as Form CPX’s may be designed as Event CPX’s.

Event CPX’s accomplish most of their work in several callback functions identified to the
Control Panel by the CPXINFO structure and called when the appropriate message is received.
An outline for a typical Event CPX follows:

/* Example Event CPX Skeleton */

#include “skel.h”
#include “skel.rsh”
#include <cpxdata.h>

CPXINFO *cpx_init();
BOOLEAN cpx_call();
void cpx_draw(), cpx_wmove(), cpx_key();

XCPB *xcpb;
CPXINFO cpxinfo;

CPXINFO
*cpx_init(Xcpb)
XCPB *Xcpb;
{

xcpb = Xcpb;

appl_init();

if(xcpb->booting)
{

/* CPX’s that do boot-time initialization do it here */

/* Returning TRUE here tells XCONTROL to retain the header
 * for later access by the user. If CPX is Set-Only,
 * return FALSE.
 */

10.10 – XCONTROL

T H E A T A R I C O M P E N D I U M

return ((CPXINFO *) TRUE)
}
else
{

/* If you haven’t already done so, fix resource tree.
 *
 * DEFINE’s and variables are from RSH file generated
 * by the Atari Resource Construction Set.
 */

if(!SkipRshFix)
(*xcpb->rsh_fix)(NUM_OBS, NUM_FRSTR, NUM_FRIMG, NUM_TREE,

rs_object, rs_tedinfo, rs_strings, rs_iconblk, rs_bitblk,
rs_frstr, rs_frimg, rs_trindex, rs_imdope);

cpxinfo.cpx_call = cpx_call;
cpxinfo.cpx_draw = cpx_draw;
cpxinfo.cpx_wmove = cpx_wmove;
cpxinfo.cpx_timer = NULL;
cpxinfo.cpx_key = cpx_key;
cpxinfo.cpx_button = NULL;
cpxinfo.cpx_m1 = NULL;
cpxinfo.cpx_m2 = NULL;
cpxinfo.cpx_hook = NULL;
cpxinfo.cpx_close = NULL;

/* Tell XCONTROL to send generic and keyboard
 * messages.
 */

(*xcpb->Set_Evnt_Mask)(MU_MESAG | MU_KEYBD, NULL, NULL, -1L);

return (&cpxinfo);
}

}

BOOLEAN
cpx_call(rect)
GRECT *rect;
{

/* Put MAINFORM tree in *tree for object macros */

OBJECT *tree = (OBJECT *)rs_trindex[MAINFORM];

ObX(ROOT) = rect->g_x;
ObY(ROOT) = rect->g_y;

objc_draw(tree, ROOT, MAX_DEPTH, PTRS(rect));

return (TRUE);
}

VOID
cpx_draw(rect)
GRECT *rect;
{

OBJECT *tree = (OBJECT *)rs_trindex[MAINFORM];
GRECT *xrect, rect;

xrect = (*xcpb->GetFirstRect)(rect);

CPX File Formats – 10.11

T H E A T A R I C O M P E N D I U M

while(xrect)
{

rect = *xrect;
objc_draw(tree, ROOT, MAX_DEPTH, ELTS(rect));
xrect = (*xcpb->GetNextRect)();

}
}

VOID
cpx_wmove(work)
GRECT *work;
{

OBJECT *tree = (OBJECT *)rs_trindex[MAINFORM];

ObX(tree) = work->g_x;
ObY(tree) = work->g_y;

}

VOID
cpx_key(kstate, key, quit)
WORD kstate, key;
WORD *quit;
{

/* Substitute case values for values you’re interested
* in.
*/

switch(key)
{

case KEY_1:
case KEY_2:

}
}

CPX File Formats

File Naming
Several standard naming conventions for CPX executables and development files follow:

File Name Meaning
*.CPX Standard CPX ready for execution by the

Control Panel.
*.CP CPX missing the 512 byte header.
*_R.CPX A resident CPX.
*_S.CPX A “Set-only” CPX.
*.HDR A 512 byte CPX header file.
*.CPZ An inactive CPX.
*.RSH An “embeddable” resource file. CPX’s can’t

execute a rsrc_load() so all resource files
must be in this format.

10.12 – XCONTROL

T H E A T A R I C O M P E N D I U M

The CPX File Format
A CPX file can be represented graphically as follows:

CPX Header Record
(512 bytes)

GEMDOS Executable
Header

(28 bytes)

CPX TEXT Segment
(cpx_init() must begin at
offset 0 of this segment)

CPX DATA Segment
(any data to be saved back
into the CPX must begin at
offset 0 of this segment)

CPX Symbol Table (if any)

XCONTROL Function Calling Procedure

Calling Conventions
XCONTROL uses “right–left” stack-based parameter passing for all of its functions and
expects that user defined callback functions are similarly “right–left” stack-based. Compilers
which do not default to this method should use either the ‘cdecl’ or ‘_stdargs’ keyword
depending on your compiler.

Function entry stubs must also consider the longword return code placed on the stack by the
68x00 ‘JSR’ function. ‘C’ compilers always expect this. For example, the pointer to the XCPB
passed to the cpx_init() function can be stored through the following machine language
statement:

_cpx_init:
move.l 4(sp),xcpb

XCONTROL Function Calling Procedure – 10.13

T H E A T A R I C O M P E N D I U M

Stack Space
CPX programmers should note that all CPX operations use the default Control Panel stack space
(2048 bytes) and should therefore restrict heavy usage of automatic variables and other large
consumers of stack space.

T H E A T A R I C O M P E N D I U M

XCONTROL Function Reference

T H E A T A R I C O M P E N D I U M

XCONTROL Callback Functions

The XCONTROL callback functions are user-supplied functions which are identified to the Control
Panel in the CPXINFO structure returned by the cpx_init() function which is also described in this
section. When creating a Form CPX, the only callback function that is utilized is cpx_call(). The
remaining functions are used only when creating Event CPX’s. The XCONTROL callback functions are:

•• cpx_button()
•• cpx_call()
•• cpx_close()
•• cpx_draw()
•• cpx_hook()
•• cpx_init()
•• cpx_key()
•• cpx_m1()
•• cpx_m2()
•• cpx_timer()
•• cpx_wmove()

cpx_button() – 10.19

T H E A T A R I C O M P E N D I U M

cpx_button()
VOID (*cpx_button)(mrets, nclicks, event)
MRETS *mrets;
WORD nclicks;
WORD *event;

cpx_button() is called in an Event CPX when a MU_BUTTON event has
occurred.

PARAMETERS mrets points to a structure containing the mouse event which triggered the function
as follows:

typedef struct
{

WORD x; /* X position of mouse */
WORD y; /* Y position of mouse */
WORD buttons; /* Mask of buttons depressed */
WORD kstate; /* Keyboard shift state */

} MRETS;

nclicks specifies the number of clicks processed. If this event should terminate the
CPX, the function should place a 1 in the WORD pointed to by event.

BINDING cpxinfo.cpx_button = cpx_button;

return (&cpxinfo);

COMMENTS This function will only be called if Set_Evnt_Mask() is called with
MU_BUTTON specified as an event to wait for.

cpx_call()
BOOLEAN (*cpx_call)(work)
GRECT *work;

cpx_call() is called immediately after the cpx_init() function when the user
activates the CPX.

PARAMETERS Upon entry, the GRECT structure pointed to by work contains the current
rectangular extent of the control panel window work area.

BINDING cpxinfo.cpx_call = cpx_call;

return (&cpxinfo);

10.20 – XCONTROL Callback Functions

T H E A T A R I C O M P E N D I U M

RETURN VALUE The cpx_call() function should return TRUE if it wants to continue processing
events through the event handlers specified in the CPXINFO structure or FALSE
to indicate the CPX is finished.

COMMENTS When exiting the cpx_call() function, the CPX must deallocate any allocated
memory and close any VDI workstations opened.

cpx_close()
VOID (*cpx_close)(flag)
BOOLEAN flag;

cpx_close() is called in an Event CPX when a WM_CLOSED or AC_CLOSE
message is received by the control panel.

PARAMETERS flag contains TRUE if a WM_CLOSED message was received or FALSE if
AC_CLOSE was received.

BINDING cpxinfo.cpx_close = cpx_close;

return (&cpxinfo);

COMMENTS This function will only be called if Set_Evnt_Mask() is called with
MU_MESAG specified as an event to wait for.

WM_CLOSED messages should be treated as equivalent to ‘OK’ whereas
AC_CLOSE messages should be treated as ‘Cancel’.

cpx_draw()
VOID (*cpx_draw)(clip)
GRECT *clip;

cpx_draw() is called when a WM_REDRAW message is received by the control
panel in an Event CPX.

PARAMETERS clip points to a GRECT structure specifiying the dirtied area.

BINDING cpxinfo.cpx_draw = cpx_draw;

return (&cpxinfo);

COMMENTS This routine should utilize GetFirstRect() and GetNextRect() to obtain the true
rectangles of the area to redraw.

cpx_hook() – 10.21

T H E A T A R I C O M P E N D I U M

This function will only be called if Set_Evnt_Mask() is called with
MU_MESAG specified as an event to wait for.

cpx_hook()
BOOLEAN (*cpx_hook)(event, msg, mrets, key, nclicks)
WORD event;
WORD *msg;
WORD *mrets;
WORD key, nclicks;

cpx_hook() is called in an Event CPX immediately after the Control Panel’s
evnt_multi() function returns before the message is processed.

PARAMETERS All parameters share counterparts with the evnt_multi() function. For a detailed
explanation of the return values please consult the documentation for that function.
event contains the event mask of one or more events that occurred. msg points to
an array of eight WORDs containing the message buffer. mrets and nclicks point
to the mouse event (if any) as described in cpx_button(). key points to a WORD
containing the keyboard scancode of the key pressed (if any).

BINDING cpxinfo.cpx_hook = cpx_hook;

return (&cpxinfo);

RETURN VALUE The function should return TRUE to override default event handling or FALSE to
continue processing the message.

cpx_init()
CPXINFO (*cpx_init)(xcpb)
XCPB *xcpb;

cpx_init() is called upon bootup and every subsequent time the CPX is opened by
the user.

PARAMETERS xcpb points to an XControl Parameter Block structure as described in the
beginning of this chapter.

BINDING The cpx_init() function is called by JSR’ing to the first location in the CPX’s
TEXT segment. ‘C’ programmers should assemble and link the following code as
the first object file in the link to ensure that the correct function is properly called:

10.22 – XCONTROL Callback Functions

T H E A T A R I C O M P E N D I U M

; Startup stub for CPX’s without save area

.xref _cpx_init

.text

cpxstart:
jmp _cpx_init

.end

If the CPX has default data which is to be saved back into the CPX with the
CPX_Save() function, the following stub should be used (substitute the ‘.dc.w 1’
statement with the appropriate amount of space required to store your data):

; Startup stub for CPX’s with save area

.xref _cpx_init

.globl _save_vars

.text

cpxstart:
jmp _cpx_init

.data

_save_vars:
.dc.w 1

.end

RETURN VALUE The cpx_init() function returns a pointer to its CPXINFO structure to allow the
Control Panel to access its other routines. If it is a ‘Set-Only’ CPX, it should
return NULL .

COMMENTS A CPX can distunguish when a CPX is booting by checking the xcpb->booting
structure member.

It is recommended that the CPX to create a copy of xcpb each time cpx_init() is
called for the other callback functions to utilize.

cpx_key()
VOID (*cpx_key)(kstate, key, event)
WORD kstate;
WORD key;
WORD *event;

cpx_key() is called in an Event CPX when a MU_KEYBD event has occurred.

cpx_m1() – 10.23

T H E A T A R I C O M P E N D I U M

PARAMETERS kstate specifies the state of the keyboard shift keys as in evnt_keybd(). key
specifies the keyboard scan code of the key struck. The WORD pointed to by
event should be filled in with a 1 if this event should terminate the CPX.

BINDING cpxinfo.cpx_key = cpx_key;

return (&cpxinfo);

COMMENTS This function will only be called if Set_Evnt_Mask() is called with
MU_KEYBD specified as an event to wait for.

cpx_m1()
VOID (*cpx_m1)(mrets, event)
MRETS *mrets;
WORD event;

cpx_m1() is called when a MU_M1 event has occurred in an Event CPX.

PARAMETERS mrets will contain a pointer to a MRETS structure as specified in cpx_button()
which contains the mouse state as it satisfied the condition. The WORD pointed to
by event should be filled in with 1 if this event should terminate the CPX.

BINDING cpxinfo.cpx_m1 = cpx_m1;

return (&cpxinfo);

COMMENTS This function will only be called if Set_Evnt_Mask() is called with MU_M1
specified as an event to wait for.

SEE ALSO cpx_m2()

cpx_m2()
VOID (*cpx_m2)(mrets, event)
MRETS *mrets;
WORD event;

cpx_m2() is called when a MU_M2 event has occurred in an Event CPX.

PARAMETERS See cpx_m1().

BINDING cpxinfo.cpx_m2 = cpx_m2;

return (&cpxinfo);

10.24 – XCONTROL Callback Functions

T H E A T A R I C O M P E N D I U M

COMMENTS This function will only be called if Set_Evnt_Mask() is called with MU_M2
specified as an event to wait for.

SEE ALSO cpx_m1()

cpx_timer()
VOID (*cpx_timer)(event)
WORD *event;

cpx_timer() is called when a MU_TIMER event has occurred in an Event CPX.

PARAMETERS The WORD pointed to by event should be filled in with 1 if this event should
terminate the CPX.

BINDING cpxinfo.cpx_timer = cpx_timer;

return (&cpxinfo);

COMMENTS This function will only be called if Set_Evnt_Mask() is called with
MU_TIMER specified as an event to wait for.

cpx_wmove()
VOID (*cpx_wmove)(work)
GRECT *work;

cpx_wmove() is called when a WM_MOVED message is received by the
Control Panel in an Event CPX.

PARAMETERS work is a pointer to a GRECT containing the new coordinates of the window
work area.

BINDING cpxinfo.cpx_wmove = cpx_wmove;

return (&cpxinfo);

COMMENTS This function will only be called if Set_Evnt_Mask() is called with
MU_MESAG specified as an event to wait for.

T H E A T A R I C O M P E N D I U M

XCONTROL Utility Functions

The XCONTROL utility functions are accessed via the XCPB (XControl Parameter Block) in the
following format for users of ‘C’:

ret = (*xcpb->Function)(param1, param2, ...)

These functions provide functions useful mostly to CPX’s as well as functions that closely resemble AES
functions better suited for CPX’s. The XCONTROL Utility Functions are:

•• (*xcpb->CPX_Save)()
•• (*xcpb->Get_Buffer)()
•• (*xcpb->getcookie)()
•• (*xcpb->GetFirstRect)()
•• (*xcpb->GetNextRect)()
•• (*xcpb->MFsave)()
•• (*xcpb->Popup)()
•• (*xcpb->rsh_fix)()
•• (*xcpb->rsh_obfix)()
•• (*xcpb->Set_Evnt_Mask)()
•• (*xcpb->Sl_arrow)()
•• (*xcpb->Sl_dragx)()
•• (*xcpb->Sl_dragy)()
•• (*xcpb->Sl_size)()
•• (*xcpb->Sl_x)()
•• (*xcpb->Sl_y)()
•• (*xcpb->Xform_do)()
•• (*xcpb->XGen_Alert)()

(*xcpb->CPX_Save)() – 10.27

T H E A T A R I C O M P E N D I U M

(*xcpb->CPX_Save)()
BOOLEAN (*xcpb->CPX_Save)(ptr , num);
VOIDP ptr;
LONG num;

CPX_Save() writes the specified data to the CPX on disk at the beginning of the
CPX’s DATA segment.

PARAMETERS ptr is a pointer to the data to save. num specifies the length of the data in bytes.

BINDING (*xcpb->CPX_Save)(ptr, num);

RETURN VALUE CPX_Save() returns TRUE if the operation was successful or FALSE if an error
occurred.

COMMENTS CPX_Save() stores the specified data on disk in the original CPX file at the start
of the DATA segment of the program. For this reason, enough space should be
allocated to account for this data. See cpx_init() for an example method of
accomplishing this.

SEE ALSO (*xcpb->Get_Buffer)()

(*xcpb->Get_Buffer)()
VOIDP (*xcpb->Get_Buffer)(VOID)

Get_Buffer() returns the address of a 64-byte static storage location for the
calling CPX.

BINDING bufptr = (*xcpb->Get_Buffer)();

RETURN VALUE Get_Buffer() returns a pointer to a 64-byte static storage location which can be
used by the CPX to preserve data between invocations.

COMMENTS Data stored in this area is lost upon a reboot. Permanent data should be stored
using CPX_Save().

SEE ALSO (*xcpb->CPX_Save)()

10.28 – XCONTROL Utility Functions

T H E A T A R I C O M P E N D I U M

(*xcpb->getcookie)()
WORD (*xcpb->getcookie)(cookie, pvalue)
LONG cookie;
LONG * pvalue;

getcookie() searches the ‘cookie jar’ for a given cookie and if found returns its
stored longword.

PARAMETERS cookie contains the longword cookie (usually a packed 4 character ASCII code) to
search for. If found, the value of the cookie is placed in the LONG pointed to by
pvalue.

BINDING err = (*xcpb->getcookie)(cookie, pvalue);

RETURN VALUE getcookie() returns TRUE if the value placed in pvalue is valid or FALSE if the
cookie was not found.

COMMENTS This function is useful in locating TSR’s or other resident processes which a CPX
is designed to configure.

(*xcpb->GetFirstRect)()
GRECT *(*xcpb->GetFirstRect)(prect)
GRECT *prect;

GetFirstRect() returns the first member of the Control Panel’s rectangle list
intersected by prect.

PARAMETERS prect points to a GRECT containing the extent of the dirtied area.

BINDING rdraw = (*xcpb->GetFirstRect)(prect);

RETURN VALUE GetFirstRect() will return a pointer to a GRECT containing the first intersecting
rectangle to redraw or NULL if none of the CPX’s rectangles intersect the dirtied
area.

COMMENTS Xform_do() handles resource object redraws in Form CPX’s. Other objects
requiring a redraw in Form CPX’s and all objects in Event CPX’s must be
redrawn with using these functions when a redraw message is generated.

SEE ALSO (*xcpb->GetNextRect)()

(*xcpb->GetNextRect)() – 10.29

T H E A T A R I C O M P E N D I U M

(*xcpb->GetNextRect)()
GRECT *(*xcpb->GetNextRect)(VOID)

GetNextRect() returns subsequent rectangles needing to be redrawn after first
calling GetFirstRect().

BINDING rdraw = (*xcpb->GetNextRect)();

RETURN VALUE GetNextRect() returns a pointer to a GRECT structure containing a subsequent
rectangle needing to be redrawn.

COMMENTS When a redraw message is received, it should be handled as illustrated below (the
example given is for an Event CPX but it may be applied to the WM_REDRAW
message handling section of a Form CPX as well):

VOID
cpx_draw(clip)
GRECT *clip;
{

GRECT *rdraw;

rdraw = (*xcpb->GetFirstRect)(clip);

while(rdraw)
{

/* User redraw function */
my_redraw(rdraw);
rdraw = (*xcpb->GetNextRect)();

}
}

SEE ALSO (*xcpb->GetFirstRect)()

(*xcpb->MFsave)()
VOID (*xcpb->MFsave)(flag, mf)
BOOLEAN flag;
MFORM * mf;

MFsave() saves the current mouse form so that a custom application mouse form
is not destroyed when the CPX calls graf_mouse() or vsc_form() to change the
shape of the mouse.

PARAMETERS flag specifies the action to take. If flag is MFSAVE (1), the current mouse form
will be written into the MFORM structure pointed to by mf. If flag is
MFRESTORE (0), the mouse form will be restored from the MFORM structure

10.30 – XCONTROL Utility Functions

T H E A T A R I C O M P E N D I U M

pointed to by mf. See vsc_form() for the definition of MFORM .

BINDING (*xcpb->MFsave)(flag, mf);

(*xcpb->Popup)()
WORD (*xcpb->Popup)(items, num_items, default, font, button, world);
CHAR * items[];
WORD num_items, default, font;
GRECT *button, *world;

Popup() displays and controls user interaction with a popup menu.

PARAMETERS items points to an array of character pointers pointing to the text of the items. Each
string must be padded in front with at least 2 spaces and should be of equal length
(at least as long as the longest string). num_items specifies the number of items to
display in the popup. If num_items exceeds five, the popup will only show three
items with two arrows to allow scrolling.

default indicates the default item (the default item is displayed with a checkmark)
or -1 to indicate no default item.

font specifies the font size (3 = large, 5 = small) of the items in the popup.

button points to a GRECT containing the rectangular extent of the button pressed
to call the popup. world points to a GRECT containing the current extent of the
CPX work area.

BINDING ret = (*xcpb->Popup)(items, num_items, default, font, button,
world);

RETURN VALUE Popup() returns the item selected (0 based) or -1 if no selection was made (the
user clicked outside of the popup area).

COMMENTS This function is unique to CPX’s and is not the same as menu_popup().

Button objects which are to be used as popups should be TOUCHEXIT objects.
In addition, as a matter of style, popup buttons should be SHADOWED.

(*xcpb->rsh_fix)() – 10.31

T H E A T A R I C O M P E N D I U M

(*xcpb->rsh_fix)()
VOID (*xcpb->rsh_fix)(num_objs, num_frstr, num_frimg, num_tree, rs_object, rs_tedinfo,

rs_strings, rs_iconblk, rs_bitblk, rs_frstr, rs_frimg, rs_trindex, rs_imdope);
WORD num_objs, num_frstr, num_frimg, num_tree;
OBJECT * rs_object;
TEDINFO * rs_tedinfo;
char *rs_strings[];
ICONBLK * rs_iconblk;
BITBLK * rs_bitblk;
LONG * rs_frstr, *rs_frimg, *rs_trindex;
struct foobar * rs_imdope;

rsh_fix() fixes up a resource tree in memory based on an 8x16 character font.

PARAMETERS When using the Atari Resource Construction Set the parameters are generated in
the .RSH file created by the compiler.

When using other resource construction sets you should refer to their instructions
for applying their resource structure to this function or use the CPX function
rsh_obfix() on each OBJECT.

BINDING (xcpb->rsh_fix)(num_objs, num_frstr, num_frimg, num_tree,
rs_object, rs_tedinfo, rs_strings, rs_iconblk, rs_bitblk,
rs_frstr, rs_frimg, rs_trindex, rs_imdope);

COMMENTS rsrc_load(), rsrc_obfix(), and rsrc_rcfix() fix up a resource file based upon the
current screen character size. CPX resource data is always fixed up based upon an
8x16 character font.

Resources should be designed on a screen that supports an 8x16 ratio. When using
the Atari Resource Construction Set, the resouce should be designed as a ‘Panel’
rather than a ‘Dialog’. With other resource construction applications the same
effect is acheived by turning snap off.

Resources should only be fixed up when the xcpb->SkipRshFix flag is 0. This
prevents resources from being fixed up more than once.

SEE ALSO (*xcpb->rsh_obfix)()

10.32 – XCONTROL Utility Functions

T H E A T A R I C O M P E N D I U M

(*xcpb->rsh_obfix)()
VOID (*xcpb->rsh_obfix)(tree, curob)
OBJECT * tree;
WORD curob;

rsh_obfix() converts the specified object from character to pixel based
coordinates based on an 8x16 character font.

PARAMETERS tree points to the OBJECT tree which contains the object curob to fix up.

BINDING (*xcpb->rsh_obfix)(tree, curob);

COMMENTS See rsh_fix().

SEE ALSO (*xcpb->rsh_fix)()

(*xcpb->Set_Evnt_Mask)()
VOID (*xcpb->Set_Evnt_Mask)(mask, m1, m2, time)
WORD mask;
MOBLK * m1;
MOBLK * m2;
LONG time;

Set_Evnt_Mask() defines which events an Event CPX will process with its
callback functions.

PARAMETERS mask is a bit mask of events (MU_MESAG , MU_TIMER , etc...) that the CPX
wishes to process as in evnt_multi(). m1 and m2 point to MOBLK structures
which define mouse rectangles to wait for if the CPX wishes to wait for MU_M1
and/or MU_M2 events as in evnt_mouse(). MOBLK is defined as follows:

typedef struct
{

WORD m_out; /* 0 = enter, 1 = exit */
WORD m_x;
WORD m_y;
WORD m_w;
WORD m_h;

} MOBLK;

time specifies the length of time to specify for the MU_TIMER event if
appropriate.

(*xcpb->Sl_arrow)() – 10.33

T H E A T A R I C O M P E N D I U M

BINDING (*xcpb->Set_Evnt_Mask)(mask, m1, m2, time);

COMMENTS This function is only valid for Event CPX’s.

(*xcpb->Sl_arrow)()
VOID (*xcpb->Sl_arrow)(tree, base, slider, obj, inc, min, max, numvar, dir, foo)
OBJECT * tree;
WORD base, slider, obj, inc, min, max;
WORD *numvar;
WORD dir;
VOID (* foo)();

Sl_arrow() is called by a CPX when the user clicks on an arrow element of an
‘active’ slider.

PARAMETERS tree points to the object tree containing the slider elements. base is the object
index of the slider ‘track’. slider is the object index of the slider ‘elevator’. obj is
the index of the arrow element clicked on by the user.

inc specifies the increment amount for each slider step (+/-). min specifies the
minimum value the slider can represent. max specifies the maximum value the
slider can represent.

numvar points to a WORD containing the value which the slider represents and
which is to be updated as the slider is moved. dir specifies the direction of the
slider movement (VERTICAL (0) or HORIZONTAL (1)).

foo is a pointer to a user-defined callback function which is called once for each
step of the slider to allow the user’s action to ‘actively’ update the slider. foo may
be NULL if no updating is desired.

BINDING (*xcpb->Sl_arrow)(tree, base, slider, obj, inc, min, max,
numvar, dir, foo);

COMMENTS Slider paging can be accomplished with this function. To do so use a method
similar to the following (this example is for vertical sliders):

graf_mkstate(&mx, &my, &dum, &dum);
objc_offset(tree, slider, &ox, &oy);
inc = ((my < oy) ? (-1) : (1));
(*xcpb->Sl_arrow(tree, base, slider, base, inc, min, max,

&numvar, VERTICAL, foo);

10.34 – XCONTROL Utility Functions

T H E A T A R I C O M P E N D I U M

(*xcpb->Sl_dragx)()
VOID (*xcpb->Sl_dragx)(tree, base, slider, min, max, numvar, foo)
OBJECT * tree;
WORD base, slider, min, max;
WORD *numvar;
VOID (* foo)();

Sl_dragx() is called by a CPX when a user clicks on the horizontal slider
‘elevator’ of an ‘active’ slider.

PARAMETERS tree points to an OBJECT tree containing the slider elements. base is the object
index of the slider ‘track’. slider is the object index of the slider ‘elevator’.

min specifies the minimum value the slider can represent. max specifies the
maximum value the slider can represent.

numvar points to a WORD containing the value which the slider represents and
which is to be updated as the slider is moved.

foo points to a user-defined routine which is called each time the slider value
numvar is modified. foo may be NULL if no updating is desired.

BINDING (*xcpb->Sl_dragx)(tree, base, slider, min, max, numvar, foo);

COMMENTS It is appropriate to change the shape of the mouse to FLAT_HAND while the user
is dragging a slider.

SEE ALSO (*xcpb->Sl_dragy)()

(*xcpb->Sl_dragy)()
VOID (*xcpb->Sl_dragx)(tree, base, slider, min, max, numvar, foo)
OBJECT * tree;
WORD base, slider, min, max;
WORD *numvar;
VOID (* foo)();

Sl_dragy() is called by a CPX when a user clicks on the vertical slider ‘elevator’
of an ‘active’ slider.

PARAMETERS See Sl_dragx().

(*xcpb->Sl_size)() – 10.35

T H E A T A R I C O M P E N D I U M

BINDING (*xcpb->Sl_dragy)(tree, base, slider, min, max, numvar, foo);

COMMENTS It is appropriate to change the shape of the mouse to FLAT_HAND while the user
is dragging a slider.

SEE ALSO (*xcpb->Sl_dragx)()

(*xcpb->Sl_size)()
VOID (*xcpb->Sl_size)(tree, base, slider, num_items, visible, direction, min_size)
OBJECT * tree;
WORD base, slider, num_items, visible, direction, min_size ;

Sl_size() adjusts the size of the slider ‘track’ relative to the size of the slider
‘elevator’.

PARAMETERS tree points to the OBJECT tree containing the slider elements. base is the object
index of the slider ‘track’. slider is the object index of the slider ‘elevator’.

num_items is the total number of items represented by the slider. visible is the
number of items actually seen by the user.

direction specifies the direction of the slider as either VERTICAL (0) or
HORIZONTAL (1). min_size represents the minimum pixel size of the adjusted
slider elevator.

BINDING (*xcpb->Sl_size)(tree, base, slider, num_items, visible,
direction, min_size);

COMMENTS This function does not redraw the slider.

(*xcpb->Sl_x)()
VOID (*xcpb->Sl_x)(tree, base, slider, value, min, max, foo)
OBJECT * tree;
WORD base, slider, value, min, max;
VOID (* foo)();

Sl_x() updates the position of a horizontal slider within its base.

PARAMETERS tree points to an OBJECT tree containing the slider elements. base is the object
index of the slider ‘track’. slider is the object index of the slider ‘elevator’.

10.36 – XCONTROL Utility Functions

T H E A T A R I C O M P E N D I U M

value is the value the slider should represent. min and max are the minimum and
maximum values the slider can represent respectively.

If foo is not NULL , it points to a user-function which is called to redraw the
slider.

BINDING (*xcpb->Sl_x)(tree, base, slider, value, min, max, foo);

SEE ALSO (*xcpb->Sl_y)()

(*xcpb->Sl_y)()
VOID (*xcpb->Sl_y)(tree, base, slider, value, min, max, foo)
OBJECT * tree;
WORD base, slider, value, min, max;
VOID (* foo)();

Sl_y() updates the position of a vertical slider within its base.

PARAMETERS See Sl_x().

BINDING (*xcpb->Sl_y)(tree, base, slider, value, min, max, foo);

SEE ALSO (*xcpb->Sl_x)()

(*xcpb->Xform_do)()
WORD (*xcpb->Xform_do)(tree, editobj, msg)
OBJECT * tree;
WORD editobj;
WORD *msg;

Xform_do() is a specialized version of form_do() designed to handle a CPX
object tree and window messages concurrently.

PARAMETERS tree should point to an OBJECT tree containing a form with the root object being
256x176. editobj specifies the editable text object to initially display the text
cursor at (or 0 if no editable object exists on the form).

msg should point to an 8 WORD array used by the function to store special
messages returned by evnt_multi().

(*xcpb->XGen_Alert)() – 10.37

T H E A T A R I C O M P E N D I U M

BINDING ret = (*xcpb->Xform_do)(tree, editobj, msg);

RETURN VALUE Xform_do() returns the positive object number of the EXIT or TOUCHEXIT
object selected. The high bit of this value indicates if the object was double-
clicked and should therefore be masked off if unused. If Xform_do() returns a -1,
then a message should be processed as contained in msg. The structure of
messages are the same as in evnt_multi(). Possible messages are:

WM_REDRAW
AC_CLOSE
WM_CLOSE
CT_KEY

CT_KEY (53) is a special XCONTROL message indicating that a key was
pressed. The scancode of the key pressed is contained in msg[3]. Only special
keyboard keys such as HELP, F1–F10, UNDO, ALT-X, etc... will be returned as the
standard alphabetic keys are processed in editable fields.

COMMENTS The Xform_do() function automatically handles and redraws of the given
OBJECT tree. Any other items needing to be redrawn should be handled at the
appropriate window redraw message.

WM_CLOSED messages should always be treated as ‘OK’ while AC_CLOSE
messages should be treated as ‘Cancel’.

(*xcpb->XGen_Alert)()
BOOLEAN (*xcpb->XGen_Alert)(id)
WORD id;

XGen_Alert() displays a specialized alert centered in the Control Panel’s work
area.

PARAMETERS id specifies the alert to display as follows:

Name id Alert

SAVE_DEFAULTS 0 Save Defaults?

MEM_ERR 1 Memory Allocation Error

FILE_ERR 2 File I/O Error

FILE_NOT_FOUND 3 File Not Found Error

BINDING ret = (*xcpb->XGen_Alert)(id);

10.38 – XCONTROL Utility Functions

T H E A T A R I C O M P E N D I U M

RETURN VALUE XGen_Alert() returns TRUE if ‘OK’ was selected or FALSE if ‘Cancel’ was
selected. Alerts 1-3 always returns TRUE.

T H E A T A R I C O M P E N D I U M

– CHAPTER 11 –

GEM USER INTERFACE

GUIDELINES

Overview – 11.3

T H E A T A R I C O M P E N D I U M

Overview

Maintaining consistent elements of style in a user-interface is an important aspect of
programming which should not be overlooked. An extremely powerful application will have its
usefulness compromised by an interface that is unlike the majority of other applications a user
will be exposed to.

In an effort to create a more standardized method of application programming, this reference
will diagram many interface elements that every Atari programmer should use, regardless of
whether you are applying them to existing parts of GEM or programmer-defined elements.

In a case where you provide an enhanced interface element that departs from these
specifications, you should at least allow the user to disable the option in a ‘Settings...’ dialog.

The Basics

All GEM applications should contain a menu bar providing access to program features. Desk
accessories should appear in a window.

‘Dialogware’ and ‘Alertware’ applications are strongly discouraged. Each performs user
interaction exclusively in one or more dialogs or alerts respectively. This makes it impossible
for the user to take advantage of other programs or desk accessories while in use.

Document-oriented applications that are launched with one or more valid documents specified
on the command line should launch those documents into their own windows, otherwise the
application should initialize in one of two other ways:

• Open an empty document window with the default parameters labeled “Untitled.”

• Present a dialog allowing three choices. “New” opens a blank document (as
above), “Open” presents a file selector used to select a document to open,
“Cancel” removes the dialog and leaves the user with the menu bar to make other
selections.

Windows

A window is a viewport through which all or part of an application’s document may be viewed.
Windows are modeless forms of input. This means that they do not restrict the user from
switching to another window or executing a command.

Normal document windows should have a title bar and should be moveable (these
characteristics are set with the wind_create() function – see Chapter 6: AES). The following
illustration shows a window with all window components identified:

11.4 – GEM User Interface Guidelines

T H E A T A R I C O M P E N D I U M

Here are some other basic rules to use when creating windows:

• Windows should almost always have the MOVE characteristic set.

• If it is possible that the contents of the information displayed in the window might
overflow, provide sliders (horizontal and/or vertical) as appropriate. The sliders
should be updated as necessary to ensure that they are proportional in size and
position to the amount of information viewable in the window versus the size of
the entire document.

• Generally, all document windows will include all window elements (with the
possible exception of the information line). Only exclude an element if its use
would be inappropriate in the current context.

Windows – 11.5

T H E A T A R I C O M P E N D I U M

Window Messages
An application’s use of windows depends on either the evnt_mesag() or evnt_multi() functions
of the AES. These functions return messages which in turn must be responded to by the
application for any changes to occur. The following list illustrates all messages that a window
may receive along with an appropriate action(s) that should be taken.

Message Action
WM_REDRAW Redraw the rectangular portion of the window which was

dirtied (as specified in the message). Always use
wind_get() with WF_FIRSTXYWH and
WF_NEXTXYWH to walk the rectangle list and enable
clipping to the appropriate regions.

If the window had a SMALLER gadget, check prior to
drawing whether you are drawing the actual window
contents or an iconified representation.

If the window has an attached toolbar that requires
special redrawing, use wind_get() with
WF_FTOOLBAR and WF_NTOOLBAR as parameters
to walk the rectangle list and enable clipping to the
returned regions.

In some situations you may want to redraw the entire
window upon each WM_REDRAW call. You must still
walk the rectangle list as specified above.

WM_TOPPED Call wind_set() with a parameter of WF_TOP to actually
top the window. Do not redraw the window. Your
application will receive WM_REDRAW messages for
portions of the window uncovered by the call.

Also, set the mouse form as desired.
WM_SIZED Call wind_set() with a parameter of WF_CURRXYWH

to actually change the current size of the window. Update
slider positions as necessary to reflect the new size of the
window.

Applications will automatically receive a redraw message
if any portion of the window was uncovered. If you need to
redraw the entire window each time the window size
changes, send your own application a WM_REDRAW
message with appl_write() to cause a redraw.

WM_MOVED Call wind_set() with a parameter of WF_CURRXYWH
to actually change the current size of the window. This
message and the message WM_SIZED are usually
handled by common code.

11.6 – GEM User Interface Guidelines

T H E A T A R I C O M P E N D I U M

WM_ARROWED Scroll the contents of the document window as necessary
and redraw the window (using the rectangle list).

When an arrow indicator is clicked, scroll the window by
one ‘line’ (a small increment in a non-text oriented
application). When the exposed area of the slider bar is
clicked, scroll the contents of the document window by
one ‘page’ (current viewable portion of the document)
minus one ‘line’.

WM_VSLID Scroll the contents of the document window in proportion
with the new position of the slider elevator.

WM_HSLID Scroll the contents of the document window in proportion
with the new position of the slider elevator.

WM_FULLED Restore the size of the window using wind_get() with a
parameter of WF_PREVXYWH. Update slider bars as
necessary.

WM_CLOSED Close the window. If the window context required a
positive or negative answer from the user (‘Yes/No’ or
‘OK/Cancel’), assume positive. If the window contains a
document which has been altered since the last time it
was saved to disk, it is appropriate to ask the user if the
document should be saved before proceeding.

WM_BOTTOMED Call wind_set() with a parameter of WF_BOTTOM to
send the window to the bottom of the window stack.

WM_ICONIFY See below.

WM_UNICONIFY See below.

WM_ALLICONIFY See below.

WM_TOOLBAR Respond as necessary to the toolbar event.

WM_ONTOP Set the mouse form appropriately for your application.

WM_UNTOPPED No action is mandated by this message.

Windows – 11.7

T H E A T A R I C O M P E N D I U M

Clipping Rectangles
In every instance where text or graphics are rendered in a window, you should walk the
rectangle list in order to ensure that the screen is properly updated. This includes all instances
when the contents of the window are updated as a response to a user command (as opposed to a
WM_REDRAW message) or dynamic interaction (i.e. selection or animation).

Window Titles
The title bar of a window should accurately reflect its basic contents. If a window contains a
document the title bar should contain the filename of the document or ‘Untitled’ if it is a new
document that has not been saved yet. If the window does not contain a document, the title bar
should serve to clearly explain the purpose of the menu. For example, if you were to implement
a find and replace dialog in a window, the window should be titled “Find & Replace.”

In some cases you may wish to provide an option (though a menu or keystroke) which allows the
user to open a duplicate copy of the document in another window. This allows the user to select
separate views in each open window yet changes in one window are reflected in others. In this
case, suffix the document name with a colon and the window number such as
“FILENAME.DOC:1”. The numbering should only be present when more than one document
window actually exists.

Iconified Windows
AES versions 4.1 and above support the SMALLER gadget for window iconification. The
basic rules for iconification follow:

Action

Is a ‘program group’
iconified window

already open? Response
User wishes to iconify a
single window.

No Iconify the single window.

User wishes to iconify a
single window.

Yes Close the window the user wishes to
iconify and add it to those represented
by the ‘program group’ window.

User wishes to iconify all
windows.

No Create a new, iconified window as a
‘program group’ and close all other
windows.

User wishes to iconify all
windows.

Yes Add all open windows to those
represented by the ‘program group’
window and close all other windows.

User wishes to uniconify a
single window.

N/A Uniconify the window.

User wishes to uniconify a
‘program group’ window.

Yes Close the iconified window and open all
of the windows in the ‘program group’.

Here are some other hints that are helpful when dealing with iconification:

• Due to the smaller size of the window title line, it may be desirable to adjust the
title text when a window is iconified.

11.8 – GEM User Interface Guidelines

T H E A T A R I C O M P E N D I U M

• Draw an icon which represents the contents of the window when drawing a single
iconified window. When drawing a ‘program group’ iconified window, draw an
icon which represents the application.

• Use graf_growbox() and graf_shrinkbox() to graphically show the user the
iconification/uniconification process.

Window Information Line
When appropriate, the addition of the INFO component of a window should serve to provide
additional information about the objects visible in the window. This information should change
to provide the most useful information. A vector graphics editor might display the document size,
statistics, and zoom factor normally, but provide information on the number and extent of
selected objects when at least one object is selected.

Window Colors
AES versions 3.0 and above allow the color of each window component to be modified. An
application should never modify the global settings. Allow the user to use the Window Colors
CPX to choose global colors of his/her choice.

If your application wants to draw a visual distinction between windows by displaying them in
different colors, provide a dialog where the user may choose color preferences or (at least)
enable/disable this option.

Dialog Boxes

A dialog box is the modal counterpart to a window. When a dialog box is displayed, all of the
user’s input is exclusively directed towards it until the user releases control by satisfying the
needs of the dialog. Here are some basic rules regarding dialog boxes:

• Prior to drawing a dialog and calling form_do(), call the AES function
wind_update(BEG_UPDATE). Do not release control with END_UPDATE
until the dialog box is removed and input with it is finished.

• If a dialog box controls a physical attribute (such as text face or fill type), provide
a ‘Sample’ area where changes are automatically displayed prior to exiting the
dialog.

• Dialogs that position themselves automatically at the center of the active window
or mouse location are convenient to some users, annoying to others. When
providing this feature, allow it to be disabled.

Button Positioning
Most dialogs consist of several resource objects that can be edited or changed by the user and
several exit buttons which terminate the dialog (or cause a supplementary action). Dialogs which
supply information should have an ‘OK’ button and a ‘Help’ button if additional information is
available. Dialogs which manipulate settings should have an ‘OK’ button to accept changes, a
‘Cancel’ button to revert to the state prior to entering the dialog, and an ‘Help’ button if help is
to be provided.

Dialog Boxes – 11.9

T H E A T A R I C O M P E N D I U M

Buttons should always appear in the order ‘OK’, ‘Cancel’, ...other buttons..., ‘Help’ when
working left to right or top to bottom. ‘OK’ should be in all capitals. All other buttons should be
capitalized. When other wording is appropriate (such as ‘Yes/No’) the positive answer should
always precede the negative answer.

All dialogs should have a default exit button which exits the dialog. In most cases this will be
the positive ‘OK’ or ‘Yes’ response. In a case where an action is irreversible and data will be
changed (for example, formatting a disk), it is appropriate for the negative response to be made
default rather than the positive one.

Exit buttons should be placed in a dialog so that they are either centered at the bottom of the
dialog or listed from top to bottom starting at the upper-righthand corner of a dialog as pictured
in the following diagrams:

Dialog w/Horizontal Buttons

Dialog w/Vertical Buttons

When using the ‘top-down’ style, buttons with complementary meanings may be grouped by
inserting one space between groups. The dialog pictured above shows an example of a dialog
with an ‘OK’, ‘Cancel’, and ‘Help’ button correctly positioned.

Unfolding Dialogs
In some cases a dialog may contain features for both the common and advanced user. In this case
it is recommended that an ‘unfolding’ dialog be presented.

An unfolding dialog contains a button such as ‘Options >>’ or ‘More >>’ which, when pressed,
expands the dialog to reveal additional features. When this happens the ‘Options >>’ button

11.10 – GEM User Interface Guidelines

T H E A T A R I C O M P E N D I U M

becomes ‘<< Options’ (or ‘More >>’ becomes ‘<< Less’ which, when pressed, will return the
dialog box to its original state.

User-Defined Controls.
When adding custom objects to dialog boxes using G_PROGDEF objects or other means, it is
important to keep the interface with these objects consistent with an already existing object. For
instance, a custom text control should respond to keystrokes in the same manner as the
G_FTEXT object. If a custom object departs from these standards, its implementation should be
capable of being disabled.

Alerts

Alerts are special dialog boxes which provide information and/or a limited choice of options to
the user. Alerts are often used to present an error condition to the user or to inform them of a
choice. Some basic rules regarding alert boxes follow:

• In general apply rules regarding button text (such as capitalization, the default
object, etc.) to alerts.

• Whenever possible, provide the user with more than one option in an alert box.
Alerts with only one button are frustrating and should only be used when only one
possible course of action exists.

• Never provide an ‘OK’ button and a ‘Cancel’ button when either button will lead
to the same action/inaction.

• Avoid using the word ‘error’ or any other text which might blame the user.

• If an error has occurred, suggest a remedy (possibly using a dialog box for data
reentry).

• Use ‘Cannot’ instead of ‘Can’t’ or ‘Can not’.

• If an error alert might occurring during multi-tasking while another process has
focus, make the first line of the alert text the program name followed by a colon.

• A message such as “Not enough memory to load file TEST.DOC.” is much better
than “Insufficient memory.”

• Minor warnings to a user might become increasingly apparent by having the
response to the first incorrect action be the system bell and the second occurrence
being a dialog box politely guiding the user along.

• Message text should be left-aligned.

• If message text is too long to fit into the 5 line/30 character per line limit, consider
downsizing the message for clarity, or if necessary, place the alert in a form.
Never use consecutive alerts.

• Alerts should be capitalized by standard grammatical rules and should be
punctuated with a period or question mark (not an exclamation mark).

The File Selector – 11.11

T H E A T A R I C O M P E N D I U M

Alerts boxes may be displayed with one of three icons (or no icon at all). The following lists
examples of when to use a specific icon:

Icon Uses
None Program credits, reminders, general help.

Error conditions, conditions requiring immediate
action.

Inquiries, most confirmations.

Potentially program-fatal errors, confirmation of an
irreversible action.

Informational alerts. These usually have only an ‘OK’
button. Alerts with more than one choice might be
better suited for the question mark icon.

General disk errors and requests.

The File Selector

Several important style guidelines are important to follow when using the system calls
fsel_input() or fsel_exinput() to provide the common system file selector to the user. If your
application provides a custom file selector unique to your application, always allow the user the
choice of using the system file selector as opposed to your own. In general, it is better to use the
internal selector rather than provide a customized one. The user may install a third-party file
selector replacement if they want the extra features that custom file selectors usually provide.
This provides more user-interface consistency throughout the system.

If you commonly use a third-party replacement file selector on the system you test applications
on, always test your application with the replacement file selector disabled. Several third-party
file selectors handle screen redraws and pathname parsing differently than the internal file
selector does.

11.12 – GEM User Interface Guidelines

T H E A T A R I C O M P E N D I U M

When your application needs to display the file selector, always ensure that the pathname that is
going to be passed to the file selector call is valid. If the pathname becomes invalid, revert to a
system default path such as that of your applications own. It is also courteous to the user to store
the last used path in a global buffer so that each time the file selector is accessed the user
doesn’t have to change directories again.

If your application requires that its files be loaded and saved with a specific file extension,
append that file mask to the end of the pathname so that the user’s choices are restricted. If
during a save operation the user chooses to override your default extension, either allow it or
prompt the user as to their true intention.

When the file selector call returns, if the filename field is blank, treat it as a ‘Cancel’. If a
filename was entered but it contains no file extension, append your default file extension (if
appropriate) to it.

Progress Indicators

When an application begins a task that may require a substantial amount of time to complete, it is
normally appropriate to change the mouse to a BUSY_BEE form to indicate to the user a long
action is taking place.

If the screen display does not reflect the actual task in real time, it is helpful to display a
progress bar (sometimes referred to as a thermometer) indicator on screen to remind the user
that an task is indeed taking place and that the computer has not entered a locked state. In this
case, you may leave the mouse form in the ARROW shape so that the user may perform other
functions in a multitasking environment.

It is helpful to place a progress bar for potentially long operations into a window so that other
applications or desk accessories may be accessed. When possible, the exact length of the
operation might be stated like “Time Left: xx:xx”.

The progress bar should move as closely as possible to a true proportional representation of
time (i.e. avoid circumstances where it might take ten seconds to move from 25% to 50% but
only a second to move from 50% to 100%).

An example progress bar showing a task in progress is shown below:

Toolboxes – 11.13

T H E A T A R I C O M P E N D I U M

Toolboxes

Toolboxes are groups of buttons (usually G_IMAGE or G_ICON) which either select between
editing modes (often in graphic editors or DTP applications) or choose object properties. A
toolboxes may be contained in its own window or appear ‘attached’ in the document window
aligned with the upper-left corner of the work area. A toolbox in its own window should have
its ‘un-toppable’ characteristic set under MultiTOS (see wind_set()) to prevent the user from
having to click twice to select a button.

Buttons on these specialized dialog/window combinations fall into three categories, exclusive
buttons (such as a pointer tool and rectangle tool), non-exclusive buttons (such as zoom on/off),
and style buttons (such as fill style and line style).

Buttons should reflect their state by appearing either inverted or depressed. The currently
selected exclusive button as well as any selected non-exclusive button retains this state until a
new object is chosen or it is deselected. Style buttons are only selected until the user has
completed the operation. When available, toolbox buttons should appear in color using a
G_CICON. An example of a toolbox window follows:

11.14 – GEM User Interface Guidelines

T H E A T A R I C O M P E N D I U M

Example from Soft-Logic’s Pagestream 2.2.

Toolbars

Toolbars (sometimes referred to as ‘Ribbons’) are single-strip toolboxes placed at the top of the
document work area which contain buttons or combo boxes which are usually used to alter
properties of the document. An example of a control bar embedded in a window follows:

Example from Atari Works.

Newer versions of the AES provide built-in support for toolbars, though they can be
implemented in applications running in an OS that does not support the new calls.

Menus – 11.15

T H E A T A R I C O M P E N D I U M

Menus

The Menu Bar
Each application in the system should initialize a menu bar as soon as it is called. The menu bar
consists of several titles which when pointed to by the mouse cause a list of individual menu
items to be displayed.

The leftmost menu title (commonly referred to as the ‘Desk’ menu) should be the application
name1. An example of the first menu title/items are shown below:

The first item in the menu should be “About PRGNAME...”. PRGNAME should be substituted
with the name of the application. The lines below are reserved for desk accessories and
applications (when running under MultiTOS)..

An application should call menu_register() (under MultiTOS) to change its entry in the menu
from the filename to the program title.

The second and third menu titles should be “File” and “Edit” as appropriate (though the
inclusion of both of these menus is highly recommended). Application defined menus should be
placed after these. If a “Help” menu is available it should be the rightmost title. A “Window”
menu should be placed rightmost second only to “Help” if it exists. An example title bar
follows:

Menu entries should be grouped by function under appropriate titles and subgrouped by placing
separator bars between them (disabled dashes).

Menu entries which end in an ellipsis should lead to a dialog box. Those without ellipsis should
carry out an action with no further user interaction.

1This menu title used to be labeled “Desk” or contain the fuji logo. With the advent of MultiTOS , however, placing the application name
here makes it possible for the user to easily determine the application which has the input focus.

11.16 – GEM User Interface Guidelines

T H E A T A R I C O M P E N D I U M

The File Menu
The “File” menu should consist of the following items (presented in order):

• New
• Open...
• Recall (optional – has cascading menu attached with most-recently used file list)
• Save
• Save as...
• Save all (optional)
• Any other document closing commands as required.
Separator
• Import (if applicable)
• Export (if applicable)
• Any other file operations as required2.
Separator
• Page Setup... (if applicable)
• Print (if applicable)
• Any other printing commands as required.
Separator
• Quit

Following is an example “File” menu:

2This does not refer to operations such as ‘Delete File’ or ‘Rename File’. These commands should not be supported in applications
because they are available from the Desktop running under MultiTOS or from disk utility CPX’s and accessories.

Menus – 11.17

T H E A T A R I C O M P E N D I U M

The Edit Menu
The next menu, “Edit”, usually contains the following items:

• Undo (if supported)
• Redo (if supported3)
Separator
• Cut
• Copy
• Paste
• Delete
Separator
• Select All (optional)
Separator
• Find... (optional)
• Replace... (optional)
• Find Next (optional)
Separator
• Any other editing/searching commands.

An example “Edit” menu follows:

Dual-State Menu Items
Menu selections can be designed to represent toggles. There are two methods of accomplishing
this as follows:

• Apply a checkmark to the item to indicate an enabled state.

• Alter the text. For example, when “Hide Toolbar” is clicked, change the text to “Show
Toolbar”.

3‘Redo’ is used when multiple levels of ‘Undo’ are to be provided.

11.18 – GEM User Interface Guidelines

T H E A T A R I C O M P E N D I U M

In addition, some menu item groups may provide a choice between more than two options as
shown in the following example:

Again, checkmarks can be used to indicate the selection.

Here are some other general pointers about using menus:

• Menu items such as “Preferences...” or “Save Preferences” belong in the “Options” menu.

• Menu items for text styles (like bold, italic) can be made G_USERDEF objects and made
to reflect their actual state.

• If you add a “Window” menu, items such as “New Window” which opens a new window
for the current document, “Arrange All”, “Tile All”, “Cascade All”, which positions
windows can optionally be included. Followed by a separator, a generic item “Window”
can be attached to a cascading menu which contains an updated list of all document
windows so that the user can use the menu bar to ‘top’ a window.

• If you add a “Help” menu, different options can provide different levels of help such as
“Contents” or “Index”. Don’t list help items for each possible dialog box or mode, instead
provide context sensitive help that is activated through a “Help” button or by pressing the
HELP key.

Popup Menus
Popup menus are menus which can appear anywhere on screen at the request of the user. A
common use of popup menus is for object-specific options which are called upon when an
object is right-clicked on with the mouse.

Popup menus can also be placed in dialog boxes as shown below. Dialog objects which lead to
popup menus should be TOUCHEXIT and SHADOWED. If text describing the popup appears
at the left of the button, it should be inverted when the popup is displayed and until it is closed.

When a popup menu contains a list of exclusive options, the option currently selected should be
properly identified to the menu_popup() command so that it is aligned with the object in
addition to having a checkmark. Popups with no selected option should always start at the first
selection.

Menus – 11.19

T H E A T A R I C O M P E N D I U M

Popup menus may contain objects other than text (like fill styles or bitmaps) but will be unable
to scroll.

Drop-Down List Boxes
Drop-down list boxes are handled in the same manner as popup menus with the following
exceptions:

An ‘equivalence’ character (ASCII 240) in a BOXCHAR object should be displayed
immediately to the right of the box leading to the drop-down list and should also be
TOUCHEXIT and SHADOWED. A click on this object is the same as clicking on the main
object.

No checkmark should be displayed next to the current selection.

The TOUCHEXIT box leading to a drop-down list may be editable, if appropriate, to allow the
user to add items to those currently in the list.

The following illustrations show examples of both a ‘closed’ (prior to being selected) and
‘open’ (during selection) drop-down list:

Drop-Down List Box (closed)

Drop-Down List Box (open)

11.20 – GEM User Interface Guidelines

T H E A T A R I C O M P E N D I U M

Hierarchical Menus
Hierarchical menus (or sub-menus) are menus attached to either a main menu item or a popup
menu item. These menus can be nested several levels deep but it is recommended that this
feature not be used because your menu bar, in general, should never be this complex. An
example of a hierarchical menu follows:

Keyboard Equivalents

Some users prefer to do their program interaction via the mouse while others prefer the
keyboard. Those users who prefer keyboard interaction are often frustrated by a lack of
consistency among programs concerning keyboard equivalents.

The following keyboard equivalents are universal among many platforms (including Atari) and
should be enabled in all cases where a counterpart option exists in an application. Other
keyboard equivalents may be assigned as long as they do not conflict with one of those already
predefined. The use of the ALTERNATE key as a modifier in a keyboard equivalent is discouraged
because international users use the ALTERNATE key to access special keyboard characters.

Menus
Menu keyboard equivalents should be notated next the menu item and flush right (excepting one
space) with the menu. The CONTROL key should be notated by the caret, the ALTERNATE key
should be notated by the window closer character, and the SHIFT key should be notated by the up
arrow character. Function keys are notated “Fnn” and other keys are notated as, for example,
“Del”, “Bksp”, “Help”, etc.

Menu items with a sub-menu attachment should not have a keyboard equivalent. An example
menu with keyboard equivalents shown correctly follows:

Keyboard Equivalents – 11.21

T H E A T A R I C O M P E N D I U M

Following is a list of defined keyboard equivalents:

Key Equivalent Operation
CTRL–N New
CTRL-O Open
CTRL-W Close
CTRL-S Save as...
CTRL-SHIFT-S Save
CTRL-P Print
CTRL-SHIFT-P Page Setup
CTRL-Q Quit
CTRL-X Cut
CTRL-C Copy
CTRL-V Paste
CTRL-A Select all
CTRL-F Find
CTRL-R Replace
HELP Access help
SHIFT-HELP Engage context sensitive help. Pointer

should change to arrow/question mark
and help should be provided for any
object clicked on.

UNDO Undo last operation

Windows
When working with text-oriented applications, the following list of keyboard equivalents apply.
Keep in mind that CTRL is generally a character-based modifier while SHIFT is line-based.

Key Equivalent Operation
CTRL-B Bold
CTRL-I Italic

11.22 – GEM User Interface Guidelines

T H E A T A R I C O M P E N D I U M

CTRL-U Underline
CTRL-BACKSPACE Delete word to left.
CTRL-DELETE Delete word to right.
CTRL-ARROW Move to the left/right one word.
CTRL-CLRHOME Move cursor to start of document.
SHIFT-LEFT-ARROW Move to the beginning of current line.
SHIFT-RIGHT-ARROW Move to the end of current line.
SHIFT-UP-ARROW Move up one page.
SHIFT-DOWN-ARROW Move down one page.
SHIFT-DELETE Delete line.
SHIFT-CLRHOME Move cursor to end of document.
ARROW Move one character left/right.
CLRHOME Move cursor to top of window.
BACKSPACE Delete character to left of cursor.
DELETE Delete character to the right of cursor.

When working with object-oriented applications, the following keyboard equivalents are suggested:

Key Equivalent Operation
ARROW Deselect current object(s), select

previous/next object.
BACKSPACE Delete selected object.
DELETE Delete selected object.
TAB Deselect current object, select next

object.

Disjoint/Group Selection
When in the context of a text-editing application, SHIFT-clicking on a point should select the text
from the cursor position to the point clicked or add that region to a current selection (if one
exists). In an object-oriented application, SHIFT-clicking should allow the user to select and
deselect multiple objects.

Device Independence

Programming for compatibility on the Atari is a simple task. Here are some basic tips:

• A GEM program should use the VDI for all graphical/screen output. Never use
GEMDOS, BIOS, or XBIOS functions to output to the screen or manipulate the
palette.

• Don’t make assumptions about the type of display based on any call such as
Getrez(), EsetShift(), or Vsetmode(). Only look at the values returned by the
VDI v_opnvwk() call.

• For printing, always support GDOS. It is the only way to ensure that a user has a
printer driver and fonts for the attached printer and that output is consistent among
different printers. As with the screen, never make assumptions about the printer
based on criteria like driver name, etc.

Globalization – 11.23

T H E A T A R I C O M P E N D I U M

• Never write directly to hardware unless it’s the documented way to accomplish a
task. This is an almost sure sign that your program will break in future hardware
releases.

• Avoid using interrupt vectors. If you must use them, use Setexc().

Globalization

One of the most effective ways a software marketer can increase his product’s sales is by
ensuring its usability in foreign countries. Programmers can make their software more portable
through the following methods:

• Store all language-dependent strings in the application’s resource file. Porting to
other languages may then be accomplished by the modification of the resource file
only.

• When creating resource files. Allow at least 50% more space than that is required
for English text. The English language tends to require fewer characters than most
others.

• Use the ‘_IDT’ and ‘_AKP’ cookie to globalize references to dates, times, and
currencies. If your application does not have a resource file, you may also use the
‘_AKP’ cookie to select among language specific strings embedded within your
code. When the ‘_AKP’ cookie is not present you can check for language
information embedded in the program header.

Colors

An application’s proper use of color can greatly enhance its effectiveness. Likewise, improper
use of color can thoroughly confuse a user. Below are some basic rules about the use of color:

• Never alter the first 16 colors in modes with 256 colors or more. Only change
system colors in other cases when absolutely necessary. These are system colors
which should be controlled exclusively by the user.

• When providing a custom 3D effect to complement the OS under TOS 4.0 and
above, use objc_sysvar() to interrogate color settings to allow your objects to
match.

• Make dialogs FL3DBAK objects to allow the user’s selected dialog color to come
through.

• Don’t use colors to decorate, use them to emphasize or draw attention to an
important screen element. Use colors to display choices relating to color or when a
user expects it in the document.

• When using color as a choice indicator, use green as a positive, red as a negative.

11.24 – GEM User Interface Guidelines

T H E A T A R I C O M P E N D I U M

Sound

As with color, the proper use of sound can help or hinder an application program. The system
bell should be used as a polite reminder to the user when an operation is being attempted that is
beyond the capabilities of the application (ex: scrolling past the last line in a document). It is
also useful to alert the user to the end of a long operation (during which the user might have
stepped away).

In general, applications should restrict their use of sounds to the system bell. Beyond that,
applications can support sounds through the use of the accessory “System Audio Manager”
(supplied with the Falcon030) or have their custom sounds provided they may be enabled
selectively by the user.

Application Software

Application software programmers writing for the Atari line of computers should follow the
following suggestions:

• Provide an installation program on the distribution floppy called ‘INSTALL.PRG’.
See below for details.

 • Use the ‘_IDT’ cookie to determine the proper method of displaying dates and
times. Use the ‘_AKP’ cookie to determine the country’s currency character.

• Provide help in as many places as possible. Provide context-sensitive help if
possible.

• Your application file, its resource file(s), and any ‘readme’ files should be
together in one directory. Any other application data files should be kept in a child
directory of the application directory.

Installation Software

Every disk distributed for end-user use should have an installation program called
‘INSTALL.PRG’ on the root directory of the floppy or CD-ROM diskette. Even disks containing
only data files should be installable in this manner. Basic guidelines for installation programs
follow:

• The installation program should allow the user to specify a location for the files to be
installed and create a new directory for them if necessary.

• The installation program may (if desired by the user) add icons for the application itself and
data files to the DESKICON.RSC or DESKCICN.RSC file as appropriate. If the application

Entertainment Software – 11.25

T H E A T A R I C O M P E N D I U M

requires special GDOS drivers or fonts, the installation should (if desired by the user)
modify the ASSIGN.SYS or EXTEND.SYS files appropriately.

• The installation program may (if desired) modify the system DESKTOP.INF or
NEWDESK.INF, as appropriate, to create references to added icons and to install the
application to the system (creating associated file types, startup directory, etc.). Be careful
not to override existing document associations without the user’s permission.

• If your installation program modifies any system files, always make a backup prior to the
changes and inform the user where the backups will be located.

• The installation program should visually update the user as to the progress of the installation
procedure.

• If changes to system files were made, inform the user on exit that the system will need a
reboot for these changes to become effective.

• If removing your application completely from the system involves more than deleting a
single directory’s contents or if relocating the application will cause it to no longer function
properly, provide an additional application that will remove or move your application as
desired by the user.

Entertainment Software

Entertainment software written for Atari computers should follow these minimum standards.

• Allow the user to install your software on the hard drive using an
‘INSTALL.PRG’.

• Don’t force the user to change resolutions prior to running your software.

• The path to your application should not contain data files, place those in a folder.

• Allow the user to return to the desktop in the same resolution he left.

• If possible, allow the game to be run in a window.

• Use device-independent graphics paired with the VDI call vr_trnfm() to translate
your graphics upon loading to be compatible with the installed video shifter.

• Support the enhanced analog joystick rather than CX-40 style controls on machines
which have the ports to support them (like the STe and Falcon030). Use the CX-40
controls if four-player play is desired.

T H E A T A R I C O M P E N D I U M

— APPENDIX A —

FUNCTIONS BY OPCODE

GEMDOS Functions by Opcode – A.3

T H E A T A R I C O M P E N D I U M

GEMDOS Functions by Opcode

Dec Hex Function Summary Page

0 0x00 PtermØ() Exit process with a return code of 0. 2.122
1 0x01 Cconin() Fetch a character from the console device and echo it. 2.41
2 0x02 Cconout() Output a character to the console device processing any

special keys.
2.43

3 0x03 Cauxin() Fetch character from the auxiliary device. 2.39
4 0x04 Cauxout() Output a character to the auxiliary device. 2.41
5 0x05 Cprnout() Output a character to the printer device. 2.47
6 0x06 Crawio() Perform input and output on the console device. 2.49
7 0x07 Crawcin() Output a character to the console device. 2.48
8 0x08 Cnecin() Fetch a character from the console device. 2.46
9 0x09 Cconws() Write a string to the console device. 2.45
10 0x0A Cconrs() Read a string from the console device. 2.44
11 0x0B Cconis() Determine if a character is waiting to be received from the

console device.
2.42

14 0x0E Dsetdrv() Set the default drive. 2.62
16 0x10 Cconos() Determine if a character may be sent to the console

device.
2.43

17 0x11 Cprnos() Determine if a character may be sent to the printer device. 2.46
18 0x12 Cauxis() Determine if a character is waiting to be received from the

auxiliary device.
2.39

19 0x13 Cauxos() Determine if a character may be sent to the auxiliary
device.

2.40

20 0x14 Maddalt() Notify GEMDOS of additional memory. 2.97
25 0x19 Dgetdrv() Return the default drive. 2.56
26 0x1A Fsetdta() Set the address of the DTA. 2.91
32 0x20 Super() Modify user/supervisor status. 2.128
42 0x2A Tgetdate() Get the current date. 2.132
43 0x2B Tsetdate() Set the current date. 2.133
44 0x2C Tgettime() Get the current time. 2.132
45 0x2D Tsettime() Set the current time. 2.133
47 0x2F Fgetdta() Return a pointer to the DTA. 2.79
48 0x30 Sversion() Obtain the current GEMDOS version. 2.129
49 0x31 Ptermres() Exit process leaving some data intact. 2.123
54 0x36 Dfree() Determine the free space on a drive. 2.54
57 0x39 Dcreate() Create a directory. 2.53
58 0x3A Ddelete() Delete a directory. 2.54
59 0x3B Dsetpath() Set the default path. 2.63
60 0x3C Fcreate() Create a file. 2.74
61 0x3D Fopen() Open a file. 2.84
62 0x3E Fclose() Close a file. 2.66
63 0x3F Fread() Read binary data from a file. 2.87
64 0x40 Fwrite() Write binary data to a file. 2.95
65 0x41 Fdelete() Delete a file. 2.76
66 0x42 Fseek() Move a file pointer. 2.89
67 0x43 Fattrib() Get or set the attributes of a file. 2.64
68 0x44 Mxalloc() Allocate memory with preference. 2.100
69 0x45 Fdup() Duplicate a file handle. 2.76

A.4 – Functions by Opcode

Dec Hex Function Summary Page

T H E A T A R I C O M P E N D I U M

70 0x46 Fforce() Redirect one handle to another. 2.77
71 0x47 Dgetpath() Return the default path. 2.57
72 0x48 Malloc() Allocate memory. 2.98
73 0x49 Mfree() Free allocated memory. 2.99
74 0x4A Mshrink() Shrink or expand a block of memory. 2.99
75 0x4B Pexec() Execute another process. 2.103
76 0x4C Pterm() Exit process with the specified return code. 2.121
78 0x4E Fsfirst() Find a file with the specified mask. 2.92
79 0x4F Fsnext() Find subsequent files with the specified mask. 2.93
86 0x56 Frename() Rename a file or directory. 2.89
87 0x57 Fdatime() Get or set the time/date flags of a file. 2.75
92 0x5C Flock() Set or remove a file lock. 2.82

255 0xFF Syield() Surrender the remaining portion of the processes
timeslice.

2.130

256 0x100 Fpipe() Establish a communication pipeline between processes. 2.86
260 0x104 Fcntl() Perform a file-system specific file operation. 2.67
261 0x105 Finstat() Determine the input status of a file. 2.80
262 0x106 Foutstat() Determine the output status of a file. 2.85
263 0x107 Fgetchar() Get a character from a file. 2.79
264 0x108 Fputchar() Output a character to a file. 2.86
265 0x109 Pwait() Determine the exit code of a stopped or terminated child

process.
2.125

266 0x10A Pnice() Alter the process priority of the calling process. 2.111
267 0x10B Pgetpid() Obtain the process ID of the calling process. 2.107
268 0x10C Pgetppid() Obtain the process ID of the processes’ parent. 2.108
269 0x10D Pgetpgrp() Obtain the process group ID of the calling process. 2.107
270 0x10E Psetpgrp() Set the process group ID for the calling process. 2.115
271 0x10F Pgetuid() Obtain the user ID of the calling process. 2.108
272 0x110 Psetuid() Set the user ID for the calling process. 2.116
273 0x111 Pkill() Send a signal to one or more processes. 2.109
274 0x112 Psignal() Determine the action to take when a signal is received. 2.118
275 0x113 Pvfork() Create a duplicate of the current process which shares

address and data space with its parent.
2.124

276 0x114 Pgetgid() Obtain the group ID of the calling process. 2.107
277 0x115 Psetgid() Set the group ID of the calling process. 2.114
278 0x116 Psigblock() Block selected signals from delivery. 2.118
279 0x117 Psigsetmask() Specifies which signals should be blocked and which

should be received.
2.121

280 0x118 Pusrval() Get or set the user-defined value associated with a
process.

2.124

281 0x119 Pdomain() Get or set the processes execution domain. 2.102
282 0x11A Psigreturn() Clean up from a signal handler. 2.120
283 0x11B Pfork() Create a copy of the current process. 2.105
284 0x11C Pwait3() Determine the exit code of stopped or terminated child

processes.
2.126

285 0x11D Fselect() Enumerate file descriptors which are ready for
reading/writing.

2.90

286 0x11E Prusage() Return resource usage information on the calling process. 2.112
287 0x11F Psetlimit() Read or modify resource usage limits for a process. 2.114
288 0x120 Talarm() Read or set an alarm for the current process. 2.131

GEMDOS Functions by Opcode – A.5

Dec Hex Function Summary Page

T H E A T A R I C O M P E N D I U M

289 0x121 Pause() Suspend the process until a signal is received. 2.101
290 0x122 Sysconf() Return information regarding current capabilities and

limitations of processes running under MiNT.
2.130

291 0x123 Psigpending() Determines which signals have been sent but not yet
received to the calling process.

2.120

292 0x124 Dpathconf() Return information regarding limitations and capabilities
of a file system.

2.59

293 0x125 Pmsg() Send or receive a message. 2.109
294 0x126 Fmidipipe() Change the file handles which refer to MIDI input and

output.
2.83

295 0x127 Prenice() Alter the process priority of the specified process. 2.111
296 0x128 Dopendir() Open a directory. 2.58
297 0x129 Dreaddir() Read a directory entry. 2.61
298 0x12A Drewinddir() Reset the directory pointer. 2.62
299 0x12B Dclosedir() Close a directory. 2.50
300 0x12C Fxattr() Return extended attribute information for a file. 2.95
301 0x12D Flink() Create a file link. 2.81
302 0x12E Fsymlink() Establish a symbolic link to a file. 2.94
303 0x12F Freadlink() Determine the actual file to which a link refers. 2.88
304 0x130 Dcntl() Perform a file-system specific device operation. 2.50
305 0x131 Fchown() Modify the ownership of a file. 2.66
306 0x132 Fchmod() Modify the access permission flags of a file. 2.65
307 0x133 Pumask() Determines the minimum file and/or directory creation

access permission masks.
2.123

308 0x134 Psemaphore() Create a semaphore. 2.113
309 0x135 Dlock() Lock or unlock a BIOS disk device. 2.57
310 0x136 Psigpause() Suspends the process until a specified signal (or signals)

is received.
2.119

311 0x137 Psigaction() Changes the way a signal is handled. 2.116
312 0x138 Pgeteuid() Returns the effective user ID of the caller. 2.106
313 0x139 Pgetegid() Returns the effective group ID of the caller. 2.106
314 0x13A Pwaitpid() Attempts to determine the exit code of a particular

process.
2.127

315 0x13B Dgetcwd() Returns the current GEMDOS working directory for the
process on the specified drive.

2.56

316 0x13C Salert() Sends an alert to the alert pipe ‘U:\PIPE\ALERT’. 2.128

BIOS Functions by Opcode – A.7

T H E A T A R I C O M P E N D I U M

BIOS Functions by Opcode

Dec Hex Function Summary Page

0 0x00 Getmpb() Return the address of the MPB (Memory Parameter Block)
structure.

3.31

1 0x01 Bconstat() Determine if a character is waiting from a device. 3.28
2 0x02 Bconin() Input a character from a device. 3.27
3 0x03 Bconout() Output a character from a device. 3.28
4 0x04 Rwabs() Read/write sectors to a device. 3.34
5 0x05 Setexc() Set or read a system exception vector. 3.35
6 0x06 Tickcal() Return the current system timer calibration. 3.36
7 0x07 Getbpb() Return the address of the BPB (BIOS Parameter Block). 3.30
8 0x08 Bcostat() Determine if a device is ready to receive a character. 3.29
9 0x09 Mediach() Determine if a drive’s media has been changed. 3.33
10 0x0A Drvmap() Return a bitmap of mounted drives. 3.30
11 0x0B Kbshift() Return the state of the keyboard shift keys. 3.32

XBIOS Functions by Opcode – A.9

T H E A T A R I C O M P E N D I U M

XBIOS Functions by Opcode

Dec Hex Function Summary Page

0 0x00 Initmous() Initialize the mouse handler. 4.73
1 0x01 Ssbrk() Reserve memory at the top of RAM. 4.102
2 0x02 Physbase() Return the address of the physical screen. 4.85
3 0x03 Logbase() Return the address of the logical screen. 4.80
4 0x04 Getrez() Return the current screen resolution code. 4.68
5 0x05 Setscreen() and

VsetScreen()
Set the current screen address and mode. 4.97

4.108
6 0x06 Setpalette() Set entries in the ST compatible palette. 4.95
7 0x07 Setcolor() Set an entry in the ST compatible palette. 4.93
8 0x08 Floprd() Read a sector from a floppy disk. 4.66
9 0x09 Flopwr() Write a sector to a floppy disk. 4.67
10 0x0A Flopfmt() Format a sector on a floppy disk. 4.63
11 0x0B Dbmsg() Send a debugging message to the resident

debugger.
4.28

12 0x0C Midiws() Write a string to the MIDI port. 4.82
13 0x0D Mfpint() Define an MFP interrupt. 4.81
14 0x0E Iorec() Return the address of the system IOREC

structure.
4.75

15 0x0F Rsconf() Configure the currently mapped RS-232 port. 4.89
16 0x10 Keytbl() Return the addresses of the current key

mapping tables.
4.78

17 0x11 Random() Return a random number. 4.89
18 0x12 Protobt() Prototype a floppy boot sector. 4.86
19 0x13 Flopver() Verify a sector on a floppy disk. 4.66
20 0x14 Scrdump() Execute the built-in screen dump code. 4.91
21 0x15 Cursconf() Configure the TOS cursor. 4.27
22 0x16 Settime() Set the time of day and current date. 4.98
23 0x17 Gettime() Get the time of day and current date. 4.69
24 0x18 Bioskeys() Reset the keyboard mapping tables to default. 4.24
25 0x19 Ikbdws() Write a string to the intelligent keyboard

controller.
4.72

26 0x1A Jdisint() Disable an MFP interrupt. 4.76
27 0x1B Jenabint() Enable an MFP interrupt. 4.76
28 0x1C Giaccess() Modify or set a register on the PSG. 4.70
29 0x1D Offgibit() Toggle bits of the PSG Port A off. 4.84
30 0x1E Ongibit() Toggle bits of the PSG Port A on. 4.84
31 0x1F Xbtimer() Set an interrupt on the 68901. 4.113
32 0x20 Dosound() Start an interrupt driven sound routine. 4.33
33 0x21 Setprt() Set or read the printer configuration bits. 4.96
34 0x22 Kbdvbase() Return the address of the current IKBD interrupt

table.
4.77

35 0x23 Kbrate() Set or read the keyboard repeat rate. 4.78
36 0x24 Prtblk() Print a block of memory using the built-in

screen dump routines.
4.87

37 0x25 Vsync() Hold the process until the next vertical blank. 4.110
38 0x26 Supexec() Execute a routine in supervisor mode. 4.103
39 0x27 Puntaes() Discard the AES. 4.88

A.10 – Functions by Opcode

Dec Hex Function Summary Page

T H E A T A R I C O M P E N D I U M

41 0x29 Floprate() Set the floppy drive seek rates. 4.65
42 0x2A DMAread() Read sectors from a DMA/SCSI device. 4.31
43 0x2B DMAwrite() Write sectors to a DMA/SCSI device. 4.32
44 0x2C Bconmap() Modify the BIOS device mapping table. 4.23
46 0x2E NVMaccess() Access non-volatile RAM. 4.83
48 0x30 Metainit() Initialize MetaDOS. 4.80
64 0x40 Blitmode() Get or set the state of the BLiTTER chip. 4.25
80 0x50 EsetShift() Set the TT030 shift mode registers. 4.61
81 0x51 EgetShift() Get the TT030 shift mode registers. 4.57
82 0x52 EsetBank() Set the current TT030 color bank. 4.58
83 0x53 EsetColor() Get or set a color in the TT030 palette. 4.59
84 0x54 EsetPalette() Set the TT030 palette. 4.60
85 0x55 EgetPalette() Get the TT030 palette. 4.56
86 0x56 EsetGray() Set the TT030 gray mode register. 4.60
87 0x57 EsetSmear() Set the TT030 smear mode register. 4.62
88 0x58 VsetMode() Set the Falcon030 video mode. 4.107
89 0x59 VgetMonitor() Identify the kind of monitor attached to the

Falcon030.
4.104

90 0x5A VsetSync() Set the Falcon030 sync mode. 4.109
91 0x5B VgetSize() Get the size of screen memory in bytes. 4.105
92 0x5C VsetMask() Set the mask assigned to each true color

plotted.
4.106

93 0x5D VsetRGB() Set the Falcon030 palette using RGB data. 4.108
94 0x5E VgetRGB() Get the Falcon030 palette using RGB data. 4.104
96 0x60 Dsp_DoBlock() Transfer bytewise packed data to/from the

DSP.
4.38

97 0x61 Dsp_BlkHandshake() Handshakes bytewise packed data to/from the
DSP.

4.35

98 0x62 Dsp_BlkUnpacked() Transfers data stored in a longword array
to/from the DSP.

4.36

99 0x63 Dsp_InStream() Transfers data to the DSP via an interrupt
handler.

4.45

100 0x64 Dsp_OutStream() Transfers data from the DSP via an interrupt
handler.

4.51

101 0x65 Dsp_IOStream() Transfers data to/from the DSP via concurrent
interrupt handlers.

4.46

102 0x66 Dsp_RemoveInterrupts() Disable the generation of DSP interrupts. 4.51
103 0x67 Dsp_GetWordSize() Get the current size of a DSP word. 4.41
104 0x68 Dsp_Lock() Lock the DSP system. 4.48
105 0x69 Dsp_Unlock() Unlock the DSP system. 4.55
106 0x6A Dsp_Available() Determines the amount of free X and Y memory

available in the DSP.
4.34

107 0x6B Dsp_Reserve() Reserves a portion of DSP memory for a user
program

4.53

108 0x6C Dsp_LoadProg() Loads a ‘.LOD’ file from disk, transmits it to the
DSP, and executes it.

4.47

109 0x6D Dsp_ExecProg() Transfers a DSP program in memory to the
DSP and executes it.

4.39

110 0x6E Dsp_ExecBoot() Resets the DSP and loads a new bootstrap
program into the first 512 words of DSP
memory.

4.39

XBIOS Functions by Opcode – A.11

Dec Hex Function Summary Page

T H E A T A R I C O M P E N D I U M

111 0x6F Dsp_LodToBinary() Converts a ‘.LOD’ file to binary format. 4.49
112 0x70 Dsp_TriggerHC() Causes a host command set aside for DSP

programs to execute.
4.55

113 0x71 Dsp_RequestUniqueAbility() Requests a unique DSP ability identifier. 4.52
114 0x72 Dsp_GetProgAbility() Returns the ability code for the program

residing in DSP memory.
4.40

115 0x73 Dsp_FlushSubroutines() Removes all DSP subroutines from memory. 4.40
116 0x74 Dsp_LoadSubroutine() Loads a DSP subroutine into memory. 4.48
117 0x75 Dsp_InqSubrAbility() Determines if a subroutine with the specified

ability code is currently loaded into the DSP.
4.44

118 0x76 Dsp_RunSubroutine() Begins execution of the specified subroutine. 4.53
119 0x77 Dsp_Hf0() Reads/writes bit #3 of the HSR. 4.41
120 0x78 Dsp_Hf1() Reads/writes bit #4 of the HSR. 4.42
121 0x79 Dsp_Hf2() Reads bit #5 of the HSR. 4.43
122 0x7A Dsp_Hf3() Reads bit #6 of the HSR. 4.43
123 0x7B Dsp_BlkWords() Transfers an array of WORDs to/from the DSP. 4.37
124 0x7C Dsp_BlkBytes() Transfers an array of bytes to/from the DSP. 4.34
125 0x7D Dsp_Hstat() Returns the value of the DSP’s ICR register. 4.44
126 0x7E Dsp_SetVectors() Defines interrupt handlers to be called when

DSP data is ready to be sent or received.
4.54

127 0x7F Dsp_MultBlocks() Transmits multiple blocks to/from the DSP. 4.50
128 0x80 Locksnd() Lock the sound system. 4.79
129 0x81 Unlocksnd() Unlock the sound system. 4.103
130 0x82 Soundcmd() Execute a sound system specific function. 4.100
131 0x83 Setbuffer() Set the record and playback buffers. 4.92
132 0x84 Setmode() Set the playback/record mode. 4.94
133 0x85 Settracks() Set the playback/record tracks. 4.99
134 0x86 Setmontracks() Set the track to be output over the

speaker/headphone.
4.95

135 0x87 Setinterrupt() Set the sound system interrupts. 4.93
136 0x88 Buffoper() Enable or disable playback/recording. 4.25
137 0x89 Dsptristate() Connect or disconnect the DSP from the

connection matrix.
4.56

138 0x8A Gpio() Read or write data over the general purpose
pins on the DSP port.

4.72

139 0x8B Devconnect() Connect devices in the connection matrix. 4.29
140 0x8C Sndstatus() Obtain the status of the sound system. 4.99
141 0x8D Buffptr() Return the current position of the record or

playback buffer pointers.
4.26

165 0xA5 WavePlay() Playback a DMA sample. 4.110

AES Functions by Opcode – A.13

T H E A T A R I C O M P E N D I U M

AES Functions by Opcode

Dec Hex Function Summary Page

10 0x0A appl_init() Initializes a GEM application. 6.53
11 0x0B appl_read() Reads data from the message pipe. 6.54
12 0x0C appl_write() Writes data to the message pipe. 6.58
13 0x0D appl_find() Locates a system process. 6.47
14 0x0E appl_tplay() Plays back recorded events. 6.56
15 0x0F appl_trecord() Records keyboard and mouse events. 6.57
18 0x12 appl_search() Enumerates system processes. 6.55
19 0x13 appl_exit() Prepares a GEM application for termination. 6.47
20 0x14 evnt_keybd() Waits for a keyboard event. 6.63
21 0x15 evnt_button() Waits for a mouse button event. 6.61
22 0x16 evnt_mouse() Waits for a mouse rectangle event. 6.70
23 0x17 evnt_mesag() Waits for an application message. 6.64
24 0x18 evnt_timer() Waits for a timer event. 6.73
25 0x19 evnt_multi() Waits for multiple events. 6.71
26 0x1A evnt_dclick() Sets the mouse double-click rate. 6.62
30 0x1E menu_bar() Displays/removes a menu bar. 6.105
31 0x1F menu_icheck() Places a checkmark beside a menu item. 6.106
32 0x20 menu_ienable() Enables/disables a menu item. 6.106
33 0x21 menu_tnormal() Selects/deselects a menu item or title. 6.111
34 0x22 menu_text() Changes menu item/title text. 6.111
35 0x23 menu_register() Registers applications in the menu bar. 6.109
36 0x24 menu_popup() Manages a floating popup menu. 6.108
37 0x25 menu_attach() Attaches a sub-menu to a menu item. 6.103
38 0x26 menu_istart() Defines the initial selection of a sub-menu. 6.107
39 0x27 menu_settings() Modifies popup menu settings. 6.110
40 0x28 objc_add() Adds an object to an object tree. 6.115
41 0x29 objc_delete() Deletes an object from an object tree. 6.116
42 0x2A objc_draw() Draws an object tree. 6.117
43 0x2B objc_find() Locates an object based on screen coordinates. 6.119
44 0x2C objc_offset() Determines the offset of child objects in an object

tree.
6.120

45 0x2D objc_order() Reorders objects within an object tree. 6.121
46 0x2E objc_edit() Manipulates an editable object. 6.118
47 0x2F objc_change() Changes the state of an object. 6.115
48 0x30 objc_sysvar() Reads/modifies the system defaults for 3D effects. 6.121
50 0x32 form_do() Manages a user-defined form. 6.81
51 0x33 form_dial() Reserves/releases screen space for forms. 6.80
52 0x34 form_alert() Manages a generic alert. 6.77
53 0x35 form_error() Manages a generic error alert. 6.82
54 0x36 form_center() Centers an object tree on screen. 6.79
55 0x37 form_keybd() Provides a system-level editable field handler. 6.83
56 0x38 form_button() Provides a system-level button handler. 6.78
70 0x46 graf_rubberbox() Controls the shrinking/enlarging of a box outline. 6.97
71 0x47 graf_dragbox() Controls the moving of a box outline. 6.91
72 0x48 graf_movebox() Draws a moving box. 6.96
73 0x49 graf_growbox() Draws an expanding box. 6.92

A.14 – Functions by Opcode

Dec Hex Function Summary Page

T H E A T A R I C O M P E N D I U M

74 0x50 graf_shrinkbox() Draws a shrinking box. 6.98
75 0x51 graf_watchbox() Selects/draws an object depending on the position of

the mouse.
6.100

76 0x52 graf_slidebox() Controls a slider outline. 6.99
77 0x53 graf_handle() Obtains AES workstation attributes. 6.92
78 0x54 graf_mouse() Defines the mouse form. 6.94
79 0x55 graf_mkstate() Provides information about the mouse state. 6.93
80 0x56 scrp_read() Determines the system scrap directory. 6.135
81 0x57 scrp_write() Sets the system scrap directory. 6.136
90 0x58 fsel_input() Manages the file selector. 6.88
91 0x59 fsel_exinput() Manages the extended file selector. 6.87

100 0x64 wind_create() Creates a window. 6.150
101 0x65 wind_open() Opens a window. 6.158
102 0x66 wind_close() Closes a window. 6.150
103 0x67 wind_delete() Deletes a window. 6.152
104 0x68 wind_get() Returns window attributes. 6.153
105 0x69 wind_set() Sets a window attribute. 6.158
106 0x6A wind_find() Determines the window at given pixel coordinates. 6.152
107 0x6B wind_update() Manages the window update semaphore. 6.161
108 0x6C wind_calc() Calculates window extents. 6.149
109 0x6D wind_new() Removes all windows. 6.157
110 0x6E rsrc_load() Loads a disk-based resource file. 6.128
111 0x6F rsrc_free() Releases a resource file from memory. 6.127
112 0x70 rsrc_gaddr() Calculates the address of a resource element. 6.127
113 0x71 rsrc_saddr() Sets the address of a resource element. 6.130
114 0x72 rsrc_obfix() Changes the coordinates of an object from

character-based to pixel-based.
6.129

115 0x73 rsrc_rcfix() Changes the coordinates of a resource file from
character-based to pixel-based.

6.130

120 0x78 shel_read() Determine’s the processes parent and command
tail.

6.141

121 0x79 shel_write() Manages process loading and control. 6.142
122 0x7A shel_get() Copies data from the system’s shell buffer. 6.140
123 0x7B shel_put() Stores data in the system’s shell buffer. 6.141
124 0x7C shel_find() Searches the AES’s path for a file. 6.139
125 0x7D shel_envrn() Searches the system environment string. 6.139
130 0x82 appl_getinfo() Returns information about the AES. 6.48

VDI Functions by Opcode – A.15

T H E A T A R I C O M P E N D I U M

VDI Functions by Opcode

Opcode,
Subopcode(s)

(if required) Function Summary Page

N/A vq_gdos() Test for presence of GDOS. 7.92
-1, 6 v_set_app_buff() Reserve bezier workspace. 7.77

1 v_opnwk() Open physical workstation. 7.66
2 v_clswk() Close a physical workstation. 7.35
3 v_clrwk() Close a physical workstation. 7.34
4 v_updwk() Update workstation. 7.78

5, 1 vq_chcells() Return alpha screen size. 7.87
5, 2 v_exit_cur() Exit text mode. 7.46
5, 3 v_enter_cur() Enter text mode. 7.45
5, 4 v_curup() Move text cursor up one row. 7.40
5, 5 v_curdown() Move text cursor down one row. 7.37
5, 6 v_curright() Move text cursor right one row. 7.38
5, 7 v_curleft() Move text cursor up one row. 7.38
5, 8 v_curhome() Home text cursor. 7.37
5, 9 v_eeos() Erase to end of screen. 7.42
5, 10 v_eeol() Erase to end of line. 7.41
5, 11 vs_curaddress() Position text cursor. 7.126
5, 12 v_curtext() Output text (alpha mode). 7.39
5, 13 v_rvon() Reverse text on (alpha mode). 7.75
5, 14 v_rvoff() Reverse text off (alpha mode). 7.75
5, 15 vq_curaddress() Inquire text cursor location. 7.89
5, 16 vq_tabstatus() Get availability of tablet. 7.95
5, 17 v_hardcopy() Output screen to printer. 7.57
5, 18 v_dspcur() Display text cursor. 7.40
5, 19 v_rmcur() Remove text cursor. 7.74
5, 20 v_form_adv() Advance printer page. 7.48
5, 21 v_output_window() Output window of page to printer. 7.68
5, 22 v_clear_disp_list() Clear display list. 7.34
5, 23 v_bit_image() Render bit-image file. 7.31
5, 24 vq_scan() Return printer scan heights. 7.94
5, 25 v_alpha_text() Output printer text (alpha mode). 7.23
5, 60 vs_palette() Set color palette. 7.127
5, 81 vt_resolution() Set tablet resolution. 7.165
5, 82 vt_axis() Set tablet axis resolution. 7.164
5, 83 vt_origin() Set tablet origin. 7.164
5, 84 vq_tdimensions() Return tablet X and Y dimensions. 7.96
5, 85 vt_alignment() Set tablet alignment. 7.163
5, 91 vqp_films() Return camera film types. 7.101
5, 92 vqp_state() Return camera driver state. 7.101
5, 93 vsp_state() Set camera driver state. 7.145
5, 94 vsp_save() Save camera driver state. 7.145
5, 95 vsp_message() Supress camera screen messages. 7.144
5, 96 vqp_error() Return camera error status. 7.100
5, 98 v_meta_extents() Specify metafile bounding box. 7.60

A.16 – Functions by Opcode

Opcode,
Subopcode(s)

(if required) Function Summary Page

T H E A T A R I C O M P E N D I U M

5, 99† v_write_meta() Write metafile item. 7.79
5, 99, 0† vm_pagesize() Set metafile page size. 7.85
5, 99, 1† vm_coords() Set metafile coordinate system. 7.83

5, 99, 32, 1† v_bez_qual() Set bezier quality. 7.30
5, 100 vm_filename() Set metafile filename. 7.84
5, 102 v_fontinit() Select a new system font. 7.48
5, 2000 v_pgcount() Specify laser printer copies. 7.69

6 v_pline() Draw a polyline. 7.71
6, 13 v_bez() Draw a bezier curve. 7.26

7 v_pmarker() Draw polymarkers. 7.72
8 v_gtext() Output graphic text. 7.56
9 v_fillarea() Draw a filled polygon. 7.46

9, 13 v_bez_fill() Draw a filled bezier curve. 7.27
10 v_cellarray() Draw a cell array. 7.32

11, 1 v_bar() Draw a rectangle. 7.25
11, 2 v_arc() Draw an arc. 7.24
11, 3 v_pieslice() Draw a pieslice. 7.70
11, 4 v_circle() Draw a circle. 7.33
11, 5 v_ellipse() Draw an ellipse 7.43
11, 6 v_ellarc() Draw an elliptical arc. 7.42
11, 7 v_ellpie() Draw an elliptical pie segment. 7.44
11, 8 v_rbox() Draw a rounded-rectangle. 7.72
11, 9 v_rfbox() Draw a filled rounded-rectangle. 7.73

11, 10 v_justified() Output justified text. 7.58
11, 13† v_bez_off() Disable bezier drawing. 7.28
11, 13† v_bez_on() Enable bezier drawing. 7.29

12 vst_height() Set graphic text height (in pixels). 7.153
13 vst_rotation() Set graphic text rotation. 7.156
14 vs_color() Set color palette index. 7.126
15 vsl_type() Set line type. 7.135
16 vsl_width() Set line width. 7.137
17 vsl_color() Set line color. 7.134
18 vsm_type() Set marker type. 7.142
19 vsm_height() Set marker height. 7.139
20 vsm_color() Set marker color. 7.138
21 vst_font() Set graphic text font. 7.152
22 vst_color() Set graphic text color. 7.150
23 vsf_interior() Set fill interior type. 7.129
24 vsf_style() Set fill style type. 7.131
25 vsf_color() Set fill color. 7.129
26 vq_color() Inquire palette index. 7.88
27 vq_cellarray() Inquire cell array. 7.86
28† vrq_locator() Poll for mouse/keyboard input. 7.121
28† vsm_locator() Sample mouse/keyboard input. 7.140
29† vrq_valuator() Poll for ‘valuator’ input. 7.123
29† vsm_valuator() Sample ‘valuator’ input. 7.143
30† vrq_choice() Poll for ‘choice’ input. 7.121
30† vsm_choice() Sample input from ‘choice’ device. 7.138

VDI Functions by Opcode – A.17

Opcode,
Subopcode(s)

(if required) Function Summary Page

T H E A T A R I C O M P E N D I U M

31† vrq_string() Poll for keyboard string input. 7.122
31† vsm_string() Sample keyboard string input. 7.141
32 vswr_mode() Set writing mode. 7.162
33 vsin_mode() Set input mode. 7.133
35 vql_attributes() Return line attributes. 7.98
36 vqm_attributes() Return marker attributes. 7.99
37 vqf_attributes() Return fill area attributes. 7.96
38 vqt_attributes() Return text attributes. 7.104
39 vst_alignment() Set graphic text alignment. 7.146
100 v_opnvwk() Open virtual workstation. 7.61
101 v_clsvwk() Close a virtual workstation. 7.35
102 vq_extnd() Inquire workstation attributes. 7.89
103 v_contourfill() Fill an irregularly shaped region. 7.36
104 vsf_perimeter() Set fill perimeter visibility. 7.130
105 v_get_pixel() Read screen pixel value. 7.55
106 vst_effects() Set graphic text effects. 7.150
107 vst_point() Set graphic text height (by point). 7.155
108 vsl_ends() Set line end style. 7.134
109 vro_cpyfm() Copy raster (opaque mode). 7.119
110 vr_trnfm() Transform raster form. 7.117
111 vsc_form() Set mouse form. 7.128
112 vsf_udpat() Set user defined fill pattern 7.132
113 vsl_udsty() Set user-defined line style. 7.136
114 vr_recfl() Output filled rectangle. 7.117
115 vqin_mode() Return input mode for device. 7.97
116 vqt_extent() Return graphic text extent. 7.107
117 vqt_width() Return graphic character width. 7.115
118 vex_timv() Install timer tick routine. 7.83
119 vst_load_fonts() Load fonts from disk. 7.154
120 vst_unload_fonts() Unload fonts. 7.160
121 vrt_cpyfm() Copy raster (transparent mode). 7.124
122 v_show_c() Show mouse cursor. 7.77
123 v_hide_c() Hide mouse cursor. 7.57
124 vq_mouse() Get mouse position and state. 7.93
125 vex_butv() Install mouse button routine. 7.80
126 vex_motv() Install mouse movement routine. 7.82
127 vex_curv() Install mouse rendering routine. 7.81
128 vq_key_s() Get shift key status. 7.93
129 vs_clip() Set clipping rectangle. 7.125
130 vqt_name() Return font name and index. 7.113
131 vqt_fontinfo() Return font size information. 7.111
232 vqt_fontheader() Copy the Speedo font header into a user defined buffer. 7.110
234 vqt_trackkern() Inquire about current track kerning. 7.114
235 vqt_pairkern() Inquire about current pair kerning. 7.115
236 vst_charmap() Set ASCII/Speedo index interpretation mode. 7.149
237 vst_kern() Set kerning modes. 7.154
239 v_getbitmap_info() Return Speedo font bitmap extents. 7.53
240† vqt_f_extent() Return outline text extent. 7.108

A.18 – Functions by Opcode

Opcode,
Subopcode(s)

(if required) Function Summary Page

T H E A T A R I C O M P E N D I U M

240† vqt_f_extent16() Return 16-bit outline text extent. 7.109
241† v_ftext() Output outlined text. 7.49
241† v_ftext16() Output 16-bit outlined text. 7.50
241† v_ftext_offset() Output outlined text with individual character offsets. 7.51
241† v_ftext_offset16() Output 16-bit outlined text with individual character offsets. 7.52
242 v_killoutline() Free character outline (no longer used with SpeedoGDOS). 7.59
243 v_getoutline() Return character outline. 7.54
244 vst_scratch() Set outline scratch buffer. 7.157
245 vst_error() Set GDOS error reporting mode. 7.151
246† vst_arbpt() Set outline text point size. 7.147
246† vst_arbpt32() Set outline text point size to a fix31 value. 7.148
247 vqt_advance() Return character advance vector. 7.102
247 vqt_advance32() Return character advance vector as a fix31 value. 7.103
248 vqt_devinfo() Return device information. 7.106
249 v_savecache() Save bitmap cache to disk. 7.76
250 v_loadcache() Load bitmap cache from disk. 7.59
251 v_flushcache() Flush outline font cache. 7.47
252† vst_setsize() Set outline text proportion. 7.158
252† vst_setsize32() Set outline text proportion to a fix31 value. 7.159
253 vst_skew() Set outline text skew factor. 7.160
254 vqt_get_table() Return character mappings. 7.112
255 vqt_cachesize() Return bitmap cache size 7.105

† These functions share an opcode and sub-opcode.

T H E A T A R I C O M P E N D I U M

— APPENDIX B —

MEMORY MAP

Memory Map – B.3

T H E A T A R I C O M P E N D I U M

Usage

The information in this appendix provides a useful reference to the memory locations of the
Atari computer series. While most documented locations have stayed backwardly compatible,
some have changed in meaning. Software programmers directly accessing these locations should
carefully consider the possibility that a location may move or not even exist in a newer version
of the OS. For this reason many OS functions exist to manipulate system variables, vectors,
interrupts, and devices. These should always be used, if possible, as an alternative to directly
accessing hardware registers, vectors, interrupts, and variables.

WARNING!
In addition to those considerations mentioned above, directly accessing hardware registers can
cause damage to hardware if not done correctly. In particular, improper use of the Falcon030
video registers could damage an attached monitor. Likewise, use of the floppy and hard drive
registers can cause data loss and drive damage. For these reasons, it is strongly recommended
that you avoid using hardware registers when possible, and when otherwise unavoidable, they
should be used with extreme care.

Memory Map Conventions
For each Atari computer that a specific hardware location is valid for, the appropriate box will
be shaded. Following is a key to several abbreviations and concepts used in this guide:

BYTE Occupies one byte (8 bits).
WORD Occupies one WORD (16 bits).
LONG Occupies one longword (32 bits).

OW Occupies the odd WORD of a LONG.
EW Occupies the even WORD of a LONG.
OB Occupies the odd BYTE of a WORD.
EB Occupies the even BYTE of the WORD.

ROM Location is Read-Only Memory
RAM Location is Read-Write Memory
I/O Location is hardware-mapped

VME Location addresses VME address space
N/A Not applicable
RO Read-only location
WO Write-only location
RW Read-write location

RSVD Reserved
Unassigned Either not assigned or undocumented (hardware

developers should always consult Atari before
mapping a third-party device to a hardware location).

B.4 – Memory Map

Location(s) Size

S
T

M
e
g
a

S
T

S
T
e

M
e
g
a

S
T
e

T
T
0
3
0

F
a
l
c
o
n
0
3
0

Type Meaning

T H E A T A R I C O M P E N D I U M

S y s t e m B o o t V a r i a b l e s
0x00000000 LONG ROM Reset: Supervisor Stack Pointer
0x00000004 LONG ROM Reset: Program Counter

6 8 x 0 0 E x c e p t i o n V e c t o r s
0x00000008 LONG RAM Bus Error Vector
0x0000000C LONG RAM Address Error Vector
0x00000010 LONG RAM Illegal Instruction Error Vector
0x00000014 LONG RAM Divide by 0 Error Vector
0x00000018 LONG RAM CHK Instruction Exception Vector
0x0000001C LONG RAM TRAPV, FTRAPcc, TRAPcc, cpTRAPcc Instruction

Exception Vector
0x00000020 LONG RAM Privilege Violation Exception Vector
0x00000024 LONG RAM Trace Exception Vector
0x00000028 LONG RAM Line-A Exception Vector
0x0000002C LONG RAM Line-F Exception Vector
0x00000030 LONG RAM Reserved by Motorola
0x00000034 LONG RAM Coprocessor Protocol Violation Vector
0x00000038 LONG RAM Format Error Vector
0x0000003C LONG RAM Uninitialized Interrupt Vector
0x00000040 –
0x0000005C

LONG RAM Reserved by Motorola

0x00000060 LONG RAM Spurious Interrupt Vector (taken when an interrupt
occurs during Bus Error handling)

A u t o - V e c t o r I n t e r r u p t s
0x00000064 LONG RAM Level 1 Auto-Vector Interrupt (used if Hblank is

enabled)
0x00000068 LONG RAM Level 2 Auto-Vector Interrupt (Hblank)
0x0000006C LONG RAM Level 3 Auto-Vector Interrupt (Normal processor

interrupt level)
0x00000070 LONG RAM Level 4 Auto-Vector Interrupt (Vblank)
0x00000074 LONG RAM Level 5 Auto-Vector Interrupt (currently unused)
0x00000078 LONG RAM Level 6 Auto-Vector Interrupt (MFP Interrupts)
0x0000007C LONG RAM Level 7 Auto-Vector Interrupt (Non-maskable)

T R A P E x c e p t i o n V e c t o r s
0x00000080 LONG RAM TRAP #0 Handler (Currently Unused)
0x00000084 LONG RAM TRAP #1 Handler (GEMDOS)
0x00000088 LONG RAM TRAP #2 Handler (AES and VDI)

68881 Co-processor Exception Vectors – B.5

Location(s) Size

S
T

M
e
g
a

S
T

S
T
e

M
e
g
a

S
T
e

T
T
0
3
0

F
a
l
c
o
n
0
3
0

Type Meaning

T H E A T A R I C O M P E N D I U M

0x0000008C LONG RAM TRAP #3 Handler (Currently Unused)
0x00000090 LONG RAM TRAP #4 Handler (Currently Unused)
0x00000094 LONG RAM TRAP #5 Handler (Currently Unused)
0x00000098 LONG RAM TRAP #6 Handler (Currently Unused)
0x0000009C LONG RAM TRAP #7 Handler (Currently Unused)
0x000000A0 LONG RAM TRAP #8 Handler (Currently Unused)
0x000000A4 LONG RAM TRAP #9 Handler (Currently Unused)
0x000000A8 LONG RAM TRAP #10 Handler (Currently Unused)
0x000000AC LONG RAM TRAP #11 Handler (Currently Unused)
0x000000B0 LONG RAM TRAP #12 Handler (Currently Unused)
0x000000B4 LONG RAM TRAP #13 Handler (BIOS)
0x000000B8 LONG RAM TRAP #14 Handler (XBIOS)
0x000000BC LONG RAM TRAP #15 Handler (Currently Unused)

6 8 8 8 1 C o - p r o c e s s o r E x c e p t i o n V e c t o r s
0x000000C0 LONG RAM FPCP Branch or Set on Unordered Condition Vector
0x000000C4 LONG RAM FPCP Inexact Result Vector
0x000000C8 LONG RAM FPCP Floating-Point Divide by Zero Vector
0x000000CC LONG RAM FPCP Underflow Vector
0x000000D0 LONG RAM FPCP Operand Error Vector
0x000000D4 LONG RAM FPCP Overflow Vector
0x000000D8 LONG RAM FPCP Signaling NAN Vector
0x000000DC LONG RAM Unassigned

6 8 8 5 1 M M U E x c e p t i o n V e c t o r s
0x000000E0 LONG RAM MMU Configuration Error Vector
0x000000E4 LONG RAM MMU Illegal Operation Vector
0x000000E8 LONG RAM MMU Access Violation Vector
0x000000EC –
0x000000FC

LONG RAM Reserved by Motorola

M u l t i - F u n c t i o n P e r i p h e r a l P o r t V e c t o r s
0x00000100 LONG RAM MFP #0: Parallel-Port Interrupt Vector
0x00000104 LONG RAM MFP #1: RS-232 Carrier Detect Vector (On a

Falcon030, this MFP interrupt is connected to the
parallel port ‘Acknowledge’ signal, not the RS-232
port.)

0x00000108 LONG RAM MFP #2: RS-232 Clear to Send Vector
0x0000010C LONG RAM MFP #3: BLiTTER Operation Complete (when

hardware BLiTTER is present)

B.6 – Memory Map

Location(s) Size

S
T

M
e
g
a

S
T

S
T
e

M
e
g
a

S
T
e

T
T
0
3
0

F
a
l
c
o
n
0
3
0

Type Meaning

T H E A T A R I C O M P E N D I U M

0x00000110 LONG RAM Timer D: RS-232 Baud Rate Generator
0x00000114 LONG RAM Timer C: 200 Hz System Clock
0x00000118 LONG RAM MFP #4: Keyboard/MIDI (6850 processor)
0x0000011C LONG RAM MFP #5: Floppy/Hard Disk Controller
0x00000120 LONG RAM Timer B: Horizontal Blank Counter
0x00000124 LONG RAM RS-232 Transmit Error Interrupt
0x00000128 LONG RAM RS-232 Transmit Buffer Error Interrupt
0x0000012C LONG RAM RS-232 Receive Error Interrupt
0x00000130 LONG RAM RS-232 Receive Buffer Full Interrupt
0x00000134 LONG RAM Timer A: DMA Sound Complete
0x00000138 LONG RAM MFP #6: RS-232 Ring Indicator (On a Falcon030, this

is the only Serial port vector that remains part of the
MFP. All other Serial port functions have been
transferred to the SCC.)

0x0000013C LONG RAM MFP #7: Monochrome Monitor Detect

M u l t i - F u n c t i o n P e r i p h e r a l P o r t V e c t o r s (T T)
0x00000140 LONG RAM MFP #0: General Purpose I/O Pin
0x00000144 LONG RAM MFP #1: General Purpose I/O Pin
0x00000148 LONG RAM MFP #2: SCC DMAC Interrupt
0x0000014C LONG RAM MFP #3: RS-232 Ring Indicator
0x00000150 LONG RAM Timer D: RS-232 Baud Rate Generator
0x00000154 LONG RAM Timer C: SCC TRxCB
0x00000158 LONG RAM MFP #4: Reserved
0x0000015C LONG RAM MFP #5: SCSI DMAC Interrupt
0x00000160 LONG RAM Timer B: Unassigned
0x00000164 LONG RAM RS-232 Transmit Error Interrupt
0x00000168 LONG RAM RS-232 Transmit Buffer Error Interrupt
0x0000016C LONG RAM RS-232 Receive Error Interrupt
0x00000170 LONG RAM RS-232 Receive Buffer Error Interrupt
0x00000174 LONG RAM Timer A: Reserved
0x00000178 LONG RAM MFP #6: RTC IRQ
0x0000017C LONG RAM MFP #7: SCSI Controller IRQ

Z i l o g 8 5 C 3 0 (S C C) I n t e r r u p t V e c t o r s
0x00000180 LONG RAM SCC Port B Transmit Buffer Empty Vector
0x00000184 LONG RAM Unused
0x00000188 LONG RAM SCC Port B External Status Change Vector
0x0000018C LONG RAM Unused

Processor State Save Area – B.7

Location(s) Size

S
T

M
e
g
a

S
T

S
T
e

M
e
g
a

S
T
e

T
T
0
3
0

F
a
l
c
o
n
0
3
0

Type Meaning

T H E A T A R I C O M P E N D I U M

0x00000190 LONG RAM SCC Port B Receive Character Available Vector
0x00000194 LONG RAM Unused
0x00000198 LONG RAM SCC Port B Special Receive Condition Vector
0x0000019C LONG RAM Unused
0x000001A0 LONG RAM SCC Port A Transmit Buffer Empty Vector
0x000001A4 LONG RAM Unused
0x000001A8 LONG RAM SCC Port A External Status Change Vector
0x000001AC LONG RAM Unused
0x000001B0 LONG RAM SCC Port A Receive Character Available Vector
0x000001B4 LONG RAM Unused
0x000001B8 LONG RAM SCC Port A Special Receive Condition Vector
0x000001BC LONG RAM Unused
0x000001C0 –
0x0000037F

N/A RAM Undefined

P r o c e s s o r S t a t e S a v e A r e a
0x00000380 LONG RAM proc_lives: If, after a system failure, the operating

system is able to save the processor state in the
following variables, this value will be 0x12345678.

0x00000384 LONG RAM proc_dregs: The contents of registers D0 through D7
are stored here.

0x000003A4 LONG RAM proc_aregs: The contents of registers A0 through A7
are stored here.

0x000003C4 LONG RAM proc_pc: The first byte of this longword indicates the
exception number that occurred.

0x000003C8 LONG RAM proc_usp: The user stack pointer (USP) is saved
here.

0x000003CC–
0x000003EA

WORD RAM proc_stk: The top 16 WORDs of the supervisor stack
are saved here.

0x000003EC –
0x000003FF

N/A RAM Unassigned

S y s t e m V e c t o r s
0x00000400 LONG RAM etv_timer: System Timer Handoff Vector (see

GEMDOS)
0x00000404 LONG RAM etv_critic: Critical Error Handoff Vector (see

GEMDOS)
0x00000408 LONG RAM etv_term: Process Termination Handler (see

GEMDOS)
0x0000040C –
0x0000041C

LONG RAM Reserved for future vectors.

B.8 – Memory Map

Location(s) Size

S
T

M
e
g
a

S
T

S
T
e

M
e
g
a

S
T
e

T
T
0
3
0

F
a
l
c
o
n
0
3
0

Type Meaning

T H E A T A R I C O M P E N D I U M

S y s t e m V a r i a b l e s
0x00000420 LONG RAM memvalid: If this variable is equal to $752019F3 and

the value at memval2 ($43A) is also correct, then the
last coldstart was successful and memcntlr ($424) is
valid. As of TOS 1.02 memval3 ($51A) must also be
correct.

0x00000424 WORD RAM memcntlr: Bits 11–8 of this WORD contains the
memory controller state.

0x00000426 LONG RAM resvalid: If this location contains the magic number
$31415926 then the system will jump through
resvector (below) on a system reset.

0x0000042A LONG RAM resvector: If the magic number in resvalid is set
properly, this vector will be jumped through on a
system reset with the return address placed in A6.

0x0000042E LONG RAM phystop: Physical top of ST compatible RAM.
0x00000432 LONG RAM _membot: This value points to the lowest memory

location available for the system heap. This value is
used to initialize GEMDOS free memory.

0x00000436 LONG RAM _memtop: This value points to the highest memory
location available for the system heap. This value is
used to initialize GEMDOS free memory.

0x0000043A LONG RAM memval2: This value will equal $237698AA if
coldstart was successful. See memvalid ($420).

0x0000043E WORD RAM flock: This variable should be set to non-zero prior to
accessing the DMA registers to prevent the system or
other processes from attempting DMA concurrently.

0x00000440 WORD RAM seekrate: This variable sets the floppy drive seek rate
for both floppy drives as follows:

Value Seek Rate
0 6 ms
1 12 ms
2 2 ms
3 3 ms (default)

0x00000442 WORD RAM _timr_ms: This value indicates the time between
system timer ticks in milliseconds. Current machines
have the value of 20 (0x14) equating to 50 timer
updates per second. This value is returned by the
BIOS function Tickcal() and is placed on the stack
prior to jumping through the timer handoff vector
($400).

System Variables – B.9

Location(s) Size

S
T

M
e
g
a

S
T

S
T
e

M
e
g
a

S
T
e

T
T
0
3
0

F
a
l
c
o
n
0
3
0

Type Meaning

T H E A T A R I C O M P E N D I U M

0x00000444 WORD RAM _fverify: When non-zero, all floppy writes are verified,
otherwise, no verification is done.

0x00000446 WORD RAM _bootdev: This value represents the device from which
the system was booted (0 = A:, 1 = B:, etc.)

0x00000448 WORD RAM palmode: A value of 0 indicates that NTSC video is
being used, otherwise, PAL is being is used.

0x0000044A WORD RAM defshftmd: This value indicates the default video
shifter mode.

0x0000044C WORD RAM sshiftmd: This value is a copy of the hardware register
at 0x00FF8260 which indicates the current ST shifter
mode.

0x0000044E LONG RAM _v_bas_ad: This indicates the starting address of the
logical screen. Prior to TOS 1.06, this address
needed to be aligned on a 256 byte boundary. As of
TOS 1.06, it may be WORD aligned.

0x00000452 WORD RAM vblsem: A value of 0 here disables all vertical blank
processing while a value of 1 enables it.

0x00000454 WORD RAM nvbls: This value indicates the number of slots in the
deferred vertical blank handler list. If all table slots are
full and your application needs to install a handler, it
may allocate a new, larger list, update this value and
the pointer below.

0x00000456 LONG RAM _vblqueue: This is a pointer to a list of pointers to the
deferred vertical blank handlers. Each pointer in the
list pointed to by this variable which contains a value
other than 0 is ‘JSR’ed’ through at each vertical blank.
This occurs 50 times per second on PAL color
monitors, 60 times per second on NTSC color
monitors and 70 times per second on all monochrome
monitors.

0x0000045A LONG RAM colorptr: If this value is non-zero then at the next
vertical blank, the 16 color registers pointed to by this
value will be loaded into the hardware registers.

0x0000045E LONG RAM screenpt: If this value is non-zero then at the next
vertical blank, the value stored here will be loaded into
the hardware register which points to the base of the
physical screen.

0x00000462 LONG RAM _vbclock: This value indicates the number of vertical
blanks that have been processed since the last reset.

B.10 – Memory Map

Location(s) Size

S
T

M
e
g
a

S
T

S
T
e

M
e
g
a

S
T
e

T
T
0
3
0

F
a
l
c
o
n
0
3
0

Type Meaning

T H E A T A R I C O M P E N D I U M

0x00000466 LONG RAM _frlock: This value indicates the number of vertical
blanks regardless of whether they were processed or
not (blocked by vblsem).

0x0000046A LONG RAM hdv_init: This value points the hard disk initialization
routine or is 0 to indicate that no hard disk is installed.

0x0000046E LONG RAM swv_vec: The vector pointed to by this routine is called
when the system detects a change in monitors
(normally this points to the reset handler).

0x00000472 LONG RAM hdv_bpb: This vector is used when Getbpb() is called.
A value of 0 indicates that no hard disk is attached.

Applications installing themselves here should expect
parameters to be located on the stack as they would
be for the actual function call beginning at 4(sp). If the
installed process services the call it should RTS,
otherwise, leaving the stack intact, should JMP
through the old vector value.

0x00000476 LONG RAM hdv_rw: This vector is used when Rwabs() is called. A
value of 0 here indicates that no hard disk is attached.

Applications installing themselves here should expect
parameters to be located on the stack as they would
be for the actual function call beginning at 4(sp). If the
installed process services the call it should RTS,
otherwise, leaving the stack intact, should JMP
through the old vector value.

0x0000047A LONG RAM hdv_boot: This vector is JSR’ed through to boot from
the hard disk. A value of 0 here indicates that no hard
disk is attached. If the installed process services the
call it should RTS, otherwise, leaving the stack intact,
should JMP through the old vector value.

0x0000047E LONG RAM hdv_mediach: This vector is used when Mediach() is
called. A value of 0 here indicates that no hard disk is
attached.

Applications installing themselves here should expect
parameters to be located on the stack as they would
be for the actual function call beginning at 4(sp). If the
installed process services the call it should RTS,
otherwise, leaving the stack intact, should JMP
through the old vector value.

System Variables – B.11

Location(s) Size

S
T

M
e
g
a

S
T

S
T
e

M
e
g
a

S
T
e

T
T
0
3
0

F
a
l
c
o
n
0
3
0

Type Meaning

T H E A T A R I C O M P E N D I U M

0x00000482 WORD RAM _cmdload: During boot if this location contains a non-
zero value, the system will attempt to load
“COMMAND.PRG” from the boot device rather than
initializing the GEM Desktop.

0x00000484 BYTE RAM conterm: This location contains a bit array which
determine several system attributes as follows:

Bit Meaning if Set
0 Enable key-click
1 Enable key repeat
2 Enable system bell
3 Cause Bconin () to

return shift status
0x00000485 BYTE RAM Reserved
0x00000486 LONG RAM trp14ret: This value is used by Trap #14 OS code to

store the return address.
0x0000048A LONG RAM criticret: This value is used by etv_critic handling code

to store the return address.
0x0000048E –
0x0000049D

BYTE RAM themd: This is the MD (Memory Descriptor structure)
initialized by the BIOS at boot and returned by
Getmpb() .

0x0000049E LONG RAM _md: This is a pointer to additional MD structures.
0x000004A2 LONG RAM savptr: This is a pointer to the buffer which the BIOS

uses to save internal registers.
0x000004A6 WORD RAM _nflops: This value indicates the number of floppy

drives currently connected to the system.
0x000004A8 LONG RAM con_state: This is a vector to internal console output

routines which is set to various VT-52 ESC functions.
0x000004AC WORD RAM save_row: This value contains the row number of the

cursor temporarily when using the ESC-Y VT-52
sequence.

0x000004AE LONG RAM sav_contxt: This points to a temporary buffer where
the processor context is saved.

0x000004B2 –
0x000004B6

LONG RAM _bufl: The first longword here points to a BCB (Buffer
Control Block) used to store data sectors. The second
longword points to a BCB which is used to store FAT
and directory sectors.

0x000004BA LONG RAM _hz_200: This value is an ongoing counter for the
internal 200Hz clock. It is used as a seed value for the
Random() function.

B.12 – Memory Map

Location(s) Size

S
T

M
e
g
a

S
T

S
T
e

M
e
g
a

S
T
e

T
T
0
3
0

F
a
l
c
o
n
0
3
0

Type Meaning

T H E A T A R I C O M P E N D I U M

0x000004BE LONG RAM the_env: This longword is the default environment
string (four zeros).

0x000004C2 LONG RAM _drvbits: Each of 32 bits in this longword represents a
drive connected to the system. Bit #0 is A, Bit #1 is B
and so on. If at least one floppy is connected to the
system, both floppy bits will always be set because of
virtual swapping.

0x000004C6 LONG RAM _dskbufp: This variable points to a 1K disk operation
buffer and is also used by some graphics functions.

0x000004CA LONG RAM _autopath: This variable points to the GEMDOS path
specification of the directory to load ‘\AUTO’ folder
programs from (may be NULL to indicate default).

0x000004CE –
0x000004EA

LONG RAM _vbl_list: This area is used by the system for the initial
deferred vertical blank list.

0x000004EE WORD RAM _prt_cnt: This value is used by the ALT-HELP screen
dump code and is initialized to 0xFFFF. Each time
ALT-HELP is pressed, this value is incremented.
Custom screen dump code should check this value on
entry and if 0 begin a screen dump, otherwise, abort
the dump, reset the value to 0xFFFF and return.

0x000004F0 WORD RAM _prtabt: Flag is set to abort printing because of a
timeout.

System Variables – B.13

Location(s) Size

S
T

M
e
g
a

S
T

S
T
e

M
e
g
a

S
T
e

T
T
0
3
0

F
a
l
c
o
n
0
3
0

Type Meaning

T H E A T A R I C O M P E N D I U M

0x000004F2 LONG RAM _sysbase: This value points to the beginning of the
TOS operating system. The beginning of the OS
contains a structure as follows:

typedef struct _osheader
{

/* BRA to Reset Code */
UWORD os_entry;
/* TOS Version */
UWORD os_version;
/* Reset Code */
VOID *reseth;
/* Pointer to OSBASE */
struct _osheader *os_beg;
/* Pointer to OS end*/
VOID *os_end;
/* Reserved */
LONG os_rsv1;
/* Memory Usage PB */
GEM_MUPB *os_magic;
/* OS Date $YYYYMMDD */
LONG os_date;
/* OS Conf. Bits */
UWORD os_conf;
/* DOS OS Date */
UWORD os_dosdate;

/* As of TOS 1.2 */

/* Base of OS Pool */
char **p_root;
/* Key. Shift State */
char **pkbshift;
/* Current process */
BASEPAGE **p_run;
/* Reserved */
char *p_rsv2;

} OSHEADER;

0x000004F6 LONG RAM _shell_p: Normally not utilized, this vector allows a
shell process to be installed which expects to be
called with a pointer to a CLI-type command to be at
4(sp). If a command handler does not exist, this value
will be NULL .

0x000004FA LONG RAM end_os: This value points to the end of RAM utilized
by TOS (copied into membot).

B.14 – Memory Map

Location(s) Size

S
T

M
e
g
a

S
T

S
T
e

M
e
g
a

S
T
e

T
T
0
3
0

F
a
l
c
o
n
0
3
0

Type Meaning

T H E A T A R I C O M P E N D I U M

0x000004FE LONG RAM exec_os: This vector is jumped through when
operating system initialization is complete (normally
points to the Desktop/AES startup code).

0x00000502 LONG RAM scr_dump: The routine pointed to by this value is
called each time the user pressed ALT-HELP.

0x00000506 LONG RAM prv_lsto: This vector is called to check the status of the
‘PRN:’ output device by the Prtblk() routine.

0x0000050A LONG RAM prv_lst: This vector is called to output a byte to the
‘PRN:’ device by the Prtblk() routine..

0x0000050E LONG RAM prv_auxo: This vector is called to check the status of
the ‘AUX:’ output device by the Prtblk() routine.

0x00000512 LONG RAM prv_aux: This vector is called to output a byte to the
‘AUX:’ device by the Prtblk() routine.

System Variables – B.15

Location(s) Size

S
T

M
e
g
a

S
T

S
T
e

M
e
g
a

S
T
e

T
T
0
3
0

F
a
l
c
o
n
0
3
0

Type Meaning

T H E A T A R I C O M P E N D I U M

0x00000516 LONG RAM pun_ptr: This points to a structure used by AHDI as
follows:

/* # supported drives */

#define MAXUNITS 16

typedef struct
{

/* Maximum # of drives
 * supported by system,
 * including floppies.
 */
WORD puns;
/* Bit 0-2 indicates
 * the physical ACSI unit
 * it resides on.
 * Bit 7 = 0 indicates
 * that the drive exists
 */
BYTE pun[MAXUNITS];
/* Indicates offset in
 * physical sectors (512
 * bytes) to the start of
 * partition.
 */
LONG prt_start[MAXUNITS];

/* The following are
 * only present as of
 * AHDI 3.0. */

/* Cookie is $41484449 */
LONG P_cookie;
/* Points to P_cookie */
LONG *P_cookptr;
/* Version of AHDI */
UWORD P_version;
/* Size of the largest
 * logical sector. */
UWORD P_max_sector;
/* Reserved */
LONG reserved[MAXUNITS];

} PUN_INFO;

0x0000051A LONG RAM memval3: Will equal $5555AAAA if coldstart was
successful. See memvalid ($420).

B.16 – Memory Map

Location(s) Size

S
T

M
e
g
a

S
T

S
T
e

M
e
g
a

S
T
e

T
T
0
3
0

F
a
l
c
o
n
0
3
0

Type Meaning

T H E A T A R I C O M P E N D I U M

0x0000051E –
0x0000053A

LONG RAM xconstat: This location contains eight pointers to the
BIOS Bconstat() functions for eight BIOS devices.

0x0000053E –
0x0000055A

LONG RAM xconin: This location contains eight pointers to the
BIOS Bconin() functions for eight BIOS devices.

0x0000055E –
0x0000056A

LONG RAM xcostat: This location contains eight pointers to the
BIOS Bcostat() functions for eight BIOS devices.

0x0000057E –
0x0000059A

LONG RAM xconout: This location contains eight pointers to the
BIOS Bconout() functions for eight BIOS devices.

0x0000059E WORD RAM _longframe: If this value is 0 then the processor uses
short stack frames, otherwise it uses long stack
frames. This value is of interest to applications which
intercept TRAP handlers. When using short stack
frames, the first parameter will be found at 6(sp),
otherwise at 8(sp).

0x000005A0 LONG RAM _p_cookies: This is a pointer to the system Cookie
Jar.

0x000005A4 LONG RAM ramtop: If ramvalid is correct, this is a pointer to the
end of alternative RAM.

0x000005A8 LONG RAM ramvalid: This value should be $1357BD13 to
indicate that ramtop is correct.

0x000005AC LONG RAM bell_hook: This vector is jumped through to sound the
system bell.

0x000005B0 LONG RAM kcl_hook: This vector is jumped through to sound
system key clicks. The scancode of the current
character is placed in the low byte of D0.

S y s t e m R A M / E x p a n s i o n
0x000005B4 –
0x009FFFFF

BYTE RAM/
ROM

This area contains whatever remaining ST compatible
RAM is available. Additional space at this location is
utilized by the operating system. Memory locations
below 0x00E00000 on a machine other than the Mega
STe or below 0x00A00000 on a Mega STe that are
not part of this RAM may be utilized by hardware
developers.

0x00A00000 –
0x00DEFFFF

BYTE VME/
RAM

On a Mega STe, this area is mapped to VME
A24:D16 address space, otherwise it may be
mapped to additional ST compatible RAM or I/O
space.

Falcon030 computers use this address space for
RAM.

IDE Controller – B.17

Location(s) Size

S
T

M
e
g
a

S
T

S
T
e

M
e
g
a

S
T
e

T
T
0
3
0

F
a
l
c
o
n
0
3
0

Type Meaning

T H E A T A R I C O M P E N D I U M

0x00DF0000 –
0x00DFFFFF

BYTE VME/
RAM

On a Mega STe, this area is mapped to VME
A16:D16 address space, otherwise it may be
mapped to additional ST compatible RAM or I/O
space.

Falcon030 computers use this address space for
RAM.

0x00E00000 –
0x00EFFFFF

BYTE ROM Operating system ROM’s as of TOS 1.06.

I D E C o n t r o l l e r
0x00F00000 OW I/O Data Register
0x00F00004 OB I/O Error Register as follows:

Bit 7 Bit 0

Bad Block Mark

Uncorrectable Error

ID Field Not Found

Command Aborted

Track 0 Not Found

DAM Not Found

0x00F00006 N/A Unused
0x00F00008 OB I/O Sector Count Register
0x00F0000A N/A I/O Unused
0x00F0000C OB I/O Sector Number Register
0x00F0000E N/A I/O Unused
0x00F00010 OB I/O Cylinder Low Register (this register is written with the

low eight bits of the ten bit cylinder number).
0x00F00012 N/A I/O Unused
0x00F00014 OB I/O Cylinder High Register (this register is written with the

high two bits of the ten bit cylinder number).
0x00F00016 N/A I/O Unused
0x00F00018 OB I/O Drive Head Register as follows:

Bit 0Bit 7

Head Number (0-15)

Drive Select
(0 = Master, 1 = Slave)

B.18 – Memory Map

Location(s) Size

S
T

M
e
g
a

S
T

S
T
e

M
e
g
a

S
T
e

T
T
0
3
0

F
a
l
c
o
n
0
3
0

Type Meaning

T H E A T A R I C O M P E N D I U M

0x00F0001A –
0x00F0001D

N/A I/O Unused

0x00F0001E OB I/O Status Register (on read) as follows:

Bit 7

Seek Complete

Error Code Waiting
Disk Index Passed

Bit 0

Data Error
_DRQ

Write Fault
Drive Ready
Drive Busy

Command Register (on write). The IDE registers must
be completely setup prior to writing the command byte
here.

0x00F00020 –
0x00F00036

N/A I/O Unused

0x00F00038 OB I/O Alternate Status Register (on read)
Alternate Command Register (on write)

0x00F00040 –
0x00F9FFFF

N/A N/A Unassigned

R O M / R e s e r v e d H a r d w a r e S p a c e
0x00FA0000 –
0x00FBFFFF

BYTE ROM Cartridge ROM

0x00FC0000 –
0x00FEFFFF

BYTE ROM On pre TOS 2.00 machines, this location marked the
beginning of the operating system ROM’s.

0x00FF0000 –
0x00FF7FFF

N/A N/A Unassigned

Memory Management Unit/Falcon Processor Control – B.19

Location(s) Size

S
T

M
e
g
a

S
T

S
T
e

M
e
g
a

S
T
e

T
T
0
3
0

F
a
l
c
o
n
0
3
0

Type Meaning

T H E A T A R I C O M P E N D I U M

M e m o r y M a n a g e m e n t U n i t / F a l c o n P r o c e s s o r C o n t r o l
0x00FF8000 OB I/O Memory Controller Configuration as follows:

Bank 0

Bank 1

Bit 3 Bit 0

00 = 128k

01 = 512k

10 = 2M

11 = Reserved

Settings

0x00FF8002 –
0x00FF8004

N/A I/O Unassigned

0x00FF8006 BYTE I/O Connected Monitor Type as follows:

Value Monitor
0 Atari Monochrome
1 Atari Color
2 VGA Color
3 Television

0x00FF8007 BYTE I/O Falcon Processor Control as follows:

Bit 5 Bit 0

STe Bus Emulation
(0 = On, 1 = Off)

Blitter Speed
(0 = 8MHz, 1 = 16MHz)

68030 Speed
(0 = 8MHz, 1 = 16MHz)

0x00FF8008 –
0x00FF81FF

N/A I/O Unassigned

V i d e o R e g i s t e r s
0x00FF8200 OB I/O Video Base Address High
0x00FF8202 OB I/O Video Base Address Mid
0x00FF8204 OB I/O Video Address Counter High (R/O)
0x00FF8206 OB I/O Video Address Counter Mid (R/O)
0x00FF8208 OB I/O Video Address Counter Low (R/O)

B.20 – Memory Map

Location(s) Size

S
T

M
e
g
a

S
T

S
T
e

M
e
g
a

S
T
e

T
T
0
3
0

F
a
l
c
o
n
0
3
0

Type Meaning

T H E A T A R I C O M P E N D I U M

0x00FF820A BYTE I/O Video Shifter Sync Mode as follows:

1= 60 Hz, 0 = 50 Hz

1 = External, 0 = Internal Sync

Bit 7 Bit 0

0x00FF820C OB I/O Video Base Address Low
0x00FF820E OB I/O Line Width Register (width of scanline in WORDs - 1).

On a Falcon030, this is a WORD value.
0x00FF8210 WORD I/O Falcon030 Line Width Register (width of scanline in

WORDs)
0x00FF8212 –
0x00FF823F

N/A I/O Unassigned

0x00FF8240 WORD I/O ST/e Compatible Palette Register #0: ST layout is as
follows:

XXXX XRRR XGGG XBBB

STe layout is as follows:

XXXX RRRR GGGG BBBB

For compatibility, STe bit arrangement per nibble is
0-3-2-1. These registers are simulated for
compatibility on newer model machines.

0x00FF8242 WORD I/O ST/e Compatible Palette Register #1
0x00FF8244 WORD I/O ST/e Compatible Palette Register #2
0x00FF8246 WORD I/O ST/e Compatible Palette Register #3
0x00FF8248 WORD I/O ST/e Compatible Palette Register #4
0x00FF824A WORD I/O ST/e Compatible Palette Register #5
0x00FF824C WORD I/O ST/e Compatible Palette Register #6
0x00FF824E WORD I/O ST/e Compatible Palette Register #7
0x00FF8250 WORD I/O ST/e Compatible Palette Register #8
0x00FF8252 WORD I/O ST/e Compatible Palette Register #9
0x00FF8254 WORD I/O ST/e Compatible Palette Register #10
0x00FF8256 WORD I/O ST/e Compatible Palette Register #11
0x00FF8258 WORD I/O ST/e Compatible Palette Register #12
0x00FF825A WORD I/O ST/e Compatible Palette Register #13

Video Registers – B.21

Location(s) Size

S
T

M
e
g
a

S
T

S
T
e

M
e
g
a

S
T
e

T
T
0
3
0

F
a
l
c
o
n
0
3
0

Type Meaning

T H E A T A R I C O M P E N D I U M

0x00FF825C WORD I/O ST/e Compatible Palette Register #14
0x00FF825E WORD I/O ST/e Compatible Palette Register #15
0x00FF8260 EB I/O ST Video Shifter Mode as follows:

Bit 7 Bit 0

00 = 320x200, 4 plane

01 = 640x200, 2 plane

10 = 640x400, 1 plane

11 = Reserved

0x00FF8262 EB I/O TT030 Video Shifter Mode as follows:

Bit 0

ST Palette Bank

000 = 320x200, 4 plane

001 = 640x200, 2 plane

010 = 640x400, 1 plane

100 = 640x480, 4 plane

110 = 1280x960, 1 plane

111 = 320x480, 8 plane

Hyper Mono Mode

Smear Mode

Bit 15 Bit 8

Bit 7

0x00FF8264 OB I/O Horizontal Scroll Register
0x00FF8266 WORD I/O SPSHIFT Control Register as follows:

Bit Meaning When Set
4 Enable Bitplane Mode
5 Use External VSYNC
6 Use External HSYNC
8 Enable Truecolor Mode
10 Enable 2-Color Mode

0x00FF8268 –
0x00FF827D

N/A Unassigned

B.22 – Memory Map

Location(s) Size

S
T

M
e
g
a

S
T

S
T
e

M
e
g
a

S
T
e

T
T
0
3
0

F
a
l
c
o
n
0
3
0

Type Meaning

T H E A T A R I C O M P E N D I U M

0x00FF827E EB I/O STACY Display State as follows:

Bit 7 Bit 0

1 = Backlight Off

1 = Display Off

0x00FF8280 WORD I/O Horizontal Hold Counter
0x00FF8282 WORD I/O Horizontal Hold Timer
0x00FF8284 WORD I/O Horizontal Border Begin
0x00FF8286 WORD I/O Horizontal Border End
0x00FF8288 WORD I/O Horizontal Display Begin
0x00FF828A WORD I/O Horizontal Display End
0x00FF828C WORD I/O HSS
0x00FF828E WORD I/O HFS
0x00FF8290 WORD I/O HEE
0x00FF8292 –
0x00FF829F

N/A Unassigned

0x00FF82A0 WORD I/O Vertical Frequency Counter
0x00FF82A2 WORD I/O Vertical Frequency Timer
0x00FF82A4 WORD I/O Vertical Border Begin
0x00FF82A6 WORD I/O Vertical Border End (in half lines)
0x00FF82A8 WORD I/O Vertical Display Begin
0x00FF82AA WORD I/O Vertical Display End
0x00FF82AC WORD I/O VSS
0x00FF82AE
–
0x00FF82C1

N/A Unassigned

0x00FF82C2 WORD I/O VCO - Video Control as follows:

Bit 3 Bit 0

Halve Pixel Width

Interlace Mode

Line Doubling

Quarter Pixel Width

ACSI DMA and Floppy Disk Controller – B.23

Location(s) Size

S
T

M
e
g
a

S
T

S
T
e

M
e
g
a

S
T
e

T
T
0
3
0

F
a
l
c
o
n
0
3
0

Type Meaning

T H E A T A R I C O M P E N D I U M

0x00FF82C4 –
0x00FF83FF

N/A I/O Unassigned

0x00FF8400 –
0x00FF85FE

WORD I/O TT030 Palette Registers #0 – #255: Each palette
register is a longword which is arranged as follows:

XXXX RRRR GGGG BBBB

Unlike the ST registers, each nibble is properly
formatted in the manner 3–2–1–0.

A C S I D M A a n d F l o p p y D i s k C o n t r o l l e r
0x00FF8600 –
0x00FF8602

WORD I/O Reserved

0x00FF8604 WORD I/O DMA Sector Count (on write)
DMA Data Register (on read)

0x00FF8606 WORD I/O DMA Status (on read) as follows:

Bit 2 Bit 0

Data Request Inactive

Block Count Zero

ERROR

DMA Mode Control (on write) as follows:

Bit 0

A1

DMAOUT

Destination Select (_DRQ)

A2

0 = Floppy, 1 = ACSI

x x x

Bit 8

Destination Select (_CS)

Select Block Count Register

0 = Floppy, 1 = ACSI

0x00FF8608 OB I/O DMA Pointer High
0x00FF860A OB I/O DMA Pointer Mid
0x00FF860C OB I/O DMA Pointer Low
0x00FF860E –
0x00FF86FF

N/A I/O Unassigned

B.24 – Memory Map

Location(s) Size

S
T

M
e
g
a

S
T

S
T
e

M
e
g
a

S
T
e

T
T
0
3
0

F
a
l
c
o
n
0
3
0

Type Meaning

T H E A T A R I C O M P E N D I U M

S C S I D M A C o n t r o l
0x00FF8700 OB I/O SCSI DMA Pointer Upper
0x00FF8702 OB I/O SCSI DMA Pointer Upper-Middle
0x00FF8704 OB I/O SCSI DMA Pointer Lower-Middle
0x00FF8706 OB I/O SCSI DMA Pointer Lower
0x00FF8708 OB I/O Byte Count Upper
0x00FF870A OB I/O Byte Count Upper-Middle
0x00FF870C OB I/O Byte Count Lower-Middle
0x00FF870E OB I/O Byte Count Lower
0x00FF8710 WORD I/O SCSI DMA Data Residue Register High
0x00FF8712 WORD I/O SCSI DMA Data Residue Register Low
0x00FF8714 OB I/O SCSI DMA Control Register as follows:

Bit 0

1 = Write, 0 = Read

Bus Error During DMA

Byte Count Zero

(cleared when read)

(cleared when read)

Enable: 0 = Off, 1 = On

0x00FF8716 –
0x00FF877F

N/A I/O Unassigned

S C S I C o n t r o l l e r R e g i s t e r s
0x00FF8780 OB I/O SCSI Controller Data Register
0x00FF8782 OB I/O SCSI Controller Initiator Command Register
0x00FF8784 OB I/O SCSI Controller Mode Register
0x00FF8786 OB I/O SCSI Controller Target Command Register
0x00FF8788 OB I/O SCSI Controller ID Select/Control Register
0x00FF878A OB I/O SCSI Controller DMA Start/DMA Status
0x00FF878C OB I/O SCSI Controller DMA Target Receive/Input Data
0x00FF878E OB I/O SCSI Controller DMA Initiator Receive/Reset
0x00FF8790 –
0x00FF879F

N/A I/O Unassigned

Programmable Sound Generator (YM-2149) – B.25

Location(s) Size

S
T

M
e
g
a

S
T

S
T
e

M
e
g
a

S
T
e

T
T
0
3
0

F
a
l
c
o
n
0
3
0

Type Meaning

T H E A T A R I C O M P E N D I U M

P r o g r a m m a b l e S o u n d G e n e r a t o r (Y M - 2 1 4 9)
0x00FF8800 EB I/O PSG Read (Read only on I/O port B) / PSG Register

Select (WO). Reading this location yields data from
the parallel interface. Writing to bits 0–3 of this
location selects a PSG register to address as follows:

Value Register
0000 Channel A Fine Tune
0001 Channel A Coarse Tune
0010 Channel B Fine Tune
0011 Channel B Coarse Tune
0100 Channel C Fine Tune
0101 Channel C Coarse Tune
0110 Noise Generator Control
0111 Mixer Control – I/O Enable
1000 Channel A Amplitude
1001 Channel B Amplitude
1010 Channel C Amplitude
1011 Envelope Period Fine Tune
1100 Envelope Period Coarse Tune
1110 I/O Port A Select (Write only)
1111 I/O Port B Select

0x00FF8802 EB I/O When I/O Port A is selected, this location contains the
PSG Write Data (WO) register as follows:

Bit 7 Bit 0

Falcon = IDE Drive On/Off

Falcon = Internal Speaker On/Off

Centronics _STROBE

RS232 Data Terminal Ready

RS232 Request to Send

Floppy _Drive0 Select

Falcon = Printer Select Pin

Floppy _Side0/1 Select

TT = SCC A (0 = LAN, 1 = Serial2)

Others = Monitor Jack GPO Pin

Others = Floppy _Drive1 Select

When I/O Port B is selected, this locations accesses
the Parallel Port Data Register (WO).

0x00FF8804 –
0x00FF88FF

N/A I/O Unassigned

B.26 – Memory Map

Location(s) Size

S
T

M
e
g
a

S
T

S
T
e

M
e
g
a

S
T
e

T
T
0
3
0

F
a
l
c
o
n
0
3
0

Type Meaning

T H E A T A R I C O M P E N D I U M

D M A S o u n d S y s t e m
0x00FF8900 BYTE I/O Sound DMA Control as follows:

Bit 7 Bit 0

Timer A Int at Record End
Timer A Int at Playback End
MFP-15 Int at Record End
MFP-15 Int at Playback End

(Falcon030 Only)

0x00FF8901 BYTE I/O Additional sound DMA control as follows:

Bit 7 Bit 0

Repeat Playback

Playback Enable

Record Enable (Falcon Only)

Repeat Record (Falcon Only)

1 = Record Register Select

0 = Playback Register Select

0x00FF8902 OB I/O Frame Base Address High
0x00FF8904 OB I/O Frame Base Address Mid
0x00FF8906 OB I/O Frame Base Address Low
0x00FF8908 OB I/O Frame Address Counter High
0x00FF890A OB I/O Frame Address Counter Mid
0x00FF890C OB I/O Frame Address Counter Low
0x00FF890E OB I/O Frame End Address High
0x00FF8910 OB I/O Frame End Address Mid
0x00FF8912 OB I/O Frame End Address Low
0x00FF8914 –
0x00FF8919

N/A I/O Unassigned

MICROWIRE – B.27

Location(s) Size

S
T

M
e
g
a

S
T

S
T
e

M
e
g
a

S
T
e

T
T
0
3
0

F
a
l
c
o
n
0
3
0

Type Meaning

T H E A T A R I C O M P E N D I U M

0x00FF8920 BYTE I/O Sound mode control as follows:

Bit 0Bit 7

00 = Monitor Track 0

00 = Play 1 Track

01 = Play 2 Tracks

10 = Play 3 Tracks

11 = Play 4 Tracks

01 = Monitor Track 1

10 = Monitor Track 2

11 = Monitor Track 3

0x00FF8921 BYTE I/O Additional sound mode control as follows:

Bit 0Bit 7

00 = 8-bit Stereo

00 = 6258 Hz

01 = 12517 Hz

10 = 25033 Hz

11 = 50066 Hz

01 = 16-bit Stereo (Falcon)

10 = 8-bit Mono

M I C R O W I R E
0x00FF8922 WORD I/O MICROWIRE Data Register
0x00FF8924 WORD I/O MICROWIRE Mask Register
0x00FF8926 –
0x00FF8929

N/A I/O Unassigned

B.28 – Memory Map

Location(s) Size

S
T

M
e
g
a

S
T

S
T
e

M
e
g
a

S
T
e

T
T
0
3
0

F
a
l
c
o
n
0
3
0

Type Meaning

T H E A T A R I C O M P E N D I U M

F a l c o n 0 3 0 D S P / D M A C o n t r o l l e r
0x00FF8930 WORD I/O DMA Crossbar Output Select Controller as follows:

Bit 0Bit 7

00 = 25.175 MHz Clock

00 = 25.175MHz Clock

01 = External Clock

10 = 32 MHz Clock

01 = External Clock

10 = 32 MHz Clock

0 = Handshake Enable

0 = DMA In, 1 = All

(DSP Out)

(DMA Out)

0 = Handshake Enable

1 = Connect

Bit 8Bit 12

00 = 25.175 MHz Clock

01 = External Clock

10 = 32 MHz Clock

0 = Enable Handshake

(External Input)

0 = Internal Sync

1 = External Sync

(ADC Input)

Falcon030 DSP/DMA Controller – B.29

Location(s) Size

S
T

M
e
g
a

S
T

S
T
e

M
e
g
a

S
T
e

T
T
0
3
0

F
a
l
c
o
n
0
3
0

Type Meaning

T H E A T A R I C O M P E N D I U M

0x00FF8932 WORD I/O DMA Crossbar Input Select Controller as follows:

Bit 0Bit 7

00 = DMA Output

00 = DMA Output

01 = DSP Output

10 = External Input

01 = DSP Output

10 = External Input

0 = Handshake Enable

0 = DSP Out, 1 = All

(DSP In)

(DMA In)

0 = Handshake Enable

1 = Connect

11 = ADC Input

11 = ADC Input

Bit 8Bit 12

00 = DMA Output

01 = DSP Output

10 = External Input

0 = Enable Handshake

(External Output)

00 = DMA Output

01 = DSP Output

(DAC Output)

10 = External Input

11 = ADC Input

11 = ADC Input

B.30 – Memory Map

Location(s) Size

S
T

M
e
g
a

S
T

S
T
e

M
e
g
a

S
T
e

T
T
0
3
0

F
a
l
c
o
n
0
3
0

Type Meaning

T H E A T A R I C O M P E N D I U M

0x00FF8934 BYTE I/O Frequency Divider External Sync (0 = STe/TT030
Compatible Prescaler, 1-15 = Divide by 256 and then
the value given)

0x00FF8935 BYTE I/O Frequency Divider Internal Sync as follows:

Value Meaning
0 STe Compatible Mode
1 49170 Hz
2 32780 Hz
3 24585 Hz
4 19668 Hz
5 16390 Hz
6 14049 Hz
7 12292 Hz
8 10927 Hz
9 9834 Hz
10 8940 Hz
11 8195 Hz
12 7565 Hz
13 7024 Hz
14 6556 Hz
15 6146 Hz

0x00FF8936 BYTE I/O Record Tracks Select as follows:

Bit 1/0

00 = Record 1 Track

01 = Record 2 Tracks

10 = Record 3 Tracks

11 = Record 4 Tracks

0x00FF8937 BYTE I/O CODEC Input Source as follows:

Bit 1/0

Multiplexer

ADC/DAC

Real Time Clock (146818A) – B.31

Location(s) Size

S
T

M
e
g
a

S
T

S
T
e

M
e
g
a

S
T
e

T
T
0
3
0

F
a
l
c
o
n
0
3
0

Type Meaning

T H E A T A R I C O M P E N D I U M

0x00FF8938 BYTE I/O CODEC ADC Input as follows:

Bit 1/0

0 = Left Channel Mic

1 = Left Channel PSG

0 = Right Channel Mic

1 = Right Channel PSG

0x00FF8939 BYTE I/O Gain settings (0–15 per channel) as follows:

Bit 0Bit 7

L L L L R R R R

0x00FF893A BYTE I/O Attenuation settings (0–15 per channel) as follows:

Bit 0Bit 7

L L L L R R R R

0x00FF8940 OB I/O GPIO Data direction as follows:

Bit 0Bit 2

0 = Read

1 = Write

0x00FF8942 OB I/O GPIO Data (low three bits). Read or write by setting
direction bits above.

0x00FF8944 –
0x00FF895F

N/A I/O Unassigned

R e a l T i m e C l o c k (1 4 6 8 1 8 A)
0x00FF8960 OB I/O Real Time Clock Address Register
0x00FF8962 OB I/O Real Time Clock Data Register
0x00FF8964 –
0x00FF89FF

N/A I/O Unassigned

B.32 – Memory Map

Location(s) Size

S
T

M
e
g
a

S
T

S
T
e

M
e
g
a

S
T
e

T
T
0
3
0

F
a
l
c
o
n
0
3
0

Type Meaning

T H E A T A R I C O M P E N D I U M

B L i T T E R B i t - B l o c k T r a n s f e r P r o c e s s o r
0x00FF8A00 –
0x00FF8A1E

WORD I/O BLiTTER Halftone RAM

0x00FF8A20 WORD I/O BLiTTER Source X Increment
0x00FF8A22 WORD I/O BLiTTER Source Y Increment
0x00FF8A24 WORD I/O BLiTTER Source Address (bits 7–0 are bits 23–16 of

address)
0x00FF8A26 WORD I/O BLiTTER Source Address (bits 15–1 are bits 15–1 of

address, bit 0 must be 0)
0x00FF8A28 WORD I/O BLiTTER Endmask 1
0x00FF8A2A WORD I/O BLiTTER Endmask 2
0x00FF8A2C WORD I/O BLiTTER Endmask 3
0x00FF8A2E WORD I/O BLiTTER Destination X Increment
0x00FF8A30 WORD I/O BLiTTER Destination Y Increment
0x00FF8A32 WORD I/O BLiTTER Destination (bits 7–0 are bits 23–16 of

address)
0x00FF8A34 WORD I/O BLiTTER Destination (bits 15–1 are bits 15–1 of

address, bit 0 must be 0)
0x00FF8A36 WORD I/O BLiTTER X Count
0x00FF8A38 WORD I/O BLiTTER Y Count
0x00FF8A3A BYTE I/O BLiTTER HOP
0x00FF8A3B BYTE I/O BLiTTER OP
0x00FF8A3C BYTE I/O BLiTTER Configuration as follows:

Bit 0

LINE NUMBER

BUSY

HOG

SMUDGE

SCC DMA Registers – B.33

Location(s) Size

S
T

M
e
g
a

S
T

S
T
e

M
e
g
a

S
T
e

T
T
0
3
0

F
a
l
c
o
n
0
3
0

Type Meaning

T H E A T A R I C O M P E N D I U M

0x00FF8A3D BYTE I/O BLiTTER Configuration as follows:

Bit 0

SKEW

FXSR

NFSR

0x00FF8A3E–
0x00FF8BFF

N/A I/O Unassigned

S C C D M A R e g i s t e r s
0x00FF8C00 OB I/O SCC DMA Pointer Upper
0x00FF8C02 OB I/O SCC DMA Pointer Upper-Middle
0x00FF8C04 OB I/O SCC DMA Pointer Lower-Middle
0x00FF8C06 OB I/O SCC DMA Pointer Lower
0x00FF8C08 OB I/O SCC Byte Count Upper
0x00FF8C0A OB I/O SCC Byte Count Upper-Middle
0x00FF8C0C OB I/O SCC Byte Count Lower-Middle
0x00FF8C0E OB I/O SCC Byte Count Lower
0x00FF8C10 WORD I/O SCC Data Residue Register High (RO)
0x00FF8C12 WORD I/O SCC Data Residue Register Low (RO)
0x00FF8C14 OB I/O SCC DMA Control Register as follows:

Bit 0

1 = Write, 0 = Read

Bus Error During DMA

Byte Count Zero

(cleared when read)

(cleared when read)

Enable: 0 = Off, 1 = On

0x00FF8C16 –
0x00FF8C7E

N/A I/O Unassigned

B.34 – Memory Map

Location(s) Size

S
T

M
e
g
a

S
T

S
T
e

M
e
g
a

S
T
e

T
T
0
3
0

F
a
l
c
o
n
0
3
0

Type Meaning

T H E A T A R I C O M P E N D I U M

S C C P o r t s (8 5 C 3 0)
0x00FF8C80 OB I/O SCC A Control
0x00FF8C82 OB I/O SCC A Data
0x00FF8C84 OB I/O SCC B Control
0x00FF8C86 OB I/O SCC B Data
0x00FF8C88 –
0x00FF8DFF

N/A I/O Unassigned

S y s t e m C o n t r o l U n i t
0x00FF8E00 OB I/O SCU System Interrupt Mask
0x00FF8E02 OB I/O SCU System Interrupt State (RO)
0x00FF8E04 OB I/O SCU System Interrupter: Set Bit #0 to generate VME

interrupt IRQ1.
0x00FF8E06 OB I/O VME Interrupter: Set Bit #0 to generate VME interrupt

IRQ3.
0x00FF8E08 OB I/O SCU General Purpose Register 1
0x00FF8E0A OB I/O SCU General Purpose Register 2
0x00FF8E0C OB I/O VME Interrupt Mask
0x00FF8E0E OB I/O VME Interrupt State (RO)
0x00FF8E10 –
0x00FF8E1F

N/A Unassigned

M e g a S T e C a c h e / P r o c e s s o r C o n t r o l
0x00FF8E20 OB I/O Mega STe Cache/Processor Control Register as

follows:

Value Meaning
0xFF 16 MHz w/Cache
0xFE 16 MHz
0xF4 8 MHz

0x00FF8E22 –
0x00FF8EFF

N/A Unassigned

E x t e n d e d J o y s t i c k / P a d d l e / L i g h t G u n P o r t s
0x00FF9200 WORD I/O Joystick Fire Button Matrix Register
0x00FF9202 WORD I/O Joystick Direction Matrix Register
0x00FF9204 –
0x00FF920F

N/A I/O Unassigned

0x00FF9210 WORD I/O Paddle 0 X Direction
0x00FF9212 WORD I/O Paddle 0 Y Direction
0x00FF9214 WORD I/O Paddle 1 X Direction
0x00FF9216 WORD I/O Paddle 1 Y Direction

Falcon030 VIDEL Palette Registers – B.35

Location(s) Size

S
T

M
e
g
a

S
T

S
T
e

M
e
g
a

S
T
e

T
T
0
3
0

F
a
l
c
o
n
0
3
0

Type Meaning

T H E A T A R I C O M P E N D I U M

0x00FF9218 –
0x00FF921F

N/A I/O Unassigned

0x00FF9220 WORD I/O Light Gun/Pen X Position
0x00FF9222 WORD I/O Light Gun/Pen Y Position
0x00FF9224 –
0x00FF97FF

N/A Unassigned

F a l c o n 0 3 0 V I D E L P a l e t t e R e g i s t e r s
0x00FF9800 –
0x00FF9BFC

LONG I/O Falcon030 Palette Registers 0-255 as follows:

RRRRRR-- GGGGGG-- -------- BBBBBB--

0x00FF9C00 –
0x00FFA1FF

N/A I/O Unassigned

B.36 – Memory Map

Location(s) Size

S
T

M
e
g
a

S
T

S
T
e

M
e
g
a

S
T
e

T
T
0
3
0

F
a
l
c
o
n
0
3
0

Type Meaning

T H E A T A R I C O M P E N D I U M

D S P H o s t I n t e r f a c e
0x00FFA200 BYTE I/O Interrupt Control Register (DSP X:$FFE9) as follows:

Bit #7
INIT – Setting this bit forces initialization of the host
interface.

Bits #6–5
DMA Mode Control as follows:

Value Meaning
%00 Interrupt Mode (DMA Off)
%01 24-bit DMA Mode
%10 16-bit DMA Mode
%11 8-bit DMA Mode

Bit #4–3
Host Flags 1 & 0 respectively (HF1 & HF0)

Bit #2
Unused

Bits #1–0
Data Transfer Mode as follows:

Value Meaning in Interrupt Mode
%00 No Interrupts
%01 Enable Receiver Full Interrupts
%10 Enable Transmitter Empty Interrupts
%11 Enable Both Interrupts

Value Meaning in DMA Mode
%00 No DMA
%01 DSP to Host Request
%10 Host to DSP Request

ST Multi-Function Peripheral Port (68901) – B.37

Location(s) Size

S
T

M
e
g
a

S
T

S
T
e

M
e
g
a

S
T
e

T
T
0
3
0

F
a
l
c
o
n
0
3
0

Type Meaning

T H E A T A R I C O M P E N D I U M

0x00FFA201 BYTE I/O Command Vector Register (DSP X:$FFE9) as
follows:

Bit 0

Bit 7

Host Vector (0-31)

Host Command Bit

0x00FFA202 BYTE I/O Interrupt Status Register (DSP X:$FFE8) as follows:
0x00FFA203 BYTE I/O Interrupt Vector Register (This register contains the

680x0 exception vector used for DSP exceptions).
0x00FFA204 BYTE I/O Unused
0x00FFA205 BYTE I/O DSP WORD High (DSP X:$FFEB)
0x00FFA206 BYTE I/O DSP WORD Middle (DSP X:$FFEB)
0x00FFA207 BYTE I/O DSP WORD Low (DSP X:$FFEB)
0x00FFA208 –
0x00FFF9FF

N/A N/A Undefined

S T M u l t i - F u n c t i o n P e r i p h e r a l P o r t (6 8 9 0 1)
0x00FFFA00 OB I/O MFP-ST General Purpose Pins (Parallel port data

register on Atari machines).
0x00FFFA02 OB I/O MFP-ST Active Edge Register as follows:

Bit 0

Keyboard/MIDI Interrupt

FDC/HDC Interrupt

RS-232 Ring Indicator

Monochrome Monitor Detect

Unused

RS-232 Clear To Send

RS-232 Carrier Detect

Centronics Busy

Bit 7

On a Falcon030, the MFP is not actually used for
serial communcations.

0x00FFFA04 OB I/O MFP-ST Data Direction Register. Each bit is
individually programmed (0 = input, 1 = output).

B.38 – Memory Map

Location(s) Size

S
T

M
e
g
a

S
T

S
T
e

M
e
g
a

S
T
e

T
T
0
3
0

F
a
l
c
o
n
0
3
0

Type Meaning

T H E A T A R I C O M P E N D I U M

0x00FFFA06 OB I/O MFP-ST Interrupt Enable Register A as follows:

Bit 0

Receive Buffer Full

Timer A (STe/TT Sound)

RS-232 Ring Indicator

Monochrome Monitor Detect

Receive Buffer Empty

Sender Buffer Empty

Timer B

Bit 7

Sender Error

On a Falcon030, the MFP is not actually used for
serial communcations.

0x00FFFA08 OB I/O MFP-ST Interrupt Enable Register B as follows:

Bit 0

Timer D (USART)

Timer C (200 Hz Clock)

Keyboard/MIDI

FDC/HDC

Blitter

RS-232 Clear to Send

Centronics Busy

Bit 7

RS-232 Carrier Detect

0x00FFFA0A OB I/O MFP-ST Interrupt Pending Register A (see mapping
at 0x00FFFA06).

0x00FFFA0C OB I/O MFP-ST Interrupt Pending Register B (see mapping
at 0x00FFFA08).

0x00FFFA0E OB I/O MFP-ST Interrupt In-Service Register A (see mapping
at 0x00FFFA06).

0x00FFFA10 OB I/O MFP-ST Interrupt In-Service Register B (see mapping
at 0x00FFFA08).

0x00FFFA12 OB I/O MFP-ST Interrupt Mask Register A (see mapping at
0x00FFFA06).

0x00FFFA14 OB I/O MFP-ST Interrupt Mask Register B (see mapping at
0x00FFFA08).

ST Multi-Function Peripheral Port (68901) – B.39

Location(s) Size

S
T

M
e
g
a

S
T

S
T
e

M
e
g
a

S
T
e

T
T
0
3
0

F
a
l
c
o
n
0
3
0

Type Meaning

T H E A T A R I C O M P E N D I U M

0x00FFFA16 OB I/O MFP-ST Vector Register. Bit 3 is set to 1 to indicate
software End-of-Interrupt mode and 0 to indicate
automatic End-of-Interrupt mode.

0x00FFFA18 OB I/O MFP-ST Timer A Control Register. Interpret bits 3-0
as follows:

Value Meaning
0000 Timer stop.
0001 Delay mode, divide by 4.
0010 Delay mode, divide by 10.
0011 Delay mode, divide by 16.
0100 Delay mode, divide by 50.
0101 Delay mode, divide by 64.
0110 Delay mode, divide by 100.
0111 Delay mode, divide by 200.
1000 Event count mode.
1xxx Pulse extension mode (as above).

0x00FFFA1A OB I/O MFP-ST Timer B Control Register (see Timer A).
0x00FFFA1C OB I/O MFP-ST Timer C & D Control Register. Interpret bits

6-4 for Timer C and bits 2-0 for Timer D as follows:

Value Meaning
000 Timer stop.
001 Delay mode, divide by 4.
010 Delay mode, divide by 10.
011 Delay mode, divide by 16.
100 Delay mode, divide by 50.
101 Delay mode, divide by 64.
110 Delay mode, divide by 100.
111 Delay mode, divide by 200.

0x00FFFA1E OB I/O MFP-ST Timer A Data Register.
0x00FFFA20 OB I/O MFP-ST Timer B Data Register.
0x00FFFA22 OB I/O MFP-ST Timer C Data Register.
0x00FFFA24 OB I/O MFP-ST Timer D Data Register.
0x00FFFA26 OB I/O MFP-ST Sync Character Register.

B.40 – Memory Map

Location(s) Size

S
T

M
e
g
a

S
T

S
T
e

M
e
g
a

S
T
e

T
T
0
3
0

F
a
l
c
o
n
0
3
0

Type Meaning

T H E A T A R I C O M P E N D I U M

0x00FFFA28 OB I/O MFP-ST USART Control Register as follows:

Clock

Bit 7

00 = 8 bits

01 = 7 bits

Bit 0

10 = 6 bits

11 = 5 bits

00 = Synchronous

01 = 1 Stop, 1 Start

10 = 1 Stop, 1½ Start

11 = 1 Stop, 2 Start

Unused

(If set, divide by 16.)

If set, ignore

parity.

1 = Even parity

0 = Odd parity

0x00FFFA2A OB I/O MFP-ST Receiver Status Register as follows:

Bit 0

Frame Error

Parity Error

Overrun Error

Buffer Full

Search/Break Detected

Match/Character in Progress

Receiver Enable Bit

Bit 7

Synchronous Strip Enable

0x00FFFA2C OB I/O MFP-ST Transmitter Status Register as follows:

Bit 0

End of Transmission

Auto Turnaround

Underrun Error

Buffer Empty

Break

High Bit

Transmitter Enable

Bit 7

Low Bit

68881 Math Co-Processor in Peripheral Mode – B.41

Location(s) Size

S
T

M
e
g
a

S
T

S
T
e

M
e
g
a

S
T
e

T
T
0
3
0

F
a
l
c
o
n
0
3
0

Type Meaning

T H E A T A R I C O M P E N D I U M

0x00FFFA2E OB I/O MFP-ST USART Data Register.
0x00FFFA30 –
0x00FFFA3F

N/A I/O Unassigned

6 8 8 8 1 M a t h C o - P r o c e s s o r i n P e r i p h e r a l M o d e
0x00FFFA40 WORD I/O FPCIR Status Register (available as a Mega Bus card

accessed in 68881 peripheral mode)
0x00FFFA42 WORD I/O FPCTL Control Register (available as a Mega Bus

card accessed in 68881 peripheral mode)
0x00FFFA44 WORD I/O FPSAV Save Register (available as a Mega Bus card

accessed in 68881 peripheral mode)
0x00FFFA46 WORD I/O FPREST Restore Register (available as a Mega Bus

card accessed in 68881 peripheral mode)
0x00FFFA48 WORD I/O FPOPR Operation Word Register (available as a

Mega Bus card accessed in 68881 peripheral mode)
0x00FFFA4A WORD I/O FPCMD Command Register (available as a Mega

Bus card accessed in 68881 peripheral mode)
0x00FFFA4C WORD I/O FPRES Reserved (available as a Mega Bus card

accessed in 68881 peripheral mode)
0x00FFFA4E WORD I/O FPCCR Condition Code Register (available as a

Mega Bus card accessed in 68881 peripheral mode)
0x00FFFA50 LONG I/O FPOP Operand Register (available as a Mega Bus

card accessed in 68881 peripheral mode)
0x00FFFA54 WORD I/O FPSLCT Register Select (available as a Mega Bus

card accessed in 68881 peripheral mode)
0x00FFFA56 WORD I/O Reserved
0x00FFFA58 LONG I/O FPIADR Instruction Address (available as a Mega Bus

card accessed in 68881 peripheral mode)
0x00FFFA5C LONG I/O FPOADR Operand Address (available as a Mega

Bus card accessed in 68881 peripheral mode)
0x00FFFA54 –
0x00FFFA7F

N/A I/O Unassigned

T T 0 3 0 M u l t i - F u n c t i o n P e r i p h e r a l P o r t (6 8 9 0 1)
0x00FFFA80 OB I/O MFP-TT030 GPIP (see 0x00FFFA00).
0x00FFFA82 OB I/O MFP-TT030 AER (see 0x00FFFA02).
0x00FFFA84 OB I/O MFP-TT030 DDR (see 0x00FFFA04).
0x00FFFA86 OB I/O MFP-TT030 IERA (see 0x00FFFA06).
0x00FFFA88 OB I/O MFP-TT030 IERB (see 0x00FFFA08).
0x00FFFA8A OB I/O MFP-TT030 IPRA (see 0x00FFFA0A).
0x00FFFA8C OB I/O MFP-TT030 IPRB (see 0x00FFFA0C).

B.42 – Memory Map

Location(s) Size

S
T

M
e
g
a

S
T

S
T
e

M
e
g
a

S
T
e

T
T
0
3
0

F
a
l
c
o
n
0
3
0

Type Meaning

T H E A T A R I C O M P E N D I U M

0x00FFFA8E OB I/O MFP-TT030 ISRA (see 0x00FFFA0E).
0x00FFFA90 OB I/O MFP-TT030 ISRB (see 0x00FFFA10).
0x00FFFA92 OB I/O MFP-TT030 IMRA (see 0x00FFFA12).
0x00FFFA94 OB I/O MFP-TT030 IMRB (see 0x00FFFA14).
0x00FFFA96 OB I/O MFP-TT030 VR (see 0x00FFFA16).
0x00FFFA98 OB I/O MFP-TT030 TACR (see 0x00FFFA18).
0x00FFFA9A OB I/O MFP-TT030 TBCR (see 0x00FFFA1A).
0x00FFFA9C OB I/O MFP-TT030 TCDCR (see 0x00FFFA1C).
0x00FFFA9E OB I/O MFP-TT030 TADR (see 0x00FFFA1E).
0x00FFFAA0 OB I/O MFP-TT030 TBDR (see 0x00FFFA20).
0x00FFFAA2 OB I/O MFP-TT030 TCDR (see 0x00FFFA22).
0x00FFFAA4 OB I/O MFP-TT030 TDDR (see 0x00FFFA24).
0x00FFFAA6 OB I/O MFP-TT030 SCR (see 0x00FFFA26).
0x00FFFAA8 OB I/O MFP-TT030 UCR (see 0x00FFFA28).
0x00FFFAAA OB I/O MFP-TT030 RSR (see 0x00FFFA2A).
0x00FFFAAC OB I/O MFP-TT030 TSR (see 0x00FFFA2C).
0x00FFFAAE OB I/O MFP-TT030 UDR (see 0x00FFFA2E).
0x00FFFAB0–
0x00FFFBFF

N/A I/O Undefined

Keyboard ACIA (6850) – B.43

Location(s) Size

S
T

M
e
g
a

S
T

S
T
e

M
e
g
a

S
T
e

T
T
0
3
0

F
a
l
c
o
n
0
3
0

Type Meaning

T H E A T A R I C O M P E N D I U M

K e y b o a r d A C I A (6 8 5 0)
0x00FFFC00 EB I/O Keyboard ACIA Control (when written) as follows:

Bit #7
Enables receive interrupts

Bits #6–5
Configures transmitter interrupts as follows:

Value Meaning
%00 RTS low, Disable Interrupts
%01 RTS low, Enable Interrupts
%10 RTS high, Disable Interrupts
%11 RTS low, Disable Interrupts

Send a break on Interrupt

Bits #4–2
Configure Port Settings as follows:

Value Data Bits–Parity–Stop Bits
%000 7-E-2
%001 7-O-2
%010 7-E-1
%011 7-O-1
%100 8-N-2
%101 8-N-1
%110 8-E-1
%111 8-O-1

Bits #1–0
Set Clock Divisor as follows:

Value Meaning
%00 Normal
%01 Divide by 16
%10 Divide by 256
%11 Master Reset

B.44 – Memory Map

Location(s) Size

S
T

M
e
g
a

S
T

S
T
e

M
e
g
a

S
T
e

T
T
0
3
0

F
a
l
c
o
n
0
3
0

Type Meaning

T H E A T A R I C O M P E N D I U M

Keyboard ACIA Control (when read) as follows:

Bit 0

Framing Error

Receiver Overrun

Parity Error

Interrupt Request

Clear to Send

Data Carrier Detect

Receiver Full

Bit 7

Transmitter Empty

0x00FFFC02 EB I/O Keyboard ACIA Data

M I D I A C I A (6 8 5 0)
0x00FFFC04 EB I/O MIDI ACIA Control (see keyboard ACIA control

register for details)
0x00FFFC06 EB I/O MIDI ACIA Data

M e g a S T R e a l T i m e C l o c k (R P 5 C 1 5)
0x00FFFC20 OB I/O Bank 0: Seconds-Ones (0–9)

Bank 1: Clock output frequency as follows:

Value Meaning
0 Open-Collector

“CLKOUT”
1 16384 Hz
2 1024 Hz
3 128 Hz
4 16 Hz
5 1 Hz
6 1/60 Hz
7 Open-Collector

“CLKOUT”
0x00FFFC22 OB I/O Bank 0: Seconds-Tens (0–5)

Bank 1: Setting bit #0 will reset the seconds register
to the 0 and, if the seconds register is
currently between 30–59, increment the
minutes register.

0x00FFFC24 OB I/O Bank 0: Minutes-Ones (0–9)
Bank 1: Alarm Minutes-Ones (0–9)

Mega ST Real Time Clock (RP5C15) – B.45

Location(s) Size

S
T

M
e
g
a

S
T

S
T
e

M
e
g
a

S
T
e

T
T
0
3
0

F
a
l
c
o
n
0
3
0

Type Meaning

T H E A T A R I C O M P E N D I U M

0x00FFFC26 OB I/O Bank 0: Minutes–Tens (0–5)
Bank 1: Alarm Minutes-Tens (0–5)

0x00FFFC28 OB I/O Bank 0: Hour-Ones (0–9)
Bank 1: Alarm Hour-Ones (0–9)

0x00FFFC2A OB I/O Bank 0: Hour-Tens (0–2), in 24 hour mode, otherwise
(0–1) in 12 hour mode with Bit 1 being set for
PM, cleared for AM.

Bank 1: Alarm Hour-Tens (as in bank 0)
0x00FFFC2C OB I/O Bank 0: Day of Week (0–6), 0 = Sunday

Bank 1: Alarm Day of Week (0–6), 0 = Sunday
0x00FFFC2E OB I/O Bank 0: Date-Ones (0–9)

Bank 1: Alarm Date-Ones (0–9)
0x00FFFC30 OB I/O Bank 0: Date-Tens (0–3)

Bank 1: Alarm Date-Tens (0–3)
0x00FFFC32 OB I/O Bank 0: Month-Ones (0–9)

Bank 1: Not Used
0x00FFFC34 OB I/O Bank 0: Month-Tens (0–1)

Bank 1: If Bit #1 is set then clock is in 24 hour mode,
otherwise, it is in 12 hour mode.

0x00FFFC36 OB I/O Bank 0: Year-Ones (0–9). The value for Year
represents the (Year - 1980).

Bank 1: Leap Year Register (0–3), 0 = Leap Year
0x00FFFC38 OB I/O Bank 0: Year-Tens (0–9)

Bank 1: Not Used
0x00FFFC3A OB I/O Mode Register as follows:

Bit 0

Bank Select

0 = Clock Stop

0 = Alarm off

0x00FFFC3C OB I/O Test Register (lower nibble must equal zero to show
confirm proper functioning)

B.46 – Memory Map

Location(s) Size

S
T

M
e
g
a

S
T

S
T
e

M
e
g
a

S
T
e

T
T
0
3
0

F
a
l
c
o
n
0
3
0

Type Meaning

T H E A T A R I C O M P E N D I U M

0x00FFFC3E OB I/O Reset Register as follows:

Bit 0

1 = Alarm Reset

0 = 1 Hz Alarm Pulse

0 = 16 Hz Alarm Pulse

1 = Clock Reset

0x00FFFC40–
0x00FFFFFF

N/A I/O Undefined

E x p a n s i o n A r e a
0x01000000 –
0x01FFFFFF

N/A RAM TT030 Fast Ram (Unsuitable for direct DMA and
Video Shifter transfers)

0x02000000 –
0xFDFFFFFF

N/A RSVD Reserved

0xFE000000 –
0xFEFEFFFF

N/A VME VME A24:D16 Addressable Area

0xFEFF0000 –
0xFEFFFFFF

N/A VME VME A16:D16 Addressable Area

S h a d o w I m a g e
0xFF000000 –
0xFFFFFFFF

N/A Image This area is a ‘shadow’ image of 0x00000000 –
0x00FFFFFF to remain compatible with the ST.

T H E A T A R I C O M P E N D I U M

– APPENDIX C –

NATIVE FILE FORMATS

Native File Formats – C.3

T H E A T A R I C O M P E N D I U M

The .GEM File Format

Files ending in ‘.GEM’ are graphic metafiles created by GDOS. They are usually used to
represent vector graphics but may also be used to store links to bitmap images and textual
information.

Two primary versions of GEM files exist. Version 1 files are guaranteed not to contain bezier
curves whereas version 3 files may. Version 3.xx files are also commonly referred to as GEM/3
files.

The Metafile Header
GEM metafiles begin with a header as follows:

WORD Contents
0 Magic number (0xFFFF).
1 Header length in WORDs.
2 Version number (major * 100 + minor).
3 NDC Flag as follows:

Value Meaning
0 (0, 0) in lower-left corner (NDC)
2 (0, 0) in upper-left corner (RC)

4 Minimum X extent.
5 Minimum Y extent.
6 Maximum X extent.
7 Maximum Y extent.
8 Page width in tenths of millimeters.
9 Page height in tenths of millimeters.
10 Lower Left X value of coordinate system.
11 Lower Left Y value of coordinate system.
12 Upper Right X value of coordinate system.
13 Upper Right Y value of coordinate system.
... Other information may appear in the header

following which is currently undefined. Use
WORD #1 to skip any unknown information.

The definition of WORDs 4–13 is defined by the creator of the file using three metafile
commands. WORDs 4–7 are set with the v_meta_extents() function. WORDs 8–9 are defined
with the vm_pagesize() function. WORDs 10–13 are defined with vm_coords(). If the creator
fails to specify defaults for any of these values, the appropriate values will be set to 0 in the
header. If zeros appear for WORDs 10–13, the default NDC coordinate system should be
assumed.

C.4 – Native File Formats

T H E A T A R I C O M P E N D I U M

Metafile Records
Following the header will appear a list of records of varying length which, when translated, can
be ‘played back’ on the destination VDI device. Each record is formatted as follows:

WORD Meaning
0 Opcode of VDI function.
1 Number of PTSIN elements.
2 Number of INTIN elements.
3 Function sub-ID.

4... PTSIN elements.
... INTIN elements.

The list of records is terminated with an opcode of 0xFFFF (this record is written when a
v_clswk() call is made by the creator).

When playing back GEM files, the application must translate all coordinates from the metafile
coordinate system to that of the destination device. In addition, text metrics should be
appropriately converted. If an unknown opcode is discovered it should be played after any
elements of the PTSIN array are translated (making the assumption that they should be).

Metafile Sub-Opcodes
GEM metafiles support the use of special sub-opcodes for implementing reserved and user-
defined functions. GEM metafile translators should ignore sub-opcodes they don’t understand.
Each sub-opcode can be identified with the primary opcode of 5, function ID of 99 and the first
(required) member of INTIN being the sub-opcode ID. The currently defined sub-opcodes are as
follows:

INTIN[0] Meaning
10 Start Group.
11 End Group.
49 Set No Line Style.
50 Set Attribute Shadow On.
51 Set Attribute Shadow Off.
80 Start Draw Area Type Primitive.
81 End Draw Area Type Primitive.

None of the pre-defined sub-opcodes use additional INTIN or PTSIN elements though user-
defined sub-opcodes may.

Opcodes from 0–100 are reserved for use by Atari. Sub-opcodes from 101-65535 are available
for use by developers but should be registered with Atari to avoid possible conflicts.

Native File Formats – C.5

T H E A T A R I C O M P E N D I U M

The .IMG File Format

The IMG file format was designed to support raster images with a varying number of planes. In
practice, almost all IMG files currently available are simple black and white single plane
images because the original file format did not specify a method of storing palette information
with the file. To fill this need, several unofficial extensions to the format were put into use
(some of which were incorrectly implemented by applications supporting them). The color
extension which will be discussed here to cover color images is the ‘XIMG’ format.

The IMG Header
Image headers consist of at least 8 WORDs as follows:

WORD Meaning
0 Image file version (Usually 0x0001).
1 Header length in WORDs.
2 Number of planes.
3 Pattern definition length.
4 Source device pixel width (in microns).
5 Source device pixel height (in microns).
6 Scan line width (in pixels).
7 Number of scan lines.

Some IMG files will have additional header information which should be skipped or interpreted
as discussed below.

Interpreting Extra Palette Information
If WORD #2 is set to 1, then the image data consists of one plane (i.e. monochrome) and any
extra header information should be ignored.

If WORD #2 is set to 16 or 24 then the image data consists of that many planes of high color or
true color data and any extra header information should be ignored. In a high color image, planes
appear in the order RRRRR GGGGGG BBBBB. In a true-color image, planes appear in the
order RRRRRRRR GGGGGGGG BBBBBBBB.

If WORD #2 is set to 2, 4, or 8, the image consists of palette based color image data. If no extra
header information is given then the creator did not specify palette data for this image. If extra
header WORDs appears they may be useful in determining the color palette. The two primary
extensions to the IMG format are ‘XIMG’ and ‘STTT’. ‘STTT’ will not be discussed here as it
does not serve well as a machine or device independent format. The ‘XIMG’ header extension is
as follows:

C.6 – Native File Formats

T H E A T A R I C O M P E N D I U M

WORD Meaning
8 & 9 ASCII ‘XIMG’

10 Color format (Almost always 0 – RGB).
11... RGB WORD triplets. Three WORDs appear

for each pen. There are (2 ^ numplanes)
pens. Each word contains a value from 0 to
1000 for direct passage to vs_color() .

Image Data Format
Each scanline contains data in VDI device independent format which must be converted using
the VDI call vr_trnfm() . Each scanline is padded to the nearest byte. Every plane for each
scanline should appear prior to the beginning of data for the next scanline. This allows
interpreters to decompress and transform the image data a scanline at a time to conserve on time
and memory. A sample ordering for a four-plane image is listed below:

Scanline #0 – Plane #0
Scanline #0 – Plane #1
Scanline #0 – Plane #2
Scanline #0 – Plane #3
Scanline #1 – Plane #0
Scanline #1 – Plane #1
Scanline #1 – Plane #2
Scanline #1 – Plane #3

etc.

Image Compression
Each scanline is individually compressed. This means that compression codes should not
transgress over scanline boundaries. This enables decompression routines to work scanline by
scanline.

Scanline data should consist of two components, a vertical replication count and encoded
scanline data. In practice, however, some older .IMG files may not contain a vertical replication
count for each scan line.

The vertical replication count specifies the number of times the following scanline data should
be used to replicate an image row. It is formatted as follows:

BYTE Contents
0 0x00
1 0x00
2 0xFF
3 Replication Count

Immediately following the vertical replication count is the encoded scanline data. This
run-length encoding can by looking for three separate flag BYTEs. A 0x80 BYTE indicates the
beginning of a bit-string item. A bit-string item is formatted as follows:

Native File Formats – C.7

T H E A T A R I C O M P E N D I U M

BYTE Contents
0 0x80
1 Byte count ‘n’.

2... ‘n’ BYTEs of
unencoded data.

A pattern-run item begins with a BYTE of 0x00. It specifies a fixed number of times that the
pattern which follows it should be repeated. It is formatted as follows:

BYTE Contents
0 0x00
1 Length of run.

2... Pattern bytes
(length of pattern is
determined by
header WORD
#3).

Finally, a solid-run item begins with any other BYTE code. If the high order bit is set then this
indicates a run of black pixels, otherwise it indicates a run of white pixels. The lower 7 bits of
the byte indicates the length of the run in bytes. For example a BYTE code of 0x83 indicates a
run of 24 black pixels (3 bytes).

The .FNT File Format

Filenames ending with the extension ‘.FNT’ represent bitmap font files. These files may be
utilized by loading them through any version of GDOS. FNT files are composed of a file header,
font data, a character offset table, and (optionally) a horizontal offset table.

The FNT Header
Font files begin with a header 88 BYTEs long. WORD and LONG format entries in the header
must be byte-swapped as they appear in Intel (‘Little Endian’) format. The font header is
formatted as follows:

BYTE(s) Contents Related VDI Call
0 – 1 Face ID (must be unique). vqt_name()
2 – 3 Face size (in points). vst_point()
4 – 35 Face name. vqt_name()

36 – 37 Lowest character index in face
(usually 32 for disk-loaded fonts).

vqt_fontinfo()

38 – 39 Highest character index in face. vqt_fontinfo()
40 – 41 Top line distance expressed as a

positive offset from baseline.
vqt_fontinfo()

42 – 43 Ascent line distance expressed as a
positive offset from baseline.

vqt_fontinfo()

44 – 45 Half line distance expressed as a
positive offset from baseline.

vqt_fontinfo()

46 – 47 Descent line distance expressed as
a positive offset from baseline.

vqt_fontinfo()

C.8 – Native File Formats

T H E A T A R I C O M P E N D I U M

48 – 49 Bottom line distance expressed as a
positive offset from baseline.

vqt_fontinfo()

50 – 51 Width of the widest character. N/A
52 – 53 Width of the widest character cell. vqt_fontinfo()
54 – 55 Left offset. vqt_fontinfo()
56 – 57 Right offset. vqt_fontinfo()
58 – 59 Thickening size (in pixels). vqt_fontinfo()
60 – 61 Underline size (in pixels). vqt_fontinfo()
62 – 63 Lightening mask (used to eliminate

pixels, usually 0x5555).
N/A

64 – 65 Skewing mask (rotated to determine
when to perform additional rotation
on a character when skewing, usually
0x5555).

N/A

66 – 67 Font flags as follows:

Bit Meaning (if Set)
0 Contains System Font
1 Horizontal Offset

Tables should be used.
2 Font data need not be

byte-swapped.
3 Font is mono-spaced.

N/A

68 – 71 Offset from start of file to horizontal
offset table.

vqt_width()

72 – 75 Offset from start of file to character
offset table.

vqt_width()

76 – 79 Offset from start of file to font data. N/A
80 – 81 Form width (in bytes). N/A
82 – 83 Form height (in scanlines). N/A
84 – 87 Pointer to the next font (set by GDOS

after loading).
N/A

Font Data
The binary font data is arranged on a single raster form. The raster’s height is the same as the
font’s height. The raster’s width is the sum of the character width’s padded to end on a WORD
boundary.

There is no padding between characters. Each character may overlap BYTE boundaries. Only
the last character in a font is padded to make the width of the form end on an even WORD
boundary.

If bit #2 of the font flags header item is cleared, each WORD in the font data must be byte-
swapped.

Native File Formats – C.9

T H E A T A R I C O M P E N D I U M

Character Offset Table
The Character Offset Table is an array of WORDs which specifies the distance (in pixels) from
the previous character to the next. The first entry is the distance from the start of the raster form
to the left side of the first character. One succeeding entry follows for each character in the font
yielding (number of characters + 1) entries in the table. Each entry must be byte-swapped as it
appears in Intel (‘Little Endian’) format.

Horizontal Offset Table
The Horizontal Offset Table is an optional array of positive or negative WORD values which
when added to the values in the character offset table yield the true spacing information for each
character. One entry appears in the table for each character. This table is not often used.

The .RSC File Format

Resource files contain application specific data which is generally loaded at run-time. RSC files
contain OBJECT trees (see the discussion of the OBJECT structure in Chapter 6: AES),
strings, and images.

Two resource file formats are currently supported. TOS versions less than 4.0 support the
original RSC format while TOS 4.0 and greater will now support the older format and a new
extensible format. The original format will be discussed first followed by an explanation of the
changes incurred by the newer format.

The RSC Header
Resource files begin with an 18 WORD header as follows:

WORD Field Name Contents
0 rsh_vrsn Contains the version number of the

resource file. This value is 0x0000 or
0x0001 in old format RSC files and has
the third bit set (i.e. 0x0004) in the new
file format.

1 rsh_object Contains an offset from the beginning of
the file to the OBJECT structures.

2 rsh_tedinfo Contains an offset from the beginning of
the file to the TEDINFO structures.

3 rsh_iconblk Contains an offset from the beginning of
the file to the ICONBLK structures.

4 rsh_bitblk Contains an offset from the beginning of
the file to the BITBLK structures.

5 rsh_frstr Contains an offset from the beginning of
the file to the string pointer table.

6 rsh_string Contains an offset from the beginning of
the file to the string data.

7 rsh_imdata Contains an offset from the beginning of
the file to the image data.

8 rsh_frimg Contains an offset from the beginning of
the file to the image pointer table.

C.10 – Native File Formats

T H E A T A R I C O M P E N D I U M

9 rsh_trindex Contains an offset from the beginning of
the file to the tree pointer table.

10 rsh_nobs Number of OBJECTs in the file.
11 rsh_ntree Number of object trees in the file.
12 rsh_nted Number of TEDINFOs in the file.
13 rsh_nib Number of ICONBLK s in the file.
14 rsh_nbb Number of BITBLK s in the file.
15 rsh_nstring Number of free strings in the file.
16 rsh_nimages Number of free images in the file.
17 rsh_rssize Size of the resource file (in bytes). Note

that this is the size of the old format
resource file. If the newer format file is
being used then this value can be used
as an offset to the extension array.

Many of the header entries represent offsets from the beginning of the file. These offsets are
expressed as positive unsigned WORDs making the standard file a maximum size of 64k bytes.

Object Trees
Each RSC file may contain a number of object trees. rsh_object contains an offset from the
beginning of the file to the object trees (stored consecutively). The LONG array pointed to by
rsh_trindex can be used to separate the object trees in the list. There are rsh_ntree LONGs in
this array. Each array entry can be used as an array index to a different object tree. After being
loaded in memory by rsrc_load(), the members at rsh_trindex are filled in with the absolute
pointers to their respective trees.

Each individual OBJECT is stored differently on disk then in memory. In the file, pointers to
TEDINFO s, BITBLK s, and ICONBLK s are stored as absolute indexes into the arrays of these
members stored in the file. Therefore a G_TEXT OBJECT whose ob_spec field would
normally point a TEDINFO in memory would contain the value 0 if that TEDINFO were the
first TEDINFO contained in the file.

String pointers are represented on disk by their absolute offset from the beginning of the file.
Image pointers in BITBLK and ICONBLK structures are likewise pointed to through absolute
file offsets, not indexes.

Native File Formats – C.11

T H E A T A R I C O M P E N D I U M

Free Strings and Images
rsh_frstr points to a table of LONGs which each specify an offset from the start of the RSC file
to a free string. rsh_frimg points to a table of LONGs which each specify an offset from the
start of the file to a BITBLK structure.

AES 3.30 Resource Format
Beginning with AES 3.30, the resource file format was altered to allow for new OBJECT
types. The only OBJECT which currently takes advantage of this format is G_CICON.
G_CICONs can only be stored in files of the new format. The new format can be identified by
the third bit of rsh_vrsn being set.

The Extension Array
Immediately following the old resource data (using rsh_rssize as an offset) an extension array is
added. The first entry in this array is a LONG containing the true size of the RSC file. Notice
that values such as these are now stored as LONGs to allow the size of RSC files to exceed
64k. Due to the method in which some older resource elements were stored many components of
RSC files will still be constrained to 64k.

Following the file size is a LONG word for each extension present followed by a 0L which
terminates the array. Currently only one extension exists (CICONBLK) and it always occupies
the first extension slot. As additional extensions are added, a value of -1L for any entry will
indicate that there are no resource elements of that type in the file. For example an extension
array that does contain CICONBLK s would look like this.

...basic resource file...
LONG filesize

LONG cicon_offset
0L

The CICONBLK Extension
The G_CICON object type adds the ability to display color icons from the AES. The ob_spec
of the object indexes a CICONBLK structure stored in the extension area. Each CICONBLK
must contain a monochrome icon and a color icon for as many different resolutions as desired.
When drawn, the AES will pick the icon that is the closest match for the current screen display.
If there is no color icon present which the AES is able to convert, the monochrome icon is
displayed.

The cicon_offset pointer gives an offset from the beginning of the resource file to a file segment
which contains the CICON data. This segment contains a CICONBLK pointer table followed
by the actual CICONBLK s.

The CICONBLK pointer table is simply a longword 0L for each CICONBLK present in the
file. These pointers are filled in by the AES when loaded. The list is terminated by a -1L.

C.12 – Native File Formats

T H E A T A R I C O M P E N D I U M

Immediately following the pointer table is one of the following variable length structures for
each CICONBLK :

ICONBLK monoicon; /* This is the standard monochrome resource. */
LONG n_cicons; /* Number of CICONs of different resolutions. */
WORD mono_data[x]; /* Monochrome bitmap data. */
WORD mono_mask[x]; /* Monochrome bitmap mask. */
CHAR icon_text[12]; /* Icon text (maximum of 12 characters). */

/* for each resolution supported (n_cicons) include the following structure */

WORD num_planes; /* Number of planes this icon was intended for */
LONG col_data; /* Placeholder (calculated upon loading). */
LONG col_mask; /* Placeholder (calculated upon loading). */
LONG sel_data; /* Placeholder (must be non-zero if ‘selected’ data exists */
LONG sel_mask; /* Placeholder (calculated upon loadind). */
LONG next_res; /* 1L = more icons follow */
WORD color_data[n]; /* n WORDs of image data (n is num_planes*WORDs in mono

icon).*/
WORD color_mask[n]; /* n WORDs of image mask. */
WORD select_data[n]; /* Only present if sel_data is non-zero. */
WORD select_mask[n]; /* Only present if sel_data is non-zero. */

CICON Images
All color image data is stored in VDI device independent format on disk and is automatically
converted by vr_trnfm() upon rsrc_load()1.

1Due to a bug in some versions of the VDI the seventh WORD of color icon image data may not contain the value 0x0001. If it does, the
VDI may incorrectly display the icon.

T H E A T A R I C O M P E N D I U M

– APPENDIX D –

ERROR CODES

GEMDOS/BIOS Errors – D.3

T H E A T A R I C O M P E N D I U M

GEMDOS/BIOS Errors

Upon return from most GEMDOS and BIOS functions, register D0 contains a longword error
code describing the failure or success of an operation. The BIOS uses error codes -1 to -31
while GEMDOS uses error codes -32 and lower. A return value of 0 always indicates success.
The error codes and their meanings are as follows:

Name BIOS # Meaning
E_OK 0 No error
ERROR -1 Generic error
EDRVNR -2 Drive not ready
EUNCMD -3 Unknown command
E_CRC -4 CRC error
EBADRQ -5 Bad request
E_SEEK -6 Seek error
EMEDIA -7 Unknown media
ESECNF -8 Sector not found
EPAPER -9 Out of paper
EWRITF -10 Write fault
EREADF -11 Read fault
EWRPRO -12 Device is write protected
E_CHNG -14 Media change detected
EUNDEV -15 Unknown device
EBADSF -16 Bad sectors on format
EOTHER -17 Insert other disk (request)

Name
GEMDOS

Meaning
EINVFN -32 Invalid function
EFILNF -33 File not found
EPTHNF -34 Path not found
ENHNDL -35 No more handles
EACCDN -36 Access denied
EIHNDL -37 Invalid handle
ENSMEM -39 Insufficient memory
EIMBA -40 Invalid memory block address
EDRIVE -46 Invalid drive specification
ENSAME -48 Cross device rename
ENMFIL -49 No more files
ELOCKED -58 Record is already locked
ENSLOCK -59 Invalid lock removal request
ERANGE or
ENAMETOOLONG

-64 Range error

EINTRN -65 Internal error
EPLFMT -66 Invalid program load format
EGSBF -67 Memory block growth failure
ELOOP -80 Too many symbolic links
EMOUNT -200 Mount point crossed (indicator)

T H E A T A R I C O M P E N D I U M

– APPENDIX E –

ATARI ASCII TABLE

Atari ASCII Table – E.3

T H E A T A R I C O M P E N D I U M

Atari ASCII Table

All Atari operating system calls use the Atari ASCII character set as the default method for
encoding text strings. Strings encoded in this manner are composed of unsigned bytes
representing a uniquely defined character as the following table specifies. Unless otherwise
noted, a NULL character (ASCII 0) is used to indicate the end of string.

Dec Hex Char Dec Hex Char Dec Hex Char

0 0x00

1 0x01

2 0x02

3 0x03

4 0x04

5 0x05

6 0x06

7 0x07

8 0x08

9 0x09

10 0x0A

11 0x0B

12 0x0C

13 0x0D

14 0x0E

15 0x0F

16 0x10

17 0x11

18 0x12

19 0x13

20 0x14

21 0x15

22 0x16

23 0x17

24 0x18

25 0x19

26 0x1A

27 0x1B

28 0x1C

29 0x1D

30 0x1E

31 0x1F

32 0x20

33 0x21

34 0x22

35 0x23

36 0x24

37 0x25

38 0x26

39 0x27

40 0x28

41 0x29

42 0x2A

43 0x2B

44 0x2C

45 0x2D

46 0x2E

47 0x2F

48 0x30

49 0x31

50 0x32

51 0x33

52 0x34

53 0x35

54 0x36

55 0x37

56 0x38

57 0x39

58 0x3A

59 0x3B

60 0x3C

61 0x3D

62 0x3E

63 0x3F

64 0x40

65 0x41

66 0x42

67 0x43

68 0x44

69 0x45

70 0x46

71 0x47

72 0x48

73 0x49

74 0x4A

75 0x4B

76 0x4C

77 0x4D

78 0x4E

79 0x4F

80 0x50

81 0x51

82 0x52

83 0x53

84 0x54

85 0x55

86 0x56

87 0x57

88 0x58

89 0x59

90 0x5A

91 0x5B

92 0x5C

93 0x5D

94 0x5E

95 0x5F

96 0x60

97 0x61

98 0x62

99 0x63

100 0x64

101 0x65

E.4 – Atari ASCII Table

Dec Hex Char Dec Hex Char Dec Hex Char

102 0x66

103 0x67

104 0x68

105 0x69

106 0x6A

107 0x6B

108 0x6C

109 0x6D

110 0x6E

111 0x6F

112 0x70

113 0x71

114 0x72

115 0x73

116 0x74

117 0x75

118 0x76

119 0x77

120 0x78

121 0x79

122 0x7A

123 0x7B

124 0x7C

125 0x7D

126 0x7E

127 0x7F

128 0x80

129 0x81

130 0x82

131 0x83

132 0x84

133 0x85

134 0x86

135 0x87

136 0x88

137 0x89

138 0x8A

139 0x8B

140 0x8C

141 0x8D

142 0x8E

143 0x8F

144 0x90

145 0x91

146 0x92

147 0x93

148 0x94

149 0x95

150 0x96

151 0x97

152 0x98

153 0x99

154 0x9A

155 0x9B

156 0x9C

157 0x9D

158 0x9E

159 0x9F

160 0xA0

161 0xA1

162 0xA2

163 0xA3

164 0xA4

165 0xA5

166 0xA6

167 0xA7

168 0xA8

169 0xA9

170 0xAA

171 0xAB

172 0xAC

173 0xAD

174 0xAE

175 0xAF

176 0xB0

177 0xB1

178 0xB2

179 0xB3

180 0xB4

181 0xB5

182 0xB6

183 0xB7

184 0xB8

185 0xB9

186 0xBA

187 0xBB

188 0xBC

189 0xBD

190 0xBE

191 0xBF

192 0xC0

193 0xC1

194 0xC2

195 0xC3

196 0xC4

197 0xC5

198 0xC6

199 0xC7

200 0xC8

201 0xC9

202 0xCA

203 0xCB

204 0xCC

205 0xCD

206 0xCE

207 0xCF

208 0xD0

209 0xD1

210 0xD2

211 0xD3

212 0xD4

213 0xD5

214 0xD6

215 0xD7

216 0xD8

217 0xD9

218 0xDA

219 0xDB

220 0xDC

221 0xDD

Atari ASCII Table – E.5

Dec Hex Char

T H E A T A R I C O M P E N D I U M

222 0xDE

223 0xDF

224 0xE0

225 0xE1

226 0xE2

227 0xE3

228 0xE4

229 0xE5

230 0xE6

231 0xE7

232 0xE8

233 0xE9

234 0xEA

235 0xEB

236 0xEC

237 0xED

238 0xEE

239 0xEF

240 0xF0

241 0xF1

242 0xF2

243 0xF3

244 0xF4

245 0xF5

246 0xF6

247 0xF7

248 0xF8

249 0xF9

250 0xFA

251 0xFB

252 0xFC

253 0xFD

254 0xFE

255 0xFF

T H E A T A R I C O M P E N D I U M

– APPENDIX F –

IKBD SCAN CODES

IKBD Scan Codes – F.3

T H E A T A R I C O M P E N D I U M

IKBD Scan Codes

The AES, VDI , and BIOS, all contain functions which return scan codes from the Intelligent
Keyboard Controller (IKBD). These scan codes can be used to determine exactly which key was
struck (not simply the ASCII value).

One thing that must be considered when relying on scan codes is that they identify a physical
vector on the keyboard, not a key definition. The scancode for a letter on an American keyboard,
for instance, may be different than the scancode for the same letter on a German keyboard. The
XBIOS function Keytbl() can be used to look up the ASCII value assigned to a scancode to
ensure that keystrokes are correctly processed.

Scancodes for keyboard modifiers (SHIFT, ALT, etc.) are never returned by an OS call. However,
when handling the IKBD directly, the following scancodes may be encountered:

Key Scancode
Left-Shift 42 (0x2A)
Right-Shift 54 (0x36)
Control 29 (0x1D)
Alternate 56 (0x38)
Caps Lock 58 (0x3A)

The values shown in the following table contain the IKBD scancode of each keyboard key in the
high BYTE and the ASCII code in the low BYTE. Keys with no corresponding ASCII value will
always have zero as the low byte. These values are valid for all Atari computers with US
keyboards:

Key Unshifted Key Shifted w/CTRL w/ALT

a 0x1E61 A 0x1E41 0x1E01 0x1E00
b 0x3062 B 0x3042 0x3002 0x3000
c 0x2E63 C 0x2E43 0x2E03 0x2E00
d 0x2064 D 0x2044 0x2004 0x2000
e 0x1265 E 0x1245 0x1205 0x1200
f 0x2166 F 0x2146 0x2106 0x2100
g 0x2267 G 0x2247 0x2207 0x2200
h 0x2368 H 0x2348 0x2308 0x2300
i 0x1769 I 0x1749 0x1709 0x1700
j 0x246A J 0x244A 0x240A 0x2400
k 0x256B K 0x254B 0x250B 0x2500
l 0x266C L 0x264C 0x260C 0x2600

m 0x326D M 0x324D 0x320D 0x3200
n 0x316E N 0x314E 0x310E 0x3100
o 0x186F O 0x184F 0x180F 0x1800
p 0x1970 P 0x1950 0x1910 0x1900
q 0x1071 Q 0x1051 0x1011 0x1000
r 0x1372 R 0x1352 0x1312 0x1300
s 0x1F73 S 0x1F53 0x1F13 0x1F00
t 0x1474 T 0x1454 0x1414 0x1400

F.4 – IKBD Scan Codes

Key Unshifted Key Shifted w/CTRL w/ALT

T H E A T A R I C O M P E N D I U M

u 0x1675 U 0x1655 0x1615 0x1600
v 0x2F76 V 0x2F56 0x2F16 0x2F00
w 0x1177 W 0x1157 0x1117 0x1100
x 0x2D78 X 0x2D58 0x2D18 0x2D00
y 0x1579 Y 0x1559 0x1519 0x1500
z 0x2C7A Z 0x2C5A 0x2C1A 0x2C00
1 0x0231 ! 0x0221 0x0211 0x7800
2 0x0332 @ 0x0340 0x0300 0x7900
3 0x0433 # 0x0423 0x0413 0x7A00
4 0x0534 $ 0x0524 0x0514 0x7B00
5 0x0635 % 0x0625 0x0615 0x7C00
6 0x0736 ^ 0x075E 0x071E 0x7D00
7 0x0837 & 0x0826 0x0817 0x7E00
8 0x0938 * 0x092A 0x0918 0x7F00
9 0x0A39 (0x0A28 0x0A19 0x8000
0 0x0B30) 0x0B29 0x0B10 0x8100
- 0x0C2D _ 0x0C5F 0x0C1F 0x8200
= 0x0D3D + 0x0D2B 0x0D1D 0x8300
` 0x2960 ~ 0x297E 0x2900 0x2960
\ 0x2B5C | 0x2B7C 0x2B1C 0x2B5C
[0x1A5B { 0x1A7B 0x1A1B 0x1A5B
] 0x1B5D } 0x1B7D 0x1B1D 0x1B5D
; 0x273B : 0x273A 0x271B 0x273B
' 0x2827 " 0x2822 0x2807 0x2827
, 0x332C < 0x333C 0x330C 0x332C
. 0x342E > 0x343E 0x340E 0x342E
/ 0x352F ? 0x353F 0x250F 0x352E

SPACE 0x3920 0x3920 0x3900 0x3920
ESC 0x011B 0x011B 0x011B 0x011B

BKSP 0x0E08 0x0E08 0x0E08 0x0E08
DEL 0x537F 0x537F 0x531F 0x537F

RETURN 0x1C0D 0x1C0D 0x1C0A 0x1C0D
TAB 0x0F09 0x0F09 0x0F09 0x0F09

Nmpad (0x6328 0x6328 0x6308 0x6328
Nmpad) 0x6429 0x6429 0x6409 0x6429
Nmpad / 0x652F 0x652F 0x650F 0x652F
Nmpad * 0x662A 0x662A 0x660A 0x662A
Nmpad _ 0x4A2D 0x4A2D 0x4A1F 0x4A2D
Nmpad + 0x4E2B 0x4E2B 0x3E0B 0x4E2B
Nmpad . 0x712E 0x712E 0x710E 0x712E

Nmpad ENTER 0x720D 0x720D 0x720A 0x720D
Nmpad 0 0x7030 0x7030 0x7010 0x70301

Nmpad 1 0x6D31 0x6D31 0x6D11 0x6D311

Nmpad 2 0x6E32 0x6E32 0x6E00 0x6E321

Nmpad 3 0x6F33 0x6F33 0x6F13 0x6F331

Nmpad 4 0x6A34 0x6A34 0x6A14 0x6A341

Nmpad 5 0x6B35 0x6B35 0x6B15 0x6B351

Nmpad 6 0x6C36 0x6C36 0x6C1E 0x6C361

1Atari computers with TOS 2.0 or higher do not generate scancodes for the ALT-Numeric Keypad numbers. Instead they allow the user
to enter any key by holding ALT while typing the ASCII code number and then releasing ALT to generate the keypress.

IKBD Scan Codes – F.5

Key Unshifted Key Shifted w/CTRL w/ALT

T H E A T A R I C O M P E N D I U M

Nmpad 7 0x6737 0x6737 0x6717 0x67371

Nmpad 8 0x6838 0x6838 0x6818 0x68381

Nmpad 9 0x6939 0x6939 0x6919 0x69391

HELP 0x6200 0x6200 0x6200 Alt-Help2

UNDO 0x6100 0x6100 0x6100 0x6100
INSERT 0x5200 0x5230 0x5200 Left Mouse

Button3

CLR/ HOME 0x4700 0x4737 0x7700 Right
Mouse
Button3

UP-ARROW 0x4800 0x4838 0x4800 Mouse
Up3

DOWN-ARROW 0x5000 0x5032 0x5000 Mouse
Down3

LEFT-ARROW 0x4B00 0x4B34 0x7300 Mouse
Left3

RIGHT-ARROW 0x4D00 0x4D36 0x7400 Mouse
Right3

F1 0x3B00 F11 0x5400 0x3B00 0x3B00
F2 0x3C00 F12 0x5500 0x3C00 0x3C00
F3 0x3D00 F13 0x5600 0x3D00 0x3D00
F4 0x3E00 F14 0x5700 0x3E00 0x3E00
F5 0x3F00 F15 0x5800 0x3F00 0x3F00
F6 0x4000 F16 0x5900 0x4000 0x4000
F7 0x4100 F17 0x5A00 0x4100 0x4100
F8 0x4200 F18 0x5B00 0x4200 0x4200
F9 0x4300 F19 0x5C00 0x4300 0x4300

F10 0x4400 F20 0x5D00 0x4400 0x4400

2This key does not generate a keycode, rather it triggers the screen dump interrupt.
3 Keycodes marked by an asterisk are mouse-equivalent keys and generate mouse events rather than keycodes.

– APPENDIX G –

Speedo Fonts

T H E A T A R I C O M P E N D I U M

The Speedo Font Header

This section provides detailed information about the contents of the
buffer returned by the vqt_fontheader() call. First, here are some
general notes about the values you will be using:

Character strings are only NULL terminated if they do not
completely fill their assigned field.

All integers are signed (unless otherwise noted) and in Big-Endian
format (most significant byte first).

Outline Resolution Units (ORUs) are the basic unit of measurement
for Speedo characters. There are usually 1000 ORUs per Em square
(width of the letter 'M') though you can check this value in the font
header itself.

6-byte Transformation Parameters consist of a WORD Y offset
(expressed in ORUs) followed by a UWORD X-scaling factor
(expressed in units of 1/4096) and a similar UWORD Y-scaling
factor (also expressed in units of 1/4096).

The following table details the information returned by the
vqt_fontheader() function call:

Offset Field Meaning

0 Format Identifier An 8-byte character string consisting of "D1.0" CR LF NULL NULL
8
 Font Size A LONG specifying the size of the font file in bytes.
12
 Minimum Font Buffer Size A LONG specifying the minimum size buffer required to load the non-
image data of the font.
16
 Minimum Character Buffer Size A WORD specifying the minimum size buffer required to hold
the largest character in the font.
18
 Header Size A WORD specifying the size of the font header.
20
 Font ID A WORD containing the Bitstream font ID number.
22
 Font Version Number A WORD containing the font revision number.
24
 Font Full Name A 70-byte character string containing the full name of the font.
94
 Manufacturing Date A 10-byte character string containing the manufacturing date of the font
as DD Mon YY.
104
 Character Set Name A 66-byte character string containing the name of the character set used
for the font (ex: "Bitstream International Character Set").
170

 Vendor ID A 2-byte character string identifying the manufacturer of the font. This is usually
the first two characters in the font filename. Bitstream fonts use 'BX'.
172
 Character Set ID A 2-byte character string identifying the character set used for this font. This is
usually the second 2 characters in the font filename. The Bitstream International Character Set is '00'.
174
 Copyright Notice A 78-byte character string containing the copyright notice for the font.
252
 Number of Character Indexes in Character Set A WORD specifying the number of character
indexes available in the font's character set. This does not necessarily mean that every index is actually used.
254
 Total Number of Character Indexes in Font A WORD indicating the number of character indexes
available in the font's character set in addition to any supplementary characters needed to create compound
characters.
256
 Index of First Character A WORD containing the first available character in a font.
258
 Number of Kerning Tracks A WORD specifying the total number of kerning tracks.
260
 Number of Kerning Pairs A WORD specifying the total number of kerning pairs.
262
 Font Flags Bit 0 of this BYTE is set to indicate extended mode. Extended mode fonts require a
higher quality of font rendering (such as chess pieces). If Bit 0 is clear, the font is in Compact mode (the
default). Bits 1-7 are currently reserved.
263
 Classification Flags A BYTE value whose bits indicate the font classification as follows: Bit
Meaning

0 Italic

1 Monospace

2 Serif

3 Display

4-7 Reserved
264
 Family Classification A BYTE indicating the family classification of the font as follows: Value
Meaning

0 Don't Care

1 Serif

2 Sans Serif

3 Monospace

4 Script

5 Decorative
265
 Font Form Classification A BYTE classifying the width and weight of characters in the font as
follows: Bits 0-3 Meaning

0-3 (Reserved)

4 Condensed

5 (Reserved for 3⁄4 condensed)

6 Semi-Condensed

7 (Reserved for 1⁄4 condensed)

8 Normal

9 (Reserved for 3⁄4 expanded)

10 Semi-Expanded

11 (Reserved for 1⁄4 expanded)

12 Expanded

13-15 (Reserved)

Bits 4-7 Meaning

0 (Reserved)

1 Thin

2 Ultralight

3 Extralight

4 Light

5 Book

6 Normal

7 Medium

8 Semibold

9 Demibold

10 Bold

11 Extrabold

12 Ultrabold

13 Heavy

14 Black

15 (Reserved)
266
 Short Font Name A 32-byte character string containing the abbreviation of the name of the
Postscript compatible font.
298
 Short Face Name A 16-byte character string containing the abbreviation of the typeface family
name.
314
 Font Form A 14-byte character string containing the font form classification (as above).
328
 Italic Angle A WORD indicating the number of 1/256 degrees that characters are slanted
clockwise.
330
 ORUs per Em A WORD indicating the number of Outline Resolution Units (ORUs) per Em.
332
 Width of Word Space A WORD value which expresses the width of a 'word space' (i.e. ASCII 32)
in ORUs.
334
 Width of Em Space A WORD value which expresses the width of Em space in ORUs (this is not
always the same as the number of ORUs in the letter 'M').
336
 Width of En Space A WORD value which expresses the width of En space in ORUs. This is always half
the width of Em space (not the width of the letter 'N').
338
 Width of Thin Space A WORD value which expresses the width of 'thin space' in ORUs. This is
the width applied between two words and is normally the same as 'word space'.

340
 Width of Figure Space A WORD value which expresses the width of 'figure space' in ORUs. This
is the width of tabular characters in the font.
342
 XMIN (Min X coordinate in font) A WORD indicating the minimum X coordinate used in the font.

344
 YMIN (Min Y coordinate in font) A WORD indicating the minimum Y coordinate used in the font.
346
 XMAX (Max X coordinate in font) A WORD indicating the maximum X coordinate used in the font.
348
 YMAX (Max Y coordinate in font) A WORD indicating the maximum Y coordinate used in the font.
350
 Underline Position A WORD value indicating the distance the center of an underline should
be applied from the baseline of the font.
352
 Underline Thickness A WORD value indicating the thickness an underline applied to this font
should be (in ORUs).
354
 Small Caps A 6-byte Transformation Parameter used for small capitals (eg: abcdefg).
360
 Display Superiors A 6-byte Transformation Parameter used for display superiors (eg: $350).
366
 Footnote Superiors A 6-byte Transformation Parameter used for footnote superiors (eg: see
footnote1).
372
 Alpha Superiors A 6-byte Transformation Parameter used for alpha superiors (eg: Sra).
378
 Chemical Inferiors A 6-byte Transformation Parameter used for chemical inferiors (eg: H20).
384
 Small Numerators A 6-byte Transformation Parameter used for small numerators (eg:).
390
 Small Denominators A 6-byte Transformation Parameter used for small denominators (see
above).
396
 Medium Numerators A 6-byte Transformation Parameter used for medium numerators (eg:).
402
 Medium Denominators A 6-byte Transformation Parameter used for medium denominators (see
above).
408
 Large Numerators A 6-byte Transformation Parameter used for large numerators (eg:).
414
 Large Denominators A 6-byte Transformation Parameter used for large denominators (see
above).

Speedo Character Map – G.7

T H E A T A R I C O M P E N D I U M

The Bitstream International Character Set

The vst_charmap() and vqt_get_table() functions provide access to the entire Speedo
character set by specifying characters as WORD size Bitstream index values rather than BYTE
size ASCII values. The following table lists the available Bitstream Speedo index and ID
numbers.

All current Atari calls refer to Bitstream indexes rather than character ID. There is an important
difference between these two. Characters never change ID numbers between fonts, however they
may change index positions. When specifying character indexes with Atari calls it is important
to note which character set the font was created with to provide accurate mapping. The
following table lists indexes for the most common set, the Bitstream International Character Set
represented in the typeface ‘Swiss 721’.

IDX ID Char IDX ID Char IDX ID Char

0 32

1 33

2 34

3 35

4 36

5 37

6 38

7 39

8 40

9 41

10 42

11 43

12 44

13 45

14 46

G.8 – Speedo Character Map

IDX ID Char IDX ID Char IDX ID Char

T H E A T A R I C O M P E N D I U M

15 47

16 48

17 49

18 50

19 51

20 52

21 53

22 54

23 55

24 56

25 57

26 58

27 59

28 60

29 61

30 62

31 63

32 64

33 65

34 66

35 67

36 68

37 69

38 70

Speedo Character Map – G.9

IDX ID Char IDX ID Char IDX ID Char

T H E A T A R I C O M P E N D I U M

39 71

40 72

41 73

42 74

43 75

44 76

45 77

46 78

47 79

48 80

49 81

50 82

51 83

52 84

53 85

54 86

55 87

56 88

57 89

58 90

59 91

60 92

61 93

62 94

G.10 – Speedo Character Map

IDX ID Char IDX ID Char IDX ID Char

T H E A T A R I C O M P E N D I U M

63 95

64 96

65 97

66 98

67 99

68 100

69 101

70 102

71 103

72 104

73 105

74 106

75 107

76 108

77 109

78 110

79 111

80 112

81 113

82 114

83 115

84 116

85 117

86 118

Speedo Character Map – G.11

IDX ID Char IDX ID Char IDX ID Char

T H E A T A R I C O M P E N D I U M

87 119

88 120

89 121

90 122

91 123

92 124

93 125

94 126

95 129

96 130

97 131

98 132

99 133

100 134

101 135

102 136

103 137

104 138

105 139

106 140

107 141

108 142

109 143

110 144

G.12 – Speedo Character Map

IDX ID Char IDX ID Char IDX ID Char

T H E A T A R I C O M P E N D I U M

111 145

112 146

113 147

114 148

115 149

116 150

117 151

118 152

119 153

120 154

121 155

122 156

123 157

124 158

125 159

126 160

127 161

128 162

129 163

130 164

131 165

132 167

133 168

134 169

Speedo Character Map – G.13

IDX ID Char IDX ID Char IDX ID Char

T H E A T A R I C O M P E N D I U M

135 170

136 171

137 172

138 173

139 174

140 175

141 176

142 177

143 178

144 179

145 180

146 181

147 182

148 183

149 184

150 185

151 186

152 187

153 188

154 189

155 190

156 191

157 192

158 193

G.14 – Speedo Character Map

IDX ID Char IDX ID Char IDX ID Char

T H E A T A R I C O M P E N D I U M

159 194

160 195

161 196

162 197

163 198

164 199

165 200

166 201

167 202

168 203

169 225

170 226

171 227

172 228

173 229

174 230

175 231

176 233

177 234

178 235

179 236

180 237

181 238

182 239

Speedo Character Map – G.15

IDX ID Char IDX ID Char IDX ID Char

T H E A T A R I C O M P E N D I U M

183 240

184 241

185 242

186 243

187 244

188 245

189 246

190 247

191 248

192 249

193 320

194 321

195 322

196 323

197 324

198 325

199 326

200 327

201 328

202 329

203 330

204 331

205 332

206 333

G.16 – Speedo Character Map

IDX ID Char IDX ID Char IDX ID Char

T H E A T A R I C O M P E N D I U M

207 334

208 335

209 336

210 337

211 338

212 339

213 340

214 341

215 342

216 343

217 344

218 345

219 346

220 347

221 348

222 349

223 350

224 351

225 353

226 354

227 355

228 362

229 363

230 366

Speedo Character Map – G.17

IDX ID Char IDX ID Char IDX ID Char

T H E A T A R I C O M P E N D I U M

231 367

232 368

233 369

234 370

235 371

236 372

237 373

238 374

239 375

240 376

241 377

242 378

243 379

244 380

245 383

246 384

247 385

248 386

249 387

250 388

251 389

252 390

253 391

254 392

G.18 – Speedo Character Map

IDX ID Char IDX ID Char IDX ID Char

T H E A T A R I C O M P E N D I U M

255 393

256 394

257 395

258 396

259 397

260 398

261 399

262 400

263 404

264 410

265 411

266 414

267 418

268 421

269 422

270 423

271 424

272 425

273 426

274 427

275 433

276 434

277 435

278 436

Speedo Character Map – G.19

IDX ID Char IDX ID Char IDX ID Char

T H E A T A R I C O M P E N D I U M

279 442

280 446

281 447

282 448

283 449

284 450

285 451

286 452

287 453

288 454

289 455

290 456

291 457

292 458

293 459

294 460

295 461

296 462

297 463

298 464

299 465

300 470

301 471

302 476

G.20 – Speedo Character Map

IDX ID Char IDX ID Char IDX ID Char

T H E A T A R I C O M P E N D I U M

303 478

304 479

305 480

306 481

307 482

308 484

309 486

310 487

311 488

312 489

313 500

314 501

315 505

316 515

317 518

318 521

319 522

320 523

321 526

322 527

323 529

324 530

325 534

326 538

Speedo Character Map – G.21

IDX ID Char IDX ID Char IDX ID Char

T H E A T A R I C O M P E N D I U M

327 540

328 542

329 544

330 562

331 563

332 564

333 565

334 566

335 567

336 568

337 570

338 571

339 572

340 573

341 575

342 576

343 577

344 579

345 581

346 582

347 583

348 584

349 585

350 586

G.22 – Speedo Character Map

IDX ID Char IDX ID Char IDX ID Char

T H E A T A R I C O M P E N D I U M

351 587

352 588

353 589

354 590

355 591

356 592

357 593

358 594

359 595

360 598

361 599

362 600

363 605

364 606

365 607

366 608

367 609

368 610

369 611

370 612

371 613

372 614

373 619

374 620

Speedo Character Map – G.23

IDX ID Char IDX ID Char IDX ID Char

T H E A T A R I C O M P E N D I U M

375 621

376 622

377 623

378 624

379 625

380 628

381 629

382 630

383 631

384 634

385 637

386 638

387 639

388 640

389 641

390 642

391 643

392 644

393 645

394 646

395 647

396 648

397 649

398 650

G.24 – Speedo Character Map

IDX ID Char IDX ID Char IDX ID Char

T H E A T A R I C O M P E N D I U M

399 651

400 653

401 654

402 655

403 656

404 657

405 660

406 661

407 662

408 663

409 664

410 665

411 666

412 667

413 669

414 670

415 671

416 674

417 675

418 676

419 677

420 678

421 679

422 680

Speedo Character Map – G.25

IDX ID Char IDX ID Char IDX ID Char

T H E A T A R I C O M P E N D I U M

423 681

424 682

425 683

426 684

427 685

428 693

429 695

430 797

431 1223

432 1364

433 1365

434 1368

435 1369

436 1372

437 1373

438 1376

439 1377

440 1380

441 1381

442 1384

443 1385

444 1388

445 1392

446 1393

G.26 – Speedo Character Map

IDX ID Char IDX ID Char IDX ID Char

T H E A T A R I C O M P E N D I U M

447 1396

448 1397

449 1400

450 1401

451 1661

452 1667

453 1743

454 1744

455 1747

456 1748

457 1751

458 1752

459 1753

460 1756

461 1761

462 1766

463 1771

464 1776

465 1996

466 2022

467 2028

468 2034

469 2040

470 2046

Speedo Character Map – G.27

IDX ID Char IDX ID Char IDX ID Char

T H E A T A R I C O M P E N D I U M

471 2052

472 2058

473 2064

474 2070

475 2076

476 2647

477 2653

478 2776

479 2984

480 2990

481 3396

482 3580

483 3586

484 3704

485 3738

486 3744

487 4472

488 4488

489 4489

490 4490

491 4524

492 4736

493 4744

494 4903

G.28 – Speedo Character Map

IDX ID Char IDX ID Char IDX ID Char

T H E A T A R I C O M P E N D I U M

495 5042

496 5085

497 5147

498 5196

499 5243

500 5244

501 5249

502 5262

503 5371

504 5372

505 5403

506 5408

507 5410

508 5418

509 5421

510 5422

511 5423

512 5424

513 5427

514 5428

515 5429

516 5430

517 5431

518 5432

Speedo Character Map – G.29

IDX ID Char IDX ID Char IDX ID Char

T H E A T A R I C O M P E N D I U M

519 5434

520 5435

521 5436

522 5437

523 5438

524 5441

525 5442

526 5443

527 5444

528 5445

529 5446

530 5461

531 5462

532 5463

533 5464

534 5465

535 5466

536 5467

537 5468

538 5510

539 5514

540 5518

541 5521

542 5522

G.30 – Speedo Character Map

IDX ID Char IDX ID Char IDX ID Char

T H E A T A R I C O M P E N D I U M

543 5523

544 5524

545 5527

546 5528

547 5529

548 5536

549 5537

550 5538

551 5539

552 5540

553 5541

554 5542

555 5543

556 5544

557 5545

558 5548

559 5554

560 5594

561 5595

562 5596

563 6458

T H E A T A R I C O M P E N D I U M

– APPENDIX H –

THE DRAG & DROP

PROTOCOL

Overview – H.3

T H E A T A R I C O M P E N D I U M

Overview

The drag and drop protocol provides a simple method of data transmission between applications
that support it. Because this protocol relies on the use of named pipes, the use of the drag and
drop protocol is only possible under MultiTOS .

A drag and drop operation involves the user selecting a piece of program data (or perhaps
several pieces) in the ‘originator’ application and dragging that piece of data with the mouse to
the window of a ‘recipient’ application. This appendix will detail the drag and drop protocol
from the perspective of the originator and the recipient.

You should note that during a drag and drop operation, neither application should lock the screen
with wind_update().

The Originator

When the user selects an object or group of objects, drags the mouse (and objects), and releases
the mouse button outside one of your application window’s work areas, the operation is a
candidate for a drag and drop operation.

When this action is initiated by the user, your application should call wind_find() to determine
the window handle of the window at the drop location. From the window handle you can use
wind_get() to determine the owner’s application identifier which will be needed to send an
AES message to the application.

At this point you should use Psignal() to cause SIGPIPE (13) signals to be ignored and create a
pipe named DRAGDROP.xx where ‘xx’ is a unique two character combination. The pipe
created should have its ‘hidden’ attribute set. This causes reads to return EOF when the other
end of the pipe is closed. To ensure your value is unique, try using the ASCII representation of
your own application ID. If the Fcreate() fails, try a new combination until you find one that is
available.

Now use appl_write() to send an AES message to the application whose window was targeted
(the recipient) as follows:

WORD Contents
0 AP_DRAGDROP (63)
1 Originator’s application id.
2 0
3 Window handle of the target.
4 Mouse X position at time of drop.
5 Mouse Y position at time of drop.
6 Keyboard shift status at time of drop.
7 2 character pipe ID packed into a WORD (this is the file

extension of the created pipe).

H.4 – The Drag & Drop Protocol

T H E A T A R I C O M P E N D I U M

The originator application should now use Fselect() to wait for either a write to the pipe or a
timeout (3 to 4 seconds should be sufficient). If the call times out then the drag and drop
operation failed and the pipe should be closed, otherwise, read one byte from the pipe which
should be either DD_OK (0) or DD_NAK (1).

DD_OK means that the recipient wishes to continue the exchange. DD_NAK means that the user
dropped the data on a window not prepared to accept data and that the pipe should be closed
and the drag and drop operation aborted.

On receipt of a DD_OK, the originator should then read an additional 32 BYTEs from the pipe.
These 32 BYTEs consist of eight 4 BYTE data type values that the recipient understands in
order of preference. This list is not necessarily complete and the originator should not abort
simply because it can’t handle any of the listed data types. If less than eight data types are listed
by the recipient the 32 bytes will be padded with zeros.

Data type values are four-byte ASCII values that represent data that might be exchanged. When
these values are prefixed with a period, they represent data in a format that might be stored in a
disk file. Examples of these are ‘.IMG’, ‘.TXT’, and ‘.GEM’. Some data types such as ‘ARGS’
or ‘PATH’ are not prefixed with a period because they represent special data.

The desktop sends an ‘ARGS’ drag and drop message to an application window when the user
drags a group of file icons to an application window. The ‘ARGS’ data consists of a standard
command line with the names of each file. ‘ARGS’ data should be translated for non-TOS file
systems. Characters within single quotes should be interpreted as a single filename. Two single
quotes in a row should be interpreted as a single quote.

After the originator has consulted the 32 byte list or preferred file types, it should construct its
own structure consisting of the following data:

1. The type of data the originator has decided to send (4 ASCII bytes), ex: ‘.IMG’.

2. The length of data in bytes (LONG).

3. The data’s name in ASCII format terminated by a NULL (this is a variable length
field but should be brief as it will be used to label an icon which represents the
data chunk), ex: “ASCII Text”.

4. The filename the data is associated with in ASCII format terminated by a NULL
(again, a variable length field), ex: “SAMPLE.TXT”.

The originator should now write a WORD to the pipe signifying the length of the header and
then the header itself. After doing so, the recipient will write a one byte reply indicating a return
code from the following list:

The Recipient – H.5

T H E A T A R I C O M P E N D I U M

Name Value Meaning
DD_OK 0 Ready to receive data. After receiving this message you

should Fwrite() the actual data to the pipe and then
Fclose() it to complete the operation.

DD_NAK 1 Abort the drag and drop. After receiving this message,
close the pipe and abort the operation.

DD_EXT 2 The recipient cannot accept the format the data is in. You
may either construct a new header and send it as before
or close the pipe to abort the operation.

DD_LEN 3 The recipient cannot handle so much data. Either use a
format which would cause less data to be sent or close
the pipe to abort.

DD_TRASH 4 The data has been dropped on a trashcan. The pipe
should be Fclose() ’d and the data should be deleted
from the originator application.

DD_PRINTER 5 The data has been dropped on a printer. The pipe should
be Fclose() ’d and the data should be printed.

DD_CLIPBOARD 6 The data has been dropped on a clipboard. The pipe
should be Fclose() ’d and the exchange should be treated
like a ‘Copy’ clipboard operation.

The one exception to the above procedure involves the ‘PATH’ data type. If the recipient agrees
to the ‘PATH’ data type by sending a DD_OK, the originator should read a path string
(terminated by a NULL byte). The path string should be the complete pathname represented by
the target window, ex: “C:\WORDPRO\FILES\”. The size of the data, as specified in the header,
specifies the maximum size of the string the recipient should write.

The Recipient

The drag and drop protocol begins for the recipient upon receipt of the AP_DRAGDROP
message. When this message is received, the recipient should immediately open the pipe
‘U:\PIPE\DRAGDROP.xx’, where ‘xx’ is the two-byte ASCII identifier given in WORD 7 of
the message, and write a DD_OK (0) to the pipe.

Next, as the recipient, you should construct a 32 byte structure consisting of eight 4 byte data
names your application can receive. If your application recognizes less than eight types of data
pad the 32 bytes with zeros. After this structure is constructed, write it to the pipe.

Now you should read a WORD from the pipe which will indicate the size of the message header
which should be read immediately after. The message header consists of a four byte ASCII data
type, a LONG indicating the size of the data, a NULL terminated string of variable size which
identifies the data (or simply NULL if none), and a NULL terminated filename (or NULL if
none).

After decoding the message header you should respond with one of the one-byte response codes
as listed in the previous table. If the recipient cannot process the data type sent, it should send
DD_EXT and wait for reception of another header (preceded again by a WORD headed size). If

H.6 – The Drag & Drop Protocol

T H E A T A R I C O M P E N D I U M

the originator cannot supply any more data types you will receive a 0 byte return from the
Fread() call and you should Fclose() the pipe and abort.

If the data type is acceptable, respond with DD_OK, read the number of data bytes as indicated
in the header to receive the actual data, and then close the pipe.

A special case arises if the header specifies ‘PATH’ as a data type. In this case you should send
a DD_OK message (if appropriate) and write the pathname associated with the target window
(you can write as many bytes as is specified in the message header data length).

T H E A T A R I C O M P E N D I U M

– APPENDIX I –

THE PROGRAMMABLE

SOUND GENERATOR

The Programmable Sound Generator – I.3

T H E A T A R I C O M P E N D I U M

Controlling the PSG

Creating sound effects and music is possible with either of two system calls. Dosound()
processes commands in a supplied buffer during interrupt processing (50 times per second). It is
best suited, therefore, at playing musical passages while program flow continues. Giaccess()
provides register-level control over the PSG resulting in a higher level of flexibility and
constant updating by the application. This makes Giaccess() more suited for short sound effects.

The function definitions of Dosound() and Giaccess() both reference the register numbers of the
PSG. It should be noted that registers 14 and 15 actually control periperals connected to Port A
and Port B of the PSG. The PSG’s registers are assigned as follows:

Name register Meaning
PSG_APITCHLOW
PSG_BPITCHHIGH

0
1

Set the pitch of the PSG’s channel A to the value in
registers 0 and 1. Register 0 contains the lower 8 bits
of the frequency and the lower 4 bits of register 1
contain the upper 4 bits of the frequency’s 12-bit value.

PSG_BPITCHLOW
PSG_BPITCHHIGH

2
3

Set the pitch of the PSG’s channel B to the value in
registers 0 and 1. Register 0 contains the lower 8 bits
of the frequency and the lower 4 bits of register 1
contain the upper 4 bits of the frequency’s 12-bit value.

PSG_CPITCHLOW
PSG_CPITCHHIGH

2
3

Set the pitch of the PSG’s channel C to the value in
registers 0 and 1. Register 0 contains the lower 8 bits
of the frequency and the lower 4 bits of register 1
contain the upper 4 bits of the frequency’s 12-bit value.

PSG_NOISEPITCH 6 The lower five bits of this register set the pitch of white
noise. The lower the value, the higher the pitch.

PSG_MODE 7 This register contains an eight bit map which
determines various aspects of sound generation.
Setting each bit on causes the following actions:

Name Bit Mask Meaning
PSG_ENABLEA 0x01 Chnl A tone enable
PSG_ENABLEB 0x02 Chnl B tone enable
PSG_ENABLEC 0x04 Chnl C tone enable
PSG_NOISEA 0x08 Chnl A white noise on
PSG_NOISEB 0x10 Chnl B white noise on
PSG_NOISEC 0x20 Chnl C white noise on
PSG_PRTAOUT 0x40 Port A: 0 = input

1 = output
PSG_PRTBOUT 0x80 Port B: 0 - input

1 = output
PSG_AVOLUME 8 This register controls the volume of channel A. Values

from 0-15 are absolute volumes with 0 being the
softest and 15 being the loudest. Setting bit 4 causes
the PSG to ignore the volume setting and to use the
envelope setting in register 13.

PSG_BVOLUME 9 This register controls the volume of channel B. Values
from 0-15 are absolute volumes with 0 being the
softest and 15 being the loudest. Setting bit 4 causes
the PSG to ignore the volume setting and to use the
envelope setting in register 13.

I.4 – The Programmable Sound Generator

T H E A T A R I C O M P E N D I U M

PSG_CVOLUME 10 This register controls the volume of channel C. Values
from 0-15 are absolute volumes with 0 being the
softest and 15 being the loudest. Setting bit 4 causes
the PSG to ignore the volume setting and to use the
envelope setting in register 13.

PSG_FREQLOW
PSG_FREQHIGH

11
12

Register 11 contains the low byte and register 12
contains the high byte of the frequency of the
waveform specified in register 13. This value may
range from 0 to 65535.

PSG_ENVELOPE 13 The lower four bits of the register contain a value
which defines the envelope wavefrom of the PSG. The
best definition of values is obtained through
experimentation.

PSG_PORTA 14 This register accesses Port A of the Yamaha PSG. It
is recommended that the functions Ongibit() and
Offgibit() be used to access this register.

PSG_PORTB 15 This register accesses Port B of the Yamaha PSG.
This register is currently assigned to the data in/out
line of the Centronics Parallel port.

The following table lists the twelve-bit value required to produce the desired musical tones with
the PSG’s tone generators A, B, and C. The upper nibble of the value is placed into the ‘coarse-
tuning’ register and the lower BYTE is placed into the ‘fine-tuning’ register. In addition,
because the PSG must approximate musical frequencies according to an equal-tempered scale,
the ideal and actual frequencies are also listed.

Note
Ideal

Frequency
Actual

Frequency Value Note
Ideal

Frequency
Actual

Frequency Value

C1 32.703 32.698 0xD5D
C#1 34.648 34.653 0xC9C
D1 36.708 36.712 0xBE7
D#1 38.891 38.895 0xB3C
E1 41.203 41.201 0xA9B
F1 43.654 43.662 0xA02
F#1 46.249 46.243 0x973
G1 48.999 48.997 0x8EB
G#1 51.913 51.908 0x86B
A1 55.000 54.995 0x7F2
A#1 58.270 58.261 0x780
B1 61.735 61.733 0x714
C2 65.406 65.416 0x6AE
C#2 69.296 69.307 0x64E
D2 73.416 73.399 0x5F4
D#2 77.782 77.789 0x59E
E2 82.406 82.432 0x54D
F2 87.308 87.323 0x501
F#2 92.498 92.523 0x4B9
G2 97.998 98.037 0x475
G#2 103.826 103.863 0x435
A2 110.000 109.991 0x3F9
A#2 116.540 116.522 0x3C0
B2 123.470 123.467 0x38A
C3 130.812 130.831 0x357

C#3 138.592 138.613 0x327
D3 146.832 146.799 0x2FA
D#3 155.564 155.578 0x2CF
E3 164.812 164.743 0x2A7
F3 174.616 174.510 0x281
F#3 184.996 184.894 0x25D
G3 195.996 195.903 0x23B
G#3 207.652 207.534 0x21B
A3 220.000 220.198 0x1FC
A#3 233.080 233.043 0x1E0
B3 246.940 246.933 0x1C5
C4 261.624 261.357 0x1AC
C#4 277.184 276.883 0x194
D4 293.664 293.598 0x17D
D#4 311.128 310.724 0x168
E4 329.624 329.973 0x153
F4 349.232 349.565 0x140
F#4 369.992 370.400 0x12E
G4 391.992 392.494 0x11D
G#4 415.304 415.839 0x10D
A4 440.000 440.397 0xFE
A#4 466.160 466.087 0xF0
B4 493.880 494.959 0xE2
C5 523.248 522.714 0xD6
C#5 554.368 553.766 0xCA

The Programmable Sound Generator – I.5

Note
Ideal

Frequency
Actual

Frequency Value Note
Ideal

Frequency
Actual

Frequency Value

T H E A T A R I C O M P E N D I U M

D5 587.328 588.741 0xBE
D#5 622.256 621.449 0xB4
E5 659.248 658.005 0xAA
F5 698.464 699.130 0xA0
F#5 739.984 740.800 0x97
G5 783.984 782.243 0x8F
G#5 830.608 828.598 0x87
A5 880.000 880.794 0x7F
A#5 932.320 932.173 0x78
B5 987.760 989.918 0x71
C6 1046.496 1045.428 0x6B
C#6 1108.736 1107.532 0x65
D6 1174.656 1177.482 0x5F
D#6 1244.512 1242.898 0x5A
E6 1318.496 1316.009 0x55
F6 1396.928 1398.260 0x50
F#6 1479.968 1471.852 0x4C
G6 1567.968 1575.504 0x47
G#6 1661.216 1669.564 0x43
A6 1760.000 1747.825 0x40
A#6 1864.640 1864.346 0x3C
B6 1975.520 1962.470 0x39
C7 2092.992 2110.581 0x35
C#7 2217.472 2237.216 0x32

D7 2349.312 2330.433 0x30
D#7 2489.024 2485.795 0x2D
E7 2636.992 2663.352 0x2A
F7 2793.856 2796.520 0x28
F#7 2959.936 2943.705 0x26
G7 3135.936 3107.244 0x24
G#7 3322.432 3290.023 0x22
A7 3520.000 3495.649 0x20
A#7 3729.280 3728.693 0x1E
B7 3951.040 3995.028 0x1C
C8 4185.984 4142.992 0x1B
C#8 4434.944 4474.431 0x19
D8 4698.624 4660.866 0x18
D#8 4978.048 5084.581 0x16
E8 5273.984 5326.704 0x15
F8 5587.712 5593.039 0x14
F#8 5919.872 5887.410 0x13
G8 6271.872 6214.488 0x12
G#8 6644.864 6580.046 0x11
A8 7040.000 6991.299 0x10
A#8 7458.560 7457.560 0xF
B8 7902.080 7990.056 0xE

I.6 – The Programmable Sound Generator

T H E A T A R I C O M P E N D I U M

Sound Envelopes
An envelope may be applied to sounds generated by the PSG. Registers 11 and 12 specifiy the
frequency of this envelope and the low four bits of register 13 specifies the envelope shape as
follows (an ‘x’ digit means either 0 or 1):

Value Waveform Shape

%00xx

%01xx

%1000

%1001

%1010

%1011

%1100

%1101

%1110

%1111

T H E A T A R I C O M P E N D I U M

BIBLIOGRAPHY

Bibliography

T H E A T A R I C O M P E N D I U M

Atari GEMDOS Reference Manual Atari Corp. (1986)
Atari Corp., 1196 Borregas Ave., Sunnyvale, CA 94086

Atari MetaDOS Developers Manual Atari Corp. (1990)
Atari Corp., 1196 Borregas Ave., Sunnyvale, CA 94086

Atari MultiTOS User Interface Guidelines Atari Corp. (1992)
Atari Corp., 1196 Borregas Ave., Sunnyvale, CA 94086

Atari Profibuch ST-STE-TT Hans-Dieter Janowski, Dietmar Rabich, Julian F. Reschke (1987)
ISBN 3-88745-888-5, SYBEX-Verlag GmbH, Postfach 30 09 61, 4000 Düsseldorf 30, Germany

Atari SFP004 Floating Point Coprocessor Developer Kit Atari Corp. (1988)
Atari Corp., 1196 Borregas Ave., Sunnyvale, CA 94086

Atari ST Engineering Hardware Specifications Atari Corp. (1985)
Atari Corp., 1196 Borregas Ave., Sunnyvale, CA 94086

Atari ST GEM Programmer’s Reference Norbert Szczepanowski and Bernd Gunther (1985)
ISBN 0-916439-52-6, Abacus Software, Inc., 5370 52nd St. SE, Grand Rapids, MI 49508

Atari ST/STe/MSTe/TT/Falcon030 Hardware Register Listing v6.0 Dan Hollis (1993)
Dan Hollis c/o ViewTouch Corp., 344 NE Terry Ln., Grants Pass, OR 97526

Atari TT030 Hardware Reference Manual Atari Corp. (1990)
Atari Corp., 1196 Borregas Ave., Sunnyvale, CA 94086

COMPUTE’s Technical Reference Guide, Atari ST, Volume 1 - VDI Sheldon Leemon (1987)
ISBN 0-87455-093-9, COMPUTE! Books, P.O. Box 5406, Greensboro, NC 27403

COMPUTE’s Technical Reference Guide, Atari ST, Volume 2 - AES Sheldon Leemon (1987)
ISBN 0-87455-114-5, COMPUTE! Books, P.O. Box 5406, Greensboro, NC 27403

COMPUTE’s Technical Reference Guide, Atari ST, Volume 3 - TOS Sheldon Leemon (1987)
ISBN 0-87455-149-8, COMPUTE! Books, P.O. Box 5406, Greensboro, NC 27403

Devpac DSP User Manual Hisoft (1993)
Hisoft, The Old School Rd., Greenfield, Bedford MK45 5DE, United Kingdom

DSP56000/56001 Digital Signal Processor User’s Manual Motorola, Inc. (1990)
Motorola Literature Distribution, P.O. Box 20912, Phoenix, AZ 85036

Falcon030 Hardware Reference Guide Atari Corp. (1992)
Atari Corp., 1196 Borregas Ave., Sunnyvale, CA 94086

GEMDOS Extended Argument Specification Atari Corp. (1986)

Bibliography

T H E A T A R I C O M P E N D I U M

Atari Corp., 1196 Borregas Ave., Sunnyvale, CA 94086

GEM Programmer’s Guide, Volume 1: VDI Digital Research, Inc. (1985)
Digital Research, Inc., 60 Garden Ct., P.O. Box DRI, Monterey, CA 93942

GEM Programmer’s Guide, Volume 2: AES Digital Research, Inc. (1985)
Digital Research, Inc., 60 Garden Ct., P.O. Box DRI, Monterey, CA 93942

A Hitchhiker’s Guide to the BIOS Atari Corp. (1985)
Atari Corp., 1196 Borregas Ave., Sunnyvale, CA 94086

Indispensible PC Hardware Book, The Hans-Peter Messmer (1994)
ISBN 0-201-62424-9, Addison Wesley Publishing Company, Inc.

Lattice C 5, Volume 3: Atari Library Manual (Second Edition) Hisoft (1991)
Hisoft, The Old School Rd., Greenfield, Bedford MK45 5DE, United Kingdom

Lattice C 5.5, Addendum: Libraries Hisoft (1991)
Hisoft, The Old School Rd., Greenfield, Bedford MK45 5DE, United Kingdom

MC68000 Family Programmer’s Reference Manual Motorola, Inc. (1989)
Motorola Literature Distribution, P.O. Box 20912, Phoenix, AZ 85036

MC68030 Enhanced 32-Bit Microprocessor User’s Manual Motorola, Inc. (1990)
ISBN 0-13-566423-3, Prentice-Hall, Inc., Englewood Cliffs, NJ 07632

MC68881/MC68882 Floating-Point Coprocessor User’s Manual Motorola, Inc. (1989)
ISBN 0-13-567009-8, Prentice-Hall, Inc., Englewood Cliffs, NJ 07632

MK68901 Multi-Function Peripheral Data Sheet United Technologies Mostek (1982)
United Technologies Mostek, 1215 W. Crosby Rd., Carrolton, TX 75006

MiNT/MultiTOS Release Notes Atari Corp. (1992)
Atari Corp., 1196 Borregas Ave., Sunnyvale, CA 94086

Modern Atari System Software Hisoft (1993)
Hisoft, The Old School Rd., Greenfield, Bedford MK45 5DE, United Kingdom

Pexec Cookbook, Third Edition Atari Corp. (1991)
Atari Corp., 1196 Borregas Ave., Sunnyvale, CA 94086

A Programmer’s Guide to FSMGDOS Atari Corp. (1991)
Atari Corp., 1196 Borregas Ave., Sunnyvale, CA 94086

Rainbow TOS Release Notes Atari Corp. (1989)
Atari Corp., 1196 Borregas Ave., Sunnyvale, CA 94086

Bibliography

T H E A T A R I C O M P E N D I U M

ST Disk Drives: Inside and Out Uwe Braun, Stefan Dittrich, and Axel Schramm (1986)
ISBN 0-916439-84-4, Abacus Software, Inc., 5370 52nd St. SE, Grand Rapids, MI 49508

STe Developer Addendum Atari Corp. (1990)
Atari Corp., 1196 Borregas Ave., Sunnyvale, CA 94086

TT030 TOS Release Notes (Third Edition) Atari Corp. (1991)
Atari Corp., 1196 Borregas Ave., Sunnyvale, CA 94086

User Manual for the Atari ST Bit-Block Transfer Processor (BLiTTER) Atari Corp. (1987)
Atari Corp., 1196 Borregas Ave., Sunnyvale, CA 94086

XCONTROL - Extensible Control Panel Release Notes Atari Corp. (1990)
Atari Corp., 1196 Borregas Ave., Sunnyvale, CA 94086

T H E A T A R I C O M P E N D I U M

INDEX

Index

T H E A T A R I C O M P E N D I U M

1040ST, 1.3
1040STe, 1.4
260ST, 1.3
520ST, 1.3
56001, see DSP
68000, 1.3, 5.3
68030, 1.5, 5.3
6850, 5.10
68881/2, 1.4-1.5, 5.4-5.6
_AKP cookie, 3.13, 4.13
_CPU cookie, 3.11
_FDC cookie, 3.11, 4.64
_FLK cookie, 3.12, 2.7, 2.82
_FRB cookie, 3.12
_FPU cookie, 3.11, 5.4
_IDT cookie, 3.13
_MCH cookie, 3.12
_mediach() function, 3.15
_NET cookie, 3.12
_SND cookie, 3.12, 4.6
_SWI cookie, 3.12
_vblqueue, 3.19, B.9
_VDO cookie, 3.11, 4.3

A
about menu, 11.15, 6.26
access permissions, see MiNT

access permissions
AC_CLOSE message, 6.7, 6.68
AC_OPEN message, 6.7, 6.68
ACIA, B.43-B.44
ACSI, 4.15
ADC, 4.6
address error, 3.35, B.4
AES, 6.1

alerts, 6.25, 6.77, 11.10
application identifier, 6.4,

6.47, 6.53
application services

library, 6.45
applications, 6.4, 11.24
clipping rectangles, 6.32
desk accessories, 6.7
desktop window, 6.31
dialogs, 6.24, 6.81, 11.8

drop-down list boxes, 6.28,
6.108, 11.19

environment string, 6.9,
6.139

event dispatcher, 6.9
event library, 6.59
event loop, 6.4
file selector library, 6.85,

11.12
form library, 6.75
function calling procedure,

6.37
graphics library, 6.89
hierachical menus, 6.27,

6.103, 11.20
language, 6.49, 11.23
menu buffer, 6.28, 6.154
menus, 6.25, 11.15
menu library, 6.101
message events, 6.11, 6.64
message types, 6.9
mouse button events, 6.12,

6.61
objects, 6.13
object library, 6.113
popup menus, 6.28, 6.108,

11.18
rectangle list, 6.32
resource library, 6.125
scrap library, 6.135
shell buffer, 6.35, 6.140-

6.141
shell library, 6.137
timer events, 6.12, 6.73
user-defined messages,

6.12, 6.58
VDI workstation, 6.33, 6.92
window toolbars, 6.33,

11.14
windows, 6.29, 11.4
window library, 6.147

AES_BIOS device, 2.17
AES_MT device, 2.17
AESPB structure, 6.37
AHDI, 3.5, 4.15, B.10
alerts, see AES alerts
alertware, 11.3

alt-help screen dump, 4.91, B.12
alternative RAM, see memory

types
advanced keyboard processor,

see _AKP cookie
appl_exit(), 6.47
appl_find(), 6.47
appl_getinfo(), 6.48
appl_init(), 6.4, 6.7, 6.53
appl_read(), 6.12, 6.54
appl_search(), 6.55
appl_tplay(), 6.56
appl_trecord(), 6.57
appl_write(), 6.12, 6.58
APPLBLK structure, 6.23
application cartridges, 3.3, 5.7
application services library, see

AES application services
library

application software, 11.24
AS68, 1.9
ASCII, E.1
assembly language, 1.9
ASSIGN.SYS file, 7.12
ARGS data type, H.4
Atari Extended Argument

Specification, see
GEMDOS ARGV

Atari GEM , see GEM
attenuation, see sound

attenuation
attributes, see GEMDOS file

attributes
auto-vector interrupts, B.4
aux: file, see serial device

B
bad sector list, 4.16
basepage, 2.11
BASIC, 1.9
Bconin(), 3.27
Bconmap(), 3.14, 4.17, 4.23
Bconout(), 3.28
Bconstat(), 3.28
Bcostat(), 3.29
bezier curves, see GDOS bezier

curves

Index

T H E A T A R I C O M P E N D I U M

BGM partition, 4.16
BIOS, 3.1

calling from an interrupt,
3.22

devices, 3.14
errors, D.3
function calling procedure,

3.22
parameter block, 3.30
vectors, 3.18

Bioskeys(), 4.13, 4.24
BITBLK structure, 6.21
bitmaps, see VDI raster forms
Bitstream international character

set, G.7
Blitmode(), 4.25
BLiTTER chip, 4.25, 7.9
BOOLEAN , see Data Types
boot sectors, 4.14
break codes, 5.11
BPB, see BIOS parameter

block
BSS segment, 2.9
Buffoper(), 4.25
Buffptr(), 4.8, 4.26
bus error, B.4
BYTE, see Data Types

C
C, 1.9
C++, 1.9
caches, 5.3
CACR register, 5.3
camera drivers, see VDI

camera drivers
cartridges, 5.7
Cauxin(), 2.34, 2.39
Cauxis(), 2.34, 2.39
Cauxos(), 2.34, 2.40
Cauxout(), 2.34, 2.41
Cconin(), 2.34, 2.41
Cconis(), 2.34, 2.42
Cconos(), 2.34, 2.43
Cconout(), 2.34, 2.43
Cconrs(), 2.34, 2.44
Cconws(), 2.34, 2.45
CD-ROM drives, 2.3, 2.23, 4.12

CHAR , see Data Types
CICON structure, 6.22
CICONBLK structure, 6.22
client, see MiNT pipes
clipboard, see AES scrap

library
clipping, see VDI clipping
clock, see real time clock
Cnecin(), 2.34, 2.46
cold boot, 3.3
colors

bit layout, 4.5, 5.25
mapping, 4.5
proper use of, 11.23
setting, 4.4
using, see VDI using colors
window, 6.160

command line, see GEMDOS
command line

con: file, see console device
console device, 2.8, 3.14
context, see MiNT process

context
control panel, see XCONTROL
control panel extensions, see

XCONTROL CPX’s
controls, user-defined, 6.23,

11.10
conventions, 1.10
cookie jar, 3.8

COOKIE structure, 3.8
determining hardware

presence, 3.8
placing a cookie, 3.9
searching for a cookie, 3.8
system cookies, 3.11

coordinate systems, see VDI
coordinate systems

coprocessor exceptions, 5.4
coprocessor mode, 5.4
country code, 3.6, 10.6
CPM 68k, 2.3
Cprnos(), 2.34, 2.46
Cprnout(), 2.34, 2.47
CPX, see XCONTROL
cpx_button(), 10.19

cpx_call(), 10.5-10.6, 10.19
cpx_close(), 10.5, 10.20
cpx_draw(), 10.20
cpx_hook(), 10.21
cpx_init(), 10.4, 10.6-10.7,

10.21
cpx_key(), 10.23
cpx_m1(), 10.23
cpx_m2(), 10.24
CPX_Save(), 10.4, 10.29
cpx_timer(), 10.24
cpx_wmove(), 10.25
CPXHEAD structure, 10.3
CPXINFO structure, 10.4
Crawcin(), 2.34, 2.48
Crawio(), 2.34, 2.49
critical error handler, see

GEMDOS vectors
crys_if(), 6.39
Cursconf(), 4.13, 4.27
CX-40 joystick, 5.12

D
DAC, 4.6
data cache, see caches
DATA segment, 2.9
data types, 1.11
Dbmsg(), 4.19, 4.28
Dclosedir(), 2.16, 2.50
Dcntl(), 2.16-2.18, 2.50
Dcreate(), 2.4, 2.53
Ddelete(), 2.4, 2.54
debugging, 2.31
debugging keys, see MultiTOS

debugging keys
debugging levels, 2.33
deferred vertical blank handlers,

3.19
desk menu, 6.26, 11.15
DESKCICN.RSC file, 9.5
DESKCOPY environment

variable, see desktop
extensibility

DESKFMT environment
variable, see desktop
extensibility

DESKICON.RSC file, 9.5

Index

T H E A T A R I C O M P E N D I U M

desktop window, see AES
desktop window

desktop, 9.1
drag and drop usage, 9.3
extendibility, 9.3
messages, 9.3
replacing, 9.3
TOS application launching,

9.4
DESKTOP.INF file, 9.4
Devconnect(), 4.7, 4.29
device-specific format, see VDI

device-specific format
device independence, 11.22
Dfree(), 2.4, 2.54
Dgetcwd(), 2.16, 2.56
Dgetdrv(), 2.5, 2.56
Dgetpath(), 2.5, 2.57
diagnostic cartriges, 5.7
dialogs, see AES dialogs
dialogware, 11.3
Digital Research, Inc., 1.3
disk transfer address, see

GEMDOS DTA
display, see screen
Dlock(), 2.16, 2.57
DMA sound system, see sound

STe/TT030 digital sound
DMAread(), 4.15, 4.31
DMAwrite(), 4.15, 4.32
Dopendir(), 2.16, 2.58
Dosound(), 4.18, 4.33, I.3
dot-matrix printers, see VDI

printer drivers
Dpathconf(), 2.3, 2.59
drag and drop, H.1

originator, H.3
recipient, H.5

Dreaddir(), 2.16, 2.61
Drewinddir(), 2.16, 2.62
drop-down list boxes, see AES

drop-down list boxes
Drvmap(), 3.30
Dsetdrv(), 2.5, 2.62
Dsetpath(), 2.5, 2.63
DSP, 4.8

connection matrix, 4.7
controller registers, B.36
debugging, 4.11
general-purpose pins, 4.11
ISR register, 4.11
memory map, 4.9
programs, 4.10
sending data, 4.11
state, 4.11
subroutines, 4.9
word size, 4.9

Dsp_Available(), 4.10, 4.34
Dsp_BlkBytes(), 4.11, 4.35
Dsp_BlkHandshake(), 4.11,

4.35
Dsp_BlkUnpacked(), 4.11, 4.36
Dsp_BlkWords(), 4.11, 4.37
Dsp_DoBlock(), 4.11, 4.38
Dsp_ExecBoot(), 4.11, 4.39
Dsp_ExecProg(), 4.11, 4.39
Dsp_FlushSubroutines(), 4.40
Dsp_GetProgAbility(), 4.11,

4.40
Dsp_GetWordSize(), 4.41
Dsp_Hf0(), 4.11, 4.41
Dsp_Hf1(), 4.11, 4.42
Dsp_Hf2(), 4.11, 4.43
Dsp_Hf3(), 4.11, 4.43
Dsp_Hstat(), 4.11, 4.44
Dsp_InqrSubrAbility(), 4.10,

4.44
Dsp_InStream(), 4.11, 4.45
Dsp_IOStream(), 4.11, 4.46
Dsp_LoadProg(), 4.11, 4.47
Dsp_LoadSubroutine(), 4.48
Dsp_Lock(), 4.9, 4.48
Dsp_LodToBinary(), 4.11, 4.49
Dsp_MultBlocks(), 4.11, 4.50
Dsp_OutStream(), 4.11, 4.51
Dsp_RemoveInterrupts(),

4.11, 4.51
Dsp_RequestUniqueAbility(),

4.10, 4.52
Dsp_Reserve(), 4.10, 4.53
Dsp_RunSubroutine(), 4.53
Dsp_SetVectors(), 4.11, 4.54

Dsp_TriggerHC(), 4.11, 4.55
Dsp_Unlock(), 4.9, 4.55
Dsptristate(), 4.8, 4.56
DTA , see GEMDOS DTA
dual-state menu items, 11.17

E
edit menu, 11.17
EgetPalette(), 4.5, 4.56
EgetShift(), 4.4, 4.57
enhanced joystick, 5.8
entertainment software, 11.25
Epson printer, 4.96
error codes, D.1
EsetBank(), 4.5, 4.58
EsetColor(), 4.5, 4.59
EsetGray(), 4.4, 4.60
EsetPalette(), 4.5, 4.60
EsetShift(), 4.4, 4.61
EsetSmear(), 4.4, 4.62
EOF, 2.39-2.41
evnt_button(), 6.12, 6.61
evnt_dclick(), 6.9, 6.62
evnt_keybd(), 6.12, 6.63
evnt_mesag(), 6.11, 6.64
evnt_mouse(), 6.12, 6.70
evnt_multi(), 6.10, 6.71
evnt_timer(), 6.12, 6.73
EVNTREC structure, 6.57
exception vectors, B.4
expansion area, B.46
EXTEND.SYS file, 7.15
extended partition, see XGM

partition
extension (file), 2.4

F
Falcon030, 1.6
FALSE, see Data Types
FAT, see file allocation table
Fattrib(), 2.6, 2.64
Fchmod(), 2.15, 2.65
Fchown(), 2.15, 2.66
Fclose(), 2.66
Fcntl(), 2.15, 2.67
Fcreate(), 2.6, 2.74
Fdatime(), 2.7, 2.75

Index

T H E A T A R I C O M P E N D I U M

Fdelete(), 2.7, 2.76
Fdup(), 2.8, 2.76
Fforce(), 2.8, 2.77
Fgetchar(), 2.15, 2.79
Fgetdta(), 2.6, 2.79
file allocation table, 4.14
file menu, 11.16
file selector library, see AES

file selector library
file systems, see MiNT

loadable file systems
filenames, see GEMDOS

filenames
fine scrolling, 5.26
Finstat(), 2.15, 2.80
fix31, see Data Types
Flink(), 2.15, 2.81
floating-point coprocessor, 5.4
floating-point support, see

_FPU cookie
flock system variable, B.8
Flock(), 2.7, 2.82
floppy drives, 4.15
Flopfmt(), 4.15, 4.63
Floprate(), 4.15, 4.65
Floprd(), 4.15, 4.66
Flopver(), 4.15, 4.66
Flopwr(), 4.15, 4.67
.FNT file format, C.7

character offset table, C.9
data, C.8
header, C.7
horizontal offset table, C.9

Fmidipipe(), 2.16, 2.83
folders, see GEMDOS

directories
Font Scaling Module, see

FSMGDOS
FONTGDOS, see GDOS

FONTGDOS
fonts

in AES objects, 6.20
bitmap, see VDI fonts
file format, C.7
outline, see VDI fonts
system, 6.36, 6.48

Fopen(), 2.84
form_alert(), 6.25, 6.77
form_button(), 6.25, 6.78
form_center(), 6.79
form_dial(), 6.80
form_do(), 6.24, 6.81
form_error(), 6.25, 6.82
form_keybd(), 6.25, 6.83
Forth, 1.9
Foutstat(), 2.15, 2.85
Fpipe(), 2.27, 2.86
Fputchar(), 2.15, 2.86
Fread(), 2.7, 2.87
Freadlink(), 2.15, 2.88
Frename(), 2.4, 2.89
Fseek(), 2.7, 2.89
fsel_exinput(), 6.34, 6.87
fsel_input(), 6.34, 6.88
Fselect(), 2.15, 2.90
Fsetdta(), 2.6, 2.91
Fsfirst(), 2.5, 2.92
FSMC cookie, 3.13
FSMGDOS, 7.13
Fsnext(), 2.5, 2.93
Fsymlink(), 2.15, 2.94
Fwrite(), 2.6, 2.95
Fxattr(), 2.15, 2.95

G
gadgets, see AES windows
gain, see sound setting gain
game controllers, 5.8
GDOS, 7.11

bezier curves, 7.13
caching, 7.15
camera drivers, 7.17
device drivers, 7.16
error support, 7.13
fix31 data type, 7.14
font naming convention,

7.12
FONTGDOS, 7.13
fonts, 7.12
FSMGDOS, 7.12-7.13

function calling procedure,
see VDI function
calling procedure

kerning, 7.15
memory driver, 7.18
metafiles, 7.17
original, 7.12
plotter drivers, 7.16
printer drivers, 7.16
special effects, 7.15
SpeedoGDOS, 7.12, 7.14
Speedo character indexes,

7.15
tablet drivers, 7.17
user-defined printer buffer,

7.17
version, 7.11

GDP, see VDI GDP’s
.GEM file format, C.3
GEM , 1.7

partition type, 4.16
user interface guidelines,

11.1
GEM/3, 7.13
GEM.CNF file, 6.36
gemdos(), 2.35
GEMDOS, 2.1

ARGV, 2.12
application startup, 2.11
character functions, 2.34
command line, 2.11
date functions, 2.35
default directory, 2.5
default drive, 2.5
deleting files, 2.7
directories, 2.4
drive identifiers, 2.3
DTA , 2.6
environment string, 2.12
errors, D.3
executable file format, 2.9
file attributes, 2.6
file handles, 2.7
file locking, 2.7
file position pointer, 2.7
file time/date stamp, 2.7
filenames, 2.4

Index

T H E A T A R I C O M P E N D I U M

function calling procedure,
2.35

path, 2.5
processes, 2.9
record locking, 2.7
redirection, 2.8
root directory, 2.4
time functions, 2.35
the TOS file system, 2.3
vectors, 2.13
version, 2.3
volume label, 2.6

GEMFILE.GEM, 7.17
generalized device primitives,

see VDI GDP’s
GENLOCK, 4.6
Get_Buffer(),10.29
Getbpb(), 3.15, 3.30
getcookie(), 10.30
GetFirstRect(), 10.30
Getmpb(), 3.31
GetNextRect(), 10.31
Getrez(), 4.4, 4.68
Gettime(), 4.18, 4.69
Giaccess(), 4.70, I.3
Gpio(), 4.8, 4.72
graf_dragbox(), 6.34, 6.91
graf_growbox(), 6.34, 6.92
graf_handle(), 6.34, 6.92, 7.3
graf_mkstate(), 6.34, 6.93
graf_mouse(), 6.34, 6.94
graf_movebox(), 6.34, 6.96
graf_rubberbox(), 6.34, 6.97
graf_shrinkbox(), 6.34, 6.98
graf_slidebox(), 6.34, 6.99
graf_watchbox(), 6.34, 6.100
graphics library, see AES

graphics library
grayscale mode, 4.4
GRECT structure, 7.7

H
handles, see GEMDOS file

handles or VDI
workstation handles

hierarchical menus, 6.27, 11.20

I
icon, 6.21

color, 6.22
ICONBLK structure, 6.21
iconification, 6.30, 6.156, 11.7
IKBD, 5.10

commands, 5.14
scan codes, F.1

Ikbdws(), 4.14, 4.72
Imagen, see QMS/Imagen
.IMG file format, C.5

extra palette information,
C.5

header, C.5
image compression, C.6
image data format, C.6

Initmous(), 4.12, 4.73
instruction cache, 5.3
interrupt priority level, 5.3
IOREC structure, 4.75
Iorec(), 4.17, 4.75

J
Jdisint(), 4.18, 4.76
Jenabint(), 4.18, 4.76
joysticks, 5.8, 5.12

K
Kbdvbase(), 4.77
KBDVECS, 4.77
Kbrate(), 4.13, 4.78
Kbshift(), 3.7, 3.32
kerning, see GDOS kerning
keyboard, 5.11
keyboard equivalents, 11.20
keyboard tables, 4.12, 7.15, E.1,

F.1
Keytbl(), 4.12, 4.78
KEYTBL.TBL file, 4.13

L
LAN connector, 4.17
Lattice C, 1.9
light gun, 5.10
Line-A , 8.1

arbitrary line function, 8.12
bitblt function, 8.15
copy raster function, 8.21

draw sprite function, 8.20
filled polygon function,

8.14
filled rectangle function,

8.13
font headers, 8.7
function calling procedure,

8.8
get pixel function, 8.12
hide mouse function, 8.19
horizontal line function,

8.13
initialize function, 8.11
plot pixel function, 8.11
seed fill function, 8.22
show mouse function, 8.18
textblt function, 8.16
transform mouse function,

8.19
undraw sprite function, 8.20
variable table, 8.3

links, see MiNT links
list boxes, see AES drop-down

list boxes
Localtalk, see LAN connector
Locksnd(), 4.6, 4.79
Logbase(), 4.3, 4.80
logical screen, 4.3

M
magneto-optical drives, 2.3
Maddalt(), 2.97
make codes, 5.11
Malloc(), 2.8, 2.98
MAPTAB structure, 4.24
matrix, see sound connection

matrix
media change, 3.15
Mediach(), 3.15, 3.33
Mega ST, 1.4
Mega STe, 1.4
memory driver, see GDOS

memory driver
memory initialization, 3.3
memory management unit, B.5
memory map, B.1
memory protection, 2.14

Index

T H E A T A R I C O M P E N D I U M

memory types, 2.8
memory usage parameter block,

3.31
MEMORY.SYS, see GDOS

memory driver
MENU structure, 6.103
menu buffer, see AES menu

buffer
menu_attach(), 6.27, 6.103
menu_bar(), 6.27,6.105
menu_icheck(), 6.27, 6.106
menu_ienable(), 6.27, 6.106
menu_istart(), 6.27, 6.107
menu_popup(), 6.28, 6.108
menu_register(), 6.4, 6.7,

6.109
menu_settings(), 6.28, 6.110
menu_text(), 6.27, 6.111
menu_tnormal(), 6.27, 6.111
menus, see AES menus
messages, see AES message

events
META.SYS driver, see GDOS

metafiles
METADOS , 4.12
metafiles

creating, see GDOS
metafiles

header, C.3
records, C.4
sub-opcodes, C.4

METAINFO structure, 4.80
Metainit(), 4.12, 4.80
MFDB structure, 7.119
MFORM structure, 6.95
MFsave(), 10.31
MFP, B.5

configuration, 4.17
interrupts, 4.18
ST port registers, B.37
TT port registers, B.41
vectors, B.5

Mfpint(), 4.18, 4.81
Mfree(), 2.99
MICROWIRE interface, 5.22
MIDI, 3.14, 5.10

Midiws(), 4.19, 4.82
MiNT , 2.14

access permissions, 2.14
cookie, 3.13
debugging, 2.31
default directory, 2.16
DEV directory, 2.17
directory enumeration, 2.16
exit codes, 2.14
file attributes, 2.15
file ownership, 2.15
file status, 2.15
file system extensions, 2.15
function calling procedure,

see GEMDOS function
calling procedure

hard links, 2.15
interprocess

communication, 2.27
links, 2.15
loadable devices, 2.17
loadable file systems, 2.23
messages, 2.31
MINT.CNF file, 2.33
PIPE directory, 2.27
pipes, 2.27
PROC directory, 2.16
process attributes, 2.17
process context, 2.32
process identifier, 2.14
process priority, 2.14
processes, 2.14
pseudo-drives, 2.16
resources, 2.14
semaphores, 2.31
shared memory, 2.30
SHM directory, 2.30
signals, 2.28
symbolic links, 2.15
threads, 2.14
timeslice, 2.14
tracing, 2.31
user-defined longword,

2.14
MN_SET structure, 6.110
modem device, 2.17
mouse, 5.11

mouse device, 2.17
MPB, see memory usage

parameter block
Mshrink(), 2.11, 2.99
MS-DOS, 2.3
multi-function peripheral port,

see MFP
MultiTOS , 2.3

debugging keys, 2.32
Mxalloc(), 2.8, 2.100

N
NDC, see VDI coordinate

systems
NEWDESK.INF file, 9.4
non-maskable interrupt, 5.3
non-volatile RAM, see

NVMaccess()
normalized device coordinates,

see VDI coordinate
systems

NULL device, 2.17
NVMaccess(), 4.18, 4.83

O
objc_add(), 6.14, 6.115
objc_change(), 6.17, 6.115
objc_delete(), 6.14, 6.116
objc_draw(), 6.117
objc_edit(), 6.25, 6.118
objc_find(), 6.14, 6.119
objc_offset(), 6.14, 6.120
objc_order(), 6.14, 6.121
objc_sysvar(), 6.122
OBJC_COLORWORD

structure, 6.18
objects, 6.13

colorword, 6.18
flags, 6.16
fonts, 6.20
ob_spec, 6.18
states, 6.17
structure, 6.15
types, 6.15

Offgibit(), 4.17, 4.84
Ongibit(), 4.17, 4.84
ORU’s, G.3

Index

T H E A T A R I C O M P E N D I U M

OS, 1.6
overlay mode, see VsetMask()

P
p_cookies, see cookie jar
p_kbshift, 3.7
p_root, 3.5
p_run, 3.7
paddles, 5.9
page flipping, 4.3
palette, see VDI palette based

devices
palette registers, 4.4
PARMBLK structure, 6.23
partition information block, 4.16
Pascal, 1.9
PATH environment variable, 6.9
Pause(), 2.101
Pdomain(), 2.3, 2.102
peripheral mode, 5.4
Pexec(), 2.9, 2.103
Pfork(), 2.14, 2.105
Physbase(), 4.3, 4.85
physical screen, 4.3
Pgetegid(), 2.14, 2.106
Pgeteuid(), 2.14, 2.106
Pgetgid(), 2.14, 2.107
Pgetpgrp(), 2.14, 2.107
Pgetpid(), 2.14, 2.107
Pgetppid(), 2.14, 2.108
Pgetuid(), 2.14, 2.108
Pkill(), 2.109
plotter drivers, see VDI plotter

drivers
Pmsg(), 2.31, 2.109
Pnice(), 2.14, 2.111
Popup(), 10.32
popup menus, 6.28, 11.18
Prenice(), 2.14, 2.111
prescaler, 4.7
PRGFLAGS, 2.9-2.10
printer, 4.18
printer device, 2.8, 2.17
printer drivers, see VDI printer

drivers
prn: file, see printer device

process terminate handler, see
GEMDOS vectors

processor cache control, 5.3
MegaSTe, B.34

processor state save area, B.7
progress indicators, 11.12
Protbt(), 4.15, 4.86
prt_cnt, B.12
PRTBLK structure, 4.87
Prtblk(), 4.18, 4.87
Prusage(), 2.14, 2.112
Psemaphore(), 2.31, 2.113
Psetgid(), 2.14, 2.114
Psetlimit(), 2.14, 2.114
Psetpgrp(), 2.14, 2.115
Psetuid(), 2.14, 2.116
pseudo-drive, 2.16
PSG, I.1
Psigaction(), 2.28, 2.116
Psigblock(), 2.28, 2.118
Psignal(), 2.28, 2.118
Psigpause(), 2.28, 2.119
Psigpending(), 2.28, 2.120
Psigreturn(), 2.28, 2.120
Psigsetmask(), 2.28, 2.121
Pterm(), 2.9, 2.11, 2.121
PtermØ(), 2.11, 2.122
Ptermres(), 2.11, 2.123
PTRACEFLOW , 2.31
PTRACEGO, 2.31
PTRACESFLAGS, 2.31
PTRACESTEP, 2.31
Pumask(), 2.16, 2.123
Puntaes(), 3.7, 4.19, 4.88
Pusrval(), 2.14, 2.124
Pvfork(), 2.14, 2.124
Pwait(), 2.14, 2.125
Pwait3(), 2.14, 2.126
Pwaitpid(), 2.14, 2.127

Q
QMS/Imagen, 7.13

R
Random(), 4.18, 4.89
raster coordinates, see VDI

coordinate systems

raster forms, see VDI raster
forms

RC, see VDI coordinate
systems

RCS, see resource construction
set

real-time clock, B.31
rectangle list, see AES

rectangle list
rectangles, see VDI rectangles
reset vector, see BIOS vectors
resolutions, see screen
resource construction set, 6.13
resources, 6.13

file format, see .RSC file
format

usage, see AES resource
library

ROOT definition, 6.14
.RSC file format, C.9

CICONBLK extension,
C.11

extension array, C.11
free strings and images,

C.11
header, C.9
object trees, C.10
AES 3.30 resource format,

C.11
Rsconf(), 4.17, 4.89
rsh_fix(), 10.33
rsh_obfix(), 10.34
rsrc_free(), 6.127
rsrc_gaddr(), 6.13, 6.127
rsrc_load(), 6.7, 6.13, 6.128
rsrc_obfix(), 6.13, 6.129
rsrc_rcfix(), 6.13, 6.130
rsrc_saddr(), 6.13, 6.130
Rwabs(), 3.34

S
Salert(), 2.28, 2.128
SBUFPTR, 4.26
scan codes, F.1
SCC, 4.17

DMA registers, B.33
ports, B.33

Index

T H E A T A R I C O M P E N D I U M

vectors, B.6
scr_dump, B.14
scrap library, see AES scrap

library
Scrdmp(), 4.18, 4.91
screen

determining the size, 4.4
memory, 4.3, 5.25
registers, B.19
resolution, 4.4, 5.24
resolution change, 6.144

scrp_read(), 6.34, 6.135
scrp_write(), 6.34, 6.136
SCSI, 4.15
semaphores, see MiNT

semaphores
serial device, 2.8
serial number, 4.14
serial port, 4.16

mapping, 4.17
server, see MiNT pipes
Set_Evnt_Mask(), 10.34
Setbuffer(), 4.7, 4.92
Setcolor(), 4.4, 4.93
Setexc(), 3.20, 3.35
Setinterrupts(), 4.8, 4.93
Setmode(), 4.7, 4.94
Setmontracks(), 4.8, 4.95
Setpalette(), 4.4, 4.95
Setprt(), 4.18, 4.96
Setscreen(), 4.3, 4.97
Settime(), 4.18, 4.98
Settracks(), 4.8, 4.99
shadow image, B.46
shel_envrn(), 6.9, 6.139
shel_find(), 6.36, 6.139
shel_get(), 6.35, 6.140
shel_put(), 6.35, 6.141
shel_read(), 6.36, 6.141
shel_write(), 2.13, 6.9, 6.36,

6.142
shell buffer, see AES shell

buffer
shell, see AES shell library
shift keys, 3.7, 3.32
signals, see MiNT signals

skeleton code, 6.4, 6.7
Sl_Arrow(), 10.35
Sl_dragx(), 10.36
Sl_dragy(), 10.36
Sl_size(), 10.37
Sl_x(), 10.37
Sl_y(), 10.38
slider bar, 6.30
SLM804, 7.16
SMALLER gadget, 6.30
smear mode, 4.4
Sndstatus(), 4.8, 4.99
sound

attenuation, 4.8
adjusting gain, 4.8
configuring levels, 4.8
connection matrix, 4.7
determining status, 4.8
envelopes, I.6
Falcon030 sound system,

4.6
FM, I.3
handshaking, 4.7
interrupts, 4.8
playing, I.1
proper use of, 11.24
recording, 4.8
registers, B.25-B.26
selecting tracks, 4.8
setting frequency, 4.7
STe/TT digital sound, 5.28

Soundcmd(), 4.7, 4.100
SpeedoGDOS, 7.14

character set, G.7
font header, G.3

Ssbrk(), 4.19, 4.102
ST, 1.3
ST Book, 1.5
ST RAM, see memory types
Stacy, 1.3
stack allocation, 6.5
standard format, 7.9
standard RAM, see memory

types
submenus, see hierarchical

menus
Super(), 2.128

supervisor mode, 2.128, 4.12,
4.103

Supexec(), 4.12, 4.103
Sversion(), 2.3, 2.129
Syield(), 2.130
symbol table, 2.10
_sysbase, 3.4
Sysconf(), 2.130
system boot variables, B.4
system font, 6.36, 6.48
system bell vector, see BIOS

vectors
system control unit, B.34
system keyclick vector, see

BIOS vectors
system RAM, B.16
system startup, 3.3
system variables, B.7
system vectors, B.7

T
tablet drivers, see VDI tablet

drivers
Talarm(), 2.131
TEDINFO structure, 6.19
terminal device, 2.17
TEXT segment, 2.9
Tgetdate(), 2.35, 2.132
Tgettime(), 2.35, 2.132
threads, see MiNT threads
three-dimensional objects, 6.16-

6.17
Tickcal(), 3.36
timer, see AES timer events
timer tick vector, see GEMDOS

vectors
toolbars, 6.33, 11.14
toolboxes, 11.13
TOS, 1.3

configuration bits, 3.6
file system, 2.3
header, 3.4
OSHEADER structure, 3.5

TOSRUN pipe, 9.4
TPA, see transient program

area
tracing, see MiNT tracing

Index

T H E A T A R I C O M P E N D I U M

transient program area, 2.11
TRAP exception vectors, B.4
TRUE, see Data Types
true-color, see VDI true-color

devices
toolbars, see AES window

toolbars
Tsetdate(), 2.35, 2.133
Tsettime(), 2.35, 2.133
TT RAM, see memory types
TT030, 1.5
TTY, see terminal device
typesetting, 1.10

U
UBYTE, see Data Types
UCHAR , see Data Types
ULONG , see Data Types
UNIX, 2.3
Unlocksnd(), 4.6, 4.103
user interface, 11.1
user mode, 4.12
UWORD, see Data Types

V
v_alpha_text(), 7.23
v_arc(), 7.24
v_bar(), 7.25
v_bez(), 7.13, 7.26
v_bez_fill(), 7.13, 7.27
v_bez_off(), 7.13, 7.28
v_bez_on(), 7.13, 7.29
v_bez_qual(), 7.30
v_bit_image(), 7.31
v_cellarray(), 7.32
v_circle(), 7.33
v_clear_disp_list(), 7.34
v_clrwk(), 7.34
v_clsvwk(), 7.35
v_clswk(), 7.35
v_contourfill(), 7.36
v_curdown(), 7.37
v_curhome(), 7.37
v_curleft(), 7.38
v_curright(), 7.38
v_curtext(), 7.39
v_curup(),7.40

v_dspcur(),7.40
v_eeol(), 7.41
v_eeos(), 7.42
v_ellarc(), 7.42
v_ellipse(), 7.43
v_ellpie(), 7.44
v_enter_cur(), 7.45
v_exit_cur(), 7.46
v_fillarea(), 7.46
v_flushcache(), 7.47
v_fontinit(), 7.48
v_form_adv(), 7.48
v_ftext(), 7.49
v_ftext16(), 7.16, 7.50
v_ftext_offset(), 7.51
v_ftext_offset16(), 7.16, 7.52
v_get_pixel(), 4.5, 7.55
v_getbitmap_info(), 7.12, 7.14,

7.53
v_getoutline(), 7.12, 7.54
v_gtext(), 7.56
v_hardcopy(), 7.57
v_hide_c(), 7.57
v_justified(), 7.58
v_killoutline(), 7.12, 7.59
v_loadcache(), 7.59
v_meta_extents(), 7.60
v_opnvwk(), 7.3, 7.61
V_Opnvwk(), 7.5, 7.65
v_opnwk(), 7.3, 7.66
V_Opnwk(), 7.5, 7.67
v_output_window(), 7.68
v_pgcount(), 7.69
v_pieslice(), 7.70
v_pline(), 7.71
v_pmarker(), 7.72
v_rbox(), 7.72
v_rfbox(), 7.73
v_rmcur(), 7.74
v_rvoff(), 7.75
v_rvon(), 7.75
v_savecache(), 7.76
v_set_app_buff(), 7.77
v_show_c(), 7.77
v_updwk(), 7.16, 7.78

v_write_meta(), 7.79
validation string, 6.19
VDI , 7.1

clipping, 7.3, 7.125
color mapping, 7.9
coordinate systems, 7.5
device IDs, 7.4
device-specific format,

7.10
fonts, see GDOS fonts
function availability, 7.8
function calling procedure,

7.18
function reference, 7.21
GDOS, see GDOS
GDP’s, 7.6
monochrome devices, 7.9
raster forms, 7.9
rectangles, 7.7
rendering graphics, 7.6
palette-based devices, 7.9
parameter block, 7.18
physical workstations, 7.3
standard format, 7.10
true-color devices, 7.9
using color, 7.8
vector handling, 7.10
virtual workstations, 7.4
workstations, 7.3
workstation handles, 7.3
write modes, 7.8, 7.162

VDI_Workstation structure,
7.65

vertical blank
handlers, 3.19
interrupt, 3.19

vex_butv(), 7.10, 7.80
vex_curv(), 7.10, 7.81
vex_motv(), 7.10, 7.82
vex_timv(), 7.10, 7.83
VgetMonitor(), 4.4, 4.104
VgetRGB(), 4.6, 4.104
VgetSize(), 4.4, 4.105
video control, 4.3
video registers, B.19
video mode, see screen

Index

T H E A T A R I C O M P E N D I U M

vm_coords(), 7.17, 7.83
vm_filename(), 7.17, 7.84
vm_pagesize(), 7.17, 7.85
VOID , see Data Types
VOIDP , see Data Types
VOIDPP, see Data Types
volume label, see GEMDOS

volume label
vq_cellarray(), 7.86
vq_chcells(), 7.87
vq_color(), 7.88
vq_curaddress(), 7.89
vq_extnd(), 7.8, 7.89
vq_gdos(), 7.11, 7.92
vq_key_s(), 7.93
vq_mouse(), 7.93
vq_scan(), 7.94
vq_tabstatus(), 7.95
vq_tdimensions(), 7.96
vqf_attributes(), 7.96
vqin_mode(), 7.97
vql_attributes(), 7.98
vqm_attributes(), 7.99
vqp_error(), 7.100
vqp_films(), 7.101
vqp_state(), 7.101
vqt_advance(), 7.102
vqt_advance32(), 7.14, 7.103
vqt_attributes(), 7.104
vqt_cachesize(), 7.15, 7.105
vqt_devinfo(), 7.106
vqt_extent(), 7.107
vqt_f_extent(), 7.108
vqt_f_extent16(), 7,109
vqt_fontheader(), 7.12, 7.110
vqt_fontinfo(), 7.111
vqt_get_table(), 7.12, 7.15,

7.112
vqt_name(), 7.16, 7.113
vqt_pairkern(), 7.12, 7.15,

7.114
vqt_trackkern(), 7.12, 7.15,

7.115
vqt_width(), 7.115
vr_recfl(), 7.117

vr_trnfm(), 4.5, 7.9, 7.117
vro_cpyfm(), 7.8-7.9, 7.119
vrq_choice(), 7.121
vrq_locator(), 7.121
vrq_string(), 7.122
vrq_valuator(), 7.123
vrt_cpyfm(), 7.9, 7.124
vs_clip(), 7.125
vs_color(), 7.126
vs_curaddress(), 7.126
vs_palette(), 7.127
vsc_form(), 7.128
VsetMask(), 4.6, 4.106
VsetMode(), 4.4, 4.107
VsetRGB(), 4.6, 4.108
VsetScreen(), 4.108
VsetSync(), 4.6, 4.109
vsf_color(), 7.129
vsf_interior(), 7.129
vsf_perimeter(), 7.130
vsf_style(), 7.131
vsf_udpat(), 7.132
vsin_mode(), 7.133
vsl_color(), 7.134
vsl_ends(), 7.134
vsl_type(), 7.135
vsl_udsty(), 7.136
vsl_width(), 7.137
vsm_choice(), 7.138
vsm_color(), 7.138
vsm_height(), 7.139
vsm_locator(), 7.140
vsm_string(), 7.141
vsm_type(), 7.142
vsm_valuator(), 7.143
vsp_message(), 7.144
vsp_save(), 7.145
vsp_state(), 7.145
vst_alignment(), 7.146
vst_arbpt(), 7.147
vst_arbpt32(), 7.14, 7.148
vst_charmap(), 7.15, 7.149
vst_color(), 7.150
vst_effects(), 7.150
vst_error(), 7.13, 7.151

vst_font(), 7.152
vst_height(), 7.153
vst_kern(), 7.12, 7.15, 7.154
vst_load_fonts(), 7.13, 7.155
vst_point(), 7.155
vst_rotation(), 7.156
vst_scratch(), 7.15, 7.157
vst_setsize(), 7.158
vst_setsize32(), 7.14, 7.159
vst_skew(), 7.160
vst_unload_fonts(), 7.161
vswr_mode(), 7.8, 7.162
Vsync(), 4.110
VT-52 emulator, 3.14
vt_alignment(), 7.163
vt_axis(), 7.164
vt_origin(), 7.164
vt_resolution(), 7.165

W
warm boot, 3.3
WavePlay(), 4.110
wildcards, 2.5
wind_calc(), 6.33, 6.149
wind_close(), 6.31, 6.150
wind_create(), 6.29, 6.150
wind_delete(), 6.31, 6.152
wind_find(), 6.31, 6.152
wind_get(), 6.31, 6.153
wind_new(), 6.157
wind_open(), 6.31, 6.158
wind_set(), 6.31, 6.158
wind_update(), 6.32, 6.161
windows, see AES windows
WORD, see Data Types
workstations, see VDI

workstations
WORM drives, 2.3
write modes, see VDI write

modes
WYSIWYG, 7.14

X
XBIOS, 4.1

calling from an interrupt,
4.20

Index

T H E A T A R I C O M P E N D I U M

function calling procedure,
4.19

Xbtimer(), 4.113
XCPB structure, 10.5
XCONTROL , 10.1

boot-only CPX’s, 10.6
callback functions, 10.17
cpx flavors, 10.6
CPX types, 10.6
event CPX’s, 10.9
executable format, 10.3
file formats, 10.12
file naming, 10.12
form CPX’s, 10.6
function calling procedure,

10.13
function reference, 10.15
parameter block, 10.5
resident CPX’s, 10.7
set-only CPX’s, 10.7
stack space, 10.13
utility functions, 10.27

Xform_do(), 10.38
XGen_Alert(), 10.39
XGM partition, 4.16

	The Atari Compendium
	Table of Contents
	Foreward
	Chapter 1: Introduction to Atari Programming
	Chapter 2: GEMDOS
	 2.37: GEMDOS Function Reference
	Chapter 3: BIOS
	 3.24: BIOS Function Reference
	Chapter 4: XBIOS
	 4.21: XBIOS Function Reference
	Chapter 5: Hardware
	Chapter 6: AES
	 6.43: AES Function Reference
	Chapter 7: VDI
	 7.21: VDI/GDOS Function Reference
	Chapter 8: Line-A
	 8.9: Line-A Function Reference
	Chapter 9: The Desktop
	Chapter 10: XCONTROL
	 10.15: XCONTROL Function Reference
	Chapter 11: GEM User Interface Guidelines
	Appendix A: Functions by Opcode
	Appendix B: Memory Map
	Appendix C: Native File Formats
	Appendix D: Error Codes
	Appendix E: Atari ASCII Table
	Appendix F: IKBD Scan Codes
	Appendix G: Speedo Fonts
	 G.7: The Bitstream International Character Set
	Appendix H: The Drag & Drop Protocol
	Appendix I: The Programmable Sound Generator
	Bibliography
	Index

