The Atari™ Compendium
©1992 Software Development Systems
Written by Scott Sanders

Not for Public Distribution

Introduction

The following pages are a work in progress. The Atari™ Compendium (working title) is designed to be a
comprehensive reference manual for Atari software and hardware designers of all levels of expertise. At the
very least, it will (hopefully) be the first book available that documelhtsperating system functions,

including any modifications or bugs that were associated with them, from TOS 1.00 to whatever the final
release version of Falcon TOS ends up beBEMDOS, BIOS, XBIOS (including sound and DSP calls),

VDI, GDOS, LINE-A, FSM, AES, MetaDOS, AHDI andMIiNT will be documented. Hardware

information to the extent that information is useful to a software programmer will also be covered. This
volume will notinclude hardware specifications used in the creation of hardware add-ons, a programming
introduction designed for beginners, or an application style guide. All of the aforementioned exclusions will
be created separately as demand for them arise. In addition, | also plan to market a comprehensive spiral-
bound mini-reference book to complement this volume.

By providing early copies of the text of this volume | hope to accomplish several goals:
1. Present a complete, error-free, professionally written and typeset document of reference.
2. Encourage compatible and endorsed programming practices.

3. Clear up any misunderstandings or erroneous information | may have regarding the information
contained within.

4. Avoid any legal problems stemming from non-disclosure or copyright questions.

A comprehensive Bibliograpy will be a part of this volume. For now you should know that | have mainly
relied on five major sources of information:

1. Atari Developer Documentation, including, but not limited to, original OS docs, release notes,
newsletters, and technical support.

2. Compute’s AES/TOS/VDI series. This series seems to be the most complete English reference
available, however, its usage is limited by the fact it is only current as of TOS 1.02

3. Lattice C Atari Library Manual and Addendum
4. Atari Profibuch - Excellent German text.

5. Developer Roundtable on GEnie and Compuserve.

How to Edit...

Below are some simple suggestions as to how to notate any changes you would like to see made. | understand
you are probably just as busy as | usually am so if you can't take the time to follow these steps, ragged
handwriting in the corner would be just as appreciated.

Included in your package should be seven items:

1. This introduction letter.

2. A binder.

3. Revision notes

. Looseleaf notebook paper.

. Two highlighter pens

. Dividers

. The latest revision of the text

~No o1~

If you are missing any items, please contact me.

Each revision will be accompanied by a set of revision notes. These will highlight what to look for, what |
already know is wrong and am planning to change, and what has changed since last time.

The looseleaf notebook paper should be used to make general suggestions as to content, style
(writing/typesetting), and so on....

When proofing the text use the blue highlighter to circle spelling, grammar, or style errors (any typo). The
green highlighter is for blatant errors or misunderstandings where an explanation is necessary. Please notate
the error and correction in the margins. If it is a very large misunderstanding beyond simply writing it down,
please call me or E-Mail me.

Also, as a part of the volume will be a listing of standard conventions. The following is a brief listing of
conventions used in the book:

Typestyle Meaning

The quick brown fox.... Normal Text

WORD appl_init(VOID) Function Definitions

mode flag, ap_id program/system variables

WORD, TOS, WM CLOSED macros, typedef's, define’s, OS components
typedef struct { Program listings/bindings

A basic explanation is listed... Text in tables

CTRL-G Keyboard keys

OPCODE Headings

Any questionable stray from the conventions should be notated as a possible error.

Revision Schedule

| would like to swap edited text with new revisions about every two weeks. The final revision should be
approved by November 15th to try for a release date of December 15th. This schedule is not fixed and | will
be in contact to find out what's best for you.

Thank You...

Thank you for your time and effort. Your name will be credited if you desire and you should check for it in a
final revision.

SCOTT D. SANDERS, OWNER
SOFTWARE DEVELOPMENT SYSTEMS

CONTENTS

Foreword Vil

Chapter 1: Introduction to Atari Programming......... 1.1
Atari Computer HardWare..........oooeeeiiiiiiiiiie e 1.3
Atar COMPULET SOMIWEAIE.........eviiiiiiiiiiiiiiiieee s 1.6
ALAIT GEM .ot 1.7
Third-Party System SOftWare. ... 1.8
Programming LANQUAGES.uuuuuuuiiiiiieeeeeeeeeeeeeeeeasssssnnnnnsaaeseaaaseeseesesnsnsnnns 1.9
(0] 01 V/=T 01 1T0] o 1S3 PP SUPPPPPPPP 1.1C

Chapter 2: GEMDOS..............cccccveeeieiiieeiiiieeiiee e, 2.1
OVEBIVIBW ...ttt e e ettt a s e e e e e e e e e e e e e eeeeesastsann e s e e eeeeeeaaeeeeeeennnes 2.3
THETOSFIIE SYSIEM ... e e e e e e e e eaaaanes 2.3
Y =T 0 gToT VALY, E= T g = Yo =] o 01T o | PP 2.6
GEMDO S PrOCESSES.....uuiieiieeiiie ettt ettt e e et e e e e eat e e e e e eesa e e e eaeees 2.9
GEMDOSVECIOIS ..ottt e e e e e e e eeaa e 2.13
YT PRSP 2.14
MINT Interprocess COmMMUNICALION..........cccovviiiiiiiiiiiie e 2.27
MINT DEDBUGGING ..o 2.31
The MINT.CNF Fll@....coiiiiiiiiiiiiee ittt 2.33
GEMDOS Character FUNCHONScooiiiiiiiiiiiiie et 2.34
GEMDOSTime & Date FUNCHONS........ccovviiiieeeiiiiiieie e ee e e 2.35
GEMDOS Function Calling Procedure.............ccouuiiiiiiiiiiieciiseeeeeiee e, 2.35
GEMDOS FUNCLION REfEIENCE.......cceeiveeeeeeeeee e 2.37

Chapter 3: BIOS...........ccoveeeiieieieeeeeeee e 3.1
OVEBIVIEW ...ttt e et e e et e e e e e e e et et a e e e e e e e e e e e e e e eeeeesasssnnnn s eaeaeeeeaaeeeennnnnnes 3.3
)] (=] TS = L (U] PP 3.
(@ ST 1= = o [RPN 3.4
(O] ([N - | TP 3.8
BIOS DEVICES ...ttt e e e e e e e e e e s 3.14
Media Change......coooiiiiiii e 3.15
BIOS VECIOIS ...t e e e e e eenans 3.18

THE ATARI COMPENDIUM

ii — Contents

The XBRA PIrOtOCOIuiiiiiiiii e e e e e eees 3.20
BIOS Function Calling ProCedureuuiieiiiieeeieeeeieie e 3.22
BIOS FUNCLION RETEIENCE.......i i 3.24
Chapter 4: XBIOS..........c.oveeeeieiieeeeie et 4.1
L@ 1Y 7= 1= U 4.3
LYo [=To @0 1|1 (o EP S UPPPPPRSPPPRTN 4.3
The Falcon030 SOUNI SYSIEM.......uiiiiiiiiiiiiiiiiiiiieeee ettt 4.6
TRE DSP ..o et 4.8
USEr/SUPEIVISOr MOUE........uiiiiiiiii e e e e 4.12
MELADIOS e 4.12
Keyboard and Mouse CONLIOlcoovviiiiiiiiiiiie e e e e e e eeeaeenes 4.12
DISK FUNCLONS ..ottt e e e e e e aaaaaas 4.14
The Seral POIoee e 4.16
Printer CONIOL.... ..o e e e e e e e e e 4.18
Other XBIOS FUNCHONSccuuiiiceieee e e e et e e e eeanes 4.18
XBIOS Function Calling ProCedure............oouuuuiiiiiiieeeeeeeeiiiiieee e ee e 4.19
XBIOS FUNCLION REfEIENCE.... ..o i 4.21
Chapter 5: Hardware.................cccccevuueieverisaiiriseainaanan, 5.1
OVEBIVIBW ...ttt et e e e e e e e e e e e et e e e e e e e aaa e e e e e ennannns 5.3
The B80X0 PrOCESSONeevviiiiiiiies e e e e e ettt s e e e e e e e e e e e eae it a e e e e eeeaeeeensnnnnnns 5.3
The 68881/882 Floating Point COProCESSOrvviviiviiieeeeiiiiee e 54
(022 110 [0 =2 PP PPPPPI 5.7
(CT= T LI 0] a1 £] 1T £ SR 5.8
The IKBD CONrOller........i i 5.10
STE/TT DMA SOUN......ouiiiieiiiiic e e e e e e e e eaeens 5.20
The MICROWIRE INtEIACEcovveeiiiiie e e e 5.22
ViIAEO HArWAIE........oieiiiiii e 5.24
Chapter 6: AES.........oooeeeeeeee ettt 6.1
L@ 1 =T oY1= PP 6.3
Process HandliNg..........ouuuuuuiiiiiiii e e e 6.3
Y o] o] 1o i [0 o PP 6.4
DESK ACCESSONIES. . .eeittiieeeeeeie et et e e et e e e e e e e e e e et e e e e e e et e e e e eeenaanns 6.7
The ENVIroNMENt STING......couuiiiiiiiie e e e e e e e eees 6.9
The EVeNnt DISPALCRENuu e eeeeaaeees 6.9
LSS0 T | o =3 6.13
(@] o= ox £SO 6.13

THE ATARI COMPENDIUM

DIAIOGS -ttt 6.24
=T 0 11 PSPPI 6.2¢
WINGOWS ... e e e e e ettt ettt a e e e e e e e e e e e eeeeeenenne 6.2€
The Graphics LiDrary ... 6.33
The File Selector LIDrary ..o 6.34
The SCrap LIDIary ... 6.34
The Shell LIBrary ... 6.35
The GEM.CNF File...coviiiiiiiii e 6.36
AES Function Calling ProCedureccoooooii e 6.37
AES Function Reference...........cccoiiiiiiiiiiicii 6.43
Chapter 7: VDI...............ooeeueeeeeiieee et /.1
OVEBIVIBW ...ttt ettt e s e e e e e e e e e e e ettt e et et bbb e e e e e e e e eeeaeeeeeeennnes 7.3
VDI WOTKSTALIONS.eeiiieeeeiieiiiiiee e e e e et s s e e e e e e e e e e e e eeeeeeeeensnnnnnns 7.3
WOrKStation SPECIICScvvvviriiiiie e e e e 7.5
(6 LS 0o @] (o] TSRS 7.8
VDI RASIEN FOIMIS....o i 7.9
RV /=Tt (o g o =Y Lo |11 Vo 7.10
€1 1@ 1S TSP 7.11
GDIOIS LX ettt ettt ettt e e e e e e e e e e e 7.12
FONTGDOS. ... e e e e e et e e e aaaaaaeeeas 7.13
FSM-GDOS.....co oot 7.13
SPEEUOGDOS. 7.14
DEVICE DIIVEIS .. i iiieeeeeieie ettt e e e e e e e e e et e ee et e e e e aeeeaeeeeeeennnnns 7.16
VDI Function Calling Procedure..........ccoooouiiiiiiiiiii e 7.18
VDI/GDOS FuNCtion REfEreNnCe........ooeeeiiiiiiieeeeeiicee e 7.21
Chapter 8: LIN€-Acoeeeeeeeeeeeeeeieeeee e 8.1
OVEBIVIEW ...ttt e et e e e e e e e e e e e et s e s s e e e e e e e e e e e eeeeeeasesannn i aaeeeeeeeeaaeeeeennnnnes 8.3
TheLine-A Variable Table........cccoooi 8.3
Line-A FONt HEAEIS.ueiii e 8.7
Line-A Function Calling Procedure.............cceiiiiieeiiiieeiciee e 8.8
Line-A FUNCtion RefEreNCEe........coiiiiiei e 8.9
Chapter 9: The DeSKIOpcccceuveeveeeiiaiiiaaisaiiaannn, 9.1
OVEBIVIEW ...ttt e e e e e et e et e e e e ettt e s e e e e e e e e e e e e e eeeeesssssansn s saeeeaeeaaeeeennnnnnes 9.3
MUIITOS CONSIAEIALIONS ...uvuiiiiiiiee ettt e e e e e eeeenes 9.3
DESKIOP FlES ... 9.4

THE ATARI COMPENDIUM

iv — Contents

Chapter 10: XCONTROLccccoveveiiiaeiiiiieiiinaaiinananns 10.1
L@ LY=L Y=Y 10.3
XCONTROL SIUCTUINES 1ttt e e s e b e eaa e e 104
(08 = G P 1Y 0] £ 10.6
CPX FIlE FOMMALS... oot e eaans 10.12
XCONTROL Function Calling Procedure...........ccccoeeviiiiieieiiiiie e 10.13
XCONTROL Function Reference...........cccooceiiiiiiiiiiiiiee e, 10.15
Chapter 11: GEM User Interface Guidelines 11.1
L@ 17T V1=V 11.3
B gL == 1 o T 11.3
RV A 2T 1o L0 £ 11.4
(D=1 (oo [=00 =S SRR 11.8
N L= 11.10
LA LER 1 LERRST] (S11 (o T 11.12
Progress INAICALOrSccoceciiiiieeece e 11.12
B Y0 | 00) =TT 11.13
L0 101 0= £ 11.14
1Y 1= 1 11.15
Keyboard EQUIVAIENTESoooiiiiiii e 11.20
DAV (ot o (=T 01T o To [T o ol 11.22
GlODANIZALION ... 11.23
(o] [0 £ 11.23
01U T R 11.24
ApPPlication SOWAIEoiiiiii e 11.24
INSTAllAtION SOfIWAIEceeeiie e e e 11.25
Entertainment SOftWAIE..........oiiiviiii e 11.25
Appendix A: Functions by Opcode........................... A.l
GEMDOS Functions by OpCOde........ccooiiiieiiiiieiicie e A3
BIOS FUNCLIONS DY OPCOUEvuiiiiieieeiiieeeeeeie et e e e e eeeenees A7
XBIOS Functions by OPCOde.........cooviiiiiiiiiiii e A.9
AES FUNCHIONS DY OPCOUEuuiiiieiiiiie e eaeaes A.13
VDI FuNctions DY OPCOAEcovviiiiiiiiiiiie e A.15
Appendix B: Memory Map...........c..cccoeeeveveseeennenennnnnn, B.1
L0 7= T [PPSR B.3
V=T gToT YN 1Y/ = T o PP B.4

THE ATARI COMPENDIUM

Appendix C: Native File Formats................cccc.cooun.... C.1

The .GEM File FOIMALcuuuiiiiie s e e e e e e e eeneeees C.3

The .IMG File FOIMALccovviiiiiiiiiiiee e C5

The .FNT File FOIMAL......ccoooiiieeee e C.7

The .RSC File FOIMAL........ouiiiiieie e e e e e e e e e eeeennnees C.9
Appendix D: Error COAES............ccccuevevevevieiiiiaaaannnnnn, D.1
Appendix E: Atari ASCII Table.................cccc.ccoun.... E.1
Appendix F: IKBD Scan Codes......................ccccuuunne. F.1
Appendix G: Speedo FONts..........ccc.ccoeveveeeveiivnennnnnnn, G.1

The Speedo FONt HEAEriiiiiee e G.

The Bitstream International Character Set..............uuuuviviiiiiiiiiiiiiiiiinns G.7
Appendix H: The Drag & Drop Protocol H.1

OVEIVIEW ..ottt et e e e e e e e e e e e e e e s e e et e bttt et e e e e e e e e aaeeeeanas H.3

THe OFIgINALOT ... e e e e e e e e e eeeas H.3

B I =T C=Te3 1 o] 1= | H.5

Appendix I: The Programmable Sound Generator .. H.1
Bibliography
Index

THE ATARI COMPENDIUM

vii

FOREWORD

About eight months have passed sifibe Atari Compendiurft was first released, and | must

admit to being amazed with the amount of attention the book has received from Atari developers
worldwide. When | started writing the first draft of the book | didn’t know enough about Atari
computers to write half of the 860 pages it eventually became. The learning process that | went
through to see the book to its completion was responsible for a great deal of personal growth
and a greater understanding of computer science in general.

It was inevitable, of course, that there would be errors in a book this big. | didn’t want to revise
the book simply to correct those errors, however. | was determined to add some missing topics
as well. This first revision now adds about 60 pages to the original and led me back to the
on-thejob learning process and several phone calls and E-mail letters to Sunnyvale.

TheCompendiumnow covers almost every conceivable topic a software programmer needs to
know about Atari computers. You still won't find timing diagrams, pinouts, and hardware
specifications simply because my level of competence in those matters is unfortunately minor.
The only other topics you won't find discussed are those covered completely in separate
volumes (referenced in tHaibliography). These include hardware-direct ACSI/SCSI/IDE
programming, SCC programming, DSP programming, and direct BLITTER chip usage. In every
case except for DSP programming, almost all functions of these devices may be accessed by th
average programmer through the use of OS calls, which are, of course, documented. The basics
of DSP programming, like assembly or ‘C’ is left to the reader to explore in other books
dedicated to their teaching.

New to this revision you will find an enhanced style guide and memory map (the two most
popular sections of the book, it seems), information on prograniif§ device drivers and

file systems, and a section documenting the XBRA protocol. Most importantly, though, almost
every conceivable parameter and return value has been listed with a corresponding definition
name. These names may be used with any language that supports constant naming, and, when
used, improve program readability dramatically. The TOS.H and TOSDEFS.H include files will
be available from SDS upon the release of this revision. To find out how to obtain them, be sure
to send in your registration card.

| owe thanks to Mike Fulton, Eric Smith, and Jay Patton were very helpful in ensuring that the
new material was correct and old errors were eliminated. Many independent readers of the boo
also deserve thanks for taking the time to report errors and submit their comments.

In addition, my close friends Dennis, Mike, Keith, Cathryn, Shawn, Cathy, Shaun, and Kristyna
provided moral support and dragged me away from work when | needed a break badly. Also, as
always, my mom supported me tremendously and continues to proudly display a plastic-wrap’d
copy of the book to friends and relatives even though to her its about as useful as a phone book
for some remote city in Alaska.

THE ATARI COMPENDIUM

viii

Thanks to you, especially, the Atari developers and users who made this book a reality. Enjoy!

—Scott D. Sanders, April 1994

THE ATARI COMPENDIUM

— CHAPTER 1 —

INTRODUCTION TO
ATARI PROGRAMMING

THE ATARI COMPENDIUM

Atari Computer Hardware — 1.3

Atari Computer Hardware

The 260/520/1040 ST
The first Atari ST computers became available to the public in 1985. The new Atari models
were the first 16-bit computers well-suited for use in the home. The availability of these
computers signaled the end of the Atari 8-bit era of computers such as the 400, 800, 800XL,
1200XL, 1450XLD, 65XE, and 130XE computers.

The name ‘ST’ is derived from the capabilities of the Motorola 68000 processor upon which the
original Atari line was based. The 68000 usé&sxteen-bit data bus with Bhirty-two bit
address bus.

16-bit computers introduced a new concept in computer technology called the operating system
(OS). Atari's operating systenhhe OperatingSystem [OS), was loaded from a boot disk
originally, but is now almost always installed in ROM.

A primary subsystem dfOS is GEM (‘Graphics Environment Manager’), the graphical user
interface used by Atari computefsEM, whichwas developed by Digital Research, Inc.,

manages the graphic interface to applications and provides access to popular computing feature
with buzzwords such as windows, the mouse, menus, and the desktop.

GEM was originally designed for PC-compatible computers. PC-l§aEd#l, however, is no
longer completely compatible with AtBEM. Only components dBEM relative to its use on
the Atari will be covered in this guide. Some functions which were originally documented for
Atari GEM yet never implemented have been included for completeness.

OtherTOS subsystems includ@EMDOS, theBIOS, and theXBIOS. These subsystems
provide a hardware interface and management functions for the file system.

The original ST computers featured the following:

* Motorola 68000 32-bit processamning at SMHz.

* Integrated GEM/TOS operating system.

* RAM memory storage of 256k, 512k, or 1 Mbyte (depending on model).
* Built-in MIDI, dual joystick, floppy drive, ACSI, serial, and parallel ports.
* Sophisticated DMA peripheral access.

* Yamaha 3-voice FM sound generator.

* External 128k cartridge port.

* Integrated video controller capable of generating (320x200x16), (640x200x4), and
(640x400x2) video modes from as many as 512 colors.

THE ATARI COMPENDIUM

1.4 — Introduction to Atari Programming

Mega ST 2/4

Two years after the release of the original ST series Atari released the Mega ST series of
computers. The Mega ST computers were shippedMath 1.02 and featured several new
features as follows:

* BLIiTTER chip (for faster graphics).

* Internal expansion bus.

* Separate keyboard and CPU.

* Either two or four megabytes of RAM.

* Peripheral co-processor slot (for 68881 coprocessor, etc.).

STacy
The STacy was released shortly after the Mega ST to provide a portable means of Atari
computing. STacy computers were shipped W5 1.04. The STacy’s design supplemented
the basic features of an ST with the following:
* Integrated CPU/keyboard/carrying case.
* Monochrome LCD screen.
* Track ball for mouse control.

* Optional hard drive.

1040 STe

The 1040 STe, released in 1990, was designed to expand upon the capabilities of the 1040 ST.
Many of the features added were geared towards entertainment and multimedia applications. The
1040 STe was shipped originally witl®S 1.06. The following features were added to those of
the basic ST:

* Extended color palette to support up to 4096 colors.

* Support for horizontal and vertical fine scrolling.

* Video GENLOCK capability.

* Stereo 8-bit PCM sound.

* Two extra joystick ports with support for paddles and light pens.

» 256k Operating System in ROM.

* SIMM memory slots to upgrade memory to 4 Mb

Mega STe
Released in 1990, the Mega STe was designed to provide for more computing power than the
1040 STe and add several new hardware features. The Mega STe shippegdSv&l02, 2.05,
or 2.06. It adds features to that of a 1040 STe as follows:

* Motorola 68000 32-bit processor running at 8VIHz or 16MHz.

THE ATARI COMPENDIUM

Atari Computer Hardware — 1.5

TTO30

Optional 68881 math coprocessor.

One, two, or four megabytes of RAM memory.
Optional internal hard drive.

Modern case design with separate keyboard/CPU.
Three serial ports.

Localtalk compatible networking port.

VME compatible expansion slot.

Also released in 1990, the TTO30 computer was the first Atari computer workstation designed
for high-end computer users. The TT030 workstation was shipped @&h3.01, 3.05, or 3.06.
It adds the following features to that of the Mega STe:

ST Book

Motorola 68030 32-bit processor running at 32MHz with cache.

Memory capacity of 32Mb with optional ‘fast’ RAM.

Standard 68882 math coprocessor.

Four serial ports.

SCSI device port.

Stereo RCA jacks for sound output.

Extra video resolutions of (320x480x256), (640x480x16), and (1280x960x2).

Designed to replace the STacy as the defacto portable ST computer, the ST Book brought the
basic computing power of an ST to a lightweight notebook computer. This machine was only
released in Europe and Atari only shipped a very small quantity. The ST Book was shipped with
TOS 2.06. Minus the internal floppy drive, it supported features beyond that of a STacy as

follows:

Falcon030

Lightweight case design.

Keyboard with integrated numeric keypad.
Mouse ‘vector’ pad.

Processor-direct expansion slot.

External keypad port.

Floppy drive connector.

The newest member of the Atari line, the Falcon030 is to become the new base model Atari
system. The Falcon030 is currently shipping WifsS 4.04. While remaining backwardly-
compatible, the Falcon030 adds many new features as follows:

THE ATARI COMPENDIUM

1.6 — Introduction to Atari Programming

* Integrated case and keyboard design.

* Motorola 68030 processor running at 16MHz with cache.
* Motorola 56001 DSP with 96k RAM.

* Standard configurations with 1, 4, or 14Mb RAM.

* Internal 2 %2" IDE hard drive optional.

* Video resolutions from 320x200 to 640x480 with a palette from 2 to 256 colors
and 16-bit true color.

* Adaptable to Atari monitors, standard VGA monitors, and composite video.
* GENLOCK-ready design.

* Ports include parallel, serial, external floppy, SCSI-2, LAN, 4 joystick, MIDI
in/out, microphone, headphone, and ST compatible cartridge port.

* Interior processor expansion port.

* Sound system includes standard Yamaha FM chip, connection matrix, and 8-track,
16-bit stereo record/playback.

Atari ‘Clone’ Computers
Atari ‘clone’ computers first became available in early 1994. These computers, while mostly
software compatible with Atari-produced computers, contain hardware enhancements and
modifications that may cause incompatibilities in software that relies on hardware access rather
than the recommended method of using standardized OS calls.

The recent availability of these computers as well as enhanced graphics and peripheral boards
emphasizes the value of programming using the OS whenever possible to allow software to be
run on the widest variety of machine configurations.

Atari Computer Software

GEMDOS
GEMDOS consists of file system management routines that provide access to all of the basic
devices supported by Atari computers. It bears resemblance to MS-DOS in its functions and
opcode numbering while still maintaining some differences and advantages.

MultiTOS
MultiTOS s the first truly multi-tasking extension @EMDOS supported by Atari. Based on
MINT , developed by Eric SmithultiTOS adds true pre-emptive multitasking, memory
protection, and process control. Its methods of job control and interprocess communication will
be familiar to UNIX users. With the ability to support loadable device drivers and file systems,
MultiTOS provides a complete range of functions to comple@&#DOS. In its current
incarnationMultiTOS is an option and thus disk-based as opposed to burned in ROM.

THE ATARI COMPENDIUM

Atari GEM - 1.7

BIOS
The STBIOS (‘Basic Input/Output System’) comprises the lowest-level of device
communicationGEMDOS uses thdBlOS to accomplish many of its file system operations.

XBIOS

TheXBIOS (‘eXtended Basic Input/Output System’) controls other hardware-specific features
such as the floppy drive, video controller, DSP, MFP, and sound system.

Atari GEM

AES

TheAES is responsible for window and menu control, messaging services, and object rendering
and manipulation.

VDI
TheVDI consists of a series of drivers which provide device-independent access to the display
screen and external output devices such as printers and plotters Gfa0gh All graphic
primitive operations are accomplished with ¥i&l . TheAES, for instance, uses thDl to
render its objects on screen.

GDOS
GDOSis a disk-loadable subsystem of ¥l . The termGDOS can refer to origindsDOS,
FONTGDOS, or SpeedoGDOSIt controls loadable device drivers and fonts. The original
GDOS was limited to bitmap fonts and did not have the bezier capabilitef®8T GDOS or
SpeedoGDOS

FONTGDOS
FONTGDOS is essentially a newer, fastebOS with bezier rendering functions present.
FONTGDOS is otherwise completely backwardly compatible WiROS.

SpeedoGDOS
SpeedoGDOSnamed for the Speetdont format created by Bitstream, Inc., adds outline font
rendering capability to the basic feature$&6¥OS. SpeedoGDOSlso includes a
sophisticated caching system to promote the fastest rendering possible.

Two versions of outliné&DOS exist. The original version (referred to as Font Scaling Module
(FSMGDOQYS)), based on QMS/Imagen fonts, was never officially released. Nonetheless, a
small number of users still us&MGDOS and differences between them are noted.

LINE-A
LINE-A is a special set of routines that provide an assembly language interface to routines and
variables belonging to théDl andXBIOS. It is so named because instruction opcodes
beginning with the hexadecimal number $A utilize a special microprocessor exception which
point to theLINE-A routines in ROM.

THE ATARI COMPENDIUM

1.8 — Introduction to Atari Programming

LINE-A is the only operating system component that has become out of date and incompatible.
Atari recommends that software developers avoid UdiNg-A as it will be supported less

and less as hardware advancements make its use more incompBdiBié. is documented

briefly in this reference for completeness.

Desktop
The ‘Desktop’ is a independe®EM application burned into ROM. It facilitates program
launching and file manipulation as well as providing a graphical shell for user-interaction.

XCONTROL
XCONTROL (Extensible Control Panel) is a desk accessory application that provides access
to multiple modules called CPX’s (Control Panel Extensions) which are used to control system
configuration and other related functions. A special section in this reference discusses the
creation of CPX’s and the utility functions provided by ¥€ONTROL shell accessory.

Third-Party System Software

Geneva
Geneva is an alternativEOQS-compatible operating system developed by Gribnif Software. It
functions mostly as aAES replacement although it supplements other areas of the OS to
provide cooperative multitasking (as opposeMtdtiTOS 's pre-emptive multitasking).

Programming for Geneva 1.0 is identical to programmingstoM with AES version 4.0.

Geneva does not currently supddilNT extensions though Gribnif has announced plans to
eliminate this incompatibility in a future version. You can detect Geneva by searching for the
cookie ‘Gnva’ in the system cookie jar. Likewise, the presenddidT extensions can be
determined by the ‘MiNT’ cookie.

Programmers should not rely specifically on the presence of these cookies to determine if the
current OS variety supports multitasking. TS global array contains values to help

determine the possible number of concurrent processes aflE3heersion number. In

addition, theAES call appl_sysinfo() available as oAES 4.0, can be used to determine the
presence of speciélES features.

Geneva offers several system extensions not available MulleFOS . Information on
programming the Geneva OS is available in the commercial package and direct from Gribnif
Software.

Programming Languages

lC!
‘C’ has become the default standard for Atari computer programming. Most reference books and
materials illustrate OS functions using ‘C’ style bindings. This book is oriented towards ‘C’
without, hopefully, alienating developers who develop in other languages. Several different ‘C’

THE ATARI COMPENDIUM

Conventions — 1.9

compilers exist in the Atari domain. All have their various features and quirks which make it
necessary to be familiar enough with your implementation to modify the source contained in this
reference appropriately.

All ‘C’ bindings in this book were created for use with Lattice ‘C’ by Hisoft, Inc.. They should
be easily convertable to other major Atari ‘C’ compilers.

Luckily, most ‘C’ compilers agree with their function naming and in most cases you can simply
call the function as listed. If you have an older version compiler you may need to add some
bindings using the information provided in accordance with your compiler's recommendations.

Assembly Language
For the convenience of assembly language programmers, all functions are listed with their
opcode and related binding. In addition, a section provided in front of the function reference will
explain the calling conventions for functions in that category.

All assembly listings in this book were created for use by the AS68 compiler included in the
Atari developer’s kit.

BASIC
Depending on the type of BASIC you utilize, functions may be named identically or differently
from what is listed in this book. It is recommended that you seek a BASIC compiler that gives
you proper access to all of the functions of the machine or familiarize yourself with a more
robust language.

Other Languages
Various other languages exist in the Atari domain. Pascal, Forth, ‘C++’, and others have
implementations that are similar in design to ‘C’. You should refer to your language manual to
properly utilize information found in this reference.

Conventions

Typesetting
The following table displays a list of typesetting conventions used in this book:

Style Meaning
Normal Text Standard body text.
BOLD TEXT Bolded words include function namgs

like appl_init() , ‘C’ macros,
‘#defined’ data types lik§VORD,
and operating system components
such asSEM andTOS.

Italicized Text Italicized text is used to represent

THE ATARI COMPENDIUM

1.10 — Introduction to Atari Programming

variable names likbandle In
addition sections of this book like
AES Reference Manualill be in
capitalized italic text.

| Text between vertical bars Vertical bars imply the absolute Jalue
of the variable or expression within.
For instance:

|-2]==12]

(Number 1, Number 2) Two numbers contained within
parentheses and separated by a
comma indicate a coordinate point
followed by Y. For instance,

(100, 100).

Numberl » Number 2 2 ~ 8 the same asPdr 2 to the
power of 8.

Fixed Width Text This style of text is used to present

bindings and computer listings.

Table Text This smaller style of text is used in
tables as body text.

Functions
The function references in this guide are designed in a compatible manner for ease of reading.
Each function is illustrated as follows (headings not applicable for a particular function will be
omitted):

Obj C_d I‘aW() <Function Name

WORD objc_draw(tree, obj, depth bx, by, bw, bh) <Definition
OBJECT *tree <Data Types
WORD obj, depth bx, by, bw, bh;

Immediately following the definition, a brief summary of the function will follow.

OPCODE The opcode related to the function will be listed in decimal and hexadecimal
where appropriate.

AVAILABILITY This section will indicate any special conditions that must exist for this function to
be present (i.e.: OS version, presenc&bS, etc.).

PARAMETERS The meaning of each parameter to the function will be explained here. If any data

THE ATARI COMPENDIUM

Conventions — 1.11

BINDING

RETURN VALUE

VERSION NOTES

pointed to by parameters is modified it will be noted here as well.

This section will list a binding for the function in either ‘C’ format or assembly
format, whichever is more appropriate. Please note bindings were written with
ease of reading, not necessarily optimized code, in mind.

This section explains the return value of the function. This covers only that value
returned on the left side of the function expression.

Under this heading, any features of a function which are only present under certain
conditions are discussed.

CAVEATS Known bugs or abnormalities of a function are listed next to this heading.

COMMENTS Other useful information or hints are listed here.

SEE ALSO Functions which bear a relation to the current function or which are codependent
on one another are listed here.

Data Types

Within function definitions, several data types are referenced that vary from compiler to
compiler. The following provides a key to the data type used and their actual definition. Other
data types will contain a structure definition or ‘typedef’ within the binding. Be aware that some

compilers default to 16-bit integers while others use 32-bit integers.

Usage \ Synonyms Meaning
WORD short, int, short int 16-bit signed integer
UWORD unsigned int, unsigned 16-bit unsigned integer
short, unsigned short int
LONG long, int, long int 32-bit signed integer
ULONG unsigned long, unsigned 32-bit unsigned integer
int, unsigned long int
VOID void This naming is used to denote a
function with no parameters or return
value.
BOOLEAN bool, boolean, short, 16-bit signed integer valid only as
short int, int TRUE (non-zero) or FALSE (0)
WORD * short *, int *, This is a pointer to a 16-bit signed
shortint * integer.
UWORD * unsigned short *, This is a pointer to a 16-bit unsigned
unsigned int *, unsigned integer.
short int *
LONG * long *, int*, long int * This is a pointer to a 32-bit signed
integer.
ULONG * unsigned long *, This is a pointer to a 32-bit unsigned
unsigned int *, unsigned integer.
long int *
VOIDP void *, char * This represents a pointer to an

THE ATARI COMPENDIUM

1.12 — Introduction to Atari Programming

undefined memory type.

VOIDPP void **, char ** This represents a pointer to a pointer
of an undefined memory type.
char * None 8-bit character string buffer
BYTE, CHAR signed byte, signed char | 8-bit signed byte
UBYTE, UCHAR unsigned byte, unsigned 8-bit unsigned byte
char
fix31 None This type holds a 31-bit mantissa and

sign bit. The value represents the
number contained multiplied times
1/65536. For a complete explanation
see Chapter 7: VDI.

Numeric Values
Because different computer languages use different nomenclature to specify numbers in different
bases, you will come across numbers presented in a variety of different ways within this book as

follows:
Decimal 23 as
Prefix an Example Meaning
None 22 This number is shown in decimal (base 10) format.
The majority of numbers shown will be in this format for
simplicity.
0x 0x16 This number is shown in hexadecimal (base 16)

format. Function opcodes in assembly language and
numbers used as mask values will appear mostly in

this format.
$ $16 Same as above.
0 026 This number is shown in octal (base 8) format. Only in

extremely specialized cases will numbers by
represented in this manner.

% %00010110 This number is shownn in binary (base 2) format. Only
when dealing with hardware registers and in a few
other circumstances will numbers be represented in
this manner.

Constant Definitions
Modern programming practices dictate the use of named constants wherever possible in place of
‘raw’ values. Take for example the following callBevconnect()

In‘C’
Devconnect(3,9,0,0, 1);

In assembly language:

move.w #1,-(sp)
move.w #0,-(sp)
move.w #0,-(sp)
move.w #9,-(sp)
move.w #3,-(sp)
move.w #$8B,-(sp)

THE ATARI COMPENDIUM

Conventions — 1.13

trap #14
lea 12(sp),sp

Calling the function in this format makes debugging and program maintenance more difficult
because the parameters’ meanings are concealed by the numeric assignments. The following
code illustrates the preferred method of coding:

In‘C":
/* Extracted from TOSDEFS.H, included by TOS.H */
#define ADC 3
#define DMAREC 0x01
#define DAC 0x08
#define CLK_25M 0
#define CLK_COMPAT 0
#define NO_SHAKE 1

/* Program segment */
#include <TOS.H>

Devconnect(ADC, DMAREC|DAC, CLK_25M, CLK_COMPAT, NO_SHAKE);
In assembly language:

; Extracted from TOSDEFS.I

ADC EQU 3

DMAREC EQU $01

DAC EQU $08

CLK_25M EQU 0

CLK_COMPAT EQU 0

NO_SHAKE EQU 1

Devconnect EQU $8B

; Program Segment
INCLUDE “TOSDEFS.I"
move.w #NO_SHAKE, -(sp)
move.w #CLK_COMPAT,-(sp)
move.w #CLK_25M,-(sp)
move.w #DMARECI!IDAC,-(sp)
move.w #ADC,-(sp)
move.w #Devconnect,-(sp)
trap #14
lea 12(sp),sp

Unfortunately, because many function call parameters do not have standard definitions
associated with them, programmers have had to create their own, which in turn makes their
programs less portable, or use the ‘raw’ constants. In addition, some compilers do not use
standardized definitions at all.

To help alleviate these difficulties, this revision of @@mpendiumcontains named definitions
for almost every possible function parameter. These definitions come from the ‘C’ header files
TOS.H and TOSDEFS.H or the assembly include file TOSDEFS.I, both available on disk from

THE ATARI COMPENDIUM

1.14 — Introduction to Atari Programming

SDS. Every attempt has been made to ensure that these files compile with development tools in
the Lattice ‘C’, Pure ‘C’, and Alcyon ‘C’ packages. Some modifications to these files may be
necessary, however, due to the peculiarities of some compilers.

The ‘C’ header files consist of two parts to improve portability between compiles. The TOS.H
file is a compiler dependent file used to bind the operating system calls to definitions. This file,
in turn, includes the file TOSDEFS.H which should remain portable between compilers.

When choosing definitions for inclusion in the TOSDEFS files, names given by Atari were given
highest precedence followed by those assigned (and kept consistent) by compiler manufacturers.
Other definitions were created with simplicity and consistency in mind.

Use of the given constants will increase program code readability and provide for a higher level
of portability between compilers.

THE ATARI COMPENDIUM

— CHAPTER 2 -

GEMDOS

THE ATARI COMPENDIUM

Overview — 2.3

Overview

GEMDOS contains functions which comprise the highest levdl®$. In many cases,
GEMDOS devolves intd3IOS calls which handle lower level device accésEMDOS is
responsible for file, device, process, and high-level input/output management. The current
revision number oEEMDOS is obtained by callingversion() You should note that the
GEMDOS version number is independent of #H8S version number and you should not count
on any particular version 8EMDOS being present based on th@S version present.

Much of GEMDOS closely resembles its CPM 68k and MS-DOS heritage. In fact, the file
system and function calls are mostly compatible with MS-DOS. MS-DOS format floppy disks
are readable by an Atari computer and vice-versa.

For the creation d#lultiTOS , GEMDOS was merged with theliNT operating environment
which derives many of its calls from the UNIX operating system.

The TOS File System

GEMDOS is responsible for interaction between applications and file-based devices. Floppy
and hard disk drives as well as CD-ROM, WORM, and Magneto-Optical drives are all
accessed usifngEMDOS calls.

Prior to the advent d¥lultiTOS , Atari programmers were limited to th®S file system for

file storage and manipulation. With the introductioMeftiTOS | it is now possible for

developers to create custom file systems so that almost any conceivable disk format becomes
accessible.

As a defaultMultiTOS will manage files between tAgOS file system and alternative file
systems to maintain backward compatibility. Applications which wish to support extra file
system features may do so. TP@omain() call may be used to instrddultiTOS to stop
performing translations on filenames, etc. Other calls suBpathconf() can be used to
determine the requirements of a particular file system.

The explanation of the file system contained herein will limit itself td B8 file system.

Drive ldentifiers
Each drive connected to an Atari system is given a unique alphabetic identifier which is used to
identify it. Drive ‘A’ is reserved for the first available floppy disk drive (usually internal) and
drive ‘B’ for the second floppy disk drive. If only one floppy drive exists, two letters will still
be reserved andEMDOS wiill treat drive ‘B’ as a pseudo-drive and request disk swaps as
necessary. This feature is automatically handle@BWDOS and is transparent to the
application.

THE ATARI COMPENDIUM

2.4 - GEMDOS

Drives ‘C’ through ‘P’ are available for use by hard disk drives. One letter is assigned per hard
drive partition so a multiple-partition drive will be assigned multiple letddrdtiTOS extends

drive letter assignments to ‘Z’ drive. Drive ‘U’ is a special drive reserveMédiiTOS and is
unavailable for assignment.

The amount of free storage space remaining on a drive along with a drive’s basic configuration
can be determined using tA&ee() call.

GEMDOS Filenames
UnderGEMDOS, each file located on a device is given a filename upon its creation which
serves to provide identification for the file. The filename has two parts consisting of a name
from one to eight characters long and an optional file extension of up to three characters long. If
a file extension exists, the two components are separated by a period. The extension should
serve to identify the format of the data whereas the name itself should identify the data itself.

Filenames may be changed after creation with the funictemame() however, under no
circumstances may two files with the same filename reside in the same directory.

All GEMDOS functions ignore the alphabetic case of file and pathnames. The following
characters are legal filename characters:

Legal GEMDOS Filename Characters
A-Z, a-z, 0-9
l@#SWN"N&()
b=

<>1110_

GEMDOS Directories
To further organize dat&EMDOS provides file directories (or folders). Each drive may
contain any number of directories which, in turn, may contain files and additional directories.
This organization creates a tree-like structure of files and folders. A file’s location in this tree is
called the path.

Directory names follow the same format@GsMDOS filenames with a maximum filename

length of 8 characters and an optional 3 character extension. The first directory of a disk which
contains all subdirectories and files is called the root directory.

TheDcreate() andDdelete()system calls are used to create and delete subdirectories.

Two special, system-created subdirectories are present in some directories. A subdirectory with
the name ‘..” (two periods) refers to the parent of the current directory. The ‘.." subdirectory is

present in every subdirectory.

A subdirectory with the name ‘.’ refers to the current directory. There is a ‘.” subdirectory in
every directory.

THE ATARI COMPENDIUM

The TOS File System — 2.5

GEMDOS Path Specifications
To access a file, a complete path specification must be composed of the drive letter, directory
name(s), and filename. A file named ‘TEST.PRG’ located in the ‘SYSTEM’ directory on drive
‘C’ would have a path specification like the following:

CA\SYSTEM\TEST.PRG

The drive letter is the first character followed by a colon. Each directory and subdirectory is
surrounded by backslashes. If ‘TEST.PRG’ were located in the root directory of ‘C’ the path
specification would be:

CATEST.PRG

The drive letter and colon may be omitted cau§ifdMDOS to reference the default drive as
follows:

\TEST.PRG

A filename by itself will be treated as the file in the default directory and drive. The current
GEMDOS directory and drive may be found with the functi®getpath() andDgetdrv()
respectively. They may be changed with the functidggtpath() andDsetdrv(),

Wildcards
The GEMDOS functionsFsfirst() andFsnext() are used together to enumerate files of a given
path specification. These two functions allow the use of wildcard characters to expand their
search parameters.

The “?’ character is used to represent exactly one unknown character. The *' character is used
to represent any number of unknown characters. The following table gives some examples of the
uses of these characters.

Filename Found Not Found
** All files None
*GEM TEST.GEM TEST.G
ATARIL.GEM ATARLIMG
A?ARI.? ATARILO ADARILIMG
ADARI.C ATARI.GEM
ATARI.??? ATARI.GEM ATARILO
ATARI.IMG ATARI.C

Disk Transfer Address (DTA)
When using-sfirst() andFsnext()to build a list of filesTOS uses the Disk Transfer Address
(DTA) to store information about each file found. The format for the DTA structure is as
follows:

THE ATARI COMPENDIUM

2.6 - GEMDOS

typedef struct

BYTE d_reserved[21]; /* Reserved - Do Not Change */
BYTE d_attrib; /* GEMDOS File Attributes */
UWORD d_time; /* GEMDOS Time */
UWORD d_date; /* GEMDOS Date */
LONG d_length; /* File Length */
char d_fname[14]; /* Filename */

} DTA;

When a process is started, its DTA is located at a point where it could overlay potentially
important system structures. To avoid overwriting memory a process wishingrisfirsi€)
andFsnext() should allocate space for a new DTA andfsgtdta() to instruct the OS to use it.
The original location of the DTA should be saved first, however. Its location can be found with
the callFgetdta(). At the completion of the operation the old address should be replaced with
Fsetdta().

File Attributes
Every TOS file contains several attributes which define it more specifically. File attributes are
specified when a file is created wiiereate() and can be altered later whattrib() .

The ‘read-only’ attribute bit is set to prevent modification of a file. This bit should be set at the
user’s discretion and not cleared unless the user explicitly requests it.

If the ‘hidden’ attribute is set, the file will not be listed by the desktop or file selector. These
files may still be accessed in a normal manner but will not be presentsfitst() or Fsnext()
search unless the corrdesfirst() bits are present.

The ‘system’ attribute is unused B{S but remains for MS-DOS compatibility.

The ‘volume label’ attribute should be present on a maximum of one file per drive. The file
which has it set should be in the root directory and have a length of 0. The filename indicates the
volume name of the drive.

The ‘archive’ attribute is a special bit managedl®5 which indicates whether a file has been
written to since it was last backed up. Any tinfecseate() call creates a file drwrite() is

used on a file, the Archive bit is set. This enables file backup applications to know which files
have been modified since the last backup. They are responsible for clearing this bit when
backing up the file.

File Time/Date Stamp
When a file is first created a special field in its directory entry is updated to contain the date and
time of creationFdatime() can be used to access or modify this information as necessary.

File Maintenance
New files should be created witereate(). When a file is successfully created a positive file
handle is returned by the call. That handle is what is used to identify the file for all future
operations until the file is closed. After a file is closed its handle is invalidated.

THE ATARI COMPENDIUM

The TOS File System — 2.7

Files which are already in existence should be opened~@jihn(). As with Fcreate(), this
call returns a positive file handle upon success which is used in all subseMdBROS calls
to reference the file.

Each process is allocated an OS dependent number of file handles. If an application attempts to
open more files than this limit allows, the open or create call will fail with an appropriate error
code. File handles may be returned to the system by closing the open flelaia()

Fopen()may be used in read, write, or read/write mode. In read rht@&d() may be used to
access existing file contents. In write mode, any original information in the file is not cleared but
the data may be overwritten wittwrite(). In read/write mode, either call may be used
interchangeably.

Every file has an associated file position pointer. This pointer is used to determine the location
for the next read or write operation. This pointer is expressed as a positive offset from the
beginning of the file (position 0) which is set upon first creating or opening a file. The pointer
may be read or modified with the functibaeek()

Existing files may be deleted with teEMDOS call Fdelete()

File/Record Locking
File and record locking allow portions or all of a file to be locked against access from another
computer over a network or another process in the same system.

All versions of TOS have the ability to support file and record locking but not all have the
feature installed. If the *_FLK’ cookie is present in the system cookie jar théhatk() call is
present. This call is used to create locks on individual sections (usually records) in a file.

Locking a file in use, when possible, is recommended to prevent other processes from modifying
the file at the same time.

Special File Handles
Several special file handles are available for access through the standard
Fopen()/Fread()/Fwrite() calls. They are as follows:

Name \ Handle Filename Device

GSH_BIOSCON OXFFFF CON: Console (screen). Special characters
such as the carriage return, etc. are
interpreted.

GSH_BIOSAUX OXFFFE AUX: Modem (serial port). This is the ST-
compatible port for machines with more
than one.

GSH_BIOSPRN OXFFFD PRN: Printer (attached to the Centronics
Parallel port).

GSH_BIOSMIDIIN OXFFFC Midi In

GSH_BIOSMIDIOUT OxXFFFB Midi Out

THE ATARI COMPENDIUM

2.8 - GEMDOS

GSH_CONIN 0x00 — Standard Input (usually directed to
GSH_BIOSCON)

GSH_CONOUT 0x01 — Standard Output (usually directed to
GSH_BIOSCON)

GSH_AUX 0x02 — Auxillary (usually directed to
GSH_BIOSAUX)

GSH_PRN 0x03 — Printer (usually directed to
GSH_BIOSPRN)

None 0x04 — Unused

None 0x05 — Unused

None 0x06 and up | User-Specified | User Process File Handles

These files may be treated like any ot@&MDOS files for input/output and locking. Access to
these devices is also provided wifitMDOS character calls (see later in this chapter).

File Redirection
Input and output to a file may be redirected to an alternate file handle. For instance you may
redirect the console output off®S process to the printer.

File redirection is handled by the use of Hierce() call. Generally you will want to make a

copy of the file handle withrdup() prior to redirecting the file so that it may be restored to
normal operation when complete.

Memory Management

Atari systems support two kinds of memory. Standard RAM (sometimes referred to as ‘ST
RAM’) is general purpose RAM that can be used for any purpose including video and DMA.
Current Atari architecture limits the amount of standard RAM a system may have to 14MB.

Alternative RAM (sometimes referred to as ‘TT RAM’) can be accessed faster than standard
RAM but is not suitable for video memory or DMA transfers.

TheMalloc() andMxalloc() calls allocate memory blocks from the system hikadloc()
chooses the type of memory it allocates based on fields in the program header (see later in this
chapter) Mxalloc() allows the application to choose the memory type at run-time.

MultiTOS uses memory protection to prevent an errant process from damaging another. It is
possible withMxalloc() to dynamically set the protection level of an allocated block.

Memory allocated with eithévlalloc() or Mxalloc() may be returned to the system with
Mfree(). Memory allocated by a process is automatically freed when the procesdeu).

GEMDOS Processes

The GEMDOS call Pexec()is responsible for launching executable files. The process which
callsPexec()is called the parent and the file launched becomes the child. Each process may

THE ATARI COMPENDIUM

GEMDOS Processes — 2.9

have more than one child process. Depending on the mode us&kwatb() the child may
share data and address space and/or run concurrently iuti&éOS) with the parent.
GEMDOS executable files¢EM andTOS applications or desk accessories) contain the
following file header:

Name [Offset [Contents

PRG_magic 0x00 This WORD contains the magic value
(0x601A).

PRG_tsize 0x02 This LONG contains the size of the TEXT
segment in bytes.

PRG_dsize 0x06 This LONG contains the size of the
DATA segment in bytes.

PRG_bsize Ox0A This LONG contains the size of the BSS
segment in bytes.

PRG_ssize Ox0E This LONG contains the size of the
symbol table in bytes.

PRG_res1 0x12 This LONG is unused and is currently
reserved.

PRGFLAGS 0x16 This LONG contains flags which define

certain process characteristics (as
defined below).

ABSFLAG Ox1A This WORD flag should be non-zero to
indicate that the program has no fixups or
0 to indicate it does.

Since some versions of TOS handle files
with this value being non-zero incorrectly,
it is better to represent a program having
no fixups with 0 here and placing a 0
longword as the fixup offset.

Text Segment 0x1C This area contains the program’s TEXT
segment. A process is started by
JMP’ing to BYTE O of this segment with
the address of your processes basepage

at 4(sp).
Data Segment PRG_tsize + This area contains the program’s DATA
0x1C segment (if one exists).
Symbol Segment PRG_tsize + This area contains the program’s symbol
PRG_dsize + table (if there is one). The symbol table
0x1C area is used differently by different
compiler vendors. Consult them for the
format.
Fixup Offset PRG_tsize + This LONG indicates the first location in
PRG_dsize + the executable (as an offset from the
PRG_ssize + beginning) containing a longword
0x1C needing a fixup. A 0 means there are no
fixups.

THE ATARI COMPENDIUM

2.10 - GEMDOS

Fixup PRG_tsize + This area contains a stream of BYTES
Information PRG_dsize + containing fixup information. Each byte
PRG_ssize + has a significance as follows:
0x20
Value Meaning
0 End of list.
1 Advance 254 bytes.
2-254 (even) Advance this many
bytes and fixup the
longword there.

PRGFLAGS:Is a bit field defined as follows:

PF_FASTLOAD 0 If set, clear only the BSS area on program
load, otherwise clear the entire heap.
PF_TTRAMLOAD 1 If set, the program may be loaded into
alternative RAM, otherwise it must be
loaded into standard RAM.
PF_TTRAMMEM 2 If set, the program’s Malloc() requests may
be satisfied from alternative RAM, otherwise
they must be satisfied from standard RAM.
— 3 Currently unused.

See left. 4 &5 | Ifthese bits are set to 0 (PF_PRIVATE), the
processes’ entire memory space will be
considered private (when memory
protection is enabled).

If these bits are setto 1 (PF_GLOBAL), the
processes’ entire memory space will be
readable and writable by any process (i.e.
global).

If these bits are set to 2
(PF_SUPERVISOR), the processes’ entire
memory space will only be readable and
writable by itself and any other process in
supervisor mode.

If these bits are set to 3 (PF_READABLE),

the processes’ entire memory space will be

readable by any application but only writable
by itself.

— 6-15 Currently unused.

When a process is started B%MDOS, it allocates all remaining memory, loads the process

into that memory, and JMP’s to the first byte of the application’s TEXT segment with the address
of the program’s basepage at 4(sp). An application should use the basepage information to
decide upon the amount of memory it actually needsvigidink() to return the rest to the

system. The exception to this is that desk accessories are only given as much space as they need
(as indicated by their program header) and their stack space is pre-assigned.

THE ATARI COMPENDIUM

GEMDOS Processes — 2.11

The following code illustrates the proper way to release system memory and allocate your stack
(most ‘C’ startup routines do this for you):

stacksize = $2000 ; 8K
text
_start:
move.l 4(sp),a0 ; Obtain pointer to basepage
move.l a0,basepage ; Save a copy
move.l $18(a0),al ; BSS Base address
adda.l $1C(a0),al ; Add BSS size
adda.l #stacksize,al ; Add stack size
move.l al,sp ; Move your stack pointer to

; your new stack.

suba.l basepage,al ; TPA size
move.l al,-(sp)
move.l basepage,-(sp)
clr.w -(sp)
move.w #$4a,-(sp) ; Mshrink()
trap #1
lea 12(sp),sp ; Fix up stack
; and fall through to main
_main:
.bss
basepage: ds.| 1
.end

The GEMDOS BASEPAGE structure has the following members:

Name Offset Meaning

p_lowtpa 0x00 This LONG contains a pointer to the Transient
Program Area (TPA).

p_hitpa 0x04 This LONG contains a pointer to the top of the
TPA +1.

p_tbase 0x08 This LONG contains a pointer to the base of
the text segment

p_tlen 0x0C This LONG contains the length of the text
segment.

p_dbase 0x10 This LONG contains a pointer to the base of
the data segment.

p_dlen 0x14 This LONG contains the length of the data
segment.

p_bbase 0x18 This LONG contains a pointer to the base of
the BSS segment.

p_blen 0x1C This LONG contains the length of the BSS
segment.

p_dta 0x20 This LONG contains a pointer to the
processes’ DTA.

THE ATARI COMPENDIUM

2.12 - GEMDOS

p_parent 0x24 This LONG contains a pointer to the
processes’ parent’s basepage.

p_reserved 0x28 This LONG s currently unused and is
reserved.

p_env 0x2C This LONG contains a pointer to the
processes’ environment string.

p_undef 0x30 This area contains 80 unused, reserved bytes.

p_cmdlin 0x80 This area contains a copy of the 128 byte
command line image.

Processes terminate themselves with efftierm0(), Pterm(), or Ptermres(). Ptermres()
allows a segment of a file to remain behind in memory after the file itself terminates (this is
mainly useful for TSR utilities).

The Atari Extended Argument Specification
When a process calRexec()to launch a child, the child may receive a command line up to 125
characters in length. The command line does not normally contain information about the process
itself (what goes irgV0] in ‘C’). The Atari Extended Argument Specification (ARGV) allows
command lines of any length and correctly passes the child the command that started it. The
ARGV specification works by passing the command tail in the child’s environment rather than in
the command line buffer.

Both the parent and child have responsibilities when wanting to correctly handle the ARGV
specification. If a process wishes to launch a child with a command line of greater than 125
characters it should follow these steps:

1. Allocate a block of memory large enough to hold the existing environment, the
string ‘ARGV="and its terminatinqlULL , a string containing the complete path
and filename of the child process and its termindfibigL , and a string
containing the child’'s command line arguments and its terminidtiig- .

2. Next, copy these elements into the reserved block in the order given above.

3. Finally, callPexec()with this environment string and a command line containing a
length byte of 127 and the first 125 characters of the command line with a
terminatingNULL .

For a child to correctly establish that a parent process is using ARGV it should check for the
length byte of 127 and the ARGV variable. Some parents may assign a value to ARGV (found
between the ‘ARGV="and the terminatifhgLL byte). It should be skipped over and ignored.

If a child detects that its parent is using ARGV, it then has the responsibility of breaking down
the environment into its components to properly obtain its command line elements.

It should be noted that many compilers include ARGV parsing in their basic startup stubs. In

addition, applications running unddultiTOS should use thAES call shel_write() as it
automatically creates an ARGV environment string.

THE ATARI COMPENDIUM

GEMDOS Vectors — 2.13

GEMDOS Vectors

GEMDOS reserves eight system interrupt vectors (of which only three are used) for various
system housekeeping. TBOS functionSetexc()should be used to redirect these vectors
when necessary. THEEMDOS vectors are as follows:

Setexc()
Name Vector Number Usage
VEC_TIMER 0x0100 Timer Tick Vector: This vector is jumped through 50 times

per second to maintain the time-of-day clock and accomplish
other system housekeeping. A process intercepting this
vector does not have to preserve any registers but should
jump through the old vector when completed. Heavy use of
this vector can severly affect system performance. Return
from this handler with RTS.

VEC_CRITICALERR 0x0101 Critical Error Handler: This vector is used by the BIOS to
service critical alerts (an Rwabs() disk error or media
change request). When called, the WORD at 4(sp) is a
GEMDOS error number. On return, DO.L should contain
0x0001000 to retry the operation, 0 to ignore the error, or
OXFFFFFFxx to return an error code (xx). D3-D7 and A3-A6
must be preserved by the handler. Return from this handler
with RTS.

VEC_PROCTERM 0x0102 Process Terminate Vector: This vector is called just prior to
the termination of a process ended with CTRL-C. Return from
this handler with RTS.

— 0x103-0x0107 Currently unused.

MINT

MINT is Now TOS MiNT) is the extension t6EMDOS that allowsGEMDOS to multitask
underMultiTOS . MiNT also provides memory protection (on a 68030 or higher) to protect an
errant process from disturbing another.

Processes
MiINT assigns each process a process identifier and a process priority value. The identifier is
used to distinguish the process from others in the multitasking enviroritgetid() is used to
obtain theMiNT |D of the process arfdgetppid() can be used to obtain the ID of the processes’
parent.

MiINT also supports networking file systems that support the concept of user and process group
control. ThePgetpgrp(), Psetpgrp(), Pgetuid(), Psetuid(), Pgeteuid() andPseteuid()get and
set the process, user, and effective user ID for a process.

MiINT has complete control over the amount of time allocated to individual processes. It is
possible, however, to set a process ‘delta’ value Riiige() or Prenice() which will be used
by MINT to decide the amount of processor time a process will get per timé&sfietsl() can

be used to surrender the remaining portion of a timeslice.

THE ATARI COMPENDIUM

2.14 - GEMDOS

Information about a processes’ resource usage can be obtained byRyalfiage() These
values can be modified wifPsetlimit(). System configuration capabilities may be obtained with
Sysconf()

Each process can have a user-defined longword value assigned to itselisuital().

The functiondwait(), Pwait3(), andPwaitpid() attempt to determine the exit codes of stopped
child processes.

Threads
It is possible unde¥iNT to split a single process into ‘threads’. These threads continue
execution independently as unique processesPd&() andPvfork() calls are used to split a
process into threads.

The original process that cafork() or Pvfork() is considered the parent and the newly
created process is considered the child.

Child processes created whiiork() share the TEXT segment of the parent, however they are
given a copy of the DATA and BSS segments. Both the parent and child execute concurrently.

Child processes created whivfork() share the entire program code and data space including
the processor stack. The parent process is suspended until the child exitsRex&iids
mode 200.

Child processes started with either call may nfak# calls but a child process started with
Pfork() must callappl_init() to forceGEM to uniquely recognize it as an independent process.
This is not necessary witPvfork() because all program variables are shared.

The following is a simple example of using a thread @EM application:

VOID
UserSelectedPrint(VOID)

{

/* Prevent the user from editing buffer being printed. */
LockBufferFromEdits();

if(Pfork() == 0)
{
/* Child enters here */
appl_init(); /* Required for GEM threads. */

DisplayPrintingWindow(); /* Do our task. */
PrintBuffer();

/* Send an AES message to the parent telling it to unlock buffer. */
SendCompletedMessageToParent();

/* Cleanup and exit thread. */
appl_exit();

THE ATARI COMPENDIUM

MINT — 2.15

Pterm(0);
}

/* Parent returns and continues normal execution. */

}

File System Extensions
MINT provides several new file and directory manipulation functions that worklWithand
other loadable file systems. Thentl() function performs a large number of file-based tasks
many of which apply to special files like terminal emulators and ‘U:\’ flre@ttr() is used to
obtain a file’s extended attributes. Some extended attributes are not relevart@tfie
system and will not return meaningful values (sed-thection Referencefor details).

Fgetchar() andFputchar() can be used to get and put single characters to Eifigfat() and
Foutstat() are used to determine the input or output status of &figdect()is used to select
from a group of file handles those ready to be read from or written to (often used for pipes).

Flink(), Fsymlink(), andFreadlink() are used to create hard and symbolic links to another file.
Links are not supported by all file systems (see the entries for these functions for more details).

Some file systems may support the concept of file ownership and access permi§3®@dsgs

not). TheFchown() andFchmod() calls are used to adjust the ownership flags and access
permissions of a fill?umask() can be used to set the minimum access permissions assigned to
each subsequently created file.

Fmidipipe() is used to redirect the file handles used for MIDI input and outpuit.

MiINT provides four new functions for directory enumeration (they provide similar functionality
to Fsfirst() andFsnext()with a slightly easier interfacdopendir() is used to open a directory
for enumerationDreaddir() steps through each entry in a directégwinddir() resets the file
pointer to the beginning of the directoBglosedir() closes a directory.

Dlock() allows disk-formatters and other utilities which require exclusive access to a drive the
ability to lock a physical device from other processes.

Dgetcwd() allows a process to obtain the curréftMDOS working directory for any process
in the system (including itself).

Dentl() performs device and file-system specific operations (consufithetion Reference
for more details).

Pseudo Drives

MINT creates a pseudo drive ‘U:” which provides access to device drivers, processes, and
other system resources. In addition to creating a directory on drive U: for each system drive,
MINT may create any of the following directories at the ROOT of the drive:

Folder Name Contents

THE ATARI COMPENDIUM

2.16 - GEMDOS

\DEV Loaded devices

\PIPE System pipes

\PROC System processes
\SHM Shared memory blocks

Drive directories on ‘U:’" act as if they were accessed by their own drive letter. Folder ‘U:\CV'
contains the same files and folders as ‘C:\'.

The ‘U:\PROC’ Directory
Each system process has a file entry in the ‘U:\PROC’ directory. The filename given a process
in this directory is the basename for the file (without extension) with an extension consisting of
theMiNT process identifier. The MINIWIN.PRG application might have an entry named
‘MINIWIN.003'.

The file size listed corresponds to the amount of memory the process is using. The time and date
stamp contains the length of time the process has been executing as if it were started on Jan. 1st,
1980 at midnight. The file attribute bits tell special information about a process as follows:

Attribute
Name Byte Meaning
PROC_RUN 0x00 The process is currently running.
PROC_READY 0x01 The process is ready to run.
PROC_TSR 0x02 The process is a TSR.
PROC_WAITEVENT 0x20 The process is waiting for an event.
PROC_WAITIO 0x21 The process is waiting for I/O.
PROC_EXITED 0x22 The process has been exited but not
yet released.
PROC_STOPPED 0x24 The process was stopped by a
signal.

Loadable Devices
MINT contains a number of built-in devices and also supports loadable device drivers. Current
versions oMiNT may contain any of the following devices:

Device ‘

Filename Device

CENTR Centronics Parallel Port

MODEM1 Modem Port 1

MODEM2 Modem Port 2

SERIAL1 Serial Port 1

SERIAL2 Serial Port 2

MIDI MIDI ports

PRN PRN: device (usually the Centronics Parallel Port)
AUX AUX: device (usually the RS232 Port)
CON Current Terminal

TTY Current Terminal (same as CON)
STDIN Current File Handle 0 (standard input)
STDOUT Current File Handle 1 (standard output)
STDERR Current File Handle 2 (standard error)
CONSOLE Physical Console (keyboard/screen)

THE ATARI COMPENDIUM

MINT - 2.17

MOUSE Mouse (system use only)

NULL NULL device

AES BIOS AES BIOS Device (system use only)
AES_MT AES Multitasking Device (system use only)

Each of these devices is represented by a filename (as shown in the table above) in the
‘U\DEWV\’ directory. Using standar@EMDOS calls (ex:Fread() andFwrite()) on these files

yields the same results as accessing the device directly. New devices, including those directly
accessible by thBIOS, may be added to the system with Bstl() call using a parameter of
DEV_INSTALL , DEV_NEWBIOS, or DEV_NEWTTY . See thdcntl() call for details.

MINT versions 1.08 and above will automatically load device drivers with an extension of
*XDD’ found in the root or \MULTITOS’ directory. ‘. XDD’ files are special device driver
executables which are responsible for installing one (or more) new deévid8s.will load the

file and JSR to the first instruction in the TEXT segment (no parameters are passed). The device
driver executable should not attempMshrink() or create a stack (one has already been

created).

The . XDD’ may then either install its device itself wientl() and returPEV_SELFINST

(1L) in register DO or return a pointer t&&VDRV structure to have tHdiNT kernel install it
(the ‘U:\DEW\' filename will be the same as the first eight characters of the . XDD’ file). If for
some reason, the device can not be initialized, OL should be returned in DO.

When creating a neMiNT device withDentl(DEV_INSTALL | devnamgg&dev_desc) the
structuredev_descrcontains a pointer to yoGlEVDRYV structure defined as follows:

typedef struct devdrv

LONG (*open)(FILEPTR *f);
LONG (*write)(FILEPTR *f, char *buf, LONG bytes);
LONG (*read)(FILEPTR *f, char *buf, LONG bytes);
LONG (*Iseek)(FILEPTR *f, LONG where, LONG whence);
LONG (*ioctl)(FILEPTR *f, WORD mode, VOIDP buf);
LONG (*datime)(FILEPTR *f, WORD *timeptr, WORD rwflag);
LONG (*close)(FILEPTR *f, WORD pid);
LONG (*select)(FILEPTR *f, LONG proc, WORD mode);
LONG (*unselect)(FILEPTR *f, LONG proc, WORD mode);
LONG reserved[3];

} DEVDRV;

Each of the assigned members of this structure should point to a valid routine that provides the
named operation on the device. The routine must preserve registers D2-D7 and A2-A7 returning
its completion code in DO. No operating systBRAPs should be called from within these

routines, however, using the vector tables provided ikehsfo structure returned from the

Dcntl() call, GEMDOS andBIOS calls may be used. The specific function that each routine is
responsible for is as follows:

THE ATARI COMPENDIUM

2.18 - GEMDOS

Member Meaning

open This routine is called by the MiNT kernel after a FILEPTR structure has been created for a file
determined to be associated with the device. The routine should perform whatever initialization
is necessary and exit with a standard GEMDOS completion code.

This routine is responsible for validating the sharing mode and other file flags to verify that the file
may be legally opened and should respond with an appropriate error code if necessary.

write This routine should write bytes number of BYTESs from buf to the file specified in FILEPTR. If the
file pointer has the O_APPEND bit set, the kernel will perform an /seek() call to the end of the file
prior to calling this function. If the Iseek()/write() series of calls does not guarantee that data will
be written at the end of a file associated with your device, this function must ensure that the data
specified is actually written at the end of the file.

This function should return with a standard GEMDOS error code or the actual number of BYTEs
written to the file when complete.

read This routine should read bytes number of BY TEs from the file specified in FILEPTR and place
them in the buffer buf. This function should return with a standard GEMDOS error code or the
actual number of bytes read by the routine.

Iseek This routine should move the file position pointer to the appropriate location in the file as
specified by the parameter where in relation to the seek mode whence. Seek modes are the
same as with Fseek() . The routine should return a GEMDOS error code or the absolute new
position from the start of the file if successful.

ioctl This routine is called from the system’s perspective as Fcntl() and is used to perform file
system/device specific functions. At the very least, your device should support FIONREAD,
FIONWRITE, and the file/record locking modes of Fentl() . The arg parameter of Fentl() is
passed as buf.

datime This routine is used to read or modify the date/time attributes of a file. timeptr is a pointer to two
LONGSs containing the time and date of the file respectively. These LONGSs should be used to
set the file date and time if wflag is non-zero or filled in with the file’s creation date and time if
mflag is 0.

This function should return with a standard GEMDQOS error code or E_OK (0) if successful.
close This routine is used by the kernel to close an open file. Be aware that if ->/inks is non-zero,
additional processes still have valid handles to the file. If f->links is 0 then the file is really being
closed. pid specifies the process closing the file and may not necessarily be the same as the
process that opened it.

Device drivers should set the O_LOCK bit on f->flag when the F_SETLK or F_SETLKW Joctl()
call is made. This bit can be tested for when a file is closed and all locks on all files associated
with the same physical file owned by process pid should be removed. If the file did not have any
locks created on it by process pid, then no locks should be removed.

This routine should return with a standard GEMDOS error code or E_OK (0) if successful.
select This routine is called when a call to Fselect() names a file handled by this device. If mode is
O_RDONLY then the select is for reading, otherwise, if mode is O_WRONLY then it is for
writing. If the user Fselect() 's for both reading and writing then two calls to this function will be
made.

The routine should return 1L if the device is ready for reading or writing (as appropriate) or it
should return OL and arrange to ‘wake up’ process proc when 1/0O becomes possible. This is
usually accomplished by calling the wakeselect() member function of the kernel structure. Note
that the value in proc is not the same as a PID and is actually a pointer to a PROC structure
private to the MiNT kernel.

unselect | This routine is called when a device waiting for I/O should no longer be waited for. The mode and

THE ATARI COMPENDIUM

MINT - 2.19

proc parameters are the same as with select() . As with select() , if neither reading nor writing is
to be waited for, two calls to this function will be made.

This routine should return a standard GEMDOS error code or E_OK (0) if successful.

TheFILEPTR structure pointed to by a parameter of each of the above calls is defined as

follows:

typedef struct fileptr

} FILEPTR,;

WORD links;
UWORD flags;
LONG pos;
LONG devinfo;
fcookie fc;

struct devdrv ~ *dev;
struct fileptr *next;

The members dFILEPTR have significance as follows:

links This member contains a value indicating the number of copies of this file descriptor currently in
existence.
flags This member contains a bit mask which indicates several attributes (logically OR’ed together) of
the file as follows:
Name Mask Meaning
O_RDONLY 0x0000 File is read-only.
O_WRONLY 0x0001 File is write-only.
O_RDWR 0x0002 File may be read or written.
O_EXEC 0x0003 File was opened to be executed.
O_APPEND 0x0008 Writes start at the end of the file.
O_COMPAT 0x0000 File-sharing compatibility mode.
O_DENYRW 0x0010 Deny read and write access.
O_DENYW 0x0020 Deny write access.
O_DENYR 0x0030 Deny read access.
O_DENYNONE 0x0040 Allow reads and writes.
O_NOINHERIT 0x0080 Children cannot use this file.
O_NDELAY 0x0100 Device should not block for I/O on this file.
O_CREAT 0x0200 File should be created if it doesn’t exist.
O_TRUNC 0x0400 File should be truncated to 0 BYTESs if it already exists.
O_EXCL 0x0800 Open should fail if file already exists.
O_TTY 0x2000 File is a terminal.
O_HEAD 0x4000 File is a pseudo-terminal “master.”
O_LOCK 0x8000 File has been locked.
pos This field is initialized to 0 when a file is created and should be used by the device driver to store
the file position pointer.
devinfo This field is reserved for use between the file system and the device driver and may be used as
desired. The exception to this is if the file is a TTY, in which case devinfo must be a pointer to a
tty structure.
fc This is the file cookie for the file as follows:
typedef struct f_cookie

THE ATARI COMPENDIUM

2.20 - GEMDOS

{
FILESYS *fs;
UWORD dev;
UWORD aux;
LONG index;
} fcookie;

fsis a pointer to the file system structure responsible for this device. devis a UWORD giving a
useful device ID (such as the Rwabs() device number). The meaning of aux is file system
dependent. index should be used by file systems to provide a unique means of identifying a file.

dev This is a pointer to the DEVDRYV structure of the device driver responsible for this file.

next This pointer may be used by device drivers to link copies of duplicate file descriptors to
implement file locking or sharing code.

Upon successful return from thentl() call, a pointer to &erinfo structure will be returned.
Thekerinfo structure is defined below:

typedef LONG (*Func)();

struct kerinfo

{
WORD maj_version;
WORD min_version;
UWORD default_mode;
WORD reservedl;
Func *bios_tab;
Func *dos_tab;
VOID (*drvchng)(UWORD dev);
VOID (*trace)(char *, ...);
VOID (*debug)(char *, ...);
VOID (*alert)(char *, ...);
VOID (*fatal)(char *, ...);
VOIDP (*kmalloc)(LONG size);
VOID (*kfree)(VOIDP memptr);
VOIDP (*umalloc)(LONG size);
VOID (*ufree)(LONG memptr);
WORD (*strnicmp)(char *strl1, char *str2, WORD maxsrch);
WORD (*stricmp)(char *strl, char *str2);
char * (*strlwr)(char *str);
char * (*strupr)(char *str);
WORD (*sprintf)(char *strbuf, const char *fmtstr, ...);
VOID (*millis_time)(ULONG ms, WORD *td);
LONG (*unixtim)(UWORD time, UWORD date);
LONG (*dostim)(LONG unixtime);
VOID (*nap)(UWORD n);
VOID (*sleep)(WORD que, WORD cond);
VOID (*wake)(WORD que, WORD cond);
VOID (*wakeselect)(LONG proc);
WORD (*denyshare)(FILEPTR *list, FILEPTR *f);

LOCK * (*denylock)(LOCK *list, LOCK *new);

THE ATARI COMPENDIUM

MINT — 2.21

LONG res2[9];

The members of thigerinfo structure are defined as follows:

Member Meaning

maj_version This WORD contains the kernel version number.

min_version This WORD contains the minor kernel version number.

default mode | This UWORD contains the default access permissions for a file.

reservedl Reserved.

bios_tab This is a pointer to the BIOS function jump table. Calling bios_tab[0x00]() is equivalent to
calling Getmpb() and is the only safe way from within a device driver or file system.

dos_tab This is a pointer to the GEMDOS function jump table. Calling dos_tab[0x3D]() is equivalent
to calling Fopen() and is the only safe way from within a device driver or file system.

drvchng This function should be called by a device driver if a media change was detected on the
device during an operation. The parameter dev is the BIOS device number of the device.

trace This function is used to send information messages to the kernel for debugging purposes.

debug This function is used to send error messages to the kernel for debugging purposes.

alert This function is used to send serious error messages to the kernel for debugging purposes.

fatal This function is used to send fatal error messages to the kernel for debugging purposes.

kmalloc Use this internal heap memory management function to allocate memory.

kfree Use this internal heap memory management function to free memory allocated with
kmalloc().

umalloc Use this internal heap memory management function to allocate memory and attach it to the
current process. The memory will be released automatically when the current process exits.

ufree Use this internal heap memory management function to allocate memory allocated with
ufree().

strnicmp This function compares maxsrch characters of strl to str2 and returns a negative value if
strl is lower than str2, a positive value if str1 is higher than str2, or 0O if they are equal.

stricmp This function compares two NULL terminated strings, strl to str2, and returns a negative
value if strlis lower than str2, a positive value if strl is higher than str2, or O if they are
equal.

striwr This function converts all alphabetic characters in strto lower case.

strupr This function converts all alphabetic characters in strto upper case.

sprintf This function is the same as the ‘C’ library sprintf() function except that it will only convert
SPRINTF_MAX characters (defined in TOSDEFS.H).

millis_time This function converts the millisecond time value in ms to a GEMDOS time in td[0] and date
in td[1].

unixtim This function converts a GEMDOS time and date in a UNIX format LONG.

dostim This function converts a UNIX format LONG time/date value into a GEMDOS time/date
value. The return value contains the time in the upper WORD and the date in the lower
WORD.

nap This function causes a delay of n milliseconds.

sleep This function causes the current process to sleep, placing it on the system que que until
condition cond is met.

wake This function causes all processes in que gue, waiting for condition cond, to be woken.

wakeselect This function wakes a process named by the code proc currently doing a select operation.

denyshare This function determines whether the sharing mode of fconflicts with any of the files given in
the linked list /ist.

denylock This function determines whether a new lock new conflicts with any existing lock in the
linked list /ist. The LOCK structure is used internally by the kernel and is defined as follows:

THE ATARI COMPENDIUM

2.22 - GEMDOS

typedef struct ilock

FLOCK l;

struct ilock *next;

LONG reserved[4];
} LOCK;

lis the structure actually containing the lock data (as defined in Fcntl()). nextis a pointer to
the next LOCK structure in the linked list or NULL if this is the last lock. reserved is a
pointer to four LONGSs currently reserved.

res2 These longwords are reserved for future expansion.

Loadable File Systems

MINT supports loadable file systems to provide support for those otheF@&such as
POSIX, HPFS, ISO 9660 CD-ROM, etc.) TMNT kernel will automatically load file system
* XFS’ executables found in the \MULTITOS or root directory. AMINT version 1.08, it is
also possible to have a TSR program install a file system witBah#() call.

When the file system is executedMiNT (i.e. not viaDentl()), MiNT creates an 8K stack and
shrinks the TPA so a call dshrink() is not necessary. The first instruction of the code segment
of the file is JSR’ed to with a pointer tkearinfo (as defined above) structure at 4(sp). The file
system should use this entry point to ensure that it is running on the minimum veMidi of
needed and that any other aspects of the system are what is required for the file system to
operate.

It is not necessary to scan existing drives to determine if they are compatible with the file system
as that is accomplished with the file syst@®t() function (defined below). If the file system

needs to makMiNT aware of drives that would not be automatically recognized by the system,

it should update the longword variablérvbits at location 0x04F2 appropriately.

If the file system was unable to initialize itself or the host system is incapable of supporting it,
the entry stub should return with a value of OL in dO. If the file system installs successfully, it
should return a pointer toFALESYS (defined below) structure in dO. A file system should
never callPterm() or Ptermres(),

All file system functions, including the entry stub, must preserve registers d2-d7 and a2-a7. Any
return values should be returned in dO. Function arguments are passed on the stack. The
following listing defines thé&ILESYS structure:

typedef struct filesys

{

struct filesys *next;
LONG fsflags;
LONG (*root)(WORD drv, fcookie *fc);
LONG (*lookup)(fcookie *dir, char *name, fcookie *fc);
LONG (*creat)(fcookie *dir, char *name, UWORD mode, WORD
attrib,
fcookie *fc);
DEVDRV *(*getdev)(fcookie *fc, LONG *devspecial);

THE ATARI COMPENDIUM

MINT — 2.23

LONG
LONG
LONG
LONG
LONG
LONG
LONG
LONG
);

LONG

LONG
LONG

LONG
LONG
LONG
LONG
LONG
LONG
LONG
LONG
LONG

LONG

)

LONG

LONG
} FILESYS;

(*getxattr)(fcookie *file, XATTR *xattr);

(*chattr)(fcookie *file, WORD attr);

(*chown)(fcookie *file, WORD uid, WORD gid);
(*chmode)(fcookie *file, WORD mode);

(*mkdir)(fcookie *dir, char *name, UWORD mode);
(*rmdir)(fcookie *dir, char *name);

(*remove)(fcookie *dir, char *name);

(*getname)(fcookie *relto, fcookie *dir, char *pathname

(*rename)(fcookie *olddir, fcookie *oldname,
fcookie *newdir, fcookie *newname);
(*opendir)(DIR *dirh, WORD tosflag);
(*readdir)(DIR *dirh, char *name, WORD namelen,
fcookie *fc);
(*rewinddir)(DIR *dirh);
(*closedir)(DIR *dirh);
(*pathconf)(fcookie *dir, WORD which);
(*dfree)(fcookie *dir, long *buf);
(*writelabel)(fcookie *dir, char *name);
(*readlabel)(fcookie *dir, char *name);
(*symlink)(fcookie *dir, char *name, char *to);
(*readlink)(fcookie *file, char *buf, short buflen);
(*hardlink)(fcookie *fromdir, char *fromname,
fcookie *todir, char *toname);
(*fscntl)(fcookie *dir, char *name, WORD cmd, LONG arg

(*dskchng)(WORD dev);
zero;

The members of thelLESYS structure are interpreted MiNT as follows:

Member
next

{ Meaning
This member is a pointer to the next FILESYS structure in the kernel’s linked list. It should be
left as NULL.

fsflags

This is a bit mask of flags which define attributes of the file system as follows:

Name Mask Meaning

FS_KNOPARSE 0x01 Kernel shouldn't do directory parsing (common for
networked file systems).

FS_CASESENSITIVE 0x02 File system names are case-sensitive (common for
Unix compatible file systems).

FS_NOXBIT 0x04 Files capable of being read are capable of being
executed (present in most file systems).

root

This function is called by the kernel to retrieve a file cookie for the root directory of the drive
associated with BIOS device dev. When initializing, the kernel will query each file system, in
turn, to determine which file system should handle a particular drive. If your file system
recognizes the drive specified by dev it should fill in the fcookie structure as appropriate and
return E_OK. If the drive is not compatible with your file system, return an appropriate negative
GEMDOS error code (usually EDRIVE).

THE ATARI COMPENDIUM

2.24 — GEMDOS

lookup

This function should translate a file name into a cookie. If the FS_KNOPARSE bit of fsflags is
not set, name will be the name of a file in the directory specified by the fcookie dir. If the
FS_KNOPARSE bit was set, name will be a path name relative to the specified directory dir.

If the file is found, the fcookie structure fc should be filled in with appropriate details and either
E_OK or EMOUNT (if nameis ‘.." and dir specifies the root directory) should be returned,
otherwise an appropriate error code (like EFILNF) should be returned.

A lookup() call with a NULL name or with a name of *." should always succeed and return a
cookie representing the current directory. When creating a file cookie, symbolic links should
never be followed.

creat

This function is used by the kernel to instruct the file system to create a file named name in the
directory specified by dir with attrib attributes (as defined by Fattrib()) and mode permissions
as follows:

Name Mask Permission

S_IXOTH 0x0001 Execute permission for all others.
S_IWOTH 0x0002 Write permission for all others.
S_IROTH 0x0004 Read permission for all others.

S_IXGRP 0x0008 Execute permission for processes with same group ID.
S_IWGRP 0x0010 Write permission for processes with same group ID.
S_IRGRP 0x0020 Read permission for processes with same group ID.
S_IXUSR 0x0040 Execute permission for processes with same user ID.
S_IWUSR 0x0080 Write permission for processes with same user ID.
S_IRUSR 0x0100 Read permission for processes with same user ID.
S_ISVTX 0x0200 Unused

S_ISGID 0x0400 Alter effective group ID when executing this file.
S_ISUID 0x0800 Alter effective user ID when executing this file.
S_IFCHR 0x2000 File is a BIOS special file.

S_IFDIR 0x4000 File is a directory.

S_IFREG 0x8000 File is a regular file.

S_IFIFO 0xA000 File is a FIFO.

S_IMEM 0xC000 File is a memory region.

S_IFLNK 0xE000 File is a symbolic link.

If the file is created successfully, the fcookie structure fc should be filled in to represent the
newly created file and E_OK should be returned. On an error, an appropriate GEMDOS error
code should be returned.

getdev

This function is used by the kernel to identify the device driver that should be used to do file I/O
on the file named by fc. The function should return a pointer to the device driver and place a
user-defined value in the longword pointed to by devspecial. If the function fails, the function
should return and place a negative GEMDOS error code in the longword pointed to by
devspecial.

getxattr

This function should fill in the XATTR structure pointed to by xattr with the extended attributes of
file fc. If the function succeeds, the routine should return E_OK, otherwise a negative GEMDOS
error code should be returned.

chattr

This function is called by the kernel to instruct the file system to change the attributes of file fc to
those in attr (with only the low eight bits being signifigant). The function should return a standard
GEMDOS error code on exit.

chown

This function is called by the kernel to instruct the file system to change the file fc's group and
user ownership to gid and uid respectively. The kernel checks access permissions prior to
calling this function so the file system does not have to.

THE ATARI COMPENDIUM

MINT — 2.25

chmode

This function is called by the kernel to instruct the file system to change the access permissions
of file fc to those in mode. The mode parameter passed to this function will never contain
anything but access permission information (i.e. no file type information will be contained in
mode). The call should return a standard GEMDOS error code on exit.

mkdir

This function should create a new subdirectory called name in directory dir with access
permissions of mode. The file system should ensure that directories such as *." and *.." are
created and that a standard GEMDQOS error code is returned.

rmdir

This function should remove the directory whose name is name and whose cookie is pointed to
by dir. This call should allow the removal of symbolic links to directories and return a standard
GEMDOS error code.

remove

This function should delete the file named name that resides in directory dir. If more than one
‘hard’ link to this file exists, then only this link should be destroyed and the file contents should
be left untouched. Symbolic links to file fc, however, should be removed. This function should
not allow the deletion of directories and should return with a standard GEMDOS error code.

getname

This function should fill in the buffer pointed to by pathname with as many as PATH_MAX (128)
characters of the path name of directory dir expressed relatively to directory relto. If relto and dir
point to the same directory, a NULL string should be returned.

For example, if relto points to directory “\FOO” and dir points to directory “\AFOO\BAR\SUB”
then pathname should be filled in with “\BAR\SUB".

rename

This function should rename the file o/ldname which resides in directory olddir to the new name
newname which resides in newdir. The file system may choose to support or not support cross-
directory renames. The function should return a standard GEMDOS error code. If no renames
at all are supported then EINVFN should be returned.

opendir

This function opens directory dirh for reading. The parameter tosflag is a copy of the flags
member of the DIR structure as defined below:

typedef struct dirstruct

fcookie fc; /* Directory cookie */
UWORD index; /* Index of current entry */
UWORD flags; /* TOS_SEARCH (1) or 0 */
char fsstuff[60]; /* File system dependent */

} DIR;

If tosflags (dirstruct.flags) is contains the mask TOS_SEARCH the file system is responsible
for parsing the names into something readable by TOS domain applications. The file system
should initialize the index and fsstuff members of dirh and return an appropriate GEMDOS
error code.

readdir

This function should read the next filename from directory dirh. The fcookie structure fc should
be filled in with the details of this file. If dirh->flags does not contain the mask TOS_SEARCH
then the filename should be copied into the buffer pointed to by name. If dirh->flags does
contain the mask TOS_SEARCH then the first four bytes of name should be treated as a
longword and filled in with an index value uniguely identifying the file and the filename should be
copied starting at &name[4].

In either case, if the filename is longer than namelen, rather than filling in the buffer name, the
function should return with ENAMETOOLONG. If this is the last file in the directory, ENMFIL
should be returned, otherwise return E_OK.

rewinddir

This function should reset the members of dirh so that any internal pointers point at the first file
of directory dirh. This function should return a standard GEMDOS error code.

closedir

This function should clear any allocated memory and clean up any structures used by the search
on dirh. This function should return a standard GEMDOS error code.

THE ATARI COMPENDIUM

2.26 — GEMDOS

pathconf This function should return information about the directory dir based on mode mode. For mode
values and return values, see Dpathconf() .

dfree This function should return free space information about the drive directory dir is located on.
The format of the buffer pointed to by bufis the same as is used by Dfree() .This function should
return a standard GEMDQOS error code.

writelabel This function is used to change the volume name of a drive which contains the directory dir. The
new name name should be used to write (or rename the volume label). If the write is actually an
attempt to rename the label and the file system does not support this function then EACCDN
should be returned. If the file system does not support the concept of volume labels then
EINVFN should be returned. Otherwise, a return value of E_OK is appropriate.

readlabel This function should copy the volume label name of the drive on which directory dir is contained
in the buffer name. If namelen is less than the size of the volume name, ENAMETOOLONG
should be returned. If the concept of volume names is not supported by the file system, EINVFN
should be returned. If no volume name was ever created, EFILNF should be returned. Upon
successful error of the call, E_OK should be returned.

symlink This function should create a symbolic link in directory dir named name. The symbolic link
should contain the NULL terminated string in to. If the file system does not support symbolic
links it should return EINVFN, otherwise a standard GEMDQOS error code should be returned.
readlink This function should copy the contents of symbolic link file into buffer buf. If the length of the
contents of the symbolic link is greater than buflen, ENAMETOOLONG should be returned. If
the file system does not support symbolic links, EINVFN should be returned. In all other cases,
a standard GEMDOS error code should be returned.

hardlink This function should create a ‘hard’ link called toname residing in todir from the file named
fromname residing in fromdir. If the file system does not support hard links, EINVFN should be
returned. Otherwise, a standard GEMDOS error code should be returned.

fscntl This function performs a file system specific function on a file whose name is name that resides
in directory dir. The cmd and arg functions parallel those of Dcntl() . In most cases, this function
should simply return EINVFN. If your file system wishes to expose special features to the user
through Dcntrl() then your file system should handle them here as it sees fit.

dskchng This function is used by the kernel to confirm a ‘media change’ state reported by Mediach() . If
the file system agrees that a media change has taken place, it should invalidate any
appropriate buffers, free any allocated memory associated with the device, and return 1. The
kernel will then invalidate any open files and relog the drive with the root() functions of each
installed file system.

If a media change has not taken place, simply return a value of 0.
zero This member is reserved for future expansion and must be set to OL.

MINT Interprocess Communication

Pipelines
A pipeline is a special file used for data communication in which the data being read or written
is kept in memory. Pipes are createdisyeate(Jing a file in the special directory ‘U:\PIPE’.
A process which initially opens a pipe is considered the ‘server.” Processes writing to or
reading from the open pipe are called ‘clients.’ Both servers and clients may read to and write
from the pipe.

Fcreate()s attr byte takes on a special meaning with pipes as follows:

THE ATARI COMPENDIUM

MINT Interprocess Communication — 2.27

Name Bit Meaning

FA_UNIDIR 0x01 If this bit is set, the pipe will be unidirectional (the server
can only write, the client can only read).

FA_SOFTPIPE 0x02 Setting this bit causes reads when no one is writing to
return EOF and writes when no one is reading to raise the
signal SIGPIPE.

FA_TTY 0x04 Setting this bit will make the pipe a pseudo-TTY, i.e. any
characters written by the server will be interpreted (CTRL-C
will cause a SIGINT signal to be generated to all clients).

Fpipe() can also be used to create pipes quickly wittMINT kernel resolving any name
conflicts. A pipe is deleted when all processes that had obtained a handfielesé)it.

A single process may serve as both the client and the server if it maintains two handles (one
obtained fronf-open()and one fronf-create()). In addition, child processes of the server may
inherit the file handle, and thus the server end of the pipe.

A special system calfalert(), sends a string to a pipe called ‘U:\PIPE\ALERT". If a handler is
present that reads from this pipe, an alert with the text string will be displayed.

Signals
Signals are messages sent to a process that interrupt normal program flow in a way that may be
defined by the receiving application. Signals are sent to a process with the fidtidn The
call is namedPkill() because the default action for most signals is the termination of the process.
If a process expects to receive signals it shouldPsignal(), Psigsetmask() Psigblock(), or
Psigaction()to modify that behavior by installing a handler routine, ignoring the signal, or
blocking the signal completely.

Signal handlers should return by executing a 680x0 RTS instruction or by Esiigigturn().
Current signals sent and recognizediT processes are as follows:

Signal Number Meaning

SIGNULL 0 This signal is actually a dead signal since it has no
effect and is never delivered. Its only purpose is to
determine if a child process has exited. A Pkill()
call with this signal number will return successfully if
the process is still running or fail if not.

SIGHUP 1 This signal indicates that the terminal connected to
the process is no longer valid. This signal is sent by
window managers to processes when the user has
closed your window. The default action for this
signal is to kill the process.

SIGINT 2 This signal indicates that the user has interrupted
the process with CTRL-C. The default action for this
signal is to kill the process.

SIGQUIT 3 This signal is sent when the user presses CTRL-\.
The default action for this signal is to kill the
process.

THE ATARI COMPENDIUM

2.28 - GEMDOS

SIGILL

This signal is sent after a 680x0 lllegal Instruction
Exception has occurred. The default action for this
signal is to kill the process. Catching this signal is
unrecommended.

SIGTRAP

This signal is sent after each instruction is executed
when the system is in single-step trace mode.
Debuggers should catch this signal, other
processes should not.

SIGABRT

This signal is sent when something has gone wrong
internally and the program should be aborted
immediately. The default action for this signal is to
kill the process. It is unrecommended that you catch
this signal.

SIGPRIV

This signal is sent to a process that attempts to
execute an instruction that may only be executed in
supervisor mode while in user mode. The default
action for this signal is to kill the process.

SIGFPE

This signal is sent when a division by 0 or floating-
point exception occurs. The default action for this
signal is to kill the process.

SIGKILL

This signal forcibly kills the process. There is no
way to catch or ignore this signal.

SIGBUS

10

This signal is sent when a 680x0 Bus Error
Exception occurs. The default action for this signal
is to kill the process.

SIGSEGV

11

This signal is sent when a 680x0 Address Error
Exception occurs. The default action for this signal
is to kill the process.

SIGSYS

12

This signal is sent when an argument to a system
call is bad or out of range and the call doesn’'t have
a way to report errors. For instance, Super(OL) will
send this signal when already in supervisor mode.
The default action for this signal is to kill the
process.

SIGPIPE

13

This signal is sent when a pipe you were writing to
has no readers. The default action for this signal is
to Kill the process.

SIGALRM

14

This signal is sent when an alarm sent by Talarm()
is triggered. The default action for this signal is to
kill the process.

SIGTERM

15

This signal indicates a ‘polite’ request for the
process to cleanup & exit. This signal is sent when
a process is dragged to the trashcan on the
desktop. The default action for this signal is to kill
the process.

SIGSTOP

17

This signal is sent to a process to suspend it. It
cannot be caught, blocked, or ignored. This signal
is usually used by debuggers.

SIGTSTP

18

This signal is sent when the user presses CTRL-Z
requesting that the process suspend itself. The
default action for this signal is to suspend the
process until a SIGCONT signal is caught.

SIGCONT

19

This signal is sent to restart a process stopped with
SIGSTOP or SIGTSTP. The default action for this
signal is to resume the process.

THE ATARI COMPENDIUM

MINT Interprocess Communication — 2.29

SIGCHLD 20 This signal is sent when a child process has exited
or has been suspended. As a default, this signal
causes no action.

SIGTTIN 21 This signal is sent when a process attempts to read
from a terminal in a process group other than its
own. The default action is to suspend the process.
SIGTTOU 22 This signal is sent when a process attempts to write
to a terminal in a process group other than its own.
The default action is to suspend the process.
SIGIO 23 This signal is sent to indicate that I/O is possible on
a file descriptor. The default action for this signal is
to kill the process.

SIGXCPU 24 This signal is sent when the maximum CPU time
allocated to a process has been used. This signal
will continue to be sent to a process until it exits.
The default action for this signal is to kill the
process.

SIGXFSZ 25 This signal is sent to a process when it attempts to
modify a file in a way that causes it to exceed the
processes’ maximum file size limit. The default
action for this signal is to Kill the process.
SIGVTALRM 26 This signal is sent to a process which has exceed
its maximum time limit. The default action for this
signal is to kill the process.

SIGPROF 27 This signal is sent to a process to indicate that its
profiling time has expired. The default action for this
signal is to kill the process.

SIGWINCH 28 This signal indicates that the size of the window in
which your process was running has changed. If the
process cares about window size it can use Fcntl()
to obtain the new size. The default action for this
signal is to do nothing.

SIGUSR1 29 This signal is one of two user-defined signals. The
default action for this signal is to kill the process.
SIGUSR2 30 This signal is one of two user-defined signals. The

default action for this signal is to kill the process.

Memory Sharing
With the enforcement of memory protection undéitiTOS | the availability of shared memory
blocks is important for applications wishing to share blocks of memory. A shared memory block
is opened by-create(}ing a file in the directory ‘U:\\SHM'. After that, a memory block
allocated withMalloc() or Mxalloc() may be attached to the file wiientl(handlg mempty
SHMSETBLK) .

Any process which usé®pen()andFcntl() with a parameter SHMGETBLK can now read
that memory as if it were a disk file. After a process obtains the address of a shared memory
block withSHMGETBLK the memory is guaranteed to be valid until it dsifsee() on that

block even if itFclose()s the original file handle.

Note that the address returnedAgptl() may be different in different processes. Because of this,
data in shared memory blocks should not contain absolute pointers.

THE ATARI COMPENDIUM

2.30 - GEMDOS

When a process is finished with a shared memory block, it sSMiué#() the address returned
by theFentl() call. A shared memory block is also deleted byFitielete()call if the file is
currently unopened by any other processes.

Other Methods of Communication
Psemaphore()can be used to create named flags which can synchronize the behavior of multiple
applications (if adhered tofmsg()is used to send simple messages between two processes.

MINT Debugging

MINT allows a processes’ TEXT, DATA, and BSS space to be read and written to with
standardsEMDOS file commands by opening the process on ‘U:\PROC\' A file named
“TEST” with aMiNT identification of 10 could be opened by specifying the name as
‘U\PROC\TEST.10’ or ‘U\PROC\.10'. Opening a file to ‘U:\PROC\.-1’ will open your own
process whereas opening a file to ‘U:\PROC\.-2’ will open your parent process.

Tracing
A process may be setup for tracing in a number of ways. A child process may be started in trace
mode by OR’ing 0x8000 with thieexec()mode number in Bexec()call. A process may also
trace another process by opening it as described above and udiegttGecall with a
parameter oPTRACESFLAGS. Processes may start tracing on themselves if their parent is
prepared for it.

When in trace mode, the process being traced halts and genésiEsH#. D signal to its
tracer after every instruction (unless this action is modified). The example below shows how to
obtain the process ID of the stopped child and the signal that caused the child to stop.

#define WIFSTOPPED(x) (((int)((x) & OXFF)==0x7F) && ((int)(((x)>>8)&0xFF)!=0))
#define WSTOPSIG(X) ((int)(((x)>>8) & OXFF))
void

HandleSignal(LONG signo)
{

WORD pid;
WORD childsignal;
ULONG r;

if(signo == SIGCHLD)

r = Pwait3(0x2, OL);
if(WIFSTOPPED(r))

{
pid = r >> 16;
childsignal = WSTOPSIG(r);

After reception of this signal, the child process may be restartedraiti) using either the
PTRACEGO, PTRACEFLOW , or PTRACESTEP commands. SettingTRACEFLOW or

THE ATARI COMPENDIUM

MINT Debugging — 2.31

PTRACESTEP causes &IGTRAP signal to be raised on the next program flow change (ex:
BRA or JMP) or the instruction respectively.

Modifying the Process Context
A processes’ registers may be modified during tracing using the method as illustrated in the

following example:

struct context

{
LONG regs[15]; /I Registers d0-d7, a0-a6
LONG usp; /I User stack pointer
WORD sr; /I Status register
LONG pc; /I Program counter
LONG ssp; /I Supervisor stack pointer
LONG tvec; /I GEMDOS terminate vector
char fstate[216]; /I Internal FPU state
LONG fregs[3*8]; /I Registers FPO-FP7
LONG fetrl[3] /I Registers FPCR/FPSR/FPIAR
/I More undocumented fields exist here

te

void

ModifyContext(LONG handle)
LONG curprocaddr, ctxtsize;

Fentl(handle, &curprocaddr, PPROCADDR);
Fentl(handle, &ctxtsize, PCTXTSIZE);

curprocaddr -= 2 * ctxtsize;

Fseek(curprocaddr, handle, SEEK_SET);
Fread(handle, (LONG)sizeof(struct context), &c);

/* Modify context c here */

Fseek(curprocaddr, handle, SEEK_SET);
Fwrite(handle, (LONG)sizeof(struct context), &c);

}

MINT Debugging Keys
MiNT may be programmed to output special debugging messages to the debugging device
through the use of special system keys. The supported system keys are shown in the table belov

Key Combination Meaning

CTRL-ALT-F1 Increase the system debugging level by one.
CTRL-ALT-F2 Decrease the system debugging level by one.
CTRL-ALT-F3 Cycle the BIOS output device number used for system

debugging messages. This key cycles BIOS devices in
the order 1-6-7-8-9-2.

CTRL-ALT-F4 Restore debugging output to the console device.

CTRL-ALT-F5 Output a memory usage map to the debugging device.

CTRL-ALT-F6 Output a list of all system processes to the debugging
device.

THE ATARI COMPENDIUM

2.32 - GEMDOS

CTRL-ALT-F7 Toggles debug ‘logging’ off and on. When debug logging
is on, a 50-line buffer is maintained which contains recent
debugging messages. Each time a new debugging
message is output, the entire 50 line buffer is output as

well.

CTRL-ALT-F8 Outputs the 50-line debug log to the debugging device.

CTRL-ALT-F9 Outputs the system memory map to the debugging
device. The memory protection flags of each page are
shown.

CTRL-ALT-F10 Outputs an extended system memory map to the

debugging device. The memory protection status,
owner’s PID, and format of each memory block are output
to the debugging device.

CTRL-ALT-F1 andCTRL-ALT-F2 alter the current system debugging leMiNT supports four
debugging levels as follows:

Level Meaning

0 Only fatal OS errors are reported to the debugging device
(this is the default mode).

1 Processor exceptions are output to the debugging
device.

2 Processor exceptions and failed system calls are output
to the debugging device.

3 Constant MiNT status reports, processor exceptions, and
failed system calls are output to the debugging device.

The MINT.CNF File

MultiTOS looks for an ASCII text file upon bootup called ‘MINT.CNF’ which may be used to
execute commands or $4iNT variables. The following table illustrates what commands are
recognized in the ‘MINT.CNF file:

Command \Mple— Meaning
cd cd c:\multitos Change the GEMDOS
working directory.
echo echo "Atari Computer Booting...” Echo a string to the screen.
ren ren c:\test.prg c:\test.app Rename a file.
sin sin c:\levellllevel2\level3 u:\deep Create a symbolic link on
drive ‘U:".
alias alias x: u:\proc Create an alias drive.
exec exec c:\sam.prg Execute a program.

The followingMIiNT variables may be set in the ‘MINT.CNF file:

THE ATARI COMPENDIUM

GEMDOS Character Functions — 2.33

Variable Meaning

INIT Execute the named TOS program. For example:

INIT=c:\multitos\sam.prg
GEM Execute the named GEM program. For example:

GEM=c:\multitos\miniwin.app
CON Redirect console input and output to the named file.
For example:

CON=u:\devimodem1
PRN Redirect printer output to the named file. For
example:

PRN=c:\spool.txt
DEBUG_LEVEL Set the MiNT debugging level (default is 0). For
example:

DEBUG_LEVEL=1
DEBUG_DEVNO Set the BIOS device number that MiNT will send
debugging messages to. For example:

DEBUG_DEVNO=1
SLICES Set the number of 20ms time slices given to an
application at a time (the default is 2). For example:

SLICES=3

MAXMEM Set the maximum amount of memory (in kilobytes)
any application can be allocated (the default is
unlimited). For example:

MAXMEM=8192

BIOSBUF Enable/Disable Bconout() optimizations. The
parameter should be ‘Y’ to enable or ‘N’ to disable
these optimizations. For example:

BIOSBUF=Y

GEMDOS Ch er Functions

GEMDOS provides a number of functions to communicate on a character basis with the default
system devices. Because of irregularities with these calls in 5O/@eersions, usage of the

BIOS functions is usually recommended instead BH2S does not support redirection,

however).

TheGEMDOS character functions are illustrated in the table below:

Device: Input Output \ Status
con: Cconin() - Character Cconout() - Character Cconis() - Input
Cnecin() - No Echo Cconws() - String Cconos() - Output
Cconrs() - String
prn: None Cprnout() Cprnos()

THE ATARI COMPENDIUM

2.34 — GEMDOS

aux: Cauxin() Cauxout() Cauxis() - Input
Cauxos() - Output

N/A Crawio() and Crawcin() Crawio() Cconis() - Input
Cconos() - Output

GEMDOS Time & Date Functions

GEMDOS provides four functions for the manipulation of tinigetdate()andTsettime() set
the date and time respectiveflgetdate() andTgettime() get the date and time respectively.

As of TOS 1.02, theGEMDOS time functions also update tB¢OS time.

GEMDOS Function Calling Procedure

GEMDOS system functions are called via the TRAP #1 exception. Function arguments are
pushed onto the current stack in reverse order followed by the function opcode. The calling
application is responsible for correctly resetting the stack pointer after the call.

GEMDOS may utilize registers DO-D2 and A0-A2 as scratch registers and their contents should
not be depended upon at the completion of a call. In addition, the function opcode placed on the
stack will be modified.

The following example foBuper() illustrates callindgSEMDOS from assembly language:

clr.l -(sp)

move.w #$20,-(sp)
trap #1

addq.! #4,sp

‘C’ compilers often provide a reusable interfacé&sioMDOS that allows neWwsEMDOS calls
to be added with a macro as in the following example:

#define Super(a) gemdos(0x20, a)

The gemdos() function used in the above macro can be written in assembly language as follows:

.globl _gemdos
text

_gemdos:
move.l (sp)+, tlsav ; Save return address
trap #1 ; Call GEMDOS
move.l tlsav,-(sp) ; Restore return address
rts
.bss

tlsav: ds.| 1 ; Return address storage
.end

THE ATARI COMPENDIUM

GEMDOS Function Calling Procedure — 2.35

GEMDOS is not guaranteed to be re-entrant and therefore should not be called from an interrupt
handler.

THE ATARI COMPENDIUM

GEMDOS Function Reference

THE ATARI COMPENDIUM

Cauxin() - 2.39

Cauxin()

WORD Cauxin(VOID)

OPCODE

AVAILABILITY

BINDING

RETURN VALUE

CAVEATS

SEE ALSO

Cauxin() waits for the next available data byte fr&@RMDOS handle 2
(normally device ‘aux:”’) and when available, returns it in the low byte of the
returnedWORD.,

3 (0x03)

All GEMDOS versions.

move.w #$3,-(sp)
trap #1
addq.! #2,sp

TheWORD value contains the retrieved byte in the lower eight bits. The contents
of the upper 8 bits are currently undefined.

This function can cause flow control problems.

When using this function while its handle is redirected, an end-of-file condition
will hang the systenfGEMDOS version 0.30 and aMiNT versions correct this
bug.MiNT returnsMINT_EOF (0xFF1A) when the end-of-file is reached.

In addition, if this handle is redirected to something other than ‘aux:’, an end-of-
file will hang the system. Besides these known bugs, this function is used by many
‘C’ compilers to redirect standard error messages. It is therefore advisable to use
Bconin() instead.

Cauxis(), Cauxout(), Bconin()

Cauxis()

WORD Cauxis(VOID)

OPCODE

AVAILABILITY

BINDING

Cauxis() indicates whetheBEMDOS handle 2 (normally device ‘aux:’) has at
least one character waiting.

18 (0x12)

All GEMDOS versions.

move.w #$12,-(sp)

THE ATARI COMPENDIUM

2.40 — GEMDOS Function Reference

RETURN VALUE

trap #1
addq. #2,sp

The return value will b®EV_READY (-1) if at least one character is available
for reading oDEV_BUSY (0) if not.

CAVEATS When using this function while its handle is redirected, an end-of-file condition
will hang the systenf3EMDOS version 0.30 and aMiNT versions correct this
bug.MiNT returnsMINT_EOF (0xFF1A) when the end-of-file is reached.

In addition, some ‘C’ compilers use this handle as a standard error device. It is
therefore advisable to uEgonstat().

SEE ALsSO Cauxin(), Cauxout(), Cauxos() Bconstat()

Cauxos()

WORD Cauxos(VOID)

OPCODE

AVAILABILITY

BINDING

RETURN VALUE

CAVEATS

SEE ALSO

Cauxos()indicated whetheGEMDOS handle 2 (normally device ‘aux:’) is
ready to receive characters.

19 (0x13)

All GEMDOS versions

move.w #$13,-(sp)
trap 1
addq. #2,sp

A value ofDEV_READY (-1) is returned if the output device is ready to receive
characters oPEV_BUSY (0) if it is not.

This function actually returns the status of whatever dévlcilDOS handle 2 is
redirected to. In addition, some ‘C’ compilers use this handle as a standard error
device. It is therefore recommended tBaostat() be used instead.

Cauxin(), Cauxis(), Cauxout(), Bcostat().

THE ATARI COMPENDIUM

Cauxout() - 2.41

Cauxout()
VOID Cauxout(ch)
WORD ch;
Cauxout() outputs a character €@EMDOS handle 2, normally the ‘aux:’ device.
OPCODE 4 (0x04)
AVAILABILITY All GEMDOS versions.
PARAMETERS chis aWORD value, however, only the lower eight bits are sent. The upper eight
bits must be 0.
BINDING move.w #ch,-(sp)
move.w #4,-(sp)
trap #1
addq.| #4,sp
CAVEATS This function can cause flow control to fail wHekMDOS handle 2 is directed
to ‘aux:’.
In addition, some ‘C’ compilers use this function as a standard error device. It is
therefore recommended tfBgonout() be used in place of this function.
SEE ALSO Cauxin(), Cauxis(), Cauxos() Bconout()
Cconin()

LONG Cconin(VOID)

OPCODE

AVAILABILITY

BINDING

RETURN VALUE

Cconin() reads a character (waiting until one is available) f@aMDOS handle
0 (normally ‘con:’).

1 (0x01)

All GEMDOS versions.

move.w #1,-(sp)
trap #1
addq.| #2,sp

TheLONG value returned is a bit array arranged as follows:

THE ATARI COMPENDIUM

2.42 — GEMDOS Function Reference

Bits 31-24 Bits 23-16 Bits15-8 | Bits 7-0
Shift key status Keyboard Unused ASCII code of
(see below) scancode (0) character

The ASCII code of the character will be O if a non-ascii keyboard key is struck.

CAVEATS When using this function while its handle is redirected, an end-of-file condition
will hang the systemGEMDOS version 0.30 and aMiNT versions correct this
bug.MiNT returnsMINT_EOF (0xFF1A) when the end-of-file is reached.

COMMENTS The shift key status will only be returned when bit 3 of the system variable
conterm(char *(0x484)) is set. This is normally not enabled.

If the handle has been redirected, the inputted character will appear in the lower 8
bits of the return value.

SEE ALSO Cconis(), Cconout(), Cconrs(), Cnecin(), Crawin(), Bconin()

Cconis()

WORD Cconis(VOID)

Cconis() verifies that a character is waiting to be read ff@RMDOS handle 0
(normally ‘con:’).

OPCODE 11 (0xB)
AVAILABILITY All GEMDOS versions.
BINDING move.w #$0B,-(sp)
trap #1
addq. #2,sp

RETURN VALUE Cconis()returns @EV_READY (-1) if a character is available BEV_BUSY
(0) if not.

SEE ALSO Cconin(), Bconstat()

THE ATARI COMPENDIUM

Cconos() - 2.43

Cconos()
WORD Cconos(VOID)

Cconos()checks to see whether a character may be outfEMDOS handle 1
(normally ‘con:’).

OPCODE 16 (0x10)
AVAILABILITY All GEMDOS versions.
BINDING move.w #$10,-(sp)
trap #1
addq.| #2,sp

RETURN VALUE This function return®EV_READY (-1) if at least one character may be sent or
DEV_BUSY (0) if not.

SEE ALSO Cconout(), Bcostat()

Cconout()

VOID Cconout(ch)
WORD ch;

Cconout() outputs one character Vi@EMDOS handle 1 (normally ‘con:’).

OPCODE 2 (0x02)
AVAILABILITY All GEMDOS versions.
PARAMETERS chis aWORD value, however, only the lower eight bits are sent through the

output stream. The upper eight bits must be 0.

BINDING move.w Ch,-(Sp)
move.w #2,-(sp)
trap #1
addq.! #4,sp

CAVEATS with GEMDOS versions below 0.15, this handle should not be redirected to a
write-only device as the call attempts to read from the output stream to process
special keys.

COMMENTS No line feed translation is done at the time of output. To start a new line, ASCII 13

THE ATARI COMPENDIUM

2.44 — GEMDOS Function Reference

SEE ALSO

and ASCII 10 must both be sent.

Cconin(), Bconout()

Cconrs()

VOID Cconrs(str)

char *str;

OPCODE
AVAILABILITY

PARAMETERS

BINDING

RETURN VALUE

CAVEATS

COMMENTS

Cconrs() reads a string from the standard input stre@MDOS handle 0) and
echoes it to the standard output stre&iIDOS handle 1).

10 (Ox0A)
All GEMDOS versions.

str should be a character pointer large enough to hold the inputted string. On
function entrystr[0] should be equal to the maximum number of characters to
read.

pea str
move.w #$0A,-(sp)
trap #1

addq.l #6,sp

On return, the string buffer passed as a parameter will be filled in with the inputted
charactersstr[1] will contain the actual number of characters in the buffer.
(char *) &str[2] is the pointer to the start of the actual string in memory.

Cconrs() will not terminate unlessTRL-C is pressed, the buffer is full or either
RETURN or CTRL-J is pressed.

GEMDOS versions below 0.15 echoes the input to the console even if output has
been redirected elsewhere.

The stringCconrs() creates is not null-terminated. The following keys
processed by the function:

Key Translation

RETURN End of input. Do not place RETURN in in buffer.
CTRL-J End of line. Do not place CTRL-J in buffer.
CTRL-H Kill last character.

DELETE Kill last character.

CTRL-U Echo input line and start over.

THE ATARI COMPENDIUM

Cconws() - 2.45

CTRL-X Kill input line and start over.
CTRL-R Echo input line and continue.
CTRL-C Exit program.

When the input stream is redirectégonrs() returns 0 irstr[1] when the end-of-
file marker is reached.

SEE ALSO Cconin(), Cconws()

Cconws()

VOID Cconws(str)
char *str;

Cconws()writes a string t6sEMDOS handle 1 (normally ‘con:’).

OPCODE 9 (0x09)

AVAILABILITY All GEMDOS versions.

PARAMETERS stris a pointer to a null-terminated character string to be written to the output
stream.

BINDING pea str
move.w #3%09,-(sp)
trap 1
addq.| #6,sp

CAVEATS With GEMDOS versions below 0.15, this handle should not be redirected to a
write-only device as the call attempts to read from the output stream to process
special keys.

COMMENTS No line feed translation is performed on outputted characters so both an ASCII 13

and ASCII 10 must be sent to force a new line. In addition, the system checks for
special keys so @rRL-C embedded in the string will terminate the process.

SEE ALSO Cconout(), Cconrs()

THE ATARI COMPENDIUM

2.46 — GEMDOS Function Reference

Cnecin()
WORD Cnecin(VOID)

Cnecin()is exactly the same &onin() except that the character fetched from the
input stream is not echoed.

OPCODE 8 (0x08)
AVAILABILITY All GEMDOS versions.
PARAMETERS None.
BINDING move.w #8,-(sp)
trap #1
addq. #2,sp

RETURN VALUE TheLONG value returned is a bit array arranged as follows:

Bits 31-24 Bits 23-16 Bits15-8 | Bits 7-0
Shift key status Keyboard Unused ASCII code of
(see below) scancode (0) character

The ASCII code of the character will be 0 if a non-ascii keyboard key is struck.

CAVEATS When using this function while its handle is redirected, an end-of-file condition
will hang the systemGEMDOS version 0.30 and aMiNT versions correct this
bug.MiNT returnsMINT_EOF (0xFF1A) when the end-of-file is reached.

COMMENTS The shift key status will only be returned when bit 3 of the system variable
conterm(char *(0x484)) is set. This is normally not enabled.

If the handle has been redirected, the inputted character will appear in the lower 8
bits of the return value.

SEE ALSO Cconin(), Bconin()

Cprnos()
WORD Cprnos(VOID)
Cprnos() returns the status &EMDOS handle 3 (normally ‘prn:’).

OPCODE 17 (Ox11)

THE ATARI COMPENDIUM

Cprnout() - 2.47

AVAILABILITY All GEMDOS versions.
PARAMETERS None.
BINDING move.w #$11,-(sp)
trap #1
addq.| #2,sp

RETURN VALUE Cprnos() returns E&EV_READY (-1) if the output stream is ready to receive a
character oPEV_BUSY (0) if not.

SEE ALSO Cprnout(), Bcostat()

Cprnout()

WORD Cprnout(ch)

WORD ch;
Cprnout() sends one character@=MDOS handle 3 (normally ‘prn:’).
OPCODE 5 (0x05)
AVAILABILITY All GEMDOS versions.
PARAMETERS chis aWORD value, however, only the lower 8 bits are sent to the output stream.
The upper eight bits should be 0.
BINDING move.w ch,-(sp)
move.w #%$5,-(sp)
trap #1
addq.l #4,sp

RETURN VALUE Cprnout() returns a non-zero value if the function successfully wrote the character
to the printer or 0 otherwise.

COMMENTS No input translation is performed with this call. Therefore, you must send an
ASCII 13 and ASCII 10 to force a new line.

SEE ALSO Bconout()

THE ATARI COMPENDIUM

2.48 — GEMDOS Function Reference

Crawcin()
LONG Crawcin(VOID)

Crawcin() is similar toCconout(), however it does not process any special keys
and does not echo the inputted character.

OPCODE 7 (0x07)
AVAILABILITY All GEMDOS versions.
BINDING move.w #$07,-(sp)
trap 1
addq.l #2,sp

RETURN VALUE TheLONG value returned is a bit array arranged as follows:

Bits 31-24 Bits 23-16 Bits15-8 | Bits 7-0
Shift key status Keyboard Unused ASCII code of
(see below) scancode (0) character

The ASCII code of the character will be 0 if a non-ascii keyboard key is struck.

CAVEATS When using this function while its handle is redirected, an end-of-file condition
will hang the systemGEMDOS version 0.30 and aMiNT versions correct this
bug.MiNT returnsMINT_EOF (0xFF1A) when the end-of-file is reached.

COMMENTS The shift key status will only be returned when bit 3 of the system variable
conterm(char *(0x484)) is set. This is normally not enabled.

If the handle has been redirected, the inputted character will appear in the lower 8
bits of the return value.

Under normal circumstances, whekeMDOS handle 0 is being read from, no
special system keys, includi@gRL-C, are checked.

SEE ALSO Cconin(), Crawio(), Bconin()

THE ATARI COMPENDIUM

Crawio() - 2.49

Crawio()

LONG Crawio(ch)
WORD ch;

Crawio() combines console input and output in one function.

OPCODE 6 (0x06)
AVAILABILITY All GEMDOS versions.
PARAMETERS chis aWORD value, however, only the lower eight bits are meaningful and the

upper eight bits should be set to 0chfis 0XOOFF on inpuGrawio() returns the
character read frol@EMDOS handle 0 (normally ‘con:’).

BINDING move.w Ch,-(Sp)
move.w #6,-(sp)
trap
addq.! #4,sp
RETURN VALUE If chis OXOOFF upon entrygrawio() returns a bit array arranged as follows:
Bits 31-24 | Bits 23-16 Bits 15-8 Bits 7-0
Shift key status Keyboard Unused ASCII code of
(see below) scancode (0) character

The ASCII code of the character will be 0 if a non-ascii keyboard key is struck.
If no character was waiting in the input stre&itgwio() returns a 0.

CAVEATS When using this function while its handle is redirected, an end-of-file condition
will hang the systen{3EMDOS version 0.30 and aMiNT versions correct this
bug.MIiNT returnsMINT_EOF (0xFF1A) when the end-of-file is reached.

Due to the definition of this call it is impossible to write OXO0FF to the output
stream or read a zero from this call.

COMMENTS The shift key status will only be returned when bit 3 of the system variable
conterm(char *(0x484)) is set. This is normally not enabled.

If the handle has been redirected, the inputted character will appear in the lower 8
bits of the return value.

Under normal circumstances, wHeékMDOS handle 0 is being read from, no
special system keys, includiggRL-C, are checked.

THE ATARI COMPENDIUM

2.50 — GEMDOS Function Reference

SEE ALSO Cconout(), Cconin(), Bconout(), Bconin()

Dclosedir()

LONG Dclosedir(dirhandle)
LONG dirhandle;

Dclosedir() closes the specified directory.

OpPCODE 299 (0x12B)
AVAILABILITY Available when aMiNT’ cookie with a version of at least 0.90 exists.
PARAMETERS dirhandleis a valid directory handle which specifies the directory to close.
BINDING move.l dirhandle,-(sp)

move.w #$12B,-(sp)

trap 1

addq. #6,sp

RETURN VALUE Dclosedir() returnsE_OK (0) if successful oEIHNDL (-37) if the directory
handle was invalid.

SEE ALSO Dopendir(), Dreaddir(), Drewinddir()

Dcntl()

LONG Dcntl(cmd, name arg)

WORD cmd
char *name
LONG arg;

Dcntl() performs file system specific operations on directories or files.
OPCODE 304 (0x130)
AVAILABILITY Available when aMiNT’ cookie with a version of at least 0.90 exists.
PARAMETERS The only two built-in file systems that suppbBantl() calls are ‘U:\’ and

‘U\DEV.’ cmdspecifies what operation to perform and affects the meaning of
nameandarg. Valid cmdarguments for ‘U:\’ are

THE ATARI COMPENDIUM

Dcentl() - 2.51

cmd Meaning
FS_INSTALL This mode installs a new file system. name must be ‘U:\' and arg should
(OxF001) point to a fs_descr structure as follows:
struct fs_descr
{ FILESYS *file_system;
WORD dev_no;
LONG flags;
LONG reserved[4];
h
If this call is successful, a pointer to a kerinfo structure is returned,
otherwise the return value is NULL . The file system itself is not accessible
until this call is made and it is mounted with FS_ MOUNT.
FS_MOUNT This mode mounts an instance of an installed file system. name should be
(OxF002) in the format ‘U:\???” where ‘???" is the name which the file system will be
accessed by. arg should point to the fs_descr structure as above. If the file
system is mounted correctly, the dev_no field will be updated to reflect the
instance number of the mount (file systems may be mounted multiple
times).
FS_UNMOUNT | This mode unmounts an instance of a file system. name is the name of the
(0xF003) file system in the form ‘U:\???’ where ‘???’ is the name of the file system

instance. arg should point to the file system fs_descr structure.

FS_UNINSTALL
(0xF004)

This mode uninstalls a file system identified by the fs_descr structure
passed in arg. A file system can only be sucessfully uninstalled after all
instances of it have been unmounted. name should be ‘U:\'.

Valid cmdarguments for ‘U\DEV’ are:

THE ATARI COMPENDIUM

2.52 — GEMDOS Function Reference

DEV_INSTALL This command attempts to install a device driver. name should be in the
(OxDEO02) format ‘U:\DEV\???’ where ‘???’ is the name of the device to install. arg is
a pointer to a dev_descr structure as follows:

struct dev_descr

{

/* Pointer to a device driver structure */
DEVDRYV *driver;
/* Placed in aux field of file cookies */
WORD dinfo;
/*0 or O_TTY (0x2000) for TTY */
WORD flags;
/*1f O_TTY is set, points to tty struct */
struct tty *tty;
/* Reserved for future expansion */
LONG reserved[4];

}

If the device is successfully installed, Dentl() will return a pointer to a
kerinfo structure which contains information about the kernel. On failure,
Dentl() will return NULL . See the section on loadable file systems earlier
in this chapter for more information.
DEV_NEWTTY | This command identifies a BIOS terminal device whose name is name (in
(0xDEOO) the form ‘U\DEVADEVNAME’ and whose device number is arg. This call
simply makes the MiNT kernel aware of the device. It should have been
previously installed by Bconmap() . Any attempt to access the device
prior to installing it with the BIOS will result in an EUNDEYV (-15) unknown
device error. If the device is installed, Dentl() returns a O or positive value.
A negative return code signifies failure.
DEV_NEWBIOS | This command is the same as DEV_NEWTTY except that it is designed

(OxDEO1) for devices which must have their data transmitted raw (SCSI devices, for
example).
BINDING move.| arg.-(sp)

pea name

move.w cmd,-(sp)

move.w #$130,-(sp)

trap #1

lea 12(sp),sp

VERSION NOTES ~ TheFS_group oftmdarguments are only available asiNT version 1.08.

Due to a bug itMiNT versions 1.08 and below, calling this function with a
parameter oPEV_NEWBIOS will not have any effect.

RETURN VALUE See above.

SEE ALSO Bconmap(), Fentl()

THE ATARI COMPENDIUM

Dcreate() - 2.53

Dcreate()

LONG Dcreate(path)
char *path;

Dcreate() creates &EMDOS directory on the specified drive.

OPCODE 57 (0x39)
AVAILABILITY All GEMDOS versions.
PARAMETERS pathis a pointer to a string containing the directory specification of the directory

to createpathshouldnot contain a trailing backslash. Below are some examples
and their results.

path Result

C:\ONE\ATARI Creates a folder named “ATARI” as a subdirectory of “ONE” on
drive ‘C:".

\ONE\ATARI Creates a folder named “ATARI” as a subdirectory of “ONE” on
the current GEMDOS drive.

ATARI Creates a folder named “ATARI” as a subdirectory of the current
GEMDOS path on the current GEMDOS drive.

BINDING pea path
move.w #%$39,-(sp)
trap #1
addq.l #6,sp

RETURN VALUE Upon return one of three codes may result:
E_OK (0): Operation successful
EPTHNF (-34): Path not found
EACCDN (-36): Access denied

CAVEATS Prior to GEMDOS version 0.135EMDOS did not detect if the creation of a
subdirectory failed and could therefore leave partially created directories on disk.

SEE ALSO Ddelete()

THE ATARI COMPENDIUM

2.54 — GEMDOS Function Reference

Ddelete()

LONG Ddelete(path)

char *path;

Ddelete()removes a directory on the specified drive.

OPCODE 58 (0x3A)

AVAILABILITY All GEMDOS versions.

PARAMETERS path contains the directory specification of the directory you wish to renpa¥b.
shouldnot contain a trailing backslash. For valid examplegaify see the entry
for Dcreate().

BINDING pea path
move.w #$3A,-(sp)
trap #1
addq.l #6,sp

RETURN VALUE Upon return one of four codes may result:
E_OK (0): Operation successful
EPTHNF (-34): Path not found
EACCDN (-36): Access denied
EINTRN (-65): Internal error

CAVEATS Prior toGEMDOS version 0.15 &delete()on a directory recently created will
fail but a second attempt will not.

COMMENTS The directory being deleted must be empty or the call will fail.

SEE ALSO Dcreate()

Dfree()

LONG Dfree(buf, drive)
DISKINFO * buf;

WORD drive;
Dfree() returns information regarding the storage capacity/current usage of the
specified drive.

OPCODE 54 (0x36)

THE ATARI COMPENDIUM

Dfree() - 2.55

AVAILABILITY

PARAMETERS

BINDING

RETURN VALUE

CAVEATS

COMMENTS

All GEMDOS versions.

bufis aDISKINFO pointer which will be filled in on function exiRISKINFO is
defined as:

typedef struct

/* No. of Free Clusters */
ULONG b_free;

[* Clusters per Drive */
ULONG b_total;

/* Bytes per Sector */
ULONG b_secsize;

/* Sectors per Cluster */
ULONG b_clsize;
} DISKINFO;

drive is aWORD which indicates the drive to perform the operation on. A value
of DEFAULT_DRIVE (0) indicates the curre@EMDOS drive. A value of 1
indicates drive ‘A:’, a 2 indicates ‘B, etc...

move.w drive,-(sp)
pea info
move.w #%$36,-(sp)
trap 1

addq.! #8,sp

Upon return, a value of 0 indicates success. Otherwise, a nega®OS
error code is returned.

Prior to GEMDOS version 0.15 this function is very slow when used on a hard
disk.

To obtain the free number of bytes on a disk, use the forinidaly_free
info.b_secsize info.b_clsiz§. To obtain the total number of bytes available on a
disk, use the formuldnfo.b_total* info.b_secsize info.b_clsizg.

THE ATARI COMPENDIUM

2.56 — GEMDOS Function Reference

Dgetcwd()

LONG Dgetcwd(path, drv, size)
char *path;
WORD drv, size

Dgetcwd() returns the processes’ current working directory for the specified

drive.
OPCODE 315 (0x13B)
AVAILABILITY Available when aMiNT’ cookie with a version of at least 0.96 exists.
PARAMETERS pathis a pointer to a buffer with room for at leagtecharacters into which will

be copied the complete working path of diive.

BINDING pea path
move.w size,-(sp)
move.w drv,-(sp)
move.w #$13B,-(sp)
trap #1
add. #10,sp

RETURN VALUE Dgetcwd() returns 0 if successful orGEMDOS error code otherwise.

SEE ALSO Dgetpath(), Dgetdrv()

Dgetdrv()

WORD Dgetdrv(VOID)

Dgetdrv() returns the curre@@EMDOS drive code.

OPCODE 25 (0x19)
AVAILABILITY All GEMDOS versions.
BINDING move.w #$19,-(sp)
trap 1
addq.! #2,sp

RETURN VALUE Dgetdrv() returns the currefdEMDOS drive code. Drive ‘A’ is represented by
a return value of 0, ‘B:’ by a return value of 1, and so on.

SEE ALSO Dsetdrv()

THE ATARI COMPENDIUM

Dgetpath() - 2.57

Dgetpath()

LONG Dgetpath(buf, drive)

char *buf;
WORD drive;

OPCODE

AVAILABILITY

PARAMETERS

BINDING

RETURN VALUE

COMMENTS

SEE ALSO

Dgetpath() returns the curreflfEMDOS path specification.

71 (0x47)

All GEMDOS versions.

bufis a pointer to a character buffer which will contain the cufedri¥IDOS

path specification on function exittive is the number of the drive whose path you

want returneddrive should bdDEFAULT_DRIVE (0) for the currenGEMDOS
drive, 1 for drive ‘A:’, 2 for drive ‘B:’, and so on.

move.w drive,-(sp)
pea buf

trap #1

addq.! #6,sp

Dgetpath() will return one of two errors on function exit:

E_OK (0): Operation successful
EDRIVE (-49): Invalid drive specification

As there is no way to specify the buffer size to this function you should allow at
least 128 bytes of buffer space. This will allow for up to 8 folders deep. Newer
file systems (CD-ROM drives) may demand up to 200 bytes.

Dsetpath()

Dlock()

LONG Dlock(mode drv)

WORD mode drv;

OPCODE

Dlock() locks aBIOS disk device agains$EMDOS usage.

309 (0x135)

THE ATARI COMPENDIUM

2.58 — GEMDOS Function Reference

AVAILABILITY

PARAMETERS

BINDING

RETURN VALUE

COMMENTS

SEE ALSO

Available when aMiNT * cookie with a version of at least 0.93 exists.

Settingmodeto DRV_LOCK (1) places a lock oBIOS devicedrv whereas a
modesetting of DRV_UNLOCK (0) unlocksdrv.

move.w drv,-(sp)
move.w move,-(sp)
move.w #$135,-(sp)
trap #1

addq.! #6,sp

Dlock() returns 0 if successful or a negativeMDOS error code otherwise.

Locking a device provides a method for device formatters to prevent other
processes from simultaneously attempting to access a drive. If a process which
locked a device terminates, that device is automatically unlocked.

BIOS device numbers afdEMDOS drive letters do not necessarily have a one
to one correspondence. To lockk&EMDOS drive useFxattr() to determine the
device number of the drive you wish to lock.

Fxattr()

Dopendir()

LONG Dopendir(name flag)

char *name
WORD flag;

OPCODE
AVAILABILITY

PARAMETERS

Dopendir() opens the specified directory for reading.
296 (0x128)
Available when aMiNT ’* cookie with a version of at least 0.90 exists.

nameis a pointer to a null-terminated directory specification of the directory to
open.nameshould not be contain a trailing backslash.

flag determines whether to open the file in normal or compatibility mode. A value
of MODE_NORMAL (0) forflag signifies normal mode whereas a value of
MODE_COMPAT (1) signifies compatibility mode.

Compatibility mode forces directory searches to be performed mudhsiikst()
andFsnext() (restricting filenames to tH2OS 8 + 3 standard in uppercase). In
normal mode, filenames returned Byeaddir() will be in the format native to the

THE ATARI COMPENDIUM

Dpathconf() - 2.59

BINDING

RETURN VALUE

CAVEATS

COMMENTS

SEE ALSO

file system and &NIX style file index will be returned.

move.w flag,-(sp)
pea name
move.w #%$128,-(sp)
trap 1

addq.| #8,sp

Dopendir() returns dONG directory handle (which may be positive or negative)
if successful. A negativéEMDOS error code will be returned if the call fails.

Failure to properly close directory handles may cause the system to eventually run
out of handles which will cause th&S to fail.

Negative directory handles and negafafeMDOS error codes may be
differentiated by checking for OxFF in the high byte. Returned values with OXFF in
the high byte are errors.

Dclosedir(), Dreaddir(), Drewinddir()

Dpathconf()

LONG Dpathconf(name mode)

char *name
WORD mode

OPCODE
AVAILABILITY

PARAMETERS

Dpathconf() returns information regarding limits and capabilities of an installed
file system.

292 (0x124)
This function is available under dMiNT versions integrated witMultiTOS .

namespecifies the file system you wish information abtidedictates the
return value as follows:

Name mode ‘ Return Value

DP_INQUIRE -1 Returns the maximum legal value for the mode
parameter in Dpathconf() .

DP_IOPEN 0 Retuns the possible maximum number of open files at

one time. If UNLIMITED (0x7FFFFFFF) is returned, then
the number of open files is limited only by available
memory.

DP_MAXLINKS 1 Returns the maximum number of links to a file. If
UNLIMITED (0x7FFFFFFF) is returned, then the number
of links to a file is limited only by available memory.

THE ATARI COMPENDIUM

2.60 — GEMDOS Function Reference

BINDING

RETURN VALUE

SEE ALSO

DP_PATHMAX 2 Returns the maximum length of a full path name in bytes.
If UNLIMITED (Ox7FFFFFFF) is returned, then the
maximum size of a pathname is unlimited.

DP_NAMEMAX 3 Returns the maximum length of a file name in bytes. If
UNLIMITED (0x7FFFFFFF) is returned, then the
maximum length of a filename is unlimited.

DP_ATOMIC 4 Returns the number of bytes that can be written per write
operation. If UNLIMITED (0Ox7FFFFFFF) is returned,
then the number of bytes that can be written at once is
limited only by available memory.

DP_TRUNC 5 Returns a code indicating the type of filename truncation
as follows:

DP_NOTRUNC (0)

File names are not truncated. If a file name in any system
call exceeds the filename size limit then an ERANGE (-
64) range error is returned.

DP_AUTOTRUNC (1)

File names are truncated automatically to the maximum
allowable length.

DP_DOSTRUNC (2)

File names are truncated to the DOS standard
(maximum 8 character node with 3 character extension).

DP_CASE 6 Returns a code which indicates case sensitivity as

follows:

DP_SENSITIVE (0)

File system is case-sensitive.

DP_ NOSENSITIVE (1)

File system is not case-sensitive (file and path names

are always converted to upper-case).

DP_SAVEONLY (2)

File system is not case-sensitive, however, file and path

names are saved in their original case. Ex: A file called

‘Compendi.um’ will appear as ‘Compendi.um’ but may

be referenced as ‘compendi.um’ or ‘COMPENDI.UM'.
move.w mode,-(sp)

pea name

move.w #$124,-(sp)

trap #1

addq.! #8,sp

See above.

Sysconf()

THE ATARI

COMPENDIUM

Dreaddir() - 2.61

Dreaddir()

LONG Dreaddir(len, dirhandle, buf)

WORD len;
LONG dirhandle;
char *buf;
Dreaddir() enumerates the contents of the specified directory.
OPCODE 297 (0x129)
AVAILABILITY Available when aMiNT * cookie with a version of at least 0.90 exists.
PARAMETERS Dreaddir() fetches information about the next file contained in the directory
specified bydirhandle len specifies the length of the buffer pointed tdoloy
which should be enough to hold the size of the filen&thiL byte, and index (if
in normal mode).
pea buf
BINDING move.l dirhandle
move.w len
move.w #%$129,-(sp)
trap #1
lea 12(sp),sp

RETURN VALUE Dreaddir() returns a 0 if the operation was succes8RANGE (-64) if the
buffer was not large enough to hold the index and nante\BW-IL (-47) if there
were no more files to read.

COMMENTS In normal modeDreaddir() returns a 4-byte file index in the first four bytes of
buf. The filename then follows starting at the fifth bytdof The file index is
present to prevent confusion under some file systems when two files of the same
name exist. In some file systems this is legal, however, in all file systems, the 4-
byte index will be unique.

When in compatibility mode, the filename begins Au&0].

SEE ALSO Dopendir(), Dclosedir(), Drewinddir()

THE ATARI COMPENDIUM

2.62 — GEMDOS Function Reference

Drewinddir()

LONG Drewinddir(handle)

LONG handlg

OPCODE
AVAILABILITY
PARAMETERS

BINDING

RETURN VALUE

SEE ALSO

Drewinddir() rewinds the specified directory pointer to its first file.
298 (0x12A)
Available when aMiNT’ cookie with a version of at least 0.90 exists.

handlespecifies the directory handle of the directory to rewind.

move.l handle,-(sp)
move.w #$12A,-(sp)
trap 1

addq.! #6,sp

Drewinddir() returns a O if successful or a negaf&sfeMDOS error code
otherwise.

Dopendir(), Dreaddir(), Drewinddir()

Dsetdrv()

LONG Dsetdrv(drive)

WORD drive;

OPCODE
AVAILABILITY

PARAMETERS

BINDING

Dsetdrv() sets the curref8EMDOS drive and returns a bitmap of mounted
drives.

14 (OxOE)
All GEMDOS versions.

drive is the code of the drive to set as the defaBMDOS disk drive. Calling
the function as:

bmap = Dsetdrv(Dgetdrv());

will return the bitmap of mounted drives without changing the cu@&MDOS
drive.

move.w drive,-(sp)

THE ATARI COMPENDIUM

Dsetpath() - 2.63

RETURN VALUE

SEE ALSO

move.w #3$0E,-(sp)
trap 1
addq.| #4,sp

Dsetdrv() returns & ONG bit array that indicates which drives are mounted on
the system. Bit O indicates drive ‘A", bit 1 drive ‘B:’, etc.

Dgetdrv()

Dsetpath()

LONG Dsetpath(path)

char *path;

OPCODE

AVAILABILITY

PARAMETERS

BINDING

RETURN VALUE

CAVEATS

SEE ALSO

Dsetpath() sets the path of the currdaBEMDOS drive.
59 (0x3B)
All GEMDOS versions.

pathis a pointer to a character buffer containing the new path specification for the
currentGEMDOS drive.

pea path
move.w #$3B,-(sp)
trap #1

addq.l #6,sp

Dsetpath() returns one of two return codes on function exit:

E_OK (0): Operation successful
EPTHNF (-34): Path not found

You may specify a drive letter and colon in the input path specification to set the
path of a particular drive but this feature is unstable in all versiog&EMDOS

and may confuse drive assignments. It is therefore advised that this feature be
avoided.

Dgetpath()

THE ATARI COMPENDIUM

2.64 — GEMDOS Function Reference

Fattrib()

LONG Fattrib(fname, flag, attr)
char *fname
WORD flag, attr;

Fattrib() reads or modifies the attribute bits dB&EMDOS file.

OPCODE 67 (0x43)
AVAILABILITY All GEMDOS versions.
PARAMETERS fnameis a pointer to a null-terminated string which contains3ADOS

filename of the file to manipulatéag should be set t6A_INQUIRE (0) to read
the file’s attributes anBA_SET (1) to set them. If you are setting attribus!
contains the file's new attributes.

BINDING move.w attr,-(sp)
move.w flag,-(sp)
pea fname
move.w #$43,-(sp)
trap #1
lea 10(sp),sp
RETURN VALUE If reading the attributegattrib() returns a bit array of attributes as defined

below. If setting the attributeBattrib() returns the file’s old attributes. In any
case, a negative return code indicates tiaESMDOS error occurred.

Name Bit Meaning
FA_READONLY 0 Read-only flag
FA_HIDDEN 1 Hidden file flag
FA_SYSTEM 2 System file flag
FA_VOLUME 3 Volume label flag
FA_DIR 4 Subdirectory
FA_ARCHIVE 5 Archive flag
— 6... Currently reserved
CAVEATS GEMDOS versions below 0.15 did not set the archive bit correctly. The archive

bit is now correctly set byOS when a file is created or written to.

THE ATARI COMPENDIUM

Fchmod() - 2.65

Fchmod()

LONG Fchmod(nhame mode)

char *name
WORD mode
Fchmod() alters file access permissions of the named file.
OPCODE 306 (0x132)
AVAILABILITY Available when aMiNT * cookie with a version of at least 0.90 exists.
PARAMETERS namespecifies a validlSEMDOS file specification of the file whose access
permissions you wish to modiffnodeis a bit mask composed by OR’ing together
values defined as follows:
Name Mask ‘ Meaning
S_IRUSR 0x100 Read permission for the owner of the file.
S_IWUSR 0x80 Write permission for the owner of the file.
S_IXUSR 0x40 Execute permission for the owner of the file.
S_IRGRP 0x20 Read permission for members of the same group the file
belongs to.
S_IWGRP 0x10 Write permission for members of the same group the file
belongs to.
S_IXGRP 0x08 Execute permission for members of the same group the file
belongs to.
S_IROTH 0x04 Read permission for all others.
S_IWOTH 0x02 Write permission for all others.
S_IXOTH 0x01 Execute permission for all others.
BINDING move.w mode,-(sp)
pea name
move.w #$132,-(sp)
trap 1
addq.| #8,sp

RETURN VALUE Fchmod() returnsE_OK (0) if successful or a negati@EMDOS error code

otherwise.
CAVEATS Not all file systems support all bits. Unrecognized bits will be ignored.
COMMENTS Only the owner of a file may change a file’s permission status.

‘Execute’ status refers to the permission to search the named directory for a file
name or component.

THE ATARI COMPENDIUM

2.66 — GEMDOS Function Reference

SEE ALSO Fattrib(), Fxattr()

Fchown()

LONG Fchown(name uid, gid)

char *name
WORD uid, gid;
Fchown() changes a file’s ownership.
OPCODE 305 (0x131)
AVAILABILITY Available when aMiNT * cookie with a version of at least 0.90 exists.
PARAMETERS namespecifies the file whose ownership status you wish to chardsets the
new owner angid sets the new group.
BINDING move.w gid,-(sp)
move.w uid,-(sp)
pea name
move.w #$131,-(sp)
trap #1
lea 10(sp),sp

RETURN VALUE Fchown() returns 0 if the operation was successful or a neg@fDOS error
code otherwise.

CAVEATS Most file systems don't understand the concept of file ownership (incldé»&g.

COMMENTS uid may only be modifies if the caller’s uid is@d may only be changed to the
group id of a group the caller belongs to.

SEE ALSO Fchmod(), Fxattr()
Fclose()

LONG Fclose(handle)

WORD handle

Fclose()closes the file specified.

OPCODE 62 (Ox3E)

THE ATARI COMPENDIUM

Fentl() - 2.67

AVAILABILITY

PARAMETERS

BINDING

RETURN VALUE

CAVEATS

COMMENTS

SEE ALSO

All GEMDOS versions.

handlejs a validWORD file handle which will be closed as a result of this call.

move.w handle,-(sp)
move.w #$3E,-(sp)
trap 1

addq.l #4,sp

Fclose()returnsE_OK (0) if the file was closed successfullyldHNDL (-37) if
the handle given was invalid.

Calling this function with an invalid file handle will crash the system on

GEMDOS versions below 0.15. In additio@EMDOS versions below 0.15 will
become confused if you close a standaldMDOS handle (0-5).

As of GEMDOS version 0.15, closing a stand4&&MDOS handle (0-5) will
simply reset it to its defauRIOS state.

Fcreate(), Fopen()

Fcntl()

LONG Fcntl(handle arg, cmd)

WORD handle
LONG arg;
WORD cmd

OPCODE
AVAILABILITY

PARAMETERS

Fentl() performs a command on the specified file.
260 (0x104)
This function is available under dMiNT versions integrated witMultiTOS .

handlespecifies thésEMDOS file handle of the file on which the operation
specified bycmdwill affect. arg varies with each command. Valid commands are:

cmd Meaning
F_DUPFD Duplicate the given file handle. Fentl() will return a file handle in the
(0x0000) range arg — 32. If no file handles exist within that range, an error will be
returned.
F_GETFD Return the inheritance flag for the specified file. A value of 1 indicates
(0x0001) that child processes started with Pexec() will inherit this file handle,
otherwise a value of 0 is returned. arg is ignored.

THE ATARI COMPENDIUM

2.68 — GEMDOS Function Reference

F_SETFD
(0x0002)

Set the inheritance flag for the named file. arg specifies if child
processes started with Pexec() will inherit the file handle. A value of 0
indicates that they will not. A value of 1 indicates that they will.
GEMDOS handles 0-5 default to a value of 1whereas other handles
default to a value of 0.

F_GETFL
(0x0003)

Return the file descriptor flags for the specified file. These are the
same flags passed to Fopen() . arg is ignored.

F_SETFL
(0x0004)

Set the file decriptor flags for the specified file to arg. Only user-
modifyable bits are considered. All others should be 0. It is not
possible to change a file’s read/write mode or sharing modes with this
call. Attempts to do this will fail without returning an error code.

F_GETLK
(0x0004)

Test for the presence of a lock on the specified file. arg is a pointer to
a FLOCK structure defined as follows:

typedef struct flock

/* Type of lock
0 = Read-only lock
1 = Write-only lock
2 = Read/Write lock */
WORD I_type;
/* 0 = offset from beginning of file
1 = offset from current position
2 = offset from end of file */
WORD |_whence;
/* Offset to start of lock */
LONG I_start;
/* Length of lock (O for rest of file) */
LONG I_len;
/* Process ID maybe filled in by call */
WORD I_pid;
} FLOCK;

If a prior lock exists which would prevent the specified lock from being
applied, the interfering lock is copied into the structure with the
process ID of the locking process. Otherwise, Fcntl() returns
F_UNLCK (3).

F_SETLK
(0x0005)

Set or remove an advisory lock on the specified file. arg points to a
FLOCK structure as defined above.

Setting /_typeto F_RDLOCK or F_WRLCK will cause a lock to be
set. Setting /_type to F_UNLCK wil attempt to remove the specified
lock.

When locking and unlocking FIFO'’s, |_whence, |_start, and |_len
should be 0.

The command returns 0 if successful or a negative GEMDOS error
code otherwise.

F_SETLKW
(0x0007)

The calling procedure is the same as above, however, if other
processes already have a conflicting lock set, it will suspend the
calling process until the lock is freed.

FSTAT
(0x4600)

Get the extended attributes for a file. arg points to a XATTR structure
which is filled in with the file’s extended attributes. If successful, the
function returns 0, otherwise a negative GEMDOS error code is
returned. See Fxattr() for an explanation of the XATTR structure.

THE ATARI

COMPENDIUM

Fentl() - 2.69

FIONREAD Return an estimate of the number of bytes available for reading from
(0x4601) the specified file without causing the process to block (wait for more
input) in the LONG pointed to by arg.
FIONWRITE Return an estimate of the number of bytes that may be written from the
(0x4602) specified file without causing the process to block in the LONG
pointed to by arg.
SHMGETBLK Returns the address of a memory block associated with the file. arg
(0x4D00) should be NULL for future compatibility.
Note: Different processes may receive different addresses for a
shared block.
SHMSETBLK arg points to a block of memory (previously allocated) which is to be
(0x4D01) associated with the file. The file must have been created at ‘U:\SHM\’
or the call will fail.
PPROCADDR Return the address of the specified processes’ control structure
(0x5001) (opened as afile) in arg. See the discussion of MiNT processes for
information about this structure.
PBASEADDR Return the address of the specified processes’ GEMDOS basepage
(0x5002) (opened as afile) in arg,
PCTXTSIZE Return the length of the specified processes’ context structure
(0x5003) (opened as afile) in arg. Seeking to the offset returned by
PPROCADDR minus this number and reading this many bytes will
yield the current user context of the process. Seeking back this many
bytes more and reading will yield the last system context of the
process. This structure is volatile and is likely to change from one
MINT version to the next.
PSETFLAGS arg is a pointer to a LONG from which the processes’ memory
(0x5004) allocation flags (PRGFLAGS) will be set.
PGETFLAGS arg is a pointer to a LONG into which the processes’ memory
(0x5005) allocation flags (PRGFLAGS) will be placed.
PTRACEGFLAGS arg points to a WORD which will be filled in with the trace flags of a
(0x5006) process.
Setting bit #0 of arg causes the parent process to receive signals
destined for the child. See the discussion on program debugging for
more information.
PTRACESFLAGS arg points to a WORD which will be used to set the trace flags of a
(0x5007) process.
See the discussion on program debugging for more information.
PTRACEGO This call restarts a process which was stopped because of a signal.
(0x5008) arg points to a WORD which contains 0 to clear all of the child
processes’ pending signals or the signal value to send to the process.
PTRACEFLOW This call restarts a process in a special tracing mode in which the
(0x5009) process is stopped and a SIGTRACE signal is generated whenever
program flow changes (ex: JSR/BSR/IMP/BEQ). arg should be set to
0 to clear all of the pending signals of the process being traced or a
signal value which is to be sent to the child.
PTRACESTEP This call restarts a process and allows it to execute one instruction
(0x500A) before a SIGTRAP instruction is generated.

THE ATARI

COMPENDIUM

2.70 — GEMDOS Function Reference

PLOADINFO
(0x500C)

arg points to a structure as follows:

struct ploadinfo
{
WORD
char *
char *

fnamelen;
cmdlin;
fname;

b

cmdlin should point to a 128 byte character buffer into which the
processes’ command line will be copied.

fname should point to a buffer fnamelen bytes long into which the
complete path and filename of the process’ parent will be copied. If
the buffer is too short the call will return ENAMETOOLONG.

TIOCGETP
(0x5400)

Get terminal parameters from the TTY device with the specified file
handle. arg is a pointer to an sgttyb structure which is filled in by this
command.

struct sgttyb

/* Reserved */
char sg_ispeed;
/* Reserved */
char sg_ospeed;
/* Erase character */
char sg_erase;
/* Line Kill character */
char sg_Kill;
/* Terminal control flags */
WORD sg_flags;
h

TIOCSETP
(0x5401)

Set the terminal parameters of the TTY device specified. arg is a
pointer to an sgyttb structure as defined above. You should first get
the terminal control parameters, modify what you wish to change, and
then set them with this call.

TIOCGETC
(0x5402)

Get the terminal control characters of the TTY device specified. arg is
a pointer to a tchars structure filled in by this call which is defined as
follows:

struct tchars

{
/* Raises SIGINT */
char t_intrc;
/* Raises SIGKILL */
char t_quitc;
/* Starts terminal output */
char t_startc;
/* Stops terminal output */
char t_stopc;
/* Marks end of file */
char t_eofc;
/* Marks end of line */
char t_brkc;

b

TIOCSETC
(0x5403)

Set the terminal control characters of the TTY device specified. arg is
a pointer to a tchars structure as defined above. Setting any structure
element to 0 disables that feature.

THE ATARI

COMPENDIUM

Fentl() - 2.71

TIOCGLTC Get the extended terminal control characters from the TTY device
(0x5404) specified. arg is a pointer to a ltchars structure which is filled in by
this call defined as follows:
struct ltchars
{ /* Raise SIGTSTP now */
char t_suspc;
/* Raise SIGTSTP when read */
char t_dsuspc;
/* Redraws the input line */
char t_rprntc;
/* Flushes output */
char t_flushc;
/* Erases a word */
char t_werasc;
/* Quotes a character */
char t_Inextc;
b
TIOCSLTC Set the extended terminal control characters for the TTY device
(0x5405) specified from the ltchars structure pointed to by arg.
TIOCGPGRP Return the process group ID for the TTY specified in the LONG
(0x5406) pointed to by arg.
TIOCSPGRP Set the process group ID of the TTY specified in the LONG pointed to
(0x5407) by arg.
TIOCSTOP Stop terminal output (as if the user had pressed CTRL-S). arg is
(0x5409) ignored.
TIOCSTART Restart output to the terminal (as if the user had pressed CTRL-Q) if it
(0x540A) had been previously stopped with CTRL-S or a TIOCSTOP command.
arg is ignored.
TIOCGWINSZ Get information regarding the window for this terminal. arg points to a
(0x540B) winsize structure which is filled in by this command.
struct winsize
{ I* # of Text Rows */
WORD ws_row;
* # of Text Columns */
WORD ws_column;
/* Width of window in pixels */
WORD ws_xpixel,
/* Height of window in pixels */
}
TIOCSWINSZ Change the extents of the terminal window for the specified TTY. arg
(0x540C) points to a winsize structure which contains the new window

information. It is up to the window manager to modify the window
extents and raise the SIGWINCH signal if necessary.

THE ATARI COMPENDIUM

2.72 — GEMDOS Function Reference

TIOCGXKEY
(0x540D)

Return the current definition of a system key. arg points to a structure
xkey as follows:

struct xkey

WORD xk_num;
char xk_def[8];

I

xk_defwill be filled in with the NULL terminated name associated
with the key specified in xk_num as follows:

Xk_num
0-9
10-19
20
21
22
23
24
25
26
27
28
29

Key

F1-F10

F11-F20

Cursor up

Cursor down
Cursor right
Cursor left

Help

Undo

Insert

Clr/Home
Shift+Cursor up
Shift+Cursor down
30 Shift+Cursor right
31 Shift+Cursor left

TIOCSXKEY
(OX540E)

Set the current definition of a system key. arg must point to an xkey
structure (as defined above). xk_num and xk_def are used to set the
text associated with a system key.

If a terminal recognizes special keys (by having its XKEY bit set in the
sg_flags field of its sgttyb structure) then setting a system key will
cause the text specified by xk_defto be sent to a process whenever
the key is struck. Note: this works only if the terminal is reading
characters using Fread().

TIOCIBAUD
(0x5412)

Read/Write the input baud rate for the specified terminal device. If arg
points to a LONG then the input baud rate will be set to that value. If
argis 0, the DTR on the terminal will be dropped (if this feature is
supported). If arg is negative, the baud rate will not be changed. The
old baud rate is returned in the value pointed to by arg.

If the terminal does not support separate input and output baud rates
then this call will set both rates.

TIOCOBAUD
(0x5413)

Read/Write the output baud rate for the specified terminal device. If
arg points to a LONG then the output baud rate will be set to that
value. If arg is O, the DTR on the terminal will be dropped (if this
feature is supported). If arg is negative, the baud rate will not be
changed. The old baud rate is returned in the value pointed to by arg.

If the terminal does not support separate input and output baud rates
then this call will set both rates.

TIOCCBRK
(0x5414)

Clear the break condition on the specified device. arg is ignored.

TIOCSBRK
(0x5415)

Set the break condition on the specified device. arg is ignored.

THE ATARI

COMPENDIUM

Fcreate() - 2.73

TIOCGFLAGS Return the current stop bit/data bit configuration for the terminal device
(0x5416) in the lower 16 bits of the LONG pointed to by arg. See the entry for
TIOCSFLAGS for the flags required to parse arg.
TIOCSFLAGS Set the current stop bit/data bit configuration for the terminal device.
(0x5417) The new configuration is contained in arg. Valid mask values for arg

are as follows:

Name Mask Meaning
TF_1STOP 0x0001 1 stop bit
TF_15STOP 0x0002 1.5 stop bits
TF_2STOP 0x0003 2 stop bits

TF_8BIT 0x0000 8 data bits
TF_7BIT 0x0004 7 data bits
TF_6BIT 0x0008 6 data bits
TF_5BIT 0x000C 5 data bits
TCURSOFF Hide the cursor on the selected terminal device. arg is ignored.
(0x6300)
TCURSON Show the cursor on the selected terminal device. arg is ignored.
(0x6301)
TCURSBLINK Enable cursor blinking on the selected terminal device. arg is ignored.
(0x6302)
TCURSSTEADY Disable cursor blinking on the selected terminal device. arg is
(0x6303) ignored.
TCURSSRATE Set the cursor blink rate to the WORD pointed to by arg.
(0x6304)
TCURSGRATE Return the current cursor blink rate in the WORD pointed to by arg.
(0x6305)
BINDING move.w cmd,-(sp)
move.| arg,-(sp)
move.w handle,-(sp)
move.w #$260,-(sp)
trap #1
lea 10(sp),sp

RETURN VALUE Unless otherwise notelicntl() returns a 0 if the operation was successful or a
negativeGEMDOS error code otherwise.

SEE ALSO Flock(), Fopen(), Fxattr(), Pgetpgrp(), Psetpgrp()

Fcreate()

LONG Fcreate(fname, attr)
char *fname

WORD attr;
Fcreate() creates a new file (or truncates an existing one) with the specified name
and attributes.

OPCODE 60 (0x3C)

THE ATARI COMPENDIUM

2.74 — GEMDOS Function Reference

AVAILABILITY

PARAMETERS

BINDING

RETURN VALUE

CAVEATS

COMMENTS

SEE ALSO

All GEMDOS versions.

fnameis a character pointer to tke=EMDOS file specification of the file to
create or truncat@ttr is a bit array which specifies the attributes of the new file.

Valid mask values are given below:

Name Bit Meaning
FA_READONLY 0 Read-only file
FA_HIDDEN 1 Hidden file
FA_SYSTEM 2 System file
FA_VOLUME 3 Volume label
— 4 Reserved
FA_ARCHIVE 5 Archive bit

move.w attr,-(sp)

pea fname,-(sp)

move.w #$3C,-(sp)

trap #1

addq. #8,sp

Fcreate() returns d ONG value. If thdcONG is negative, it should be
interpreted as ®EMDOS error. Possible errors a@THNF (-34), ENHNDL
(-35) , orEACCDN (-36).

If positive, theWORD portion of the returnedONG should be regarded as the
file handle.

With GEMDOS version 0.13, creating a read-only file returns a read-only file
handle which is of little usé3EMDOS versions below 0.15 incorrectly allow
more than one volume label per disk.

GEMDOS versions 0.15 and above automatically set the archive bit. You may set

it yourself on versions below 0.15.

Fopen(), Fclose()

THE ATARI COMPENDIUM

Fdatime() - 2.75

Fdatime()

LONG Fdatime(timeptr, handle, flag)
DATETIME * timeptr,

WORD handle flag;

OPCODE

AVAILABILITY

PARAMETERS

BINDING

RETURN VALUE

CAVEATS

COMMENTS

Fdatime() reads or modifies a file’s time and date stamp.
87 (0X57)
All GEMDOS versions.

timeptris a pointer to ®ATETIME structure which is represented below.
handleis a validGEMDOS file handle to the file to modifflag is
FD_INQUIRE (0) to fill timeptrwith the file’s date/timestamp afdD_SET (1)
to change the file’s date/timestamp to the contertisnefptr.

typedef struct

{
unsigned hour:5;
unsigned minute:6;
unsigned second:5;
unsigned year:7;
unsigned month:4;
unsigned day:5;

} DATETIME;
move.w flag,-(sp)
move.w handle,-(sp)
pea timeptr
move.w #$57,-(sp)
trap #1
lea 10(sp),sp

Fdatime() returns a 0 if the date/time was successfully read/modified. Otherwise,
it returns a negativé EMDOS error code.

GEMDOS versions below 0.15 yielded very unpredictable results with this call
and should therefore be avoided.

timeptr.seconghould be multiplied times two to obtain the actual value.
timeptr.yearis expressed as an offset from 1980.

THE ATARI COMPENDIUM

2.76 — GEMDOS Function Reference

Fdelete()

LONG Fdelete(fname)
char *fname

Fdelete()deletes the specified file.

OPCODE 65 (0x41)

AVAILABILITY All GEMDOS versions.

PARAMETERS fnameis theGEMDOS file specification of the file to be deleted.
pea fname

BINDING move.w #$41,-(sp)
trap 1
addq.! #6,sp

RETURN VALUE Fdelete()returnsE_OK (0) if the operation was successful or a negative
GEMDOS error code if it fails.

CAVEATS Do not attempt to delete a file that is currently open or unpredictable results will
occur.

COMMENTS Ddelete()must be used to delete subdirectories.

SEE ALSO Ddelete()

Fdup()

LONG Fdup(shandle)
WORD shandle

Fdup() duplicates a standard file handle (0-5) and assigns it a new handle (>6).

OPCODE 69 (0x45)

AVAILABILITY All GEMDOS versions.

PARAMETERS shandleis the standar@EMDOS handle to be duplicated.
move.w shandle,-(sp)

BINDING move.w #$45,-(sp)
trap #1

THE ATARI COMPENDIUM

Fforce() - 2.77

addq.| #4,sp

RETURN VALUE Fdup() returns a normd&EMDOS file handle in the lowe¥WORD of the
returned-ONG. If theLONG return value is negative then it should be treated as
a GEMDOS error code.

COMMENTS This function is generally used to save a standard file handle so thHtrea()
operation may be undone.

SEE ALSO Fforce()

Fforce()

LONG Fforce(shandle nhandle)
WORD shandle nhandle

Fforce() is used to redirect the standard input or output fréa#BIDOS
standard handle to a specific handle created by the application.

OPCODE 70 (0x46)

AVAILABILITY All GEMDOS versions.

PARAMETERS shandleis a standar@EMDOS handle to be redirectedhandleis the new
handle you wish to direct it to. Valid values ffrandleandnhandleare as
follows:

‘ ‘ GEMDOS ‘
Handle Filename Meaning

GSH_CONIN 0 con: Standard input (defaults to whichever
BIOS device is mapped to GEMDOS
handle -1)

GSH_CONOUT 1 con: Standard output (defaults to whichever
BIOS device is mapped to GEMDOS
handle -1)

GSH_AUX 2 aux: Currently mapped serial device (defaults

to whichever BIOS device is mapped to
GEMDOS handle -2)

GSH_PRN 3 prn: Printer port (defaults to whichever BIOS
device is currently mapped to GEMDOS
handle -3).
— 4 None Reserved
— 5 None Reserved
GSH_BIOSCON -1 None Refers to BIOS handle 2. This handle

may only be redirected under the
presence of MiNT. Doing so redirects
output of the BIOS.

THE ATARI COMPENDIUM

2.78 — GEMDOS Function Reference

BINDING

RETURN VALUE

CAVEATS

COMMENTS

SEE ALSO

GSH_BIOSAUX -2 None Refers to BIOS handle 1. This handle
may only be redirected under the
presence of MiNT. Doing so redirects
output of the BIOS.

GSH_BIOSPRN -3 None Refers to BIOS handle 0. This handle
may only be redirected under the
presence of MiNT. Doing so redirects
output of the BIOS.

GSH_MIDIIN -4 None GEMDOS handles -4 and -5 refer to

GSH_MIDIOUT -5 MIDI input and output respectively.
Redirecting these handles will affect
BIOS handle 3. These special handles
exist only with the presence of MiNT.

move.w nhandle,-(sp)

move.w shandle,-(sp)

move.w #%$46,-(sp)

trap #1

addq.| #6,sp

Fforce() returnsE_OK (0) if no error occurred delHNDL (-37) if a bad handle
is given.

Prior toGEMDOS versions 0.15, handles forced to the printer would not work
properly.

This function is often used to redirect the input or output of a child process. It
should be used in conjunction wilup() to restore the standard handle before
process termination. In addition, you should be aware that any file handle
redirected to a standard handle (‘con:’ for example) will be closed when the child
exits and should not be closed by the parent.

StandardSEMDOS file handles which have been redirected will revert to their
original mapping upofrclose()

Fdup()

Fgetchar()

LONG Fgetchar(handle mode)
WORD handle, mode

OPCODE

AVAILABILITY

Fgetchar() reads a character from the specified handle.
263 (0x107)

This function is available under MiNT versions integrated withultiTOS .

THE ATARI COMPENDIUM

Fgetdta() - 2.79

PARAMETERS

BINDING

RETURN VALUE

SEE ALSO

handleis a validGEMDOS handle to read from. tfandleis a TTY thermode(a
bit mask) has meaning as follows:

Name ’ mode Meaning

TTY_COOKED 0x01 Cooked mode. Special control characters such as CTRL-C
and CTRL-Z are checked and acted upon. In addition, flow
control with CTRL-S and CTRL-Q is activated.

TTY_ECHO 0x02 Echo mode. Characters read are echoed back to the TTY.
move.w mode,-(sp)

move.w handle,-(sp)

move.w #$107,-(sp)

trap #1

addq. #6,sp

Fgetchar() returns the character read in the low byte of the retlr@®G . If the
device is a terminal where scan codes are availableQN& will be mapped
in the same manner Bsonin(). If an end-of-file is reached, the value OxFF1A
will be returned.

Bconin(), Fputchar(), Fread()

Fgetdta()

DTA *Fgetdta(VOID)

OPCODE

AVAILABILITY

PARAMETERS

BINDING

RETURN VALUE

Fgetdta() returns currenTA (Disk Transfer Address)
47 (Ox2F)

All GEMDOS versions.

None.

move.w #$2F,-(sp)
trap 1

addq.! #2,sp

Fgetdta() returns a pointer to the current Disk Transfer Address. The structure
DTA is defined as:

typedef struct
BYTE d_reserved[21];

BYTE d_attrib;
UWORD d_time;

THE ATARI COMPENDIUM

2.80 — GEMDOS Function Reference

COMMENTS

SEE ALSO

UWORD d_date;

LONG d_length;

char d_fname[14];
} DTA;

When an application starts, BJ'A overlaps the command line string in the
processes’ basepage. Any use offikirst() or Fsnext() call without first
reallocating a neWTA will cause the processes’ command line to be corrupted.

To prevent this, you should uksetdta()to define a neMdTA structure for your
process prior to usingsfirst() or Fsnext(). Be careful to avoid assigning your
DTA to a local or automatic variable without setting it to its original value before
the variable goes out of scope.

Fsetdta(), Fsfirst(), Fsnext()

Finstat()

LONG Finstat(handle)

WORD handle

OPCODE
AVAILABILITY
PARAMETERS

BINDING

RETURN VALUE

CAVEATS

SEE ALSO

Finstat() determines the input status of a file.
261 (0x105)
This function is available under MiNT versions integrated withultiTOS .

handlespecifies thésSEMDOS file handle of the file to return information about.

move.w handle,-(sp)
move.w #$105,-(sp)
trap #1

addq. #4,sp

Finstat() returns 0 or a positive number of characters waiting to be read if
successful. A negatile EMDOS error code is returned otherwise.

CurrentlyFinstat() always returns 0 for disk files.

Cauxis(), Cconis(), Fentl(), Foutstat()

THE ATARI COMPENDIUM

Flink() - 2.81

Flink()

LONG Flink(oldname newname)
char *oldname *newname

OPCODE

AVAILABILITY

PARAMETERS

BINDING

RETURN VALUE

CAVEATS

COMMENTS

SEE ALSO

Flink() creates a new name for the specified file. After the call the file may be
referred to by either name. Adlelete()call on one filename will not affect the
other.

301 (0x12D)

Available when aMiNT ’ cookie with a version of at least 0.90 exists.

oldnamepoints to théSEMDOS path specification of the currently existing file
andnewnamespecifies the name of the alias to create.

pea newname
pea oldname
move.w #3$12D,-(sp)
trap #1

lea 10(sp),sp

Flink() returns a 0 if successful or a negaeMDOS error code otherwise.
Not all file systems support ‘hard links’.
The filenames given must reside on the same physical device.

Frename(), Fsymlink()

Flock()

LONG Flock(handle, mode start, length)
WORD handlemode

LONG startlength;

OPCODE

AVAILABILITY

Flock() sets or removes a lock on a portion of a file which prevents other
processes from accessing it.

92 ($5C)

Only present when FLK’ cookie exists.

THE ATARI COMPENDIUM

2.82 — GEMDOS Function Reference

PARAMETERS

BINDING

RETURN VALUE

COMMENTS

SEE ALSO

handlespecifies th&EMDOS handle of the filemodeis FLK_LOCK (0) to
create a lock anfLK_UNLOCK (1) to remove itstart specifies the byte offset
from the beginning of the file which indicates where the lock stangth
specifies the length of the lock in bytes.

move.l length,-(sp)
move.l start,-(sp)
move.w mode,-(sp)
move.w handle,-(sp)
trap #1

lea 12(sp),sp

Flock() returnsE_OK (0) if the call was successfld OCKED (-58) if an
overlapping section of the file was already lockeldSLOCK (-59) if a matching
lock was not found for removal, or anotl&MDOS error code as appropriate.

To remove a lock, you must specify identigtirt andlengthparameters as you
originally set.

MINT allows locks to be set on devices by locking their entry in ‘U\DEV\’ as
shown in the example below:

handle = Fopen(“U:\DEV\MODEM1", 3);
if(handle < 0)
return ERR_CODE; /* Unable to open. */

retcode = Flock((WORD)handle, 0, 0, 0); /* Lock
*/
if(retcode 1= E_OK)

return FILE_IN_USE; /* File is already locked */

/*
* Now do device input/output.
*

Flock((WORD)handle, 1, 0, 0); /* Unlock */
Fclose((WORD)handle);

Fopen(), Fwrite(), Fread()

Fmidipipe()

LONG Fmidipipe(pid, in, out)

WORD pid, in, out;

OPCODE

Fmidipipe() is used to change the file handles used for MIDI input and output.

294 (0x126)

THE ATARI COMPENDIUM

Fopen() - 2.83

AVAILABILITY

PARAMETERS

BINDING

RETURN VALUE

COMMENTS

SEE ALSO

Available when aMiNT * cookie with a version of at least 0.90 exists.

pid is the process id of the process whose MIDI devices you wish to afit. If
is 0, then the current process will be modifigdspecifies th6sEMDOS file
handle of the device to handle MIDI inpatt specifies thésEMDOS file handle
of the device to handle MIDI output.

move.w out,-(sp)
move.w in,-(sp)
move.w pid,-(sp)
move.w #$126,-(sp)
trap 1

addq. #8,sp

Fmidipipe() returns a 0 if successful or a negat@eMDOS error code
otherwise.

An Fmidipipe(0,in, out) call is essentially the same as:

Fforce(-4, in);
Fforce(-5, out);

After this call, anyBconin() calls to MIDI device 5 will translate to a one

character read from handfe Likewise anyBconout() calls to MIDI device 5
will translate to a one character write to harailé

Fdup(), Fforce()

Fopen()

LONG Fopen(fname mode)

char *fname
WORD mode

OPCODE

AVAILABILITY

PARAMETERS

Fopen() opens théSEMDOS file specified.
61 ($3D)

All GEMDOS versionsmodebits pertaining to file sharing/record locking are
only valid when the_‘FLK’ cookie is present.

fnameis theGEMDOS file specification of the file to be openadpdespecifies

the mode the file is to be placed into once opemedieis a bit array which may
be formed by using the bit masks given as follows:

THE ATARI COMPENDIUM

2.84 — GEMDOS Function Reference

Bits 6-4 Bits 2-0
Inheritance flag Sharing Reserved Access code
mode

Bits 0-2 specify the file access code as follows:

Bit 2 Bit 1 Bit 0 File Access Codes

0 0 0 Read only access (S_READ)
0 0 1 Write only access (S_WRITE)
0 1 0 Read/Write access (S_READWRITE)

Bit 3 is reserved and should always be 0. Bits 4-6 specify the file sharing mode of
the file to be opened as follows:

Bit 6 Bit5 Bit 4 File Sharing Codes
0 0 0 Compatibility Mode (S_COMPAT).

If the file’s read-only bit is set, then this
is the same as Deny Writes, otherwise
it is the same as Deny Read/Writes.

0 0 1 Deny Read/Writes
(S_DENYREADWRITE)
0 1 0 Deny Writes (S_DENYWRITE)
0 1 1 Deny Reads (S_DENYREAD)
0 0 Deny None (S_DENYNONE)

Bit 7 (S_INHERIT) is the file's inheritance flag. If this flag is not set, a child

process will inherit any open file handles and has the same access as the parent. If
this flag is set, a child must re-open any files it wishes to use and must face the
same sharing restrictions other processes must share.

BINDING move.w mOde,-(Sp)
pea fname
move.w #3$3D,-(sp)
trap #1
addq. #8,sp

RETURN VALUE Upon return, if the longword is positive, the loW¥ORD contains the new
handle of the open file, otherwise the negati@®NG should be regarded as a
GEMDOS error code.

COMMENTS Bits 7-3 ofmodeshould be set to 0 unless th&LK’ cookie is present indicating
the presence of the file sharing/record locking extensioG&EtdDOS.

SEE ALSO Fclose(), Fcreate()

THE ATARI COMPENDIUM

Foutstat() - 2.85

Foutstat()

LONG Foutstat(handle)

WORD handle

Foutstat() determines the output status of a file.
OPCODE 262 (0x106)
AVAILABILITY This function is available under &MNT versions integrated witMultiTOS .
PARAMETERS handlespecifies th6sEMDOS file handle of the file to return information about.
BINDING move.w handle,-(sp)

move.w #%$106,-(sp)

trap 1

addq.! #4,sp

RETURN VALUE Foutstat() returns a 0 or positive number indicating the number of characters
which may be written to the specified file without blocking. If an error occurred,
Foutstat() returns a negativé EMDOS error code.

CAVEATS Currently this function always returns 1 for disk files.

SEE ALSO Cconos(), Cauxos(), Cprnos(), Fentl(), Finstat()

Fpipe()

LONG Fpipe(fhandle)

WORD fhandle[2];
Fpipe() creates a pipe named ‘SYS$PIPE.xxx’ (where ‘xxx' is a three digit
integer) on ‘U:\PIPE\" and returns two file handles to it, one for reading and one
for writing.

OPCODE 256 (0x100)

AVAILABILITY Available when aMiNT * cookie with a version of at least 0.90 exists.

PARAMETERS fhandleis a pointer to an array of tWyORDs. If the functions is successful,

fhandle[0] will contain an opel®EMDOS file handle to the pipe which may be
used for reading onlyhandle[1] will contain an ope®EMDOS file handle to
the pipe which may be used for writing only.

THE ATARI COMPENDIUM

2.86 — GEMDOS Function Reference

BINDING

RETURN VALUE

CAVEATS

COMMENTS

pea fhandle
move.w #$100,-(sp)
trap 1

addq. #6,sp

Fpipe() returnsE_OK (0) if successful or a negati@@=MDOS error code
otherwise.

No more than 999 pipes created wWipipe() may be in use at once.

This function is normally used by shells who wish to redirect the input and output
of their child processes. Prior to lauching a child process, the shell redirects its
input and output (as necessary) to the read and write ends of the newly created

pipe.

Fputchar()

LONG Fputchar(handle Ichar, mode)

WORD handle
LONG Ichar;
WORD mode

OPCODE

AVAILABILITY

PARAMETERS

BINDING

Fputchar() writes a character to the specified file.
264 (0x108)
This function is available under MiNT versions integrated withultiTOS .

handlespecifies the handle of the file to write a character to.

If the file specified byhandleis a pseudo-terminal then all four bytedabfar are
written (it should be formatted as a character read Boamin()), otherwise only
the low byte ofchar is transmitted.

modeis only valid ifhandlerefers to a terminal device.nfodeis

TTY_COOKED (0x0001) then control characters (which could ca&l§8NT or
SIGTSTP signals to be raised) passed through this function will be interpreted
and acted upon. Settimgodeto 0 will cause control characters to have no special
effect.

move.w mode,-(sp)
move.l Ichar,-(sp)
move.w handle,-(sp)
move.w #$108,-(sp)
trap #1

THE ATARI COMPENDIUM

Fread() - 2.87

RETURN VALUE

SEE ALSO

lea 10(sp),sp

Fputchar() returns 4L if the character was output to a terminal, 1L if the character
was output to a non-terminal, OL if the character could not be written (possibly
because of flow control;IHNDL (-37) if the handle was invalid, or a negative
BIOS error code if an error occurred during 1/0.

Cconout(), Cauxout(), Crawio(), Cprnout(), Bconout(), Fgetchar(), Fwrite()

Fread()

LONG Fread(handlg length, buf)

WORD handlg
LONG length;
VOIDP buf;

OPCODE
AVAILABILITY

PARAMETERS

BINDING

RETURN VALUE

CAVEATS

SEE ALSO

Fread() reads binary data from a specified file from the current file pointer.
63 (0x3F)
All GEMDOS versions.

handleis theGEMDOS file handle of the file to read frortengthspecifies the
number of bytes of data to redifis a pointer to a buffer (at ledengthbytes
long) where the read data will be stored.

pea buf

move.| length,-(sp)
move.w handle,-(sp)
move.w #3$3F,-(sp)
trap #1

lea 12(sp),sp

Fread() returns either a positive amount indicating the number of bytes actually
read (this number may be smaller than length E@r is hit) or a negative
GEMDOS error code.

Fread() will crash the system if given a parameter of déogthon GEMDOS
versions lower than 0.15.

Fwrite(), Fopen(), Fclose()

THE ATARI COMPENDIUM

2.88 — GEMDOS Function Reference

Freadlink()

LONG Freadlink(bufsiz buf, name)

WORD bufsiz

char *buf, *name

OPCODE

AVAILABILITY

PARAMETERS

BINDING

RETURN VALUE

SEE ALSO

Freadlink() determines what file the specified symbolic link refers to.
303 (0x12F)
Available when aMiNT * cookie with a version of at least 0.90 exists.

bufsizspecifies the length of bufféufinto which the original file pointed to by
the symbolic linknameis written.

pea name
pea buf

move.w bufsiz,-(sp)
move.w #$12F,-(sp)
trap #1

lea 12(sp),sp

Freadlink() returns 0 if successful or a negattveMDOS error code otherwise.

Fsymlink()

Frename()

LONG Frename(reservedoldname newname)

WORD reserved

char *oldname*newname

OPCODE

AVAILABILITY

PARAMETERS

BINDING

Frename() renames a standa@EMDOS file. It may also be used to move a file
in the tree structure of a physical drive.

86 (0x56)
All GEMDOS versions.

reserveds not currently used and should b@Binameis theGEMDOS file
specification of the file’s current name/locatitewnamés theGEMDOS file
specification of the new name/location of the file.

pea newname

THE ATARI COMPENDIUM

Fseek() - 2.89

RETURN VALUE

CAVEATS

pea oldname
move.w #0,-(sp)
trap #1

lea 10(sp),sp

Frename()returnsE_OK (0) if the operation was successful or a negative
GEMDOS error code if not.

Prior toGEMDOS version 0.15, this command may not be used to rename
folders. Also, do not attempt to rename a file that is currently open under any
version of GEMDOS,

Fseek()

LONG Fseek(offset, handle mode)

LONG offset

WORD handlgmode

OPCODE

AVAILABILITY

PARAMETERS

BINDING

RETURN VALUE

Fseek()moves the file position pointer withinGEMDOS file.
66 (0x42)
All GEMDOS versions.

handlespecifies th6sEMDOS file handle of the file pointer to modify. The
meaning obffsetvaries withmodeas follows:

Name mode Meaning

SEEK_SET 0 offset specifies the positive number of bytes from the
beginning of the file.

SEEK_CUR 1 offset specifies the negative or positive number of bytes from
the current file position.

SEEK_END 2 offset specifies the positive number of bytes from the end of
the file.

move.w mode,-(sp)

move.w handle,-(sp)

move.| offset,-(sp)

move.w #$42,-(sp)

trap #1

lea 10(sp),sp

Fseek()returns a positive value representing the new absolute location of the file
pointer from the beginning of the file or a negaftleMDOS error code.

THE ATARI COMPENDIUM

2.90 — GEMDOS Function Reference

Fselect()

WORD Fselect(timeout, rfds, wfds, reserved

WORD timeout,
LONG *rfds, *wfds
LONG reserved

OPCODE
AVAILABILITY

PARAMETERS

BINDING

RETURN VALUE

CAVEATS

COMMENTS

Fselect()enumerates file descriptors which are ready for reading and/or writing.
285 (0x11D)
This function is available under MiNT versions integrated withultiTOS .

timeoutspecifies the maximum amount of time (in milliseconds) to wait for at
least one of the specified file descriptors to become unblockéheifutis O
then the process will wait indefinitely.

rfds andwfdseach point to &ONG bitmap describing the read and write file
descriptors to wait for. Setting bit #10 of tH@NG pointed to byfds, for
example, will causé&select()to return whefSEMDOS handle 10 is available
for reading.

As many read or write file descriptors can be specified per call as desired.
SpecifyingNULL for eitherrfds or wfdsis the same as passing a pointer to a
LONG with no bits set.

Upon return thé ONG s pointed to byfds andwfdswill be filled in with a
similar bitmap indicating which handles are ready to be read/wrigearved
should always be set to OL.

move.l reserved,-(sp)
pea wfds

pea rfds

move.w timeout,-(sp)
move.w #$11D,-(sp)
trap #1

lea 16(sp),sp

Fselect()returns the sum of bits set in botds andwfds A return value of 0
indicates that the function timed out before any of the specified file handles
became available. A negatita=EMDOS error code is returned if the function
failed.

Fselect()does not currently work on afOS device except the keyboard.

Fselect(OL, OL, OL, OL) will block the calling process forever.

THE ATARI COMPENDIUM

Fsetdta() - 2.91

SEE ALSO

Finstat(), Foutstat()

Fsetdta()

VOID Fsetdta(ndta)

DTA *ndta;

OPCODE
AVAILABILITY

PARAMETERS

BINDING

COMMENTS

SEE ALSO

Fsetdta() sets the location of a nédWl'A (Disk Transfer Address) in memory.
26 (OX1A)
All GEMDOS versions.

ndtais a pointer to a valid memory area which will be used as théiéw The
DTA structure is defined under the entry Fgretdta().

pea ndta
move.w #$1A,-(sp)
trap 1

addq.l #6,sp

When an application starts, BJ'A overlaps the command line string in the
processes’ basepage. Any use offthiirst() or Fsnext() call without first

reallocating a neWTA will cause the processes’ command line to be corrupted.

To prevent this, you should ussetdta()to define a neWdTA structure for your
process prior to usingsfirst() or Fsnext(). Be careful to avoid assigning your

DTA to a local or automatic variable without setting it to its original value before

the variable goes out of scope.

Fgetdta(), Fsfirst(), Fsnext()

Fsfirst()

WORD Fsfirst(fspeg attribs)

char *fspeg

WORD attribs;

Fsfirst() searches the file/pathspec given for the first occurrence of a file or
subdirectory with named attributes and if found, fill in the curhd with that
file’s information.

THE ATARI COMPENDIUM

2.92 — GEMDOS Function Reference

OPCODE

AVAILABILITY

PARAMETERS

BINDING

RETURN VALUE

COMMENTS

78 (Ox4E)
All GEMDOS versions.

fspecis theGEMDOS file specification of the file or subdirectory to search for.
This specification may use wildcard characters (? or *) within the filename,
however they may not be used within the pathname. This function is the only
GEMDOS function which accepts wildcard characters in the path specification.

attribs is a bit mask which can combine several file characteristics that further
narrows the search as follows:

Name Bit Mask Meaning
FA_READONLY 0x01 Include files which are read-only.
FA_HIDDEN 0x02 Include hidden files.
FA_SYSTEM 0x04 Include system files.
FA_VOLUME 0x08 Include volume labels.
FA_DIR 0x10 Include subdirectories.
FA_ARCHIVE 0x20 Include files with archive bit set.

move.w attribs,-(sp)

pea fspec

move.w #$4E,-(sp)

trap #1

addq. #8,sp

Fsfirst() returnsE_OK (0) if a file was found and tHeTA was successfully
filled in with the file information. Otherwise, it returns a negaffleMDOS
error code.

TheDTA structure is defined as:

typedef struct

BYTE d_reserved[21];
BYTE d_attrib;
UWORD d_time;
UWORD d_date;
LONG d_length;

char d_fname[14];

} DTA;

This function uses the applicatio®®d A which is initially located in the same
memory location as the processes’ command line. Using this function without first
assigning a neWTA will corrupt the command line.

When running in thMiNT domain (se€domain()), Fsfirst() andFsnext() will
fill in the DTA with lowercase filenames rather than the stand&8 uppercase.

THE ATARI COMPENDIUM

Fsnext() - 2.93

SEE ALSO

Fsnext(), Fgetdta(), Fsetdta()

Fsnext()

WORD Fsnext(VOID)

OPCODE

AVAILABILITY

BINDING

RETURN VALUE

COMMENTS

SEE ALSO

Fsnext() should be called as many times as necessary after a corresponding
Fsfirst() call to reveal all files which match the search criteria.

79 (0x4F)

All GEMDOS versions.

move.w #$4F,-(sp)
trap #1
addq. #2,sp

Fsnext() returnsE_OK (0) if another file matching the search criteria given in
Fsfirst() is found and th®TA has been properly filled in with the file's
information. Otherwise, a negati&=MDOS error code is returned.

This function uses the applicatio®3 A which is initially located in the same
memory location as the processes’ command line. Using this function without first
assigning a neWTA will corrupt the command line.

This call should only be used affesfirst() and the contents of th&lA should
not be modifed between the calls.

Fsfirst()

Fsymlink()

LONG Fsymlink(oldname newname)
char *oldname *newname

OPCODE

AVAILABILITY

PARAMETERS

Fsymlink() creates a symbolic link to a file.
302 (0x12E)
Available when aMiNT * cookie with a version of at least 0.90 exists.

oldnamepoints to the file specification of the file to create a linkigwname

THE ATARI COMPENDIUM

2.94 — GEMDOS Function Reference

BINDING

RETURN VALUE

COMMENTS

SEE ALSO

points to the file specification of the link to create.

pea newname
pea oldname
move.w #$12E,-(sp)
trap #1

lea 10(sp),sp

Fsymlink() returns 0 if successful or a negat&MDOS error code otherwise.

Fsymlink(), unlike Flink() , creates symbolic links, which, unlike hard links, can
be setup between physical devices and file systems.

An Fdelete()call to a symbolic link will delete the link, not the file. A call to
Fdelete()on the original file will cause future references to the created symbolic
link to fail.

Flink(), Freadlink()

Fwrite()

LONG Fwrite(handle count, buf)

WORD handlg
LONG count,
VOIDP buf;

OPCODE
AVAILABILITY

PARAMETERS

BINDING

RETURN VALUE

CAVEATS

Fwrite() writes the contents of a buffer to the specif@MDOS file.
64 (0x40)
All GEMDOS versions.

handleis the handle of the file to write teountspecifies the number of bytes to
write. bufindicates the starting address of the data to write.

pea buf

move.l count,-(sp)
move.w handle,-(sp)
trap #1

lea 10(sp),sp

Fwrite() returns the positive number of bytes actually written or a negative
GEMDOS error code if the operation failed.

Prior toGEMDOS version 0.15, callingrwrite() with acountparameter of 0
will hang the system.

THE ATARI COMPENDIUM

Fxattr() - 2.95

SEE ALSO Fread()

Fxattr()

LONG Fxattr(flag, name xattr)

WORD flag;
char *name
XATTR * xattr,;
Fxattr() returns extended information about the specified file.
OPCODE 300 (0x12C)
AVAILABILITY Available when aMiNT ’* cookie with a version of at least 0.90 exists.
PARAMETERS flag specifies whether attributes returned by this call on symbolic links should be

those of the file to which the link points or the link itself. A valu&Xf FILE (0)
causes the attributes to be those of the actual file whereas a vialid-tiK (1)
returns the attributes of the link itself.

namespecifies the name of the file from which attributes are to be read and placed
in theXATTR structure pointed to byattr. XATTR is defined as follows:

typedef struct

UWORD mode;
LONG index;
UWORD dev;
UWORD reservedl;
UWORD nlink;
UWORD uid;
UWORD gid;
LONG size;
LONG blksize;
LONG nblocks;
WORD mtime;
WORD mdate;
WORD atime;
WORD adate;
WORD ctime;
WORD cdate;
WORD attr;
WORD reserved?2;
LONG reserved3;
LONG reserved4;
} XATTR,;

XATTR’s members have the following meaning:

THE ATARI COMPENDIUM

2.96 — GEMDOS Function Reference

BINDING

RETURN VALUE

SEE ALSO

XATTR
Element Meaning
mode Masking mode with 0xFOO0O reveals the file type as one of the following:
S_IFCHR (0x2000)
S_IFDIR (0x4000)
S_IFREG (0x8000)
S_IFIFO (0xA000)
S_IMEM (0xCO000)
S_IFLNK (OxE000)
The lower three nibbles of mode is a bit mask which specifies the legal file
access mode(s) as defined in Fchmod() .
index This member combined with the dev field are designed to provide a unique
identifier for a file under file systems which allow multiple files with the same
filename.
dev This value represents either a BIOS device number or an identifier created
by the file system to represent a remote device.
reservedl This structure element is currently reserved for future implementations of
MINT.
nlink This value specifies the current number of hard links attached to the file. On a
file system that does not support hard links and for most regular files, nlink is
1.
uid uid is the user ID of the owner of the file.
gid gidis the group ID of the owner of the file.
size size is the length of the file in bytes.
blksize blksize specifies the size of blocks (in bytes) in this file system.
nblocks nblocks is the actual number of blocks the file is using on the device. This

number may include data storage elements other used to keep track of the
file (aside from the actual data).

mtime, mdate

Time and date of the last file modification in GEMDQOS format.

atime, adate

Time and date of the last file access in GEMDQOS format.

ctime, cdate

Time and date of the file’s creation in GEMDOS format.

attr Standard file attributes (same as read by Fattrib()).
reserved?2 This structure element is currently reserved for future implementations of
MINT.
reserved3 This structure element is currently reserved for future implementations of
MINT.
reserved4 This structure element is currently reserved for future implementations of
MiINT.
pea xattr
pea name
move.w flag,-(sp)
move.w #$12C,-(sp)
trap #1
lea 12(sp),sp

Fxattr() returns 0 if successful or a negativeMDOS error code otherwise.

Fattrib()

THE ATARI

COMPENDIUM

Maddalt() - 2.97

Maddalt()

LONG Maddalt(start, size)

VOIDP start;
LONG size
Maddalt() informsGEMDOS of the existence of additional ‘alternative’ RAM
that would not normally have been identified by the system.
OPCODE 20 (0x14)
AVAILABILITY Available as ofGEMDOS version 0.19 only.
PARAMETERS startindicates the starting address for the block of memory to be added to the
GEMDOS free list.sizeindicates the length of this block in bytes.
BINDING move.l Size,-(sp)
pea start
move.w #$14,-(sp)
trap #1
lea 10(sp),sp

RETURN VALUE Maddalt() returnsE_OK (0) if the call succeeds or a negattv&MDOS error
code otherwise.

COMMENTS This call should only be used to identify RAM not normally identified by the
BIOS at startup (added through a VME-card or hardware maodification). Once this
RAM has been identified to the system it may not be removed and should only be
allocated and used via the standard system calls. In addition, programs wishing to
use this RAM must have their alternative RAM load bit set oMxaloc() to
specifically request alternative RAM.

See the discussion earlier in this chapter for more information about the types of
available RAM.

SEE ALSO Mxalloc()

THE ATARI COMPENDIUM

2.98 — GEMDOS Function Reference

Malloc()

VOIDP Malloc(amount)

LONG amount

OPCODE

AVAILABILITY

PARAMETERS

BINDING

RETURN VALUE

CAVEATS

COMMENTS

SEE ALSO

Malloc() requests a block of memory for use by an application.
72 (0x48)
All GEMDOS versions.

amountspecifies the amount of memory (in bytes) you wish to allocate. You may
pass a value of -1L in which case the function will return the size of the largest
free block of memory.

move.l amount,-(sp)
move.w #$48,-(sp)
trap #1

addq.! #6,sp

Malloc() returnsNULL if there is no block large enough to fill the request or a
pointer to the block if the request was satisfied. The memory allocated will be
chosen based on the status of the processes’ load flags. To specify the memory
requirements in more detail, utxalloc().

Prior to GEMDOS version 0.15Malloc(OL) will return a pointer to invalid
memory as opposed to failing as it should.

BecausdsEMDOS can only allocate a limited amount of blocks per process (as
few as 20 depending on the versiorcdfMDOS), applications should limit their
usage of this call by allocating a few large blocks instead of many small blocks or
use a ‘C’ memory manager (likealloc()) if possible.

Mxalloc()

Mfree()

WORD Mfree(startadr)

VOIDP startadr,

OPCODE

Mfree() releases a block of memory previously reserved Mahoc() or
Mxalloc() back into thdSEMDOS free list.

73 (0x49)

THE ATARI COMPENDIUM

Mshrink() - 2.99

AVAILABILITY All GEMDOS versions.

PARAMETERS startadris the starting address of the block to be freed. This address must be the
same as that returned by the corresponbiiaioc() or Mxalloc() call.

BINDING pea startadr
move.w #$49,-(sp)
trap #1
addqg. #6,sp

RETURN VALUE Mfree() returnsE_OK (0) if the block was freed successfully or a negative
GEMDOS error code otherwise.

SEE ALSO Malloc(), Mxalloc()

Mshrink()

WORD Mshrink(startadr, newsize)
VOIDP startadr,
LONG newsize

Mshrink() releases a portion of a block’s memory to@@MDOS free list.

OPCODE 74 (0x4A)
AVAILABILITY All GEMDOS versions.
PARAMETERS startadris the address of the block whose size you wish to decrezssizds

the length you now desire for the block.

BINDING move.l newsize,-(sp)
pea startadr
clr.w -(sp) /I Required/Reserved Value
move.w #$4A,-(sp)
trap #1
lea 12(sp),sp
RETURN VALUE Mshrink() returnsE_OK (0) if the operation was successful or a negative

GEMDOS error code otherwise.
CAVEATS This call should be used only to ‘shrink’ a memory block, not to enlarge it.

SEE ALSO Malloc(), Mxalloc(), Mfree()

THE ATARI COMPENDIUM

2.100 — GEMDOS Function Reference

Mxalloc()

VOIDP Mxalloc(amount, mode)

LONG amount

WORD mode
Mxalloc() allocates a block of memory according to specified preferences.
OPCODE 68 (0x44)
AVAILABILITY Available fromGEMDOS version 0.19.
PARAMETERS amountspecifies the length (in bytes) of the block requested. AsNadtoc(),

specifying -1L foramountwill return the size of the largest block of memory

available. With modes 0 or 1, the size of the largest block of available RAM from
the specified type of RAM is returned. Modes 2 and 3 return the size of the largest

available block or whichever type of RAM had the largest block.

modeis aWORD bit array which specifies the type of memory requested as

follows:

Bit
0-1

Meaning

allocate as follows:

Name Value
MX_STRAM 0
MX_TTRAM 1
MX_PREFSTRAM 2
MX_PREFTTRAM 3

Bits 0-1 represent a possible value of 0-3 representing the type of RAM to

Meaning
Allocate only ST-RAM

Allocate only TT-RAM
Allocate either, preferring ST-RAM
Allocate either, preferring TT-RAM

Not used (should be set to 0).

of MiNT.

If set, refer to bits 4-7 for memory protection advice, otherwise default to
protection specified in program header. This bit is only valid in the presence

4-7

values are:
Name Value
MX_HEADER 0
MX_PRIVATE 1
MX_GLOBAL 2
MX_SUPERVISOR 3
MX_READABLE 4

Bits 4-7 represent a possible value of 0-7 representing the memory
protection mode to place on the allocated block of memory. Currently valid

Meaning
Refer to Program Header

Private

Global

Supervisor Mode Only Access
Read Only Access

These bits are only consulted if bit 3 is set and MiNT is present.

8-15

Not used (should be set to 0).

THE ATARI COMPENDIUM

Pause() - 2.101

BINDING

RETURN VALUE

move.w mode,-(sp)
move.l amount,-(sp)
move.w #$44,-(sp)
trap 1

addq.| #8,sp

Mxalloc() returnsNULL if the request could not be granted or a valid pointer to
the start of the block allocated otherwise.

COMMENTS Mxalloc() should be used insteadMglloc() whenever it is available.
SEE ALSO Malloc(), Mfree()
Pause()

VOID Pause(VOID)

OPCODE

AVAILABILITY

BINDING

COMMENTS

SEE ALSO

Pause()suspends the process until a signal is received.
289 (0x121)

This function is available under 8MiNT versions integrated witMultiTOS .

move.w #$121,-(sp)
trap #1
addq.l #2,sp

If the signal handler does a ‘@ngjmp() to a different point in the process or if
the handler’s purpose is to exit the process, this call will never return.

Psigblock(), Psignal(), Psigsetmask()

Pdomain()

WORD Pdomain(domain)

WORD domair

OPCODE
AVAILABILITY

PARAMETERS

Pdomain() determines/modifies the calling processes’ execution domain.
281 (0x119)
This function is available under 8MiNT versions integrated witiultiTOS .

domaincontains the domain code of the new process domain. Currently the only

THE ATARI COMPENDIUM

2.102 — GEMDOS Function Reference

BINDING

RETURN VALUE

COMMENTS

SEE ALSO

valid values ar&®@OMAIN_TOS (0) for theTOS compatibility domain and
DOMAIN_MINT (1) for theMINT domain. Passing a negative valuedomain
will not change domains but it will return the current domain.

move.w domain,-(sp)
move.w #$119,-(sp)
trap #1

addq. #4,sp

Pdomain() returns the domain in effect prior to the call.

Process domain affects system calls fkead(), Fwrite(), Fsfirst(), and
Fsnext(). Processes behave as expected when undéOfielomain.

When processes run under M&NT domain, however, the behaviorforead()
andFwrite() calls when dealing with terminals can be modifiedFgtl(). Also,
Fsfirst() andFsnext() may not necessarily return the standafaS 8 + 3 file

name formatMiNT domain processes must understand filenames formatted for
different file systems.

Fentl()

Pexec()

LONG Pexec(mode fname, cmdline, envstr)

WORD mode

char *fname*cmdling*envstr,

OPCODE

AVAILABILITY

PARAMETERS

Pexec()has many functions designed to spawn child processes depending on the
selected mode.

75 (0x4B)

Pexec()modes 0, 3, 4, and 5, are available irfc&IMDOS versions. Mode 6 is
available as 06EMDOS version 0.15. Mode 6 is available asa¥fMDOS

version 0.19. Modes 100, 104, 106, and 200 are only available in the presence of
MINT .

modedefines the function d?exec()and the meaning of its parameters and return
value as defined below. For modes which load a prodisamespecifies the
GEMDOS file specification of the file to loagmdlineis pointer to a string

containg the command line which will be passed to the calling program. The first
byte of the string should indicate the length of the command line (maximum of 125
bytes). The actual command line starts at by@n@stris a pointer to an

environment which is copied and assigned to the child process/stris NULL ,

THE ATARI COMPENDIUM

Pexec() - 2.103

the child inherits a copy of the parent’s environment.

Name mode ’ Meaning

PE_LOADGO 0 ‘LOAD AND GO’ - Load and execute named program file
and return a WORD exit code when the child terminates.
PE_LOAD 3 ‘LOAD, DON'T GO’ - Load named program. If successful,

the LONG return value is the starting address of the child
processes’ basepage. The parent owns the memory of the
child’s environment and basepage and must therefore free
them when completed with the child.

PE_GO 4 ‘JUST GO’ - Execute process with basepage at specified
address. With this mode, fname and envstr are NULL.
The starting address of the basepage of the process to
execute is given in the cmdline parameter.
PE_BASEPAGE 5 ‘CREATE BASEPAGE' - This mode allocates the largest
block of free memory and creates a basepage in the first
256 bytes of it. fname should be set to NULL. Itis the
responsibility of the parent to load or define the child’'s
code, shrink the memory block as necessary, and initialize
the basepage pointers to the TEXT, DATA, and BSS
segments of the program.

With MiNT, use of this mode in conjunction with mode
PE_CGO can be used to emulate the Pvfork() call without
blocking the parent.

PE_GOTHENFREE 6 ‘JUST GO, THEN FREE’ - This mode is identical to mode
PE_GO except that memory ownership of the child’s
environment and basepage belong to the child rather than
the parent so that when the child Pterm() 's, that memory is
automatically freed.

PE_CLOADGO 100 ‘LOAD, GO, DON'T WAIT" - This mode is identical to
mode PE_LOADGO except that the parent process is
returned to immediately while the child continues to
execute. The positive process ID of the child is returned.
Environment and basepage memory blocks are freed
automatically when the child Pterm() 's

PE_CGO 104 ‘JUST GO, DON'T WAIT’ - This mode is similar to mode
PE_GO except that the parent process is returned to
immediately while the child continues to execute
concurrently. The positive process ID of the child is
returned. Memory ownership of the environment and
basepage are shared by the parent and child (this sharing
extends to all memory owned by the parent).

fname may be used to supply a name for the child,
otherwise, if NULL is used, the name of the parent will be
used. cmdline should point to the process basepage.
envstr should be NULL.

PE_NOSHARE 106 ‘JUST GO, DON'T WAIT, NO SHARING' - This mode is
exactly the same as mode PE_CGO except that the child
process owns its own environment and basepage sharing
no memory with the parent.

THE ATARI COMPENDIUM

2.104 — GEMDOS Function Reference

BINDING

RETURN VALUE

COMMENTS

SEE ALSO

PE_REPLACE 200 ‘REPLACE PROGRAM AND GO’ - This mode works like
mode PE_CLOADGO except that the parent process is
terminated immediately and the child process completely
replaces the parent in memory retaining the same process
ID. fname, cmdline, and envstr, are all normally passed

and valid.
pea envstr
pea cmdline
pea fname
move.w word,-(sp)
move.w #$4B,-(sp)
trap #1
lea 16(sp),sp

The value returned yexec()is dependent on thsodevalue and is therefore
explained above. APexec()modes return BRONG negativeGEMDOS error

code when the call fails. WORD negative value indicates the child was
successfully run but it terminated returning a negative error code. In all cases, a
process returning after having been interrupted @iitti-C returns OXO000FFEQ
(-32).

Command lines longer than 126 bytes may be passed to processes aware of the
Atari Extended Command Line Specification(see discussion earlier in this
chapter).

shel_write()

Pfork()

WORD Pfork(VOID)

OPCODE

AVAILABILITY

BINDING

RETURN VALUE

CAVEATS

Pfork() creates a copy of the current process.
283 (0x11B)

This function is available under MiNT versions integrated witlultiTOS .

move.w #$11B,-(sp)
trap 1
addq.! #2,sp

Pfork() returns the new process ID in the parent and a 0 in the child.

If the parent is in supervisor mode when this call is made, the child is started in
user mode anyway.

THE ATARI COMPENDIUM

Pgetegid() - 2.105

COMMENTS

SEE ALSO

After aPfork() call, two instances of one process will exist in memory. Program
execution in both processes continue at the same point in the TEXT segment
following this call. The parent's DATA and BSS segments are physically copied
so that any variables that change in the child will not affect the parent and vice
versa.

New processes started with this call should notMalirink() but are required to
do anyGEM initialization such agppl_init() andv_opnvwk() again (ifGEM
usage is needed). Both the parent and childPten() or PtermO() to terminate
themselves.

Pexec(), Pvfork()

Pgetegid()

WORD Pgetegid(VOID)

OPCODE

AVAILABILITY

BINDING

COMMENTS

SEE ALSO

Pgetegid()returns the effective group ID of the process.
313 (0x139)

Available when aMiNT * cookie with a version of at least 0.95 exists.

move.w #%$139,-(sp)
trap 1
addq.! #2,sp

The effective group ID of a process will be different than its actual group ID if its
set gid bit is set. This mechanism allows users to grant file access to other users.

Pgetgid(), Pgeteuid()

Pgeteuid()

WORD Pgeteuid(VOID)

OPCODE

AVAILABILITY

BINDING

Pgeteuid()returns the effective user ID of the process.
312 (0x138)

Available when aMiNT * cookie with a version of at least 0.95 exists.

move.w #%$138,-(sp)
trap #1

THE ATARI COMPENDIUM

2.106 — GEMDOS Function Reference

COMMENTS

SEE ALSO

addq.l #2,sp

The effective group ID of a process will be different than its actual group ID if its
set gid bit is set. This mechanism allows users to grant file access to other users.

Pgetuid(), Pgetegid()

Pgetgid()

WORD Pgetgid(VOID)

OPCODE

AVAILABILITY

BINDING

SEE ALSO

Pgetgid() returns the group ID (0-255) of the calling process.
271 (0x10F)

This function is available under MiNT versions integrated witlultiTOS .

move.w #$10F,-(sp)
trap #1

addq.! #2,sp
Psetgid()

Pgetpgrp()

WORD Pgetpgrp(VOID)

OPCODE

AVAILABILITY

BINDING

COMMENTS

SEE ALSO

Pgetpgrp() returns the process group ID code for the calling process.
269 (0x10D)

This function is available under MiNT versions integrated withultiTOS .

move.w #$10D,-(sp)
trap #1
addq. #2

Process groups are closely related processes which are used for job control and
signaling purposes. Process groups usually terminate together rather than one at a
time.

Psetpgrp(), Pkill()

THE ATARI COMPENDIUM

Pgetpid() - 2.107

Pgetpid()

WORD Pgetpid(VOID)

OPCODE

AVAILABILITY

BINDING

Pgetpid() returns the positive/ORD process ID code for the calling process.
This identifer uniquely identifies the process within the system.

267 (0x10B)

This function is available under #MiNT versions integrated witklultiTOS .

move.w #%$10B,-(sp)
trap 1
addq.! #2,sp

Pgetppid()

WORD Pgetppid(VOID)

OPCODE

AVAILABILITY

BINDING

RETURN VALUE

Pgetppid() returns the process ID for the calling processes’ parent.
268 (0x10C)

This function is available under dMiNT versions integrated witMultiTOS .

move.w #3$10C,-(sp)
trap #1
addq.! #2,sp

Pgetppid() returns the process ID code for the parent of the calling process or O if
it was started by the kernel (not a child process).

Pgetuid()

WORD Pgetuid(VOID)

OPCODE

AVAILABILITY

Pgetuid() returns the user ID code (0-255) of the calling process which
determines access permissions and can be used in a multi-user system to
differentiate users.

271 (OX10F)

This function is available under #iNT versions integrated witklultiTOS .

THE ATARI COMPENDIUM

2.108 — GEMDOS Function Reference

BINDING

SEE ALSO

move.w #$10F,-(sp)
trap #1

addq.l #2
Psetuid()

Pkill()

WORD Pkill(pid, sig)

WORD pid, sig;

OPCODE
AVAILABILITY

PARAMETERS

BINDING

RETURN VALUE

COMMENTS

SEE ALSO

Pkill() sends a signal to one or more processes.
273 (0x111)
This function is available under MiNT versions integrated withultiTOS .

Pkill() sends signagdig to certain processes based on the valysdoff pid is
positive, the signal is sent the the process with process identifier pid.i$f0,

the signal is sent to all processes who belong to the same process group as the
caller as well as the caller itself.pid is negative, the signal is sent to all
processes with process group numipét.-

move.w sig,-(sp)
move.w pid,-(sp)
move.w #$111,-(sp)
trap #1

addq.! #6,sp

Pkill() returns 0 if successful or a negativeMDOS error code otherwise.

If the caller is also a recipient of a signal and that signal causes program
termination this call will never return.

Psignal()

THE ATARI COMPENDIUM

Pmsg() - 2.109

Pmsg()

WORD Pmsg(mode mboxid, msgptr)
WORD mode

LONG mboxid

PMSG *msgptr,

Pmsg()sends/receives a message to/from a ‘message box'.

OPCODE 293 (0x125)
AVAILABILITY Available when aMiNT * cookie with a version of at least 0.90 exists.
PARAMETERS modespecifies the action to take as follows:

Name mode Operation

MSG_READ Block the process and don't return until a

message is read from the specified mailbox
ID mboxid and placed in the structure
pointed to by msgptr.

MSG_WRITE 1 Block the process and don't return until a
process waiting for a message with mailbox
ID mboxid has received the message
contained in the structure pointed to by
msgptr.

MSG_READWRITE 2 Block the process until a process waiting for
a message with mailbox ID mboxid has
received the message contained in the
structure pointed to by msgptr and a return
message is received with mailbox ID
OXFFFFxxxx where ‘xxxx’ is the process ID
of the current process.

PMSG is defined as:

typedef struct

LONG userlongl;
LONG userlong2;
WORD pid;

} PMSG;

On return from writespmsg.pidcontains the process ID of the process who read
your message, on return from reads, its the process ID of the writer. The contents
of userlonglanduserlong2is completely up to the sender.

By OR'ing mode wittMSG_NOWAIT (0x8000), you can prevent the call from
blocking the process and simply return -1 if another process wasn’t waiting to

THE ATARI COMPENDIUM

2.110 — GEMDOS Function Reference

read or send your process a message.

pea msgptr
BINDING move.l mboxid,-(sp)

move.w mode,-(sp)

move.w #$125,-(sp)

trap #1

lea 12(sp),sp

RETURN VALUE Pmsg()returns 0 if successful, -1 if bit 0x8000 is set and no process was ready to
receive/send the desired message, or a nedaiDOS error code.

Pnice()

WORD Pnice(delta)

WORD deltg
Pnice() alters the process priority of the calling process.
OPCODE 266 (0x10A)
AVAILABILITY This function is available under MiNT versions integrated withultiTOS .
PARAMETERS deltais a signed number which is added to the current process priority value.
Positive values decrease process priority while negative values increase it.
B|ND|NG move.w delta,-(sp)
move.w #$10A,-(sp)
trap 1
addq.! #4,sp

RETURN VALUE Pnice() returns the prior process priority.

COMMENTS The process priority value has no fixed formula so it is hard to be able to predict
the results of this call with any accuracy. This call is the same as
Prenice(Pgetpid(), delta).

SEE ALSO Prenice()

THE ATARI COMPENDIUM

Prenice() - 2.111

Prenice()

LONG Prenice(pid, delta)

WORD pid, deltg;

OPCODE
AVAILABILITY

PARAMETERS

BINDING

RETURN VALUE

COMMENTS

SEE ALSO

Prenice() adjusts the process priority of the specified process.
295 (0x127)
Available when aMiNT ’* cookie with a version of at least 0.90 exists.

The process priority for the process with procespitfis adjusted by signed
valuedelta Positive values folleltadecrease process priority while negative
values increase it.

move.w delta,-(sp)
move.w pid,-(sp)
move.w #$127,-(sp)
trap #1

addq.l #6

Prenice() returns a 32-bit negati'@EMDOS error code if unsuccessful.
Otherwise, the lower 16-bit signed value can be interpreted as the previous
process priority code.

The exact effect adjusting process priorites will have is difficult to determine.

Pnice()

Prusage()

VOID Prusage(rusg)

LONG *rusg,;

OPCODE
AVAILABILITY

PARAMETERS

Prusage()returns resource information about the current process.
286 (0x11E)
This function is available under 8iNT versions integrated witiultiTOS .

rusgis a pointer to an array ofl®NGs as follows:

THE ATARI COMPENDIUM

2.112 — GEMDOS Function Reference

Name rusg[x] [Meaning
PRU_KERNELTIME 0 Time spent by process in MiNT kernel.
PRU_PROCESSTIME 1 Time spent by process in its own
code.
PRU_CHILDKERNALTIME 2 Total MiNT kernel time spent by
children of this process.
PRU_CHILDPROCESSTIME 3 Total user code time spent by children
of this process.
PRU_MEMORY 4 Total memory allocated by process (in
bytes).
— 5-7 Reserved for future use.
BINDING pea rusg
move.w #$11E,-(sp)
trap #1
addq.l #6,sp
COMMENTS All times given are in milliseconds.
SEE ALSO Psetlimit()

Psemaphore()

LONG Psemaphore(mode id, timeout)
WORD mode

LONG id;

LONG timeout

Psemaphore()creates a semaphore which may only be accessed by one process at

atime.
OPCODE 308 (0x134)
AVAILABILITY Available when aMiNT’ cookie with a version of at least 0.92 exists.
PARAMETERS modespecifies the mode of the operation which affects the other two parameters
as follows:
Name mode Meaning
SEM_CREATE 0 Create a semaphore with called id and grant ownership
to the calling process. timeout is ignored.
SEM_DESTROY 1 Destroy the semaphore called id. This only succeeds if
the semaphore is owned by the caller. timeout is
ignored.

THE ATARI COMPENDIUM

Psetgid() - 2.113

BINDING

RETURN VALUE

COMMENTS

SEM_LOCK 2 Request ownership of semaphore id. The process will
wait for the semaphore to become available for timeout
milliseconds and then return. If timeout value of O will
force the call to return immediately whether or not the
semaphore is available. A timeout value of -1 will cause
the call to wait indefinitely.

SEM_UNLOCK 3 Release ownership of semaphore id. The caller must be
the current owner of the semaphore to release control.
timeout is ignore.

move.l timeout,-(sp)

move.| id,-(sp)

move.w mode,-(sp)

move.w #$134,-(sp)

trap #1

lea 12(sp),sp

Psemaphore()returns a 0 if successfl#RROR (-1) if the process requested a
semaphore it already owned, or a negad@=MDOS error code.

If your process is waiting for ownership of a semaphore and it is destroyed by
another process, &rfRANGE (-64) error will result. Any semaphores owned by
a process when it terminates are released but not deleted.

Psetgid()

WORD Psetgid(gid)

WORD gid;

OPCODE
AVAILABILITY
PARAMETERS

BINDING

RETURN VALUE

COMMENTS

Psetgid()sets the group ID of the calling process.

277 (0x115)

This function is available under #iNT versions integrated witklultiTOS .

gid is the group ID code to assign the calling process (0-255).

move.w gid,-(sp)
move.w #$115,-(sp)
trap #1

addq. #4,sp

Psetgid()returns gid if successful &ACCDN (-36) if the process did not have
the authority to change the group ID.

The group ID of a process may only be changed when it is currently 0. Therefore,
once the group ID has been set, it is fixed and unchangeable. Further attempts to
modify it will result in anEACCDN error.

THE ATARI COMPENDIUM

2.114 — GEMDOS Function Reference

SEE ALSO Pgetgid()

Psetlimit()

LONG Psetlimit(limit, value)

WORD limit;
LONG value
Psetlimit() reads/modifies resource allocation limits for the calling process and
all of its children.
OPCODE 287 (0x11F)
AVAILABILITY This function is available under MiNT versions integrated withultiTOS .
PARAMETERS limit defines the resource to read or modify as follows:
Name ’ limit Meaning
LIM_MAXTIME 1 Maximum CPU time in milliseconds. If value is positive,
value determines the new maximum. If value is 0, then
the limit is set at ‘unlimited’. If value is negative, the
current value is returned but not modified.
LIM_MAXMEM 2 Maximum total memory allowed for process. If value is
positive, value determines the new maximum. If value
is 0, then the limit is set at ‘unlimited’. If value is
negative, the current value is returned but not modified.
LIM_MAXMALLOC 3 Maximum total size of each Malloc (Mxalloc). If value is
positive, value determines the new maximum. If value
is 0, then the limit is set at ‘unlimited’. If value is
negative, the current value is returned but not modified.
BINDING move.l Value,-(Sp)
move.w limit,-(sp)
move.w #$11F,-(sp)
trap #1
addq. #8,sp

RETURN VALUE Psetlimit() returns the previous value BRANGE (-64) if the value fofimit
was out of range.

COMMENTS The limits imposed b¥setlimit() are inherited from the parent by child
processes.
SEE ALSO Prusage()

THE ATARI COMPENDIUM

Psetpgrp() - 2.115

Psetpgrp()

LONG Psetpgrp(pid, newgrp)

WORD pid, newgrg

OPCODE

AVAILABILITY

PARAMETERS

BINDING

RETURN VALUE

SEE ALSO

Psetpgrp() sets the process group ID of the specified process.
270 (OX10E)
This function is available under &MNT versions integrated witMultiTOS .

The process group ID of the process with proceggdivill have its process

group ID changed toewgrpif the calling process has the same user ID or is the
parent of the specified processpifl is 0, the process group ID of the current
process is sent. ffewgrpis 0, the process group ID is set to equal the processes’
(not the callers’ unlessid is also set to 0) process ID.

move.w newgrp,-(sp)
move.w pid,-(sp)
move.w #3$10E,-(sp)
trap 1

addq.! #6,sp

Psetpgrp() returnsnewgrpif successful or a negati®@EMDOS error code
otherwise.

Pgetpgrp()

Psetuid()

WORD Psetuid(uid)

WORD uid;

OPCODE
AVAILABILITY
PARAMETERS

BINDING

Psetuid() sets the user ID of the calling process.
272 (0x110)
This function is available under 8MiNT versions integrated witMultiTOS .

uid is the user ID to assign to the calling process.

move.w uid,-(sp)
move.w #%$110,-(sp)
trap #1

addq.l #4,sp

THE ATARI COMPENDIUM

2.116 — GEMDOS Function Reference

RETURN VALUE Psetuid() returnsuid if successful or a negati®@EMDOS error code otherwise.

COMMENTS As with the process group ID, the user ID of a process may only be set if it is
currently 0. This means that once the user ID is set, it may not be changed.

SEE ALSO Pgetuid()

Psigaction()

LONG Psigaction(sig, act, oact)
WORD sig;
SIGACTION * act, *oact

Psigaction()specifies a default action for the specified signal.

OPCODE 311 (0x137)
AVAILABILITY Available when aMiNT * cookie with a version of at least 0.95 exists.
PARAMETERS sig specifies the signal whose action you wish to cha@gjgooints to a

SIGACTION structure (as defined below) which defines the handling of future
signals of typeig. oactpoints to &SIGACTION structure which defines the
handling of pending signals of typ.

typedef struct

LONG sa_handler;
WORD sa_mask;
WORD sa_flags;

} SIGACTION;

Settingsa_handetto SIG_DFL (0) wll cause the default action to take place for
the signal. A value dBIG_IGN (1) will cause the signal to be ignored. Any other
value specifies the address of a signal handler.

The signal handler should expect &6&NG argument on its stack which contains
the signal number being delivered. During execution of the handler, all signals
specified insa_maslare blocked.

sa_flagsis a signal-specific flag. Whesig is SIGCHLD , setting Bit #0
(SA_NOCLDSTOP) will cause théSIGCHLD signal to be delivered only when
the child process terminated (not when stopped).

BINDING move.w sig,-(sp)
pea act

THE ATARI COMPENDIUM

Psigblock() - 2.117

RETURN VALUE

COMMENTS

SEE ALSO

pea oact
move.w #$137,-(sp)
trap #1

add.| #12,sp

Psigaction()returns 0 if successful or a negattivyeMDOS error code otherwise.
Calling Psigaction()automatically unmasks the specified signal for delivery.

Psignal

Psigblock()

LONG Psigblock(mask)

LONG mask

OPCODE
AVAILABILITY

PARAMETERS

BINDING

RETURN VALUE

COMMENTS

SEE ALSO

Psigblock() blocks selected signals from delivery.
278 (0x116)
This function is available under #MiNT versions integrated witklultiTOS .

maskis a bit mask of signals block. For eachrbiet, signah is added to the
‘blocked’ list.

move.l mask,-(sp)
move.w #$116,-(sp)
trap 1

addq. #6,sp

Psigblock() returns the original set of blocked signals in effect prior to the call.

Blocked signals are preserved witfork() andPvfork() calls, however,
children started witfPexec()start with an empty list of blocked signals.

SIGKILL may not be blocked and will be reset by the system.

Pkill(), Psignal(), Psigpending()

THE ATARI COMPENDIUM

2.118 — GEMDOS Function Reference

Psignal()

LONG Psignal(sig, handler)

WORD sig;

VOID (* handler)(LONG);

OPCODE

AVAILABILITY

PARAMETERS

BINDING

RETURN VALUE

COMMENTS

SEE ALSO

Psignal() determines the action taken when a signal is received by the process.
274 (0x112)
This function is available under MiNT versions integrated withultiTOS .

sig specifies the signal whose response you wish to modianlleris cast to
SIG_DFL (0) then the default action for the signal will occur when received. If
handleris cast tdSIG_IGN (1) then the signal will be ignored by the process.
Otherwise handlerpoints to a user function which is designed to take action on a
signal. This function is called when a signal is received witt™G signal

number on the stack.

pea handler
move.w sig,-(sp)
move.w #$112,-(sp)
trap #1

addq. #8,sp

Psignal()returns the old value of the signal handler if successful or a negative
GEMDOS error code otherwise.

Signal handler functions may make &&MDOS, BIOS, or XBIOS calls
desired but must not make af\zS or VDI calls. Signal handlers must either
return with a 680x&RTS instruction to resume program execution or call
Psigreturn() to clean the stack if it intends to do a l@ngjmp().

Signal handling is preserved acr®¥erk() andPvfork() calls. Child processes
started withPexec()ignore and follow the default action the same as their parents.
Signals which have user functions assigned to them are reset to the default action
for child processes.

Psigreturn(), Psigblock(), Pkill()

THE ATARI COMPENDIUM

Psigpause() - 2.119

Psigpause()

LONG Psigpause(mask)

LONG mask

OPCODE
AVAILABILITY
PARAMETERS

BINDING

RETURN VALUE
COMMENTS

SEE ALSO

Psigpause(ksets a new signal mask and then suspends the process until a signal is
received.

310 (0x136)
Available when aMiNT * cookie with a version of at least 0.95 exists.

maskspecifies the signal mask to wait for.

move.| mask,-(sp)
move.w #%$136,-(sp)
trap #1

addq.| #6,sp

Psigpause(yeturns 0 if successful or non-zero otherwise.
Depending on the state of the signal handler, this call may never return.

Psigaction(), Pause()

Psigpending()

LONG Psigpending(VOID)

OPCODE

AVAILABILITY

BINDING

RETURN VALUE

Psigpending()indicates which signals have been sent but not yet delivered to the
calling process.

291 (0x123)

This function is available under dMiNT versions integrated witMultiTOS .

move.w #123,-(sp)
trap #1
addq.l #2,sp

Psigpending(returns a bit mask of which signals have been sent but not yet
delivered to the calling process because they are being blocked. For e¢asétbit
in the returned ONG, signaln is waiting for reception.

THE ATARI COMPENDIUM

2.120 — GEMDOS Function Reference

SEE ALSO

Psigblock(), Psignal(), Psigsetmask()

Psigreturn()

VOID Psigreturn(VOID)

Psigreturn() prepares exit from a signal handler not planning to return via a 680x0
RTS.

OPCODE 282 (0x11A)
AVAILABILITY This function is available under MNT versions integrated witMultiTOS .
BINDING move.w #$11A,-(sp)
trap #1
addq. #2,sp
CAVEATS Calling this function and then calling the 680x0 RTS opcode to return will produce
undesired results.
COMMENTS Psigreturn() is only needed by ‘C’ programs which intend to exit the signal
handler by doing a ‘dongjmp() rather than simply using the 680x0 RTS.
SEE ALSO Psignal()
Psigsetmask()
LONG Psigsetmask(mask)
LONG mask
Psigsetmask(defines which signals are to be blocked before being delivered to
the calling application.
OPCODE 279 (0x117)
AVAILABILITY This function is available under MiNT versions integrated withultiTOS .
PARAMETERS maskis aLONG bit mask which defines which signals to block and which signals
to allow. For each bit set, signah will be blocked. For each bitclear, signah
will be delivered.
BINDING move.l maSk,-(Sp)
move.w #$117,-(sp)
trap #1

THE ATARI COMPENDIUM

Pterm() - 2.121

addq.| #6,sp

RETURN VALUE Psigsetmask(¥eturns the original mask of blocked/unblocked signals prior to the
call or a negativésEMDOS error code.

COMMENTS Unlike Psigblock(), maskcompletely replaces the old mask rather than simply
OR’ing it.
SEE ALSO Pkill(), Psignal(), Psigpending()

Pterm()

VOID Pterm(retcode)
WORD retcode

Pterm() terminates an application returning the specified error code.

OPCODE 76 (0x4C)
AVAILABILITY All GEMDOS versions.
PARAMETERS retcodeindicates the error status upon termination. Some recommended return
values are:
Name ‘ retcode Meaning
TERM_OK 0 Program completion without errors
TERM_ERROR 1 Generic Error
TERM_BADPARAMS 2 Bad parameters
TERM_CRASH -1 Process crashed (returned by GEMDOS versions
from 0.15.)
TERM_CTRLC -32 Process terminated by CTRL-C
BINDING move.w retcode,-(sp)
move.w #$4C,-(sp)
trap #1
addq. #4,sp
RETURN VALUE Pterm() never returns.
COMMENTS GEMDOS jumps through thetv_term(0x102) vector when this call is made

prior to process termination to allow the process one last chance to clean up. In
addition, all files opened by the process are closed and all memory blocks
allocated by the process are freed.

THE ATARI COMPENDIUM

2.122 — GEMDOS Function Reference

SEE ALsSO Pexec(), PtermO()

Pterm@()

VOID Pterm@(VOID)

Pterm@() terminates the application returning an exit code of 0 indicating no

errors.
OPCODE 0 (0x00)

AVAILABILITY All GEMDOS versions.
BINDING fr';g’v 'Slp)

RETURN VALUE Pterm@() never returns.

COMMENTS Same a®term(0).
SEE ALSO Pterm()
Ptermres()

VOID Ptermres(keep retcode)
LONG keep
WORD retcode

Ptermres() terminates a process leaving a portion of the program’s TPA intact
and removing the memory left fro@EMDOS’s memory list.

OPCODE 49 (0x31)
AVAILABILITY All GEMDOS versions.
PARAMETERS keepis the length (in bytes) of the processes’ TPA to retain in memory after exit.

retcodeis the code returned on exit.

BINDING move.w retcode,-(sp)
move.l keep,-(sp)
move.w #$31,-(sp)
trap #1
addq. #8,sp

THE ATARI COMPENDIUM

Pumask() - 2.123

RETURN VALUE

COMMENTS

SEE ALSO

Ptermres() never returns.

This function is normally used by TSR’s to stay resident in memory. Any files
opened by the process are closed. Any memory allocated is, however, retained.

The value fokeepis usually the sum of the length of the basepage (0x100), the
length of the text, data, and bss segments of the application, and the length of the
stack. It is important to note that the memory retained by this call may not be freed
at a later point as it is removed from fBEMDOS memory list altogether.

Pterm0Q(), Pterm()

Pumask()

WORD Pumask(mode)

WORD mode

OPCODE
AVAILABILITY

PARAMETERS

BINDING

RETURN VALUE

SEE ALSO

Pumask() defines an inital file and directory creation mask.

307 (0x133)

Available when aMiNT * cookie with a version of at least 0.92 exists.
modespecifies the new file access permission mask to apply to all future files

created witHFcreate() andDcreate(). modeis aWORD bit mask of various
access permission flags as define&¢hmod ().

move.w mode,-(sp)
move.w #%$133,-(sp)
trap 1

addq.| #4,sp

Pumask() returns the original mask in effect prior to the call.

Dcreate(), Fcreate(), Fchmod()

Pusrval()

LONG Pursval(val)

LONG val;

Pusrval() reads/modifies a user defined value associated with a process.

THE ATARI COMPENDIUM

2.124 — GEMDOS Function Reference

OPCODE

AVAILABILITY

PARAMETERS

BINDING

RETURN VALUE

COMMENTS

280 (0x118)
This function is available under MiNT versions integrated withultiTOS .

val specifies the new value of th® NG associated with this processvi#l is -1
then this value is not changed but still returned.

move.w #$118,-(sp)
trap #1
addq.! #2,sp

Pusrval() returns the original value of the u$€?NG prior to the call.

The user-defined longword set by this call is inherited by child processes and may
be utilized as desired.

Pvfork()

WORD Pvfork(VOID)

OPCODE

AVAILABILITY

BINDING

RETURN VALUE

CAVEATS

COMMENTS

Pvfork() creates a duplicate of the current process which shares address and data
space with the parent.

275 (0x113)

This function is available under MiNT versions integrated withultiTOS .

move.w #$113,-(sp)
trap 1
addq.! #2,sp

Pvfork() returns the new process ID to the parent and O to the child. If an error
occurs the parent receives a negafeMDOS error code.

If the parent is in supervisor mode when this call is made the child is placed in
user mode anyway.

The child process spawned by this function shares all address and data space with
the parent. In other words, any variables altered by the parent will also be altered
by the child and vice versa. The child process should noisalink() as its

TPA is already correctly sized.

The two processes do not execute concurrently. The parent is blocked until either
the child terminates or calRexec()s mode 200.

THE ATARI COMPENDIUM

Pwait() - 2.125

SEE ALSO

Pexec(), Pfork()

Pwait()

LONG Pwait(VOID)

OPCODE

AVAILABILITY

BINDING

RETURN VALUE

COMMENTS

SEE ALSO

Pwait() attempts to determine the exit code of a stopped or terminated child
process.

265 (0x109)

This function is available under dMiNT versions integrated witMultiTOS .

move.w #$109,-(sp)
trap #1
addq. #2,sp

Pwait() returns 0 if no child processes have terminated or a 32-bit return code for
a child process which has been terminated or stopped.

The process ID of the child process is placed in the upper 16 bits. A process
which returned an exit status (Wéerm(), Ptermres(), or PtermO()) returns the
exit code in the lower 16 bits.

A process which was stopped as the result of a signal retutnglowherennis
the signal number which stopped it. A process which was terminated as the result
of a signal returns @00 wherennis the signal number which killed the process.

Pwait() will block the calling process until at least one child has been stopped or
terminated. Once the exit code of a process has been returned with this call it will
be not be returned again with this call (unless it had been stopped and is restarted
and stopped again). This call is identicaPwait3(2, NULL);

Pexec(), Pterm(), Ptermres(), PtermO()

Pwait3()

LONG Pwait3(flag, rusage)

WORD flag;
LONG *rusage

Pwait3() determines the exit code of any children of the calling process which
were stopped and/or terminated.

THE ATARI COMPENDIUM

2.126 — GEMDOS Function Reference

OPCODE

AVAILABILITY

PARAMETERS

BINDING

RETURN VALUE

SEE ALSO

284 (0x11C)
This function is available under MiNT versions integrated withultiTOS .
flag is a bit mask which specifies the specifics of this call as follows:

Name ‘ Mask Meaning

PW_NOBLOCK 0x01 If set, the function will not block the calling process if
no child has been stopped or terminated, rather it
will simply return O. If clear, the process will be
blocked until a child of the process has terminated
or is stopped.

PW_STOPPED 0x02 If set, return exit codes for processes which have
been terminated as well as stopped. If clear, only
return exit codes for processes which have actually
terminated.

rusagepoints to an array of teONG s which are filled in with resource usage
information of the stopped or terminated process. Thelfd®G contains the
number of milliseconds used by the child in user code. The s&€INE
indicates the number of milliseconds spent by the process in the kgaage
may be set tlULL if this information is undesired.

pea rusage
move.w flag,-(sp)
trap 1

addq.l #6,sp

Pwait3() returns 0 if no child processes have been stopped and/or terminated
(depending oflag) or a 32-bit return code for a child process which has been
terminated or stopped.

The process ID of the child process is placed in the upper 16 bits. A process
which returned an exit status (W4éerm(), Ptermres(), or Pterm0()) returns the
exit code in the lower 16 bits.

A process which was stopped as the result of a signal retutng®wherennis
the signal number which stopped it. A process which was terminated as the result
of a signal returns @00 wherennis the signal number which killed the process.

Pwait(), Pexec(), Pterm(), Pterm0(), Ptermres(), Prusage()

THE ATARI COMPENDIUM

Pwaitpid() - 2.127

Pwaitpid()

LONG Pwaitpid(pid, flag, rusage)

WORD pid, flag;
LONG *rusage

OPCODE

AVAILABILITY

PARAMETERS

BINDING

RETURN VALUE

SEE ALSO

Pwaitpid() returns exit code information about one or more child processes.

314 (0x13A)

Available when aMiNT * cookie with a version of at least 0.96 exists.

pid specifies the children whose exit codes are of interest as follows.

A pid of PWP_ALL (-1) indicates that all children are of interespid of less

than -1 indicates that any child whose process groupdss-of interest. Apid of
PWP_GROUP (0) indicates that any child with the same process group ID of the
parent is of interest. Aid greater than 0 indicates that the child with the given

process ID is of interest.

For the usage dfag andrusageseePwait3().

pea rusage
move.w flag,-(sp)
move.w #$13A,-(sp)
trap #1

addq.! #8,sp
SeePwait3().

Pwait(), Pwait3()

Salert()

VOID Salert(str)
char *str;

OPCODE
AVAILABILITY

PARAMETERS

Salert() sends an alert string to the alert pipe ‘U:\PIPE\ALERTV.
316 (0x13C)
Available when aMiNT * cookie with a version of at least 0.98 exists.

str should point to &ULL terminated character string containing the alert

THE ATARI COMPENDIUM

2.128 — GEMDOS Function Reference

message to display. The message should not contain any carriage returns or escape
characters. The string shouldt be formatted as iform_alert().

BINDING pea str
move.w #$13C,-(sp)
trap #1
addq. #6,sp
CAVEATS Messages sent [Balert() are only delivered if a separate application is present

which was designed to listen to the alert pipe and post its contents.

SEE ALSO form_alert()

Super()

VOIDP Super(stack)

VOIDP stack
Super() allows you to interrogate or alter the state of the 680x0.
OPCODE 32 (0x20)
AVAILABILITY All GEMDOS versions.
PARAMETERS stackdefines the meaning of the call as follows:
Name stack Meaning
SUP_SET (VOIDP)O The processor is placed in supervisor mode and the
old supervisor stack is returned.
SUP_INQUIRE (VOIDP)1 This interrogates the current mode of the processor.
If the processor is in user mode a SUP_USER (0) is
returned, otherwise a SUP_SUPER (1) is returned.
— >1 The processor is placed in user mode and the
supervisor stack is reset to stack.
BINDING pea stack
move.w #$20,-(sp)
trap #1
addq. #6,sp

RETURN VALUE Super() returns a different value based on st&ckparameter. The various return
values are explained above.

CAVEATS You should never call t8ES in supervisor mode. In addition, supervisor mode
should be entered and left in the same stack context (same ‘C’ function) or stack
corruption can result.

THE ATARI COMPENDIUM

Sversion() - 2.129

COMMENTS To execute portion of a program in supervisor mode you normallapér()
with a parameter of 0 and save the return value. When ready to return to user mode
you callSuper() again with the saved return value as a parameter.

Supervisor mode should be used sparingly ulNilSIT as no task switching can

occur.
SEE ALSO Supexec()
Sversion()

UWORD Sversion(VOID)

Sversion()returns the curre@EMDOS version number.

OPCODE 48 (0x30)
AVAILABILITY All GEMDOS versions.
BINDING move.w #$30,-(sp)
trap #1
addq.l #2,sp

RETURN VALUE Sversion()returns aJWORD containing th6sEMDOS minor version number in
the upper word and the major version number in the lower word. Current values
returned by AtarTOS's are:

Return Value TOS versions (normally) found in:

0x1300 (0.13) | TOS 1.0, TOS 1.02

0x1500 (0.15) | TOS 1.04, TOS 1.06

0x1700 (0.17) | TOS 1.62

0x1900 (0.19) | TOS 2.01, TOS 2.05, TOS 2.06, TOS 3.01, TOS 3.05, TOS 3.06

0x3000 (0.30) TOS 4.00, TOS 4.01, TOS 4.02, TOS 4.03, TOS 4.04,
MultiTOS 1.00, MultiTOS 1.08

COMMENTS TheGEMDOS number is not associated with th@S or AES version number.
You should check fosEMDOS or MiINT version numbers when trying to
determine the presence or properties GEMDOS function.

THE ATARI COMPENDIUM

2.130 — GEMDOS Function Reference

Syield()
VOID Syield(VOID)

Syield() surrenders the remainder of the callers’ current process timeslice.

OPCODE 255 (OxFF)
AVAILABILITY This function is available under &MNT versions integrated witMultiTOS .
BINDING move.w #$FF,-(sp)
trap #1
addq.l #2,sp
SEE ALsSO Pause(), Fselect()

Sysconf()

LONG Sysconf(inq)

WORD ing;
Sysconf()returns information about the limits or capabilities of the currently
running version oMiNT .
OPCODE 290 (0x122)
AVAILABILITY This function is available under MiNT versions integrated withultiTOS .
PARAMETERS ing determines the return value as follows:
Name inq Return Value
SYS_MAXINQ -1 Maximum legal value for ing.
SYS_MAXREGIONS 0 Maximum memory regions per process.
SYS_MAXCOMMAND 1 Maximum length of Pexec() command string.
SYS_MAXFILES 2 Maximum number of open files per process.
SYS_MAXGROUPS 3 Maximum number of supplementary group ID’s.
SYS_MAXPROCS 4 Maximum number of processes per user.
BINDING move.w ind,-(sp)
move.w #$122,-(sp)
trap #1
addq.l #4,sp

THE ATARI COMPENDIUM

Talarm() - 2.131

RETURN VALUE See above.

COMMENTS If the requested item returbkNLIMITED (Ox7FFFFFFF) then that item is
unlimited.

SEE ALSO Dpathconf()

Talarm()

LONG Talarm(time)

LONG time;

Talarm() reads/sets a process alarm for the current process.

OPCODE 288 (0x120)
AVAILABILITY This function is available under #iNT versions integrated witklultiTOS .
PARAMETERS time specifies the length of time (in milliseconds) to wait befotGALRM

signal is delivered. If time is O then any previously set alarm is canceltgdelf
is negative the function does not modify any alarm currently set.

BINDING move.l time,-(sp)
move.w #%$120,-(sp)
trap #1
addq.l #6,sp

RETURN VALUE Talarm() returns 0 i f no alarm was scheduled prior to this call or the amount of
time remaining (in milliseconds) before the alarm is triggered.

CAVEATS An alarm with less than 1000 remaining milliseconds will return a value of 0.

COMMENTS If no SIGALRM signal handler has been set up when the alarm is triggered, the
process will be killed.

SEE ALSO Pause(), Psignal()

Tgetdate()

UWORD Tgetdate(VOID)

Tgetdate() returns the curref8EMDOS date.

THE ATARI COMPENDIUM

2.132 — GEMDOS Function Reference

OpPcoODE 42 (0x2A)
AVAILABILITY All GEMDOS versions.
BINDING move.w #$2A,-(sp)
trap #1
addq.| #2,sp

RETURN VALUE Tgetdate() returns a bit arra WORD arranged as follows:

Bits 15-9 Bits 8-5 \ Bits 4-0
Years since 1980 Month (1-12) Date (0-31)
SEE ALSO Tgettime(), Tsetdate(), Gettime()

Tgettime()
UWORD Tgettime(VOID)

Tgettime() returns thé&sEMDOS system time.

OPCODE 44 (0x2C)
AVAILABILITY All GEMDOS versions.
BINDING move.w #$2C,-(sp)
trap #1
addq.| #2,sp

RETURN VALUE Tgettime() returns a bit array arranged as follows:

Bits 15-11 Bits 10-5 \ Bits 4-0
Hour (0-23) Minute (0 to 59) Secs/2 (0 to 29)
SEE ALSO Tgetdate(), Tsettime(), Gettime()

Tsetdate()

WORD Tsetdate(date)
UWORD date

Tsetdate()sets the curreflsBEMDOS date.

THE ATARI COMPENDIUM

Tsettime() - 2.133

OPCODE

AVAILABILITY

PARAMETERS

BINDING

RETURN VALUE

CAVEATS

SEE ALSO

43 (0x2B)
All GEMDOS versions.

dateis a bit array arranged as illustrated untigetdate().

move.w date,-(sp)
move.w #%$2B,-(sp)
trap 1

addq.| #4,sp

Tsetdate()returns 0 if the operation was successful or non-zero if a bad date is
given.

GEMDOS version 0.13 did not inform tH8IOS of the date change and hence
would not change thH&BD date or the date of a battery backed-up clock,

Tgetdate(), Tsettime(), Settime()

Tsettime()

WORD Tsettime(time)

UWORD time;

OPCODE
AVAILABILITY
PARAMETERS

BINDING

RETURN VALUE

CAVEATS

SEE ALSO

Tsettime() sets the curref8EMDOS time.
45 (0x2D)
All GEMDOS versions.

timeis a bit array arranged as illustrated untigettime().

move.w time,-(sp)
move.w #%$2D,-(sp)
trap 1

addq.! #4,sp

Tsettime() returns 0 if the time was set or non-zero if the time given was invalid.

GEMDOS version 0.13 did not inform tH¥OS of the date change and hence
would not change thH&BD date or the date of a battery backed-up clock.

Tgettime(), Tsetdate(), Settime()

THE ATARI COMPENDIUM

— CHAPTER 3 -

BIOS

THE ATARI COMPENDIUM

Overview — 3.3

Overview

The Basic Input/Output SystefdlQOS) is responsible for the lowest level of communications
between the operating system and hardware devices. This chapter will document the operating
system functions of thBIOS and other system level operations.

System Startup

Upon a cold or warm bohtmicroprocessors in the 680x0 series load the initial supervisor
stack pointer from the first longword in memory ($0) and begin execution at the PC found in the
second longword ($4). The location this points to is the base initialization point for Atari

computers.

Every Atari computer follows a predefined set of steps to accomplish system initialization. The
following illustrates these steps leaving out some hardware initialization which is specific to the
particular computer line (ST, TT, Falcon, etc.).

The Interrupt Priority Level (IPL) is set to 7 and the OS switches to supervisor
mode.

A RESET instruction is executed to reset external hardware devices.

The presence of a diagnostic cartridge is determined. If one is inserted, it is
JMP’ed to with a return address in register A6.

If running on a 68030, the CACR, VBR, TC, TTO, and TT1 registers are
initialized.
If a floating-point coprocessor is present it is initialized.

If the memvalid$420),memval2$43A), andnemval3$51A) system variables
are all valid, a warm boot is assumed and the memory controller is initialized with
the value frommemcntrl($424).

The initial color palette registers are loaded and the screen base is initialized to
$100000.

Memory is sized if it wasn’t from a previous reset.

Magic numbers are stored in low memory to indicate the successful sizing and
initialization of memory.

System variables and the cookie jar are initialized.
TheBIOS initialization point is executed.

Installed cartridges of type 2 are executed.

1A cold boot occurs when the computer system experiences a total loss of power and no memory locations can be considered valid (thi
can be done artificially by zeroing memory, as is the case witlTtheALT-RSHIFT-DELETE reset). A warm boot is a manual restart of the
system which can be accomplished via software (liketRe-ALT-DELETE reset) or the external reset button found on some machines.

THE ATARI COMPENDIUM

3.4 - BIOS

* The screen resolution is programmed.

* Installed cartridges of type 0 are executed.

* Interrupts are enabled by lowering the IPL to 3.
* Installed cartridges of type 1 are executed.

* TheGEMDOS initialization point is executed.

* On systems runnin§OS 2.06 orTOS 3.06 and above, the Fuji logo is displayed
and a memory test and hard disk spin-up sequence is executed.

* If at least one floppy drive is attached to the system, the first sector of the first
floppy drive is loaded, and if executable, it is called.

* If at least one hard disk or other media is attached to the system, the first sector of
each is loaded in succession until one with an executable sector is found or each
has been tried.

* |f a hard disk sector was found that was executable, it is executed.
* The text cursor is enabled.
* AlIl"AUTOV.PRG” files found on the boot disk are executed.

* If _cmdload($482) is 0 then an environment string is created an8Heis
launched, otherwise \COMMAND.PRG” is loaded.

* Ifthe AES ever terminates, the system is reset and system initialization begins
again.

OS Header

The address of the start of operating system is stored in the system vaysbes¢$4F2).
The beginning of the operating system contains a table with contents as follows:

Offset
sysbase + $x Size Contents

$0 WORD 0s_entry. BRA to reset hander (shadowed at $0).

$2 WORD os_version: TOS version number. The high byte is the major
revision number, and the low byte is the minor revision number.

$4 LONG reseth: Pointer to the system reset handler.

$8 LONG 0s_beg: Base address of the OS (same as _sysbase).

$C LONG 0s_end: Address of the first byte of RAM not used by the
operating system.

$10 LONG os_rsvi1: Reserved

$14 LONG 0s_magic: Pointer to the GEM Memory Usage Parameter Block
(MUPB). See below for more information.

$18 LONG os_date: Date of system build ($YYYYMMDD).

$1C WORD os_conf. OS Configuration Bits. See below for more information.

$1E LONG 0s_dosdate: GEMDOS format date of system build.

THE ATARI COMPENDIUM

OS Header — 3.5

$20

LONG p_root. Pointer to a system variable containing the address of the
GEMDOS memory pool structure. This entry is available as of
TOS 1.2. The location pointed to by this value should never be
modified by an application.

$24

LONG p_kbshift. Pointer to a system variable which contains the address
of the system keyboard shift state variable. See below for more
information. This entry is available as of TOS 1.02. This location
should never be modified by an application.

$28

LONG p_run: Pointer to a system variable which contains the address of
the currently executing GEMDOS process. See below for more
information. This entry is available as of TOS 1.02. The
information pointed to by this variable should never be modified by
an application.

$2C

LONG p rsv2: Reserved

Some versions of AHDI (the Atari Hard Disk Interface) contain a bug which copies the system
header to RAM and then corrupts some portions of it. The following ‘C’ structure definition
defines théDSHEADER structure. The function GetROMSysbase() can be used to return an
OSHEADER pointer to the code in ROM. GetROMSysbase() will execute properly in either
user or supervisor mode.

typedef struct _osheader

UWORD 0s_entry;
UWORD 0s_version;
VOID *reseth;

struct _osheader *os_beg;

char *0s_end;
char *0s_rsvl;
char *0s_magic;

LONG os_date;
UWORD os_conf;
UWORD os_dosdate;

/* Available as of TOS 1.02 */

char **p_root;
char **p_kbshift;
char **p_run;
char *p_rsv2;
} OSHEADER;
#define _sysbase ((OSHEADER **)0x4F2)
OSHEADER *
GetROMSysbase(VOID)
{
OSHEADER *osret;
char *savesp = (Super(SUP_INQUIRE) ? NULL : Super(SUP_SET));
osret = (*_sysbase)->0s_beg;
if(savesp)
Super(savesp);
return osret;
}

THE ATARI COMPENDIUM

3.6 - BIOS

OS Configuration Bits

0s_confcontains the country code and video sync mode that the operating system was compiled
for. Bit #0 of this variable is 0 to indicate NTSC video mode or 1 to indicate PAL. The
remaining bits, when shifted right by one bit, yield the country code as follows:

os_conf >>1 Country

0 USA
1 Germany
2 France
3 United Kingdom
4 Spain
5 Italy
6 Sweden
7 Switzerland (French)
8 Switzerland (German)
9 Turkey
10 Finland
11 Norway
12 Denmark
13 Saudi Arabia
14 Holland
15 Czechoslovakia
16 Hungary
127 All countries are supported. As of TOS 4.0 the

OS is compiled with text for all languages and
switches between them based on the country
code stored in non-volatile RAM.

Use the ‘_AKP’ cookie to determine the actual
language in use.

GEM Memory Usage Parameter Block

The pointer at offset $14 in the OS header points t&td Memory Usage Parameter Block
which is defined as follows:

typedef struct

/* $87654321 if GEM present */
LONG gem_magic;

/* End address of OS RAM usage */
LONG gem_end;

/* Execution address of GEM */
LONG gem_entry;
} MUPB;

GEM is only launched at system startugéfm_magids $87654321. Th&BIOS call
Puntaes()also uses this information to restart the operating system after cled&aiigonly if
disk-based). It verifies thgem_magiavas valid and thd6EM was in RAM, then it modifies
gem_magiand restarts the operating system.

THE ATARI COMPENDIUM

OS Header — 3.7

Keyboard Shift State Variable
The OS header entpy kbshiftprovides a method of reading the state of the keyboard shift state
variables more quickly than witkbshift() . This header entry did not existi®S 1.0. The
following code provides an acceptable method for accessing this variabld Sallersions:

#define Kbstate *p_kbshift
char *p_kbshift;

VOID

init_kbshift(VOID)

{
/* See above for GetROMSysbase() definition. */
OSHEADER *0s = GetROMSysbase();

if (0s->0s_version == 0x0100)
p_kbshift = (char *)OXE1BL;
else
p_kbshift = *(char **)os->p_kbshift;
}

Currently Running Process

The OS header entryo_runis used to locate the address of the basepage of the currently
running process. This entry has only existed a$¥$ 1.02 and should never be modified. The
following routine returns the address of the basepage of the currently running process in all
versions offOS:

#define SPAIN 4
typedef long PID

PID *
get_run()

OSHEADER *0s = GetROMSysbase();
if(os->0s_version < 0x0102)

if((0s->0s_conf >> 1) == SPAIN)
return (PID *)0x873C;
else
return (PID *)0x602C;
}

else
return (PID *)(os->p_run);

THE ATARI COMPENDIUM

3.8 -BIOS

The Cookie Jar

Overview
The ‘Cookie Jar’ is a structure in memory containing entries called ‘cookies’ which are placed
in the ‘jar’ by the operating system or Terminate and Stay Resident (TSR) applications.
Applications can test for the presence of a cookie to determine the presence of a hardware
device or system feature.

The location of the cookie jar is determined by the address contained in the system variable
_p_cookieg$5A0). If no cookie jar has been allocated yet, this entry will coftiilal (0).

Structure
The variable p_cookiegoints to multiplesCOOKIE structures as defined below:

typedef struct

LONG cookie;
LONG value;
} COOKIE;

The structure membepokiecontains a value that hopefully uniquely identifies the cookie.
cookievalues are 4-byte packed longword identifiers (often a 4 letter ASCII code word).
Entries with the high byte equal to $5F, the underscore character, are reserved for use by Atari.

The structure memb&aluemay contain any value meaningful to an application or no value at
all. In some cases a cookie won’t have a meaningful value and its presence simply signals the
existence of another process or system feature. TSR’s oft&alusdo store a pointer to an
internal structure. The operating system uses cookies to signal the availability of hardware
devices or system features.

The end of the cookie jar is signaled with a final entry with the valugofatieequaling
NULL . Thevalueentry for this final cookie contains the number of entries possible without
reallocating the jar.

Searching for a Cookie
The following code may be used to find a cookie in the cookie jar. It returns O if an error
occurred or 1 if successful.pf_valueis nonNULL on entry, the address it points to will be
filled in with the value of the cookie.

WORD
getcookie(target, p_value)
LONG target;
LONG *p_value;
{
char *oldssp;
COOKIE *cookie_ptr;

oldssp = (Super(SUP_INQUIRE) ? NULL : Super(1L));

THE ATARI COMPENDIUM

The Cookie Jar — 3.9

cookie_ptr = *(COOKIE **)0x5A0;

if(oldssp)
Super(oldssp);

if(cookie_ptr = NULL)
do
if(cookie_ptr->cookie == target)

if(p_value '= NULL)
*p_value = cookie_ptr->value;

return 1;

} while((cookie_ptr++)->cookie != OL);

return O;

}

Placing a Cookie
Only TSR programs should place cookies in the cookie jar. The cookie these programs place
should either signal a function provided by the TSR or the presence of an expansion device. A
CPX, desk accessory, or standard application should not place cookies in the jar.

To place a cookie, the TSR must first locate the current location of the cookie jar. It is possible
that a cookie jar does not existf_cookies== 0). In that case, a new jar should be allocated.

In most instances, the cookie jar should be allocated in increments of 8 slots (though it is not a
requirement). In addition, if the process installs a new cookie jaF @Sversion lower than

1.06 it is also the processes responsibility to remove it upon a warm reset. Calling the following
code after installing the cookie jar for the first time will ensure that the cookie jar pointer is
properly reset on a warm boot.

RESMAGIC equ $31415926

_resvalid equ $426

_resvector equ $42A

_p_cookies equ $5A0
.globl _unjar

_unjar: move.l _resvalid,valsave
move.l _resvector,vecsave

move.l #reshand,_resvector
move.l #RESMAGIC,_resvalid
rts

reshand: clr.l _p_cookies
move.l vecsave,_resvector
move.l valsave, resvalid
jmp (a6)

.bss

THE ATARI COMPENDIUM

3.10 - BIOS

vecsave: .ds.| 1
valsave .ds.| 1

After determining the location of the cookie jar, the application should search for the first empty
slot in the jar by looking for BIULL in thecookiefield of a slot. Next, the application must
determine if this is the last slot in the jar by comparing the entry ivelbefield of the current
cookie to the number of the actual slot you are comparing. For instance, if you havis\fthdind

as the value forookiein slot 16 andvalueis equal to 16, the jar is full and must be reallocated.

If the slot found is not the last one, the application can simply copy the current slot to the next
slot and insert its own cookie.

If the jar must be reallocated, you should allocate enough memory to increase the size of the
cookie jar, copy the old entries to the new jar, insert your entry as the last cookie in the jar, and
finally terminate the jar with a cookie containind/elLL and the new number of slots you have
allocated.

Though not mentioned previously, it is also advisable to ensure that your cookie isn't already in
the jar before placing it to avoid two cookies for multiple executions of the same application to
appear.

System Cookies

As of TOS 1.06, the operating system will place several cookies in the cookie jar to inform
applications of certain operating system and hardware capabilities as follows:

cookie value

_CPU The low WORD of the CPU cookie contains a number representing
the processor installed in the system as follows:
Value Processor
0 68000
10 68010
20 68020
30 68030
_VDO This cookie represents the revision of the video shifter present. The

low WORD represents the minor revision number and the high
WORD represents the major revision number. Currently valid values
are:

Major Minor Shifter
0 0 ST
1 0 STe
2 0 TTO30
3 0 Falcon030

THE ATARI COMPENDIUM

The Cookie Jar — 3.11

_FPU This cookie identifies the presence of floating-point math capabilities
in the system. A non-zero low WORD indicates the presence of
software floating point support (no specific values have yet been
assigned). The high WORD indicates the type of coprocessor
currently connected to the system as follows:

Value Meaning
0 No FPU is installed.
1 SFP004
2 68881 or 68882
3 68881 or 68882 and SFP004
4 68881
5 68881 and SFP004
6 68882
7 68882 and SFP004
8 68040 Internal
9 68040 Internal and SFP004

_FDC This cookie indicates the capability of the currently connected floppy
drive. The lowest three bytes is a code indicating the origin of the unit
(‘ATC’ is an Atari unit). The upper byte is a value indicating the
highest density floppy present as follows:

Value Density
0 360 Kb/ 720 Kb
1 1.44 Mb
2 2.88 Mb

_SND This cookie contains a bitmap of sound features available to the

system as follows:
Bit Feature
0 Gl Sound Chip (PSG)
1 Stereo 8-bit Playback
2 DMA Record (w/XBIOS)
3 16-bit CODEC
4 DSP

_MCH This cookie indicates the machine type with the major revision
number in the high WORD and the minor revision number in the low
WORD as follows:

Major Minor Shifter
0 0 ST
1 0 STe
1 8 ST Book
1 16 Mega STe
2 0 TTO030
3 0 Falcon030

_Swi On machines that contain internal configuration dip switches, this
value specifies their positions as a bitmap. Dip switches are
generally used to indicate the presence of additional hardware which
will be represented by other cookies.

_FRB This cookie is present when alternative RAM is present. It points to a
64k buffer that may be used by DMA device drivers to transfer
memory between alternative RAM and ST RAM for DMA operations.

_FLK The presence of this cookie indicates that file and record locking

extensions to GEMDOS exist. The value field is a version number
currently undefined.

THE ATARI COMPENDIUM

3.12 - BIOS

_NET

This cookie indicates the presence of networking software. The
cookie value points to a structure which gives manufacturer and
version information as follows:

struct netinfo

LONG publisher;
LONG version;
b

_IDT

This cookie defines the currently configured date and time format,
Bits #0-7 contain the ASCII code of the date separator. Bits #8-11
contain a value indicating the date display format as follows:

Value Meaning
0 MM-DD-YY
1 DD-MM-YY
2 YY-MM-DD
3 YY-DD-MM

Bits #12-15 contain a value indicating the time format as follows:

Value Meaning
0 12 hour
1 24 hour

Note: The value of this cookie does not affect any of the internal time
functions. It is intended for informational use by applications only.

_AKP

This cookie indicates the presence of an Advanced Keyboard
Processor. The high word of this cookie is currently reserved. The
low word indicates the language currently used by TOS for keyboard
interpretation and alerts. See the explanation for the country code in
the OS header earlier in this chapter for valid values.

If this cookie is present on TOS 5.0 and higher then the system
supports soft-loaded keyboard tables.

FSMC

This cookie indicates the presence of FSM or SpeedoGDOS. Its
value field is a pointer to a structure as follows:

typedef struct

LONG gdos_type;
UWORD version;
WORD quality;

} GDOS_INFO;

The gdos_type field determines the variety of GDOS. ‘'_FSM’
represents Imagen font-based FSM whereas ‘_SPD’ represents
Bitstream font-based FSM. version specifies the current GDOS
version.

quality determines the output quality of v_updwk() . The default
setting is QUAL_DEFAULT (OxFFFF) which causes the driver to
use the setting last set in the driver configuration accessory or CPX.
This default setting may be overridden by placing a value of
QUAL_DRAFT (0x0000) or QUAL_FINAL (0x0001) at this location.
The quality setting should be restored to QUAL_DEFAULT at the
end of each print job.

THE ATARI COMPENDIUM

BIOS Devices — 3.13

SAM\0 This cookie indicates the presence of System Audio Manager and
the XBIOS extensions it provides. The value field is currently
reserved for internal use.

MINT This cookie indicates the presence of MiNT (MultiTOS) and its
value field is the current version number (ex: MiNT 1.02 has a value
field of 0x00000102).

BIOS Devices

TheBIOS provides access to six default devices (numbered 0-5). In addif@§h2.00

provides the ability to add extra devices with ¥BOS Bconmap() function (see th&BIOS

overview for more information). Device assignments higher than device five are dependent upor
the machine and any third-party enhancements. The following list indicates the device
assignments which remain constant:

Name Device GEMDOS
Number Filename Meaning

DEV_PRINTER 0 PRN: Centronics Parallel Port

DEV_AUX 1 AUX: Default Serial Device (this device number could actually
refer to any serial device connected to the system
depending on which was mapped with Bconmap())

DEV_CON 2 CON: Console (screen device)

DEV_MIDI 3 N/A MIDI Ports

DEV_IKBD 4 N/A Intelligent Keyboard Controller

DEV_RAW 5 N/A Console (no interpretation)

The Console Device

Two methods are provided for outputting characters to the screen. OutBl®&alevice #2

subjects character codes to interpretation. Codes such as a carriage return (ASCII 13), line feec
(ASCII 10),TAB (ASCII 9), CTRL-G (ASCII 7), andESCAPE(ASCII 27) are interpreted as special
cases and handled specially.

Output viaBIOS device #5 causes all characters to be output literally to the screen without
interpretation.

The VT-52 Emulator
The Atari console device contains emulation code compatible with the VT-52 standard. Special
escapes may be used to manipulate the cursor and create text effects.

To send an escape sequence, one of the following codes (and possibly additional characters)
must be sent following tHeSCAPEcharacter (ASCII 27):

Escape Code Effect
A 65 Move the cursor up one line. If the cursor is on the top line this does
nothing.
B 66 Move the cursor down one line. If the cursor is on the bottom line this
does nothing.

THE ATARI COMPENDIUM

3.14 - BIOS

C 67 Move the cursor right one line. If the cursor is on the far right of the
screen this does nothing.

D 68 Move the cursor left one line. If the cursor is on the far left of the screen
this does nothing.

E 69 Clear the screen and place the cursor at the upper-left corner.

H 72 Move the cursor to the upper-left corner of the screen.

| 73 Move the cursor up one line. If the cursor is on the top line, the screen
scrolls down one line.

J 74 Erase the screen downwards from the current position of the cursor.

K 75 Clear the current line to the right from the cursor position.

L 76 Insert a line by scrolling all lines at the cursor position down one line.

M 77 Delete the current line and scroll lines below the cursor position up
one line.

Y 89 Position the cursor at the coordinates given by the following two
codes. The screen starts with coordinates (32, 32) at the upper-left of
the screen. Coordinates should be presented in reverse order, Y and
then X.

b 98 This code is followed by a character from which the lowest four bits
determine a new text foreground color.

c 99 This code is followed by a character from which the lowest four bits
determine a new text background color.

d 100 Erase the screen from the upper-left to the current cursor position.

e 101 Enable the cursor.

f 102 Disable the cursor.

j 106 Save the current cursor position. (Only implemented as of TOS 1.02)

k 107 Restore the current cursor position. (Only implemented as of TOS
1.02)

| 108 Erase the current line and place the cursor at the far left.

0 111 Erase the current line from the far left to the current cursor position.

p 112 Enable inverse video.

q 113 Disable inverse video.

v 118 Enable line wrap.

w 119 Disable line wrap.

Media Change

TheBIOS functionMediach() returns the current media-change status of the drive specified.
This state is used to determine if a disk has been changed in removable media drives (floppies,

removable hard drives, etc.

TheGetbpb() incorrectly resets the media change state. Failure to properly reset this state after

calling Getbpb() can cause data loss. The functignediach() shown below, forces the

Mediach() function to return a ‘definitely changed’ state and should always be called after

calling Getbpb() on removable media drives.

/*

* _mediach(): force the media ‘changed’ state on a removable drive.
*

* Usage: errcode = _mediach(devno)

*

- returns 1 if an error occurs

* Inputs: devno - (0 = ‘A", 1 = ‘B, etc...)
*

THE ATARI COMPENDIUM

Media Change — 3.15

*

_mediach:

loop:

noclose:

done:

.globl

move.w
move.w
add.b

move.b

clr.l
move.w
trap
addq.!
move.|
move.w

move.l
move.|
move.l

move.l
move.|
move.l

_mediach

4(sp),do

d0,mydev

#A',d0

do,fspec ; Set drive spec for search

-(sp) ; Get supervisor mode, leave old SSP

#$20,-(sp) ; and “Super” function code on stack.

#1

#6,sp

do,-(sp)
#$20,-(sp)

$472,0ldgetbpb
$47e,0ldmediach
$476,0ldrwabs

#newgetbpb,$472
#newmediach,$47e
#newrwabs,$476

; Fopen a file on that drive

move.w
move.l
move.w
trap
addq.l

; Fclose
tst.l
bmi.s

move.w
move.w
trap
addq.!

moveq
cmp.l
bne.s

move.|
move.l
move.|

trap
addq.!

moveq.!
rts

trap
addq.!

clr.l

#0,-(sp)
#fspec,-(sp)
#$3d,-(sp)
#1
#8,sp

the handle
do
noclose

do,-(sp)
#$3e,-(sp)
#1
#4,sp

#0,d7
#newgetbpb,$472 ; still installed?
done
oldgetbpb,$472 ; Error, restore vectors.
oldmediach,$47e
oldrwabs,$476

#1 ; go back to user mode
#6,sp ; restore sp

#1,d0 ;1 =Error

#1 ; go back to user mode
#6,sp ; from stack left above

do ; No Error

THE ATARI COMPENDIUM

3.16 — BIOS

rts

/*
* New Getbpb()...if it's the target device, uninstall vectors.
* In any case, call normal Getbpb().

*/
newgetbpb:
move.w mydev,d0
cmp.w 4(sp),d0
bne.s dooldg
move.l oldgetbpb,$472 ; Got target device so uninstall.
move.l oldmediach,$47e
move.l oldrwabs,$476
dooldg: move.l oldgetbpb,a0 ; Go to real Getbpb()
jmp (a0)
/*
* New Mediach()...if it's the target device, return 2. Else call old.
*

newmediach:
move.w mydev,dO
cmp.w 4(sp),do

bne.s dooldm
moveq.l #2,d0 ; Target device, return 2
rts
dooldm:
move.l oldmediach,a0 ; Call old
jmp (a0)
/*
* New Rwabs()...if it's the target device, return E_CHG (-14)
*
newrwabs:
move.w mydev,dO
cmp.w 4(sp),do
bne.s dooldr
moveq.l #-14,d0
rts
dooldr:
move.l oldrwabs,a0
jmp (a0)
.data
fspec: dc.b “X:\X",0
mydev: ds.w 1
oldgetbpb: ds.| 1
oldmediach: ds. 1
oldrwabs: ds.| 1
.end

THE ATARI COMPENDIUM

BIOS Vectors — 3.17

BIOS Vectors

Reset Vector
Shortly after a warm boot the OS will jump to the address contained in the system variable
resvector($42A) if the value in the system variabfsvalid($426) contains the magic number
$31415926. The OS will supply a return address to this code segment in register A6 but the
subroutine must not utilize the stack as neither stack pointer will be valid.

If your process needs to do cleanup in the event of a warm reset (see “Placing a Cookie” earlie
in this chapter) the following code installs a user routine to accomplish this.

_resvalid equ $426
_resvector equ $42A
RESMAGIC equ $31415926
text
installres:
move.l _resvalid,oldvalid
move.l _resvector,oldvector

move.l #myresvec,_resvector
move.l #RESMAGIC, resvalid
rts

myresvec:
*
* Insert user code here
*
move.l oldvector,_resvector
move.l oldvalid,_resvalid
jmp (a6)
.bss
oldvector: ds.| 1
oldvalid: ds.| 1
.end

THE ATARI COMPENDIUM

3.18 - BIOS

System Bell Vector

As of TOS 1.06, the OS jumps through the address contained in the system \eglhidlook

($5AC) to ring the system bell. It is possible for a custom routine to hook into this vector to alter
the bell sound. The user routine may modify registers D0O-D2/A0-A2 and may chain to the old
bell handler if desired. It is also safe to m&t@S andXBIOS calls following the procedure

for calling from an interrupt (when not running un8#tiTOS). The routine should either jump

to the old handler or execute an RTS statement.

System Keyclick Vector
Similar to the system bell vector, another vector is called each time a keyclick sound is
generated. This vector is stored in system varigtllehook($5B0) and is entered with the
keycode (not the ASCII code) of the key struck in the low byte of DO. Registers D1-D2/A0-A2
may be modified, however, all other registers including DO must be maintained. The
replacement handler may either chain to a new handler or RTS.

Deferred Vertical Blank Handlers
Applications may install custom routines which are called during every vertical blank (approx.
50-72 times per second). The OS performs several operations during the vertical blank as
follows:
* The system variablefrclockis incremented.

* The system variabMblsemis tested. If 0, the vertical blank handler exits
immediately.

* All registers are saved.
* The system variablevbclockis incremented.

* Ifthe system is currently in a high resolution video mode and a low-resolution
monitor is detected, the video resolution is adjusted and the vector found at system
variableswv_veds called.

* The text cursor blink routine is called.
* If a new palette has been selected since the last vertical blank, it is loaded.

* |f a new screen base address has been selected since the last vertical blank, it is
selected.

* Each of the “deferred” vertical blank routine handlers is called.

* If the system variablprt_cntis greater than -1, the vector at system variable
scr_dumps called.

* Saved registers are restored and processing continues.

To install a routine to be called as a “deferred” vertical blank handler, you must inspect the list
of handler vectors atolqueuefor aNULL slot, replace it with your vector and initialize the
next slot toNULL . The system variablvblsindicates the number of slots pointed to by

THE ATARI COMPENDIUM

The XBRA Protocol — 3.19

vblqueue|f the vertical blank handler list is filled, you may allocate a new area, copy the old
list of handlers with your handler, and update the poiitstueueandnvbls

The XBRA Protocol

Many applications that add functionality to the system do so by ‘hooking’ themselves into one or
more interrupt or pass-through vectors (usually Wigiexc(). Most vector handlers work by
executing the relevant code when the interrupt is called and then calling the original vector
handler. When several applications handle one vector, a vector ‘chain’ is created. This chain
makes it difficult for debuggers or the process itself to ‘unhook’ itself from the chain.

The XBRA protocol was designed so that processes that wish to be able to unhook themselves
may and so that debuggers can trace the ‘chain’ of vector handlers. Following the protocal is
simple. Prior to the first instruction of the vector handler, insert three longwords into the
application as follows:

* The longword ‘XBRA’ 0x58425241.

* Another longword containing the application ‘cookie’ ID (this is the same as that
put into the cookie jar if applicable).

* Alongword into which should be placed the address of the original handler.

The following code example shows how to correctly use the XBRA protocol in a routine
designed to supplement the 680x0 TRAP #1 veG&MDOS):

instl_trapl:
move.l #my_trapl,-(sp)
move.w #VEC_GEMDOS,-(sp)
move.w #Setexc,-(sp)
trap #13
addq.l #8,sp
move.l do,old_handler
rts
DC.L ‘XBRA’
DC.L ‘SDS1’ ; Put your cookie here
old_handler DC.L 0
my_trapl:
movem.| d2-d7/a2-a6,-(sp)

Your TRAP #1 handler goes here.

movem.| (sp)+,d2-d7/a2-a6
move.l old_handler,-(sp) ; Fake a
return
rts ; to old code.

THE ATARI COMPENDIUM

3.20 - BIOS

The following ‘C’ function is an example of how to use the XBRA protocol to unhook a vector
handler from the XBRA chain. This function will only work if all installed vector handlers
follow the XBRA protocol. It takes Setexc()vector number and an XBRA application id
cookie as a parameter. It returns the address of the routine that was unhooked or OL if
unsuccessful.

typedef struct xbra

LONG xbra_id;

LONG app_id;

VOID (*oldvec)();
} XBRA;

LONG
unhook_xbra(WORD vecnum, LONG app_id)
{
XBRA *rx;
LONG vecadr, *stepadr, Iret = OL;
char *savessp;

vecadr = Setexc(vecnum, VEC_INQUIRE);
rx = (XBRA *)(vecadr - sizeof(XBRA));

/* Set supervisor mode for search just in case. */
savessp = Super(SUP_SET);

/* Special Case: Vector to remove is first in chain. */
if(rx->xbra_id == ‘XBRA’ && rx->app_id == app_id)

Setexc(vecnum, rx->oldvec);
return vecadr;

}

stepadr = (LONG *)&rx->oldvec;
rx = (XBRA *)((LONG)rx->oldvec - sizeof(XBRA));
while(rx->xbra_id == ‘XBRA")
{
if(rx->app_id == app_id)
{

*stepadr = Iret = (LONG)rx->oldvec;
break;

}

stepadr = (LONG *)&rx->oldvec;
rx = (XBRA *)((LONG)rx->oldvec - sizeof(XBRA));

}

Super(savessp);
return Iret;

THE ATARI COMPENDIUM

BIOS Function Calling Procedure — 3.21

BIOS Function Calling Procedure

BIOS system functions are called via the TRAP #13 exception. Function arguments are pushed
onto the current stack (user or supervisor) in reverse order followed by the function opcode. The
calling application is responsible for correctly resetting the stack pointer after the call.

TheBIOS may utilize registers DO-D2 and A0-A2 as scratch registers and their contents should
not be depended upon at the completion of a call. In addition, the function opcode placed on the
stack will be modified.

The following example foBconout() illustrates calling th&lOS from assembly language:

move.w #char,-(sp)
move.w #dev,-(sp)
move.w #$03,-(sp)
trap #13

addq. #6,sp

A ‘C’ binding for a generi®lOS handler would be as follows:

_bios:
; Save the return code from the stack
move.l (sp)+,trpl3ret
trap #13
move.l trpl3ret,-(sp)
rts
.bss
trpl3ret:
.ds.l 1

With the above code, you could easily design a ‘C’ macro td3#@& calls to your compiler
as in the following example fddconout():

#define Bconout(a) bios(0x02, a)

TheBIOS is re-entrant to three levels, however there is no error checking performed so
interrupt handlers should avoid inted3®S usage. In addition, no disk or printer usage should
be attempted from the system timer interrupt, critical error, or process-terminate handlers.

Calling the BIOS from an Interrupt
TheBIOS andXBIOS are theonly two OS sub-systems which can be called from an interrupt
handler. Preciselgneinterrupt handler at a time may use BH®S as shown in the following
code segment:

savptr equ $4A2
savamt equ $23*2
myhandler:

sub.| #savamt,savptr

THE ATARI COMPENDIUM

3.22 - BIOS

; BIOS calls may be performed here
add.| #savamt,savptr

rte ; (or rts?)

This method is not valid unddfultiTOS .

THE ATARI COMPENDIUM

BIOS Function Reference

THE ATARI COMPENDIUM

Bconin() — 3.27

Bconin()

LONG Bconin(dev)

WORD dey,
Bconin() retrieves a character (if one is waiting) from the specified device.
OPCODE 2 (0x02)
AVAILABILITY All TOS versions.
PARAMETERS devspecifies the device to read from as follows:
Name dev Device
DEV_PRINTER 0 Parallel port
DEV_AUX 1 Auxillary device (normally the RS-232 port, however, TOS
versions with Bconmap() can map in other devices to this
handle)
DEV_CONSOLE 2 Console device (keyboard)
DEV_MIDI 3 MIDI Port
DEV_IKBD 4 IKBD Controller (not available as an input device)
DEV_RAW 5 Console device (keyboard)
See Overview 6 — Additional devices (as available)
BINDING move.w dev,-(sp)
move.w #$02,-(sp)
trap #13
addq.l #4,sp

RETURN VALUE Bconin() returns a bit array arranged as follows:

Bits 31-24 Bits 23-16
Shift key status Keyboard Reserved ASCII value
(see Kbshift()) Scan Code (0)
COMMENTS The shift key status is only returned if the system variederm(char *(0x484)

) has bit 3 set. This is normally disabled.
Non-ASCII keys return 0 in bits 7-0.

SEE ALSO Bconstat(), Cconin(), Cauxin()

THE ATARI COMPENDIUM

3.28 — BIOS Function Reference

LONG Bconout(dey ch)
WORD dey; ch;
Bconout() outputs a character to a named device.
OPCODE 3 (0x03)
AVAILABILITY All TOS versions.
PARAMETERS devspecifies the output device as follows:
Name dev Device
DEV_PRINTER 0 Parallel port
DEV_AUX 1 Auxillary device (see note under Bconin())
DEV_CONSOLE 2 Console device (screen)
DEV_MIDI 3 MIDI port
DEV_IKBD 4 Keyboard (IKBD)
DEV_RAW 5 Raw screen device (control characters and escapes are
not processed)
See Overview 6— Additional devices (as available)
BINDING move.w Ch,-(Sp)
move.w dev,-(sp)
move.w #$03,-(sp)
trap #13
addq. #6,sp

RETURN VALUE Bconout() returns 0 if the character was sent successfully or non-zero otherwise.

SEE ALSO Bconin(), Cconout(), Cauxout(), Cprnout(), Bcostat()

Bconstat()

LONG Bconstat(dev)
WORD dey,

Bconstat() determines whether the specified device is prepared to transmit at
least one character.

OPCODE 1 (0x01)

THE ATARI COMPENDIUM

Bcostat() — 3.29

AVAILABILITY All TOS versions.
PARAMETERS devspecifies the device to check as listed urgiznin().
BINDING move.w dev,-(sp)

move.w #$01,-(sp)

trap #13

addq.l #4,sp

RETURN VALUE Bconstat()returns 0 if no characters are waiting or -1 if characters are waiting to
be received.

SEE ALSO Bconin(), Cconis(), Cauxis()

Bcostat()

LONG Bcostat(dev)

WORD dey,
Bcostat() determines if the specified device is prepared to receive a character.
OPCODE 8 (0x08)
AVAILABILITY All TOS versions.
PARAMETERS devspecifies the device to poll as listed unBepnout().
BINDING move.w dev,-(sp)
move.w #$08,-(sp)
trap #13
addq.l #4,sp

RETURN VALUE Bcostat() returns 0 if the device is not ready to receive characters or -1
otherwise.

CAVEATS A bug inTOS 1.0 existed that caused the IKBD and MIDI device numbers to
become swapped when being handled byBgestat() call, subsequently
returning data for the wrong device. To allow previously written programs to
continue operating correctly, this bug has been maintained on purpose in all
current versions of OS. You should therefore specify a value of 3 for the IKBD
and 4 for MIDI for this call only.

SEE ALSO Bconout(), Cauxos(), Cconos(), Cprnos()

THE ATARI COMPENDIUM

3.30 — BIOS Function Reference

Drvmap()

ULONG Drvmap(VOID)

OPCODE

AVAILABILITY

PARAMETERS

BINDING

RETURN VALUE

COMMENTS

SEE ALSO

Drvmap() returns a list of mounted drives.
10 (OX0A)

All TOS versions.

None.

move.w #$0A,-(sp)
trap #13

addq. #2,sp

Drvmap() returns daJLONG bitmap of mounted drives. For each drive present,
its bit is enabled. Drive ‘A:’ is bit 0, drive ‘B:" is bit 1, and so on.

Single floppy systems will indicate that two drives are available since both drives
can actually be addressed. A request for drive ‘B:’ will simply ca@®to ask

the user to insert ‘Disk B’ and provide automatic handling routines for all disk
swapping.

Dsetdrv()

Getbpb()

BPB *Getbpb(dev)

WORD dey,

OPCODE
AVAILABILITY
PARAMETERS

BINDING

Getbpb() returns the address of the curBRB (Bios Parameter Block) for a
mounted device.

7 (0x07)
All TOS versions.

devspecifies the mounted device (‘A =0, ‘B’ =1) .

move.w dev,-(sp)
move.w #$07,-(sp)
trap #13

addq.! #4,sp

THE ATARI COMPENDIUM

Getmpb() — 3.31

RETURN VALUE

CAVEATS

Getbpb() returns a pointer to the devic&®B. TheBPB is defined as follows:

typedef struct

WORD recsiz; /* bytes per sector */

WORD clsiz; /* sectors per cluster */

WORD clsizb; /* bytes per cluster */

WORD rdlen; /* sector length of root directory */

WORD fsiz; [* sectors per FAT */

WORD fatrec; /* starting sector of second FAT */

WORD datrec; /* starting sector of data */

WORD numcl; /* clusters per disk */

WORD bflags; /* bit 0=1 - 16 bit FAT, else 12 bit */
} BPB;

A media chang&ustbe forced after calling this function prior to making any
GEMDOS calls. Failure to do so may cadsEMDOS to become unaware of a
disk change causing data loss. Refer to the discussion of forcing a media change
earlier in this chapter.

Getmphb()

VOID Getmpb(mpb)

OPCODE

AVAILABILITY

PARAMETERS

Getmpb() returns information regardifgEMDOS free and allocated memory
blocks.

0 (0x00)
All TOS versions.

mpbis a pointer to MPB structure which is filled in by the function. The related
structures are defined as follows:

typedef struct md

struct md *m_link; /* pointer to next block */

VOIDP m_start; /* pointer to start of block */

LONG m_length; /* length of block */

BASEPAGE *m_own; /* pointer to basepage of owner */

} MD;

typedef struct mpb

MD *mp_mfl; /* free list */
MD *mp_mal; /* allocated list */
MD *mp_rover; [* roving pointer */

} MPB;

THE ATARI COMPENDIUM

3.32 — BIOS Function Reference

BINDING

CAVEATS

COMMENTS

SEE ALSO

pea mpb
clr.w -(sp)
trap #13
addq. #6,sp

MultiTOS uses a very different method of memory management which makes this
call useless.

An application shoultieverattempt to modify any of the returned information nor
make any assumptions about memory allocation because of this function.

Malloc(), Mfree()

Kbshift()

LONG Kbshift(mode)

WORD mode

OPCODE
AVAILABILITY

PARAMETERS

BINDING

RETURN VALUE

Kbshift() allows the user to interrogate or modify the state of the keyboard
‘special’ keys.

11 (0x0B)
All TOS versions.

modeis -1 to read the state of the keys or a mask of the following values to change
the current state:

Name Mask Meaning
K_RSHIFT 0x01 Right shift key depressed
K_LSHIFT 0x02 Left shift key depressed
K_CTRL 0x04 Control key depressed
K_ALT 0x08 Alternate key depressed
K_CAPSLOCK 0x10 Caps-lock engaged
K_CLRHOME 0x20 Clr/Home key depressed
K_INSERT 0x40 Insert key depressed

move.w mode,-(sp)

move.w #$0B,-(sp)

trap #13

addq.l #4,sp

Kbshift() returns the state that the keyboard ‘special’ keys were in prior to the
call.

THE ATARI COMPENDIUM

Mediach() — 3.33

COMMENTS Kbshift() is not a particularly fast call. If you are only interested in reading the
state a documented macro follows that replédshift() and is much faster. Call
the kb_init() function, as shown below, before using:

char *p_kbshift;
#define Kbstate() *p_kbshift

VOID
kb_init(VOID)
/* GetROMSysbase is defined in the BIOS Overview */
OSHEADER *osheader = GetROMSysbase();
if (osheader->o0s_version == 0x0100)
p_kbshift = (char *)OxelbL;
else
p_kbshift = *(char **)osheader->p_kbshift;
}
SEE ALSO evnt_keybd(), evnt_multi(), Cconin(), Bconin()

Mediach()

LONG Mediach(dev)

WORD dey,
Mediach() inquires as to whether the ‘media’ has been changed since the last disk
operation on a removable block device (floppy, removable hard drive, floptical,
etc...).
OPCODE 9 (0x09)
AVAILABILITY All TOS versions.
PARAMETERS devspecifies the mounted device number to inquire (‘A = 0, ‘B’ = 1, etc.).
BINDING move.w dev,-(sp)
move.w #$09,-(sp)
trap #13
addq. #4,sp

RETURN VALUE Mediach() returns one of three values:

Name Value Meaning
MED_NOCHANGE 0 Media has not changed
MED_UNKNOWN 1 Media may have changed
MED_CHANGED 2 Media has changed

THE ATARI COMPENDIUM

3.34 - BIOS Function Reference

SEE ALSO Getbpb()

Rwabs()

LONG Rwabs(mode buf, count, recng, dey, Irecno)

WORD mode

VOIDP buf;

WORD countrecnodey,

LONG Irecno;

Rwabs() reads and writes sectors to a mounted device.

OPCODE 4 (0x04)

AVAILABILITY All TOS versions. Hard disk access requires the use of a hard disk driver (such as
AHDI). The long sector offset version is only available a&kPl 3.0.AHDI
version numbers can be inquired through system vaifialeptr(see discussion
earlier in this chapter).

PARAMETERS modeis a bit mask which effects the operation to be performed as follows:
Name Bit Meaning
RW_READ 0 0 = Read, 1 = Write
or
RW_WRITE
RW_NOMEDIACH 1 Do not read or modify the media change status.
RW_NORETRIES 2 Disable retries
RW_NOTRANSLATE 3 Do not translate logical sectors into physical sectors

(recno specifies physical instead of logical sectors)

The read or write operation is performed at addpeguf must becount* bytes
per logical sector in logical mode epunt* 512 bytes in physical modeount
specifies how many sectors will be transferred.
devspecifies the index of the mounted device. In logical mode, ‘C:’is 2, ‘D:’ is 3,
etc... In physical mode, devices 2-9 are the ACSI devices and 10-17 are SCSI
devices.
recnospecifies the first sector to read from. If you need to specify a long offset,
setrecnoto -1 and pass the long valudi@cno. When using a version of the
AHDI below 3.0, the paramet&ecno should not be passed.

BINDING /* If running AHDI <3.0 omit first parameter */

THE ATARI COMPENDIUM

Setexc() — 3.35

move.| Irecno,-(sp)
move.w dev,-(sp)
move.w recno,-(sp)
move.w count,-(sp)
pea buf,-(sp)
move.w mode,-(sp)
move.w #3%04,-(sp)
trap #13

lea 18(sp),sp

RETURN VALUE Rwabs() returnsE_OK (0) if successful or a negati®OS error code
otherwise.

COMMENTS Some C compilers (Lattice C in particular) have a secondary binding called
Lrwabs() used to pass the additional parameter.

This function may invoke the critical error handletv(_critic).

Setexc()

(VOIDP)() Setexc(num, newvec)
WORD num;
VOID (* newved();

Setexc()reads or modifies system exception vectors.

OPCODE 5 (0x05)
AVAILABILITY All TOS versions.
PARAMETERS numindicates the vector number you are interested in. To obtain the vector number

divide the address of the vector by 4. Some common vectors are:

Name ’ num Vector

VEC_BUSERROR 0x02 - 0x04 Bomb errors (Bus, Address,
VEC_ADDRESSERROR Instruction)
VEC_ILLEGALINSTRUCTION

VEC_GEMDOS 0x21 Trap #1 (GEMDOS)
VEC_GEM 0x22 Trap #2 (AES/VDI)

VEC_BIOS 0x2D Trap #13 (BIOS)

VEC_XBIOS 0x2E Trap #14 (XBIOS)
VEC_TIMER 0x100 System timer (etv_timer)
VEC_CRITICALERROR 0x101 Critical error handler (etv_critic)
VEC_TERMINATE 0x102 Process terminate handle (etv_term)

newvecshould be the address of your new vector handler. Passing a value of

THE ATARI COMPENDIUM

3.36 — BIOS Function Reference

VEC_INQUIRE ((VOIDP)-1) will not modify the vector.

BINDING pea newvec
move.w num,-(sp)
move.w #$05,-(sp)
trap #13
addq.l #8,sp

RETURN VALUE The original value of the vector is returned by the call.

COMMENTS You must reinstate old vector handlers you changed prior to your process exiting.

Programs which modify replace system vector code should install themselves
following the conventions of the XBRA protocol. For details, consult the
overview portion of this chapter.

Tickcal()

LONG Tickcal(VOID)

Tickcal() returns the system timer calibration.

OPCODE 6 (0x06)
AVAILABILITY All TOS versions.
PARAMETERS None.
BINDING move.w #$06,-(sp)
trap #13
addq.! #2,sp

RETURN VALUE Tickcal() returns & ONG indicating the number of milliseconds between system
clock ticks.

THE ATARI COMPENDIUM

— CHAPTER 4 —

XBIOS

THE ATARI COMPENDIUM

Overview — 4.3

Overview

The etendedBasiclnputOutputSystem(XBIOS) is a software sub-system BPS which

contains functions used to interact with and control Atari computer hardware. The availability of
many of these functions is dependent on hardware whose presence can be determined by the
currentTOS version or by interrogating the system ‘cookie jar’ (8apter 3:BIOS for more
details).

Some functions (notably video hardware and storage device related functions) should only be
used by device drivers and system level software as they represent a non-portable method of
hardware interaction which may be unsupported in future Atari computers.

As a general rul§GEMDOS andVDI functions should be used, when possible, rather than

XBIOS calls. TheGEMDOS andVDI provide a software abstraction layer which will make
software applications much more compatible across new computer releases.

Video Control

The video capabilities of Atari computer systems have varied greatly since their introduction.
Applications which use théDI for their video displays will require little if any modifications

to run on new systems. TK&IOS is mostly required for device drivers and other applications
which require more direct control over the video hardware. When present, the * VDO’ entry in
the system cookie jar will reveal information about the video hardware present.

The Physical/Logical Screen
Two separate video display pointers are maintained b¥BH@S at any time. The physical
screen address points to the memory location that the video shifter uses to update the display.
This memory mustot be in fast RAM and must B¥ORD-aligned (original ST computers
expect screen memory to be aligned to a 256-byte boundary).

A second video memory pointer points to the ‘logical’ screen. This memory area is used by the
VDI to output graphics. Normally, the physical screen address is equal to the logical screen
address meaning théb! output is shown immediately on screen. Software (most commonly
games) can allocate an additional memory block and use these two pointers to page-flip for
smooth animations.

Physbase(landLogbase()return these two address&etscreen(can be used to reset these
addresses and change screen modes. A95f4.0,Setscreen(xeinitializes thevDI screen
driver (you must still calvg_extnd() to update your workstations) but wilbt reinitialize the
AES. This means that if you change resolution uSiatscreen()do not use thAES until the
screen is restored to its original resolution. K&S versions prior to 4.0, you should not use
anyGEM calls while the screen mode is altered.

THE ATARI COMPENDIUM

4.4 — XBIOS

The Falcon030 functioMgetSize()is a utility function that will return the number of bytes that
must be allocated for the specified video mode. When not running on a Falcon030, you will have
to calculate this yourself.

Setting/Determining Screen Resolution
Getrez() wasoriginally a safe method for determining the current video hardware
configuration. As new video modes became available, thésgftiez() became less and less
useful. CurrentlyGetrez() should be used famly one purpose. The formulaetrez() + 2
should be used to select #BI physical device ID for the screen so that the proper screen fonts
can be selected. See the description opnvwk() for more details.

In order to provide true screen independence, you should use the values returnabyctile
v_opnvwK() to determining the screen resolution your application is using<BKaS

provides calls that will determine the current video mode but they are hardware dependent and
will probably stop working as expected as new video hardware is released.

TheGetrez() call can reliably determine the video mode of an ST, STe or Mega ST/e. Three
calls have since been added to determine the video mode of the TT030 and Falcon030
computers.

EgetShift() andEsetShift() can be used to interrogate and set the TT030 video mode.
VsetMode() can similarly be used to interrogate and set the Falcon030 video mode. The
Falcon030 calVgetMonitor() can be used to determine the type of attached monitor and,
therefore, the available video modes.

TTO30TOS also provides the calfssetGray() andEsetSmear() Together, these calls
duplicate some of the functionally containedEBetShift() but can be used individually as
desired to configure the special gray-scale and smear modes present in the TT030.

EsetShift() andVsetMode() are designed to change the video modes of the TT030 and
Falcon030 respectively, however, they do not reinitializéMh8 or VDI . It is also possible to
change TT030 and Falcon030 video modes usgigcreen() TTO30 modes are set by

supplying the appropriate resolution code (@e¢rez() for a list of resolution codes).

Falcon030 modes are set by adding an extra parameter to the call with a special resolution code
of 3. See the explanation fBetscreen()ater in this chapter for details.

Manipulating the Palette
Prior to the introduction of the TBetcolor() andSetpalette()were used to set the 16
available palette entrieSetpalette()sets the entire palette at once whefegisolor() sets
colors at an individual level and can also be used to interrogate palette entries.

The ST has 16 palette entries, each supporting any of 512 available colors. The ST specifies
color in components of red, green, and blue. Intensity settings of 0—7 are valid for each color

component. The following list contains the red, green, and blue values for the ST’s default 16
color palette.

THE ATARI COMPENDIUM

Video Control — 4.5

Index Color Red Green [Blue
0 White 7 7 7
1 Red 7 0 0
2 Green 0 7 0
3 Yellow 7 7 0
4 Blue 0 0 7
5 Magenta 7 0 7
6 Cyan 0 7 7
7 Light Gray 5 5 5
8 Dark Gray 3 3 3
9 Light Red 7 3 3

10 Light Green 3 7 3
11 Light Yellow 7 7 3
12 Light Blue 3 3 7
13 Light Magenta 7 3 7
14 Light Cyan 3 7 7
15 Black 0 0 0

You might have noticed that these registers are not mapped the séRlecador indexes. The

VDI re-maps color requests to its own needs. For a list of these re-mappings, see the entry for
vr_trnfm() . It is also possible to build a remapping table on the fly by plotting one pixel for
eachVDI pen on the screen and using ¥ v_get_pixel()call on each to return théIl and
hardware register index.

Each of the sixteen color registers is bitmapped iMEIRD as follows (The first row
indicates color, the second is bit significance):

xxXxXX XRRR xGGG xBBB
XXXX X321 x321 x321

The STe series expanded the color depth to four bits instead of three which expanded the numb
of available colors from 512 to 4096. This changed the layout of these0IBPs as
follows:

xxxX RRRR GGGG BBBB
XXXX 1432 1432 1432

This odd bit layout allowed for backward compatibility to the ST series.

The TT030 supports an expanded palette of 256 entries in 16 banks containing any of 4096
colors. The first bank of colors is still supporteddstcolor() andSetpalette() however to
access the additional 240 colors, 4 additional palette support calls were added.

Esetpalette() Egetpalette() andEsetcolor() provide access to these colors in a similar
manner tdSetpalette()andSetcolor(). Esetbank() switches between the 16 available banks of
colors in color modes that support less than 16 colors. You should note that the TT030 color
calls returned the col®ORDs to normal bit ordering as follows:

THE ATARI COMPENDIUM

4.6 — XBIOS

xxxXx RRRR GGGG BBBB
XXXX 4321 4321 4321

When using the TT's special gray mode, the lower eight bits of each hardware register is used as
a gray value from 0-255.

The Falcon030 computer gives up the TT030 calls in favor of a more portable method of setting
the hardware palette (ST calls will remain as compatible as pos$bRGB() and

VgetRGB() set color palette entries based on 24-bit true color valuesXBIRS will scale

these values as appropriate for the screen mode.

Advanced Video
Vsync() halts all further processing by the application until a vertical blank interrupt occurs.
This interrupt signals that the video display gun has reached the bottom of the display and is
returning to the top. At this time, a brief period occurs where updates to the screen will not be
immediately apparent to the user. This time is usually used to present flicker-free animation and
redraws.

VsetSync()is used to enable external hardware video synchronization for devices such as
GENLOCK's. Both the vertical and horizontal syncronizations may be set independent of each
other with this call.

VsetMask() provides easy access to the Falcon030’s overlay mode. This call allows you to
specify bits which will be added or removed to future color definitions created wiihe

call vs_color(). When a GENLOCK hardware device is connected, pixels with their overlay bit
cleared will be replaceable by the device with external video.

The Falcon030 Sound System

XBIOS sound system calls are only present as of the Falcon030 computer (though their presence
should always be verified by the * SND’ cookie). If you want to program digitized audio that
plays on an STe, TT, and Falcon030, €bapter 5:Hardware,

The Falcon030 sound system consists of four stereo 16-bit DMA playback and record ¢hannels
an onboard ADC (microphone jack), DAC (speaker and headphone jack), connection matrix, and
digital signal processor.

When your application uses the sound system you should first lock teaksnd(). This
ensures that other system processes don't try to access the sound system simultaneously.
Unlocksnd() should be used as soon as the sound system is free.

lOnly one output track may be monitored at a time, though the DSP may be programmed as a mixer to combine more tracks while sound
is being output.

THE ATARI COMPENDIUM

The Falcon030 Sound System — 4.7

Each of four possible source devices can be connected to any or all of the four possible
destination devices using the connection matrix as follows:

External Input O O O O
DSP Transmit N N AN r)
A A A AN
DMA Playback N N AN r)
A A A AN
ADC (PSG/Mic) AN e N r)
A A A AN

DAC DSP DMA Ext.
Receive Record Output

The external input and output are accessible with a specially designed hardware device
connected to the DSP connector.

The Connection Matrix
The sound system cdllevconnect()connects sound system components together. You must
specify the source device, destination device(s), source clock, prescaler setting, and
handshaking protocol.

The source clock can be set to either of two internal clocks (25.175 MHz and 32 MHz) or an
external clock. The internal DMA sound routines are only compatible with the 25.175 MHz
clock. Other clock sources are used in conjunction with external hardware devices.

The prescaler sets the actual sample playback and recording rate. A value of 0 will cause the
sound system to use a STe/ TTO30 compatible prescaler for outputting sound recorded at
STe/TT030 frequencies. One STe/TT030 frequency, 6.258 kHz, is not supported on the
Falcon030. You can set the STe/TT030 prescaler witB@edcmd()call. Using values other
than 0 will set the Falcon030 prescaler as documented undeevisennect()call.

The last parameter you must pasB@yconnect()specifies whether to enable or disable
hardware handshaking. Enabling handshaking will produce data that is 100% error free but will
result in a variable transfer rate which may negatively affect digital sound. Handshaking is
generally only enabled when the data being transferred must be transferred without errors
(usually compressed audio or video data).

Recording/Playing Digital Audio
To record or playback an audio sample, Sg#huffer() to identify the location and length of
your playback/recording buffer. Also, aRgvconnect() Setmode() andSoundecmd()calls
should be made prior to starting your playback/recording to set the sound hardware to the prope
frequency and mode.

THE ATARI COMPENDIUM

4.8 — XBIOS

The Falcon03@nly supports the recording of 16-bit stereo audio. To generate 8-bit samples
you must scale the values in the buffer fl@RDs toBYTESs after recording.

When processing either recording or playback through the DSP, the corspingtate() must
be used to connect the DSP to the matrix.

You may use the functidBetinterrupt(), as desired, to cause a MFP or Timer A interrupt at the
end of every frame. This is most useful when you are playing or recording in repeat mode and
you wish to use multiple buffers.

Buffptr() may be used to determine the current playback or record buffer pointer as sounds are
being played/recorded.

Setmontracks()is used to define which track which will be output over the computer
speaker/headphonesettracks() controls which tracks will be used to record/playback data.

Configuring Levels
The functionSoundcmd()has four modes which allow the setting and interrogation of the current
levels of attenuation and gain. Gain affects input levels. The higher the value for gain, the louder
the microphone input will be. Attenuation affects output levels. The higher the attenuation setting,
the softer sounds will be output from the computer speaker/headphone jack.

Other Calls

Sndstatus()can be used to tell if a source clock rate was correctly set or if hardware clipping
has occurred on either channel.

Gpio() is used to communicate data over the three general purpose pins of the DSP connector.

The DSP

The Falcon030 comes standard with a Motorola 56001 digital signal processor (DSP). Digital
signal processors are useful for many different purposes such as audio/video compression,
filtering, encryption, modulation, and math functions.

The DSP is able to support both programs and subroutines. Both must be written in 56001
assembly language (or a language which outputs 56001 object code). A full treatment of 56001
assembly language is beyond the scope of this document. Con§dR6000/56001 Digital
Signal Processor’s User Manuplblished by Motorola, Inc. for more information.

The DSP is capable of having many subroutines resident in memory, however, only one program
may be loaded at any time.

When using the DSP you should da#ip_Lock() to prevent other processes from modifying
your setup and to ensure that you do not modify the work of other process&spCalnlock()

THE ATARI COMPENDIUM

The DSP - 4.9

when done (the DSP’s MR and IPR registers should have been returned to their original state) tc
release the DSP semaphore.

DSP Memory
The Falcon030’s DSP contains 96K bytes of RAM for system programs, user programs, and
subroutines. The DSP uses three distinct address spaces, X, Y, and P. Program memory (P)
overlaps both X and Y memory spaces. Because of this, DSP programs should be careful when
referencing memory. The following is a memory map of the DSP:

$SFFFF
Reserved
$7FFF
16 K 16 K Overlaps
$3FFE Shadow Shadow 32 K X Memory
16 K 16 K Program RAM
External RAM External RAM Overlaps
$01FF
Internal Internal Internal Y Memory
RAM/ROM RAM/ROM RAM
$0000

X Memory Y Memory P Memory

DSP Word Size
The 56001 uses a 24-M{ORD. Future Atari computers may use different DSP’s with different
WORD sizes. Use thBsp_GetWordSize()call prior to using the DSP to determine the proper
DSPWORD size.

DSP Subroutines
Subroutines are usually short programs (no longer than 1023\¥%Ds) which transform
incoming data. Each subroutine must be written to be fully relocatable. When writing
subroutines, start instructions at location $0. All addresses in the subroutine must be relocatable
based on the original PC of $0 in order to function. An alternative to this is to include a stub
program at the start of your subroutine that performs a relocation based upon the start address
assigned by th&BIOS (which is available in X:HRX at subroutine start).

Subroutines should store initialized data within its program space. The memory area from

$3f00—$3fff is reserved for use as the BSS of subroutines. Subroutines must not rely on the
BSS’s data to remain constant between subroutine calls.

THE ATARI COMPENDIUM

4.10 — XBIOS

Each subroutine must be assigned a unique ability code either by using one predefined by Atari
(none have been published yet) or by usindP$_RequestUniqueAbility()call. Since

subroutines are only flushed from the DSP when necessary, an application may be able to use an
existing subroutine with the same ability left by another application by using the
Dsp_IngrSubrAbility() call.

Here is a sample of how to load a DSP subroutine with a non-unique ability code:
if('DSP_Lock())
{

ability = DSP_RequestUniqueAbility();
handle = DSP_LoadSubroutine(subptr, length, ability);
if(handle)

DSP_FlushSubroutines();
handle = DSP_LoadSubroutine(subptr, length, ability);
if(handle)

error(“Unable to load DSP subroutine”);

}
if(handle)

if('Dsp_RunSubroutine(handle))

DSP_DoBlock(data_in, size_in, data_out, size_out);
else

error(“Unable to run DSP subroutine!”);

}
DSP Programs

Only one DSP program may be resident in memory at once. Prior to loading a DSP program you
should ensure enough memory is available for your program by dagimgAvailable(). If not
enough memory is available, you may have to flush resident subroutines to free enough memory.

After you have found that enough memory is available, you must reserveRspittiReserve()
This memory will be reserved until the n&sp_Reserve(kall so you should ensure that you
have calledsp_Lock() to block other processes from writing over your program.

Programs can be stored in either binary or ASCII (*.LOD’) format. The function
Dsp_LodToBinary() can be used to convert this data. DSP programs in binary form load much
faster than those in the .LOD’ format.

Dsp_LoadProg()is used to execute programs stored on disk in the ‘.LOD’ format.
Dsp_ExecProg()is used to execute programs stored in memory in binary format.

As with subroutines, programs are assigned a unique ability code that can be determined with
Dsp_GetProgAbility().

Sending Data to the DSP
Several functions transfer data to and from DSP programs and subroutines as follows:

THE ATARI COMPENDIUM

User/Supervisor Mode — 4.11

« Dsp_DoBlock()

* Dsp_BlkHandshake()
e Dsp_BlkUnpacked()
e Dsp_BlkWords()

« Dsp_BIkBytes()

e Dsp_MultBlocks()

e Dsp_InStream()

e Dsp_OutStream()

You should read the description of each in the function reference and decide which is best suite
for your needs.

Dsp_SetVectors()installs special purpose routines that are called when the DSP sends an
interrupt indicating it is ready to send or receive dagp_Removelnterrupts()removes these
routines from the vector table in memory.

DSP State
The HFx bits of the HSR register can be read atomically with the fouDsgilsHfO(),

Dsp_Hf1(), Dsp_Hf2(), andDsp_Hf3(). The current value of the ISR register may be read with
Dsp_Hstat().

DSP programs may also define special host commands at DSP vectors $13 and $14 to be
triggered by the commariaSP_TriggerHC().

DSP Debugging
When full control over the DSP is necessary (such is the case for specialized debuggers), the
command>sp_ExecBoot()can be used to download up to 512 D¥PRDs of bootstrap code.
The DSP will be reset before this happens. This call should only be used by advanced
applications as it will cause other DSP functions to stop working unless those functions are
properly supported.

User/Supervisor Mode

TheXBIOS call Supexec()provides access to a special mode of the 680x0 processor called
supervisor mode. Normal programs always execute in user mode. Programs operating in user
mode, however, have less memory access privileges than those operating in supervisor mode.

Some special instructions of the 680x0 may only be executed in supervisor mode. In addition,

any memory reads or writes to locations $0—$7FF or memory-mapped I/O must be made in
supervisor mode.

THE ATARI COMPENDIUM

4.12 — XBIOS

To useSupexec() simply pass it the address of a function to be called. When writing the
function in ‘C’, you should be careful to define the function in a way that is safe for your
compiler (see your compiler documentation for details).

While in supervisor mode, tHES should never be called.

MetaDOS

One speciaKBIOS opcodeMetainit() was reserved for BOS extension calletfletaDOS,
MetaDOS was designed to supplement the OS to allow for more than 16 drives and to provide
the extra support needed for CD-ROM drivé4etaDOS is no longer officially supported by

Atari because of the increased functionalitpfitiTOS |

MultiTOS allows the use of all 26 drive letters as well as providing loadable device drivers
and file systems. Sdéghapter 2:GEMDOSfor more information.

Keyboard and Mouse Control

TheXBIOS has several functions that provide extended control over the keyboard and mouse.
These functions should be used with care, however, as the keyboard and mouse are ‘global’
devices shared by other processes.

Initmous() is used to change the way the keyboard controller reports mouse movements to the
system. Changing this mode will causeAtsS andVDI to be unable to recognize mouse input.

Keytbl() allows you to read and manipulate the tables which translate IKBD scan codes into
ASCII codes. This is essential when you want your application to run on Atari machines with
foreign keyboards. Udéeytbl() to return a pointer to the internal table structure and then
convert keycodes into ASCII by looking codes up in the appropriate table.

Loadable XBIOS Keyboard Tables
TOS versions 5.0 and greater support the loading of external keyboard tables when the *_AKP’
cookie is present. In this case, if a file called ‘KEYTBL.TBL’ is found in the \MULTITOS’
directory of the boot drive, it will be loaded upon bootup to provide keyboard mapping changes.
The format of the file is as follows:

Magic Table Identifier Word
This should be a WORD value of 0x2771.

Unshifted Keyboard Table
This is a 128 byte table of ASCII codes that are generated
when no keyboard shift keys are being held down. There is
one entry for each possible scan code.

Shifted Keyboard Table

This is a 128 byte table of ASCII codes that are generated
when the SHIFT key is being held down. There is one entry
for each possible scan code.

THE ATARI COMPENDIUM

Disk Functions — 4.13

CAPS-LOCK Keyboard Table
This is a 128 byte table of ASCII codes that are generated
when CAPS-LOCK is engaged and no shift keys are being
held. There is one entry for each possible scan code.
Alternate-Unshifted Keyboard Table
This is a variable length table consisting of two-byte
entries. Each entry consists of a scan code and the ASCII
code generated when that scan code occurs while the
ALTERNATE key (and no other) keyboard shift keys are
being held. The list is terminated by a single NULL byte.
Alternate-Shifted Keyboard Table
This is a variable length table consisting of two-byte
entries. Each entry consists of a scan code and the ASCII
code generated when that scan code occurs while the
ALTERNATE key and the SHIFT key is being held. The list is
terminated by a single NULL byte.
Alternate CAPS-LOCK Keyboard Table
This is a variable length table consisting of two-byte
entries. Each entry consists of a scan code and the ASCII
code generated when that scan code occurs while the
ALTERNATE key is being held with the CAPS-LOCK mode in
effect. The list is terminated by a single NULL byte.

Bioskeys()returns any mapping changes mad&eytbl() to their original state.

The configuration functiongursconf() andKbrate() set the cursor blink rate and keyboard
repeat rates respectively. These settings should only be changed by a CPX or other configuratic
utility at the user’s request as they are global and affect all applications.

IKBD Intelligent Keyboard Controller
The IKBD Controller is an intelligent hardware device that handles communications between the
computer and the keyboard matrix. PKBIOS functionlkbdws() can be used to transmit

command strings to the IKBD controller. For further information about the IKBD, consult
Chapter 5:Hardware,

Disk Functions

Boot Sectors
Both floppy disks and hard disks share a similar format for boot sectors as follows:

Name Offset Contents

BRA 0x0000 This WORD contains a 680x0 BRA.S instruction to the
boot code in this sector if the disk is executable,
otherwise it is unused.

OEM 0x0002 These six bytes are reserved for use as any necessary
filler information. The disk-based TOS loader program
places the string ‘Loader’ here.

SERIAL 0x0008 The low 24-bits of this LONG represent a unique disk
serial number.

THE ATARI COMPENDIUM

4.14 — XBIOS

BPS

0x000B

This is an Intel format WORD (low byte first) which
indicates the number of bytes per sector on the disk.

SPC

0x000D

This is a BYTE which indicates the number of sectors
per cluster on the disk.

RES

0x000E

This is an Intel format WORD which indicates the
number of reserved sectors at the beginning of the
media (usually one for floppies).

NFATS

0x0010

This is a BYTE indicating the number of File
Allocation Table's (FAT's) on the disk.

NDIRS

0x0011

This is an Intel format WORD indicating the number of
ROQT directory entries.

NSECTS

0x0013

This is an Intel format WORD indicating the number of
sectors on the disk (including those reserved).

MEDIA

0x0015

This BYTE is a media descriptor. Hard disks set this
value to 0xF8, otherwise it is unused.

SPF

0x0016

This is an Intel format WORD indicating the number of
sectors per FAT.

SPT

0x0018

This is an Intel format WORD indicating the number of
sectors per track.

NSIDES

0x001A

This is an Intel format WORD indicating the number of
sides on the disk.

NHID

0x001C

This is an Intel format WORD indicating the number of
hidden sectors on a disk (currently ignored).

BOOTCODE

0x001E

This area is used by any executable boot code. The
code must be completely relocatable as its loaded
position in memory is not guaranteed.

CHECKSUM

Ox01FE

The entire boot sector WORD summed with this
Motorola format WORD will equal 0x1234 if the boot
sector is executable or some other value if not.

The boot sector may be found on side 0, track 0, sector 1 of each physical disk.

The Floppy Drive

TheXBIOS provides several functions used for reading, writing, verifying, and formatting
sectors on the hard disk.

Floprd() andFlopwr() read and write from the floppy drive at the sector level rather than the
file level. For example, these functions could be used to create executable boot sectors on a
floppy disk.Flopver() can be used to verify written sectors against data still in memory.

Formatting a floppy disk is accomplished whtlopfmt() . After a floppy is completely formatted
use the functiofProtobt() to create a prototype boot sector (as shown above) which can then be

written to sector #1 to make the disk usabld ©5.

ASCI and SCSI DMA

The functiond®MAread() andDMAwrite() were added as dfOS 2.00. These functions

provide a method of accessing ACSI and SCSI devices at the sector level.

THE ATARI COMPENDIUM

Disk Functions — 4.15

ASCI accesses must not use alternate RAM as a transfer buffer because they are performing
DMA. The TT030 uses handshaking for SCSI so alternate RAM transfers are safe. SCSI
transfers on the Falcon030 do, however, use DMA so alternate RAM must be avoided.

If you need to transfer data using these functions to an alternate RAM buffer, use the special
standard memory block pointed to by the cookie *_ FRB'’ as an intermediary point between the
two types of RAM. You must also use th#ock system variable (at 0x43E) to lock out other
attempted uses of this buffer.

Each physical hard disk drive must contain a boot sector. The boot sector for hard disk drives is
the same as floppies except for the following locations:

Name Offset Contents

hd_siz 0x01C2 This is a Motorola format LONG that indicates the
number of physical 512-byte sectors on the device.

Partition 0x01C6 | This section contains a 12 BYTE partition information

Header #0 block for the first logical partition.

Partition 0x01D2 This section contains a 12 BYTE partition information

Header #1 block for the second logical partition.

Partition 0x1DE This section contains a 12 BYTE partition information

Header #2 block for the third logical partition.

Partition Ox1EA This section contains a 12 BYTE partition information

Header #3 block for the fourth logical partition.

bst_st Ox1F6 This is a Motorola format LONG that indicates the
sector offset to the bad sector list (from the beginning
of the physical disk).

bst _cnt 0xO1FA | Thisis a Motorola format LONG that indicates the
number of 512-byte sectors reserved for the bad
sector list.

The partition information block is defined as follows:

Name Offset Contents

p_flg 0x00 This is a BYTE size bit field indicating the partition
state. If bit 0 is set, the partition exists, otherwise it
does not. If bit 7 is set, the partition is bootable,
otherwise it is not. Bits 1-6 are unused.

p_id 0x01 This is a three BYTE field that indicates the partition
type as follows:

Contents Meaning
‘GEM’ Regular Partition (<16MB)
‘BGM’ Big Partition (>=16MB)
‘XGM’ Extended Partition
p_st 0x04 This is a Motorola format LONG that indicates the
start of the partition as an offset specified in 512-byte
sectors.
p_size 0x08 This is a Motorola format LONG that indicates the size

of the partition in 512-byte sectors.

THE ATARI COMPENDIUM

4.16 — XBIOS

A hard disk may have up to four standard (GEM or BGM) partitions or three standard and one
extended (XGM) partition. The first partition of a hard disk must be a standard one.

Extended Partitions
The first sector of an extended partition contains a standard boot sector with hard disk
information except that tHed_siz bst_sf andbst_cntfields are unused. At least one, but no
more than two (not necessarily the first two), partition headers are used. The first partition
header is the same as described above except tblaescribes the offset from the beginning of
the extended partition rather than the beginning of the physical disk.

If another partition needs to be linked, the second partition block should contain ‘XGM'’ in its
p_idfield and an offset to the next extended partitiop iAt

The Bad Sector List
The bad sector list is a group of three-byte entries describing which physical sectors on the hard
disk are unusable. The first three-byte entry contains the number of bad sectors recorded. The
second three-byte entry is a checksum and when added to the entire bad sector list bytewise
should cause the list BYTE sum to OxA5. If this is not the case then the bad sector list is
considered bad itself.

The Serial Port

Application writers who develop communication programs will need to use some of the special
functions theXBIOS provides for control of the serial port(s). Older Atari computers support
only one serial port connected by the Multi-Function Peripheral (MFP) chip.

The Atari TT030 contains two MFP chips to provide two serial ports and one Serial
Communications Chip (SCC) which controls two more serial ports. One of the SCC ports,
however, can be switched over to control a Localtalk compatible network port as follows:

Switch to Serial 2 Connector:
Ongibit(0x80);

Switch to LAN connector:
Offgibit(0x7F);

The Mega STe is similar to the TT030, however, it has only one MFP chip to provide one less
serial device.

The Atari Falcon030 uses a SCC chip to drive its single serial port and networking port. The
Falcon030 does contain a MFP chip but it does not control any of the serial device hardware.
The MFP’s ring indicator has, however, been wired across the SCC to provide compatibility
with older applications.

THE ATARI COMPENDIUM

Printer Control — 4.17

Serial Port Mapping
BIOS input and output calls to device #1 af@lOS calls which configure the serial port
always refer to the currently ‘mapped’ device as set Béenmap(). The Modem CPX allows
a user to map any installed device as the default. A program which is aware of the extra ports ot

newer machines can access them through theiBd®@6 device number as follows:

Device
Number Mega ST TT030 Falcon030
1 Currently mapped device. Currently mapped device. Currently mapped device.
DEV_AUX DEV_AUX DEV_AUX
6 Modem 1 (ST MFP) Modem 1 (ST MFP) —
DEV_MEGAMODEM1 DEV_TTMODEM1
7 Modem 2 (SCC B) Modem 2 (SCC B) Modem (SCC B)
DEV_MEGAMODEM2 DEV_TTMODEM2 DEV_FALCONMODEM
8 Serial/LAN (SCC A) Serial 1 (TT MFP) LAN (SCC A)
DEV_MEGALAN DEV_TTSERIAL1 DEV_FALCONLAN
9 — Serial 2/LAN (SCC A) —
DEV_TTLAN

Configuring the Serial Port
Rsconf() andlorec() set the communication mode and input/output buffers of the currently
mapped serial port. You should note that while some ports support transfer rates of greater than

19200 baud, this is the limit of tisconf() call. Other rates must currently be set in hardware
(or with theFentl() whenMiINT is present).

MFP Interrupts
Each MFP chip supports a number of interrupts used by the serial port and other system needs.
The functiontMfpint() should be used to set define a function in your application that handles

one of these interruptdenabint() andJdisint() are used to enable/disable these interrupts
respectively.

All MFP interrupt calls only work on ST compatible MFP serial ports. The RS-232 ring
indicator is the only interrupt that has been wired through the MFP on a Falcon. Because of this,

the ring indicator interrupt is the only RS-232 interrupt that may be changeblfpiti() on a
Falcon.

SCC Interrupts

TheXBIOS functions used for setting MFP interrupts do not affect the SCC interrupts regardless
of theBconmap() mapping. Refer to the memory map for the location of SCC interrupt registers.

Printer Control

TheXBIOS contains two functions used for controlling printers. Both functions are very
outdated and should not be relied on in any ST.

THE ATARI COMPENDIUM

4.18 — XBIOS

Scrdmp() triggers the built-iMLT-HELP screen dump cod@rtblk() enables the built-in screen
dump routine of the ST printing only the desired block to an Atari or Epson dot-matrix printer.

Setprt() configures the built-in screen dump routine as to the basic configuration of the attached
printer.

Other XBIOS Functions

NVMaccess()accesses the non-volatile RAM present in the TT, Mega STe, and Falcon030.
You should not read or write to this area as all of its locations are currently reserved.

The functionsSettime() andGettime() set theéBIOS time and date. As dfOS 1.02, they also
update thésEMDOS time as well.

Besides the sound capabilities of ¥BIOS when running on a Falcon, the functidasound()
generates music on any Atari computer using the FM sound generator. The function works at the
interrupt level processing a ‘sound command list’ you specify. It can be used to reproduce a
single tone or a complete song in as many as three parts of harmony.

Random() generates a pseudo-random number using a built-in algorithm whose seed comes from
the system 60kHz clock.

Ssbrk() is used by the operating system to reserve system RAM K&fdviOOS s initialized.
It should not be used by application programmers.

Puntaes()is useful only when using a disk-loaded versiol@f. It clears the OS from RAM
and reboots the computer.

Midiws() is a similar function tékbdws() in that it writes to the MIDI controller. It is more
useful at transferring large amounts of MIDI data tBaanout().

TheDbmsg() XBIOS call is added by supporting debuggers as a method of transferring
debugging messages between the application and debugger. The Atari Debugger (DB) currently
supports this interface.

XBIOS Function Calling Procedure

XBIOS system functions are called via the TRAP #14 exception. Function arguments are pushed
onto the current stack (user or supervisor) in reverse order followed by the function opcode. The
calling application is responsible for correctly resetting the stack pointer after the call.

TheXBIOS, like theBIOS may utilize registers DO-D2 and A0-A2 as scratch registers and their

contents should not be depended upon at the completion of a call. In addition, the function
opcode placed on the stack will be modified.

THE ATARI COMPENDIUM

XBIOS Function Calling Procedure — 4.19

The following example foGetrez() illustrates calling th&BIOS from assembly language:

move.w #$04,-(sp)
trap #14
addq.l #6,sp

A ‘C’ binding for a generiXBIOS handler would be as follows:

_xbios:
; Save the return code from the stack
move.l (sp)+,trpldret
trap #14
move.l trpl4ret,-(sp)
rts
.bss
trpl4ret:
.ds.| 1

TheXBIOS is re-entrant to three levels, however there is no depth checking performed so
interrupt handlers should avoid inteng8lOS usage. In addition, no disk or printer usage
should be attempted from the system timer interrupt, critical error, or process-terminate
handlers.

Calling the XBIOS from an Interrupt
TheBIOS andXBIOS are theonly two OS sub-systems which may be called from an interrupt

handler. Preciselgneinterrupt handler at a time may use ¥#OS as shown in the following
code segment:

savptr equ $4A2
savamt equ $23*2
myhandler:

sub.| #savamt,savptr

; BIOS calls may be performed here
add.| #savamt,savptr
rte ; (or rts?)
CertainXBIOS calls are not re-entrant because they@GEIMDOS routines. Thé&etscreen()

function, and any DSP function which loads data from disk should not be attempted during an
interrupt.

It is not possible to use this method to &dMOS functions during an interrupt when running
underMultiTOS .

THE ATARI COMPENDIUM

XBIOS Function Reference

THE ATARI COMPENDIUM

Bconmap() — 4.23

Bconmap()

LONG Bconmap(devno)

WORD devnqg

OPCODE

AVAILABILITY

PARAMETERS

BINDING

RETURN VALUE

CAVEATS

Bconmap() maps a serial device BIOS device #1. It is also used to add serial
device drivers to the system.

44 (0x2C)
To reliably check thaconmap()is supported, th€OS version must be 1.02 or
higher and the following function should returfRUE value.

#define BMAP_EXISTS 0

BOOL IsBconmap(VOID)
{

}

return (Bconmap(0) == BMAP_EXISTS);

The value oflevnohas the following effect:

Name ‘ devno Meaning
BMAP_CHECK 0 Verify the existence of the call (systems without
Bconmap() will return the function opcode 44).
— 1-5 These are illegal values (will return 0).
See XBIOS Serial 6- Redefine BIOS device 1 (the GEMDOS ‘aux:’ device) to
Port Mapping for map to the named serial device. All Bcon...(1,...) ,
constants. Rsconf() , and lorec() calls will return information for the
named device. Returns the old value.
BMAP_INQUIRE -1 Don't change anything, simply return the old value.
BMAP_MAPTAB -2 Return a pointer to the serial device vector table (see
below).
move.w devno,-(sp)
move.w #%$2C,-(sp)
trap #14
addq.! #4,sp
See above.

You should never install the 38th devi€#@S device number 44). It would be
indistinguishable from the case wh&eonmap()was unavailable. In the unlikely

event that this case arises, you should install two new devices and assign your new
device to the second one.

All current versions of Falcon0300S (4.00 — 4.04) contain a bug that prevents

THE ATARI COMPENDIUM

4.24 — XBIOS Reference

theBIOS from accessing the extra available devices. A patch program named
FPATCH2.PRG is available from Atari Corporation to correct this bug in
software.

COMMENTS To add a serial device to the table, Bsenmap(-2)to return a pointer to a
BCONMAP structuremaptabpoints to a list o0 MAPTAB structures (the first
entry inMAPTAB is the table for device number 6). The list will contain
maptabsizelevices. Allocate a block of memory large enough to store the old
table plus your new entry and copy the old table and your new device structure
there making sure to incremeénaptabsizeFinally, altermaptabto point to your
new structure.

typedef struct

WORD (*Bconstat)();

LONG (*Bconin)();

LONG (*Bcostat)();

VOID (*Bconout)();

ULONG (*Rsconf)();

IOREC *iorec; /* See lorec() */
} MAPTAB;

typedef struct

MAPTAB *maptab;

WORD maptabsize;
} BCONMAP;
SEE ALSO Bconin(), Bconout(), Rsconf(), lorec()

Bioskeys()
VOID Bioskeys(VOID)

Bioskeys()is used to reset to the power-up defaults of the keyboard configuration

tables.
OPCODE 24 (0x18)
AVAILABILITY All TOS versions.
B|ND|NG move.w #$l8,-(sp)
trap #14
addq. #4,sp
COMMENTS This call is only necessary to restore changes made by modifying the tables given
by Keytbl().

THE ATARI COMPENDIUM

Blitmode() — 4.25

SEE ALSO Keytbl()

Blitmode()

WORD Blitmode(mode)

WORD mode
Blitmode() detects a hardware BLITTER chip and can alter its configuration if
present.
OPCODE 64 (0x40)
AVAILABILITY This call is available as dtOS 1.02.
PARAMETERS modeis used to set the BLITTER configurationmfdeis BLIT_INQUIRE (-1),
the call will return the current state of the BLITTER without modifying its state.
To change the method of OS blit operations, Blfinode() with one of the
following values:
Name mode Meaning
BLIT_SOFT 0 If set, use hardware BLITTER chip, otherwise use
software routines.
BLIT_HARD 1 If set, hardware BLITTER chip is available.
BINDING move.w mode,-(sp)
move.w #%$40,-(sp)
trap #14
addq.! #4,sp

RETURN VALUE Blitmode() returns the old@nodevalue. Bit #0 ofmodecontains the currently set
blitter mode as shown above. Bit #1 is set to indicate the presence of a hardware
blitter chip or clear if no blitter chip is installed.

COMMENTS You should use this call once to verify the existence of the BLITTER prior to
attempting to change its configuration.

Buffoper()

LONG Buffoper(mode)
WORD mode

Buffoper() sets/reads the state of the hardware sound system.

OPCODE 136 (0x88)

THE ATARI COMPENDIUM

4.26 — XBIOS Reference

AVAILABILITY

PARAMETERS

BINDING

RETURN VALUE

COMMENTS

SEE ALSO

Available if *_SND’ cookie has third bit set.

modeis a bit array which may be composed of all or none of the following flags
indicating the desired sound system state as follows:

Name Bit Mask | Meaning

PLAY_ENABLE 0x01 Enable DMA Sound Playback. The sound must have
been previously identified to the XBIOS with the
Buffptr() function.

PLAY_REPEAT 0x02 Setting this flag will cause any sound currently playing or
started as a result of this call to be looped indefinitely
(until Buffoper(0) is used).

RECORD_ENABLE 0x04 Enable DMA Sound Recording. The sound must have
been previously identified to the XBIOS with the
Buffptr() function.

RECORD_REPEAT 0x08 Setting this flag during a record will cause the recording
to continue indefinitely within the currently set recording
buffer (as set by Buffptr())

Alternately, calling this function with @odeparameter oSND_INQUIRE (-1)
will return a bit mask indicating the current sound system state as shown above.

move.w mode,-(sp)
move.w #$88,-(sp)
trap #14

addq.! #4,sp

Buffoper() normally returns O for no error or non-zero otherwise (except in
inquire mode as indicated above.

The sound system uses a 32 bit FIFO. The FIFO is only guaranteed to be clear
when the record enable bit is clear. When transferring new data to the record
buffers, the record enable bit should be cleared to flush the FIFO.

Setbuffer()

Buffptr()

LONG Buffptr(sptr)

SBUFPTR *sptr,

OPCODE

Buffptr() returns the current position of the playback and record pointers.

141 (0x8D)

THE ATARI COMPENDIUM

Cursconf() — 4.27

AVAILABILITY Available if *_SND’ cookie has third bit set.

PARAMETER sptris a pointer to ®BUFPTR structure which is filled in with the current
pointer valuesSBUFPTR s defined as follows:

typedef struct

VOIDP playptr;

VOIDP recordptr;
VOIDP reservedl;
VOIDP reserved2;

} SBUFPTR;

BINDING pea sptr
move.w #%8d,-(sp)
trap #14
addq.! #6,sp

RETURN VALUE Buffptr() returns 0 if the operation was successful or non-zero otherwise.

SEE ALSO Setbuffer(), Buffoper()

Cursconf()

WORD Cursconf(mode rate)
WORD mode rate;

Cursconf() configures the VT-52 cursor.

OPCODE 21 (0x15)
AVAILABILITY All TOS versions.
PARAMETERS modedefines the operation as follows:
Name mode Meaning
CURS_HIDE 0 Hide cursor.
CURS_SHOW 1 Show cursor.
CURS_BLINK 2 Enable cursor blink.
CURS_NOBLINK 3 Disable cursor blink.
CURS_SETRATE 4 Set blink rate to rate.
CURS_GETRATE 5 Return current blink rate.
BINDING move.w rate,-(sp)
move.w mode,-(sp)
move.w #3$15,-(sp)

THE ATARI COMPENDIUM

4.28 — XBIOS Reference

RETURN VALUE

COMMENTS

trap #14
addq. #6,sp

Cursconf() only returns a meaningful value undge®@des in which it returns the
current blink rate.

The blink rate is specified in number of vertical blanks per blink.

Dbmsg()

VOID Dbmsg(rsrvd, msg_num msg_arg)
WORD rsrvd, msg_num

LONG msg_arg

OPCODE
AVAILABILITY

PARAMETERS

Dbmsg() allows special debugging messages to be sent to a resident debugger
application.

11 (Ox0B)
The only debugger that currently supports this call is the Atari Debugger.

rsrvdis currently reserved and should always b&sg_nunis the message

number which you want to send to the debugging host. Values of 0x0000 to
OXEFFF are reserved for applications to define. Values of 0xF000 to OxFFFF are
reserved for special debugging messages.

If msg_numis in the application defined range, it andte¥NG contained in
msg_argwill be displayed by the debugger and the application will be halted.

If msg_nums between 0xFO01 and OxFOFF inclusive th&g_ardis interpreted
as a character pointer pointing to a string to be output by the debugger and
debugging to halt. The string length is determined by the low byts@f numif
msg_nunmis DB_NULLSTRING (0xF000), the string will be output until a
NULL is reached.

If msg_nums DB_COMMAND (0xF100)msg_ardis interpreted as a character
pointer to a string containing a debugger command. The command format is
specific to the debugger which you are running.

A useful example of this format when running under the Atari debugger allows a
string to be output to the debugger without terminating debugging as shown in the
following example:

Dbmsg(5, DB_COMMAND, “echo ‘Debugging Message’;g”);

THE ATARI COMPENDIUM

Devconnect() — 4.29

BINDING move.| msg_arg,-(sp)
move.w msg_num,-(sp)
move.w #$5,-(sp)
move.w #30B,-(sp)
trap #14
lea 10(sp),sp
COMMENTS The Atari Debugger only understands the véie COMMAND (0xF100) for
msg_numas of version 3.
Though it is normally harmless to run an application with embedded debugging
messages when no debugger is present in the system, distribution versions of
applications should have these instructions removed.
Devconnect()

LONG Devconnect(source dest clk, prescale protocol)
WORD source dest clk, prescale protocot

OPCODE

AVAILABILITY

PARAMETERS

Devconnect()attaches a source device in the sound system to one or multiple
destination devices through the use of the connection matrix.

139 (0x8B)
Available if *_SND’ cookie has third bit set.

sourceindicates the source device to connect as follows:

Name source Meaning

DMAPLAY 0 DMA Playback
DSPXMIT 1 DSP Transmit

EXTINP 2 External Input

ADC 3 Microphone/Yamaha PSG

destis a bit mask which is used to choose which destination devices to connect as
follows:

Name Mask Meaning

DMAREC 0x01 DMA Record

DSPRECV 0x02 DSP Receive

EXTOUT 0x04 External Out

DAC 0x08 DAC (Headphone or Internal
Speaker)

clk is the clock the source device will use as follows:

THE ATARI COMPENDIUM

4.30 — XBIOS Reference

BINDING

RETURN VALUE

CAVEATS

Name clk ‘ Meaning

CLK_25M 0 Internal 25.175 MHz clock
CLK_EXT 1 External clock

CLK_32M 2 Internal 32 MHz clock

prescalechooses the source clock prescaler. Sample rate is determined by the
formula:

rate = clockrate/ 256
prescale+ 1

Valid prescaler values for the internal CODEC using the 25.175 MHz clock are:

Name prescale Meaning/Sample Rate

CLK_COMPAT 0 TT030/STe compatiblity mode.
Use prescale value set with
Soundcmd() .

CLK_50K 1 49170 Hz

CLK_33K 2 32880 Hz

CLK_25K 3 24585 Hz

CLK_20K 4 19668 Hz

CLK_16K 5 16390 Hz

CLK_12K 7 12292 Hz

CLK_10K 9 9834 Hz

CLK_8K 11 8195 Hz

protocolsets the handshaking mode. A valutlBNDSHAKE (0) enables
handshakingNO_SHAKE (1) disables it. When transferring sound or video data
through the CODEC it is usually recommended that handshaking be disabled.
When incoming data must be 100% error free, however, handshaking should be
enabled.

move.w protocol,-(sp)
move.w prescale,-(sp)
move.w clk,-(sp)
move.w dest,-(sp)
move.w source,-(sp)
move.w #$8B,-(sp)
trap #14

lea 12(sp),sp

Devconnect()returns 0 if the operation was successful or non-zero otherwise.

Setting the prescaler to an invalid value will result in a mute condition.

THE ATARI COMPENDIUM

DMAread() — 4.31

SEE ALSO

Soundcmd()

DMAread()

LONG DMAread(sectot count, buf, dev)

LONG sectot
WORD count
VOIDP buf;
WORD dey,

OPCODE
AVAILABILITY

PARAMETERS

BINDING

RETURN VALUE

CAVEATS

COMMENTS

DMAread() reads raw sectors from a ACSI or SCSI device.
42 (0x2A)
This call is available as dfOS version 2.00.

sectorspecifies the sector number to begin readingaathtspecifies the number
of sectors to readhufis a pointer to the address where incoming data will be
stored devspecifies the device to read from as follows:

dev Meaning
0-7 ACSI devices 0-7
8-15 SCSI devices 0-7
move.w dev,-(sp)
pea buf
move.w count,-(sp)
move.l sector,-(sp)
move.w #$2A,-(sp)
trap #14
lea 14(sp),sp

DMAread() returns 0 if the operation was successful or a neggtVé error
code otherwise.

SCSI devices will write data until the device exits its data transfer phase. Since
this call is not dependent on sector size, you should ensure that the buffer is large
enough to hold sectors from devices with large sectors (CD-ROM = 2K, for
example).

ACSI transfers must be done to normal RAM. If you need to read sectors into
alternative RAM, use the 64KB pointer found with the *_FRB’ cookie as an
intermediate transfer point while correctly managing tlil@ck system variable.

SCSil transfers on the TT030 do not actually use DMA. Handshaking is used to

THE ATARI COMPENDIUM

4.32 — XBIOS Reference

SEE ALSO

transfer bytes individually. This means that alternative RAM may be used. The
Falcon030 uses DMA for SCSI transfers making transfers to alternative RAM
illegal.

DMAwrite(), Rwabs()

DMAwrite()

LONG DMAwrite(sector count, buf, dev)

LONG sector
WORD count;
VOIDP buf;
WORD dey,

OPCODE
AVAILABILITY

PARAMETERS

BINDING

RETURN VALUE

COMMENTS

SEE ALSO

DMAwrite() writes raw sectors to ACSI or SCSI devices.
43 (0x2B)
TOS versions >= 2.00

sectoris the starting sector number to write dat&@intis the number of sectors
to write. buf defines the starting address of the data to witgis the device
number as specified iBMAread().

move.w dev,-(sp)
pea buf
move.w count,-(sp)
move.| sector,-(sp)
move.w #$2B,-(sp)
trap #14

lea 14(sp),sp

DMAwrite() returns O if successful or a negat®l®S error code otherwise.

ACSI transfers must be done from normal RAM. If you need to read sectors into
alternative RAM, use the 64KB pointer found with the *_FRB’ cookie as an
intermediate transfer point while correctly managing tifil@ck system variable.

SCSiI transfers do not actually use DMA. Handshaking is used to transfer bytes
individually.

DMAread(), Rwabs()

THE ATARI COMPENDIUM

Dosound() — 4.33

Dosound()

VOID Dosound(cmdlist)
char *cmdlist

Dosound()initializes and starts an interrupt driven sound playback routine using

the PSG.
OPCODE 32 (0x20)
AVAILABILITY All TOS versions.
PARAMETERS If cmdlistis positive, it will be interpreted as a pointer to a character array

containing a sequential list of commands required for the sound playback. Each
command is executed in order and has a meaning as follows:

Command Byte Meaning

0x00 - OxOF Select a PSG register (the register number is the command byte). The
next byte in the list will be loaded into this register. See Appendix | for a
detailed listing of registers, musical frequencies, and sound durations.
0x80 Store the next byte in a temporary register for use by command 0x81.

0x81 Three bytes follow this command. The first is the PSG register to load with
the value in the temporary register (set with command 0x80). The second
is a signed value to add to the temporary register until the value in the third
byte is met.

0x82 If a O follows this command, this signals the end of processing, otherwise
the value indicates the number of 50Hz ticks to wait until the processing of
the next command.

Passing the valueS_INQUIRE (-1) for cmdlistwill cause the pointer to the
current sound buffer to be returned\84LL if no sound is currently playing.

BINDING pea cmdlist
move.w #$20’-(3p)
trap #14
addq.l #6,5p
CAVEATS This routine is driven by interrupts. Do not use an array created on the stack to

store the command list that may go out of scope before the sound is complete.

This function will cause the OS to crash undledtiTOS versions prior to 1.08 if
every running application is not set to ‘Supervisor’ or ‘Global’ memory
protection.

Dosound(DS_INQUIRE) will cause the OS to crash undéultiTOS versions
1.08 and below.

THE ATARI COMPENDIUM

4.34 — XBIOS Reference

Dsp_Available()

VOID Dsp_Available(xavail, yavail)
LONG * xavalil, *yavail,

Dsp_Available() returns the amount of free program space in X and Y DSP

memory.

OPCODE 106 (0x6A)

AVAILABILITY This call is only available if the fifth bit of the *_SND’ cookie is set.
PARAMETERS Upon return, the longwords pointed toxavail andyavail will contain the length

of memory (in bytes) available for DSP programs and subroutines.

BINDING pea yavail
pea xavail
move.w #3$6A,-(sp)
trap #14
lea 10(sp),sp

SEE ALSO Dsp_Reserve()

Dsp_BlkBytes()

VOID Dsp_BIlkBytes(data_in size_in data_out size_ouf)
UBYTE *data_in

LONG size_in

UBYTE *data_out

LONG size _out

Dsp_BIkBytes()transfers a block of unsigned character data to the DSP and
returns the output from the running program or subroutine.

OpPCODE 124 (0x7C)
AVAILABILITY This call is only available if the fifth bit of the *_SND’ cookie is set.
PARAMETERS data_inis a pointer to an unsigned character array which is transferred to the

DSP.size_inis the length (in bytes) of data to transfer.

data_outis a pointer to the unsigned character array to be filled in from the low
byte of the DSP’s transfer registeize_ouis the length (in bytes) of the output
buffer array.

THE ATARI COMPENDIUM

Dsp_BlkHandShake — 4.35

BINDING move.| size_out,-(sp)
pea data_out
move.| size_in,-(sp)
pea data_in
move.w #3$7C,-(sp)
trap #14
lea 18(sp),sp
CAVEATS No handshaking is performed with this call. Error sensitive data should be

transferred wittdsp_BlkHandShake()

COMMENTS Bytes are not sign extended before transfer. Also, due to the length of static
memory in the DSRsize_inandsize_outhould not exceed 65536.

SEE ALSO Dsp_BlkWords()

Dsp_BlkHandShake

VOID Dsp_BlkHandShake(data_in size_in data_ouf size_out)
char *data_in;

LONG size_in

char *data_out

LONG size_out

Dsp_BlkHandShake()handshakes a block of bytes to the DSP and returns the
output generated by the running subroutine or program.

OPCODE 97 (0x61)
AVAILABILITY This call is only available if the fifth bit of the '_SND’ cookie is set.
PARAMETERS data_inis a pointer to data being sent to the DS®e_inspecifies the number of

DSP words of data to be transferrBgp_GetWordSize()can be used to
determine the number of bytes that occur for a DSP word.

data_outis a pointer to the buffer to which processed data will be returned from
the DSPsize_ouindicates the number of DSP words to transfer.

BINDING move.l size_out,-(sp)
pea data_out
move.l size_in,-(sp)
pea data_in
move.w #%$61,-(sp)
trap #14
lea 18(sp),sp

THE ATARI COMPENDIUM

4.36 — XBIOS Reference

COMMENTS Dsp_BlkHandshake()is identical tdDsp_DoBlock() however, this function
handshakes each byte to prevent errors in sensitive data.

SEE ALsSO Dsp_DoBlock()

Dsp_BlkUnpacked()

VOID Dsp_BlkUnpacked(data_in size_in data_out size_out)
LONG *data_in;

LONG size_in

LONG *data_out

LONG size _out

Dsp_BlkUnpacked()transfers data to the DSP from a longword array. Data
processed by the running subroutine or program is returned.

OPCODE 98 (0x62)
AVAILABILITY This call is only available if the fifth bit of the *_SND’ cookie is set.
PARAMETERS data_inis a pointer to an array 60NG s from which data is transferred to the

DSP. As many bytes are transferred from d€2NG as there are bytes in a DSP
WORD. For example, iDsp_GetWordSize()returns 3, the lower three bytes of
eachLONG are transferred into each DS¥ORD.

size_inrepresents the numberldPNGs in the array to transfetata_outis a
pointer to an array dfONG s size_ouin length in which data sent from the DSP

is returned.
BINDING move.l size_out,-(sp)
pea data_out
move.l size_in,-(sp)
pea data_in
move.w #$62,-(sp)
trap #14
lea 18(sp),sp
CAVEATS This function only works with DSP’s which return 4 or less from

Dsp_GetWordSize() In addition, no handshaking is performed with this call.
Data which is sensitive to errors should Bsg_BlkHandShake()

SEE ALSO Dsp_DoBlock()

THE ATARI COMPENDIUM

Dsp_BlkWords() — 4.37

Dsp_BlkWords()

VOID Dsp_BIlkWords(data_in, size_in data_out size_out)
WORD *data_in

LONG size_in

WORD *data_out

LONG size_out

Dsp_BIkWords() transfers an array 8¥ORDs to the DSP and returns the output
generated by the running subroutine or program.

OPCODE 123 (0x7B)
AVAILABILITY This call is only available if the fifth bit of the *_SND’ cookie is set.
PARAMETERS data_inis a pointer to th#®VORD array to be transferred to the DSRe_inis

the length (ilWORDs) of data to transfer.

data_outis a pointer to th&VORD array to be filled in during the data output
phase of the DSP from the middle and low bytes of the transfer regjigéerout
is the length (iWORDs) of the buffer for the output array.

BINDING move.l size_out,-(sp)
pea data_out
move.| size_in,-(sp)
pea data_in
move.w #3$7B,-(sp)
trap #14
lea 18(sp),sp
CAVEATS No handshaking is performed with this call. Data which is sensitive to errors

should us@sp_BlkHandShake()

COMMENTS WORDs are sign extended before transfer. Also, due to the length of static
memory in the DSRize_inandsize_outshould not exceed 32768.

SEE ALSO Dsp_BlkBytes()

THE ATARI COMPENDIUM

4.38 — XBIOS Reference

Dsp_DoBlock()

VOID Dsp_DoBlock(data_in, size_in data_out size_out)

char *data_in
LONG size_in
char *data_out
LONG size_out

OPCODE
AVAILABILITY

PARAMETERS

BINDING

CAVEATS

SEE ALSO

Dsp_DoBlock()transfers bytewise packed data to the DSP and returns the data
processed by the running subroutine or program.

96 (0x60)
This call is only available if the fifth bit of the *_SND’ cookie is set.

data_inis a character array containing data to transfer to the $i8P.in
specifies the number of DSP words to transfer. For example, if
Dsp_GetWordSize()returns 3, the first 3 bytes froflata_inare stored in the
first DSP word, the next 3 bytes are stored in the next DSP word and so on.

data_outpoints to a character array where the output will be stored in a similar
mannersize_outepresents the size of this array.

move.l size_out,-(sp)
pea data_out
move.l size_in,-(sp)
pea data_in
move.w #$60,-(sp)
trap #14

lea 18(sp),sp

No handshaking is performed with this call. Data which is sensitive to errors
should usésp_BlkHandShake()

Dsp_BlkHandShake()

THE ATARI COMPENDIUM

Dsp_ExecBoot() — 4.39

Dsp_ExecBoot()

VOID Dsp_ExecBoot(codeptt codesizeability)

char *codeptr

LONG codesize

WORD ability;

Dsp_ExecBoot(}completely resets the DSP and loads a new bootstrap program
into the first 512 DSP words of memory.

OPCODE 110 (Ox6E)

AVAILABILITY This call is only available if the fifth bit of the ‘_SND’ cookie is set.

PARAMETERS codeptrpoints to the beginning of the DSP program data to be transferred.
codesizéndicates the size (in DSP words) of program data to traméfiity
indicates the bootstrapper’s unique ability code.

BINDING move.w ability,-(sp)
move.l codesize,-(sp)
pea codeptr
move.w #$6E,-(sp)
trap #14
lea 12(Sp)1sp

COMMENTS This call is only designed for special development and testing purposes. Use of
this call takes over control of the DSP system.

This call is limited to transferring up to 512 DSP words of code.

SEE ALSO Dsp_LoadProg(), Dsp_ExecProg()

Dsp_ExecProg()

VOID Dsp_ExecProg(codeptr codesizeability)
char *codeptr
LONG codesize

WORD ability;
Dsp_ExecProg(transfers a DSP program stored in binary format in memory to
the DSP and executes it.

OPCODE 109 (0x6D)

THE ATARI COMPENDIUM

4.40 — XBIOS Reference

AVAILABILITY

PARAMETERS

BINDING

COMMENTS

SEE ALSO

This call is only available if the fifth bit of the *_SND’ cookie is set.

codeptrpoints to the start of the binary program in memooglesizéndicates the
number of DSP words to transfehility indicates the program’s unique ability
code.

move.w ability,-(sp)
move.l codesize,-(sp)
pea codeptr
move.w #$6D,-(sp)
trap #14

lea 12(sp),sp

codesizahould not exceed the amount of memory reserved WyspeReserve()
call.

Dsp_LoadProg(), Dsp_Reserve()

Dsp_FlushSubroutines()

VOID Dsp_FlushSubroutines(VOID)

OPCODE

AVAILABILITY

BINDING

COMMENTS

SEE ALSO

Dsp_FlushSubroutines(yemoves all subroutines from the DSP.
115 (0x73)

This call is only available if the fifth bit of the *_SND’ cookie is set.

move.w #$73,-(sp)
trap #14
addq. #2,sp

This call should only be used when a program requires more memory than is
returned byDsp_Available().

Dsp_Available()

Dsp_GetProgAbility()

WORD Dsp_GetProgAbility(VOID)

OPCODE

Dsp_GetProgAbility() returns the current ability code for the program currently
residing in DSP memory.

114 (0x72)

THE ATARI COMPENDIUM

Dsp_GetWordSize() — 4.41

AVAILABILITY

BINDING

RETURN VALUE

COMMENTS

SEE ALSO

This call is only available if the fifth bit of the *_SND’ cookie is set.

move.w #$72,-(sp)
trap #14
addq. #2,sp

Dsp_GetProgAbility() returns thVORD ability code for the current program
loaded in the DSP.

If you know the defined ability code of the program you wish to use, you can use
this call to see if the program already exists on the DSP and avoid reloading it.

Dsp_IngSubrAbility()

Dsp_GetWordSize()

WORD Dsp_GetWordSize(VOID)

OPCODE

AVAILABILITY

BINDING

RETURN VALUE

COMMENTS

Dsp_GetWordSize()returns the size of a DSP word in the installed Digital
Signal Processor.

103 (0x67)

This call is only available if the fifth bit of the *_SND’ cookie is set.

move.w #%$67,-(sp)
trap #14
addq.! #2,sp

Dsp_GetWordSize()returns the number of bytes per DSP word.

This value is useful with many DSP-rela#édIOS calls to provide upward
compatibility as the DSP hardware is not guaranteed to remain the same.

Dsp_Hf0()

WORD Dsp_HfO(flag)

WORD flag;

OPCODE

Dsp_HfO() reads/writes to bit #3 of the HSR.

119 (0x77)

THE ATARI COMPENDIUM

4.42 — XBIOS Reference

AVAILABILITY

PARAMETERS

BINDING

RETURN VALUE

SEE ALSO

This call is only available if the fifth bit of the *_SND’ cookie is set.

flag has three legal values as follows:

Name ‘ flag Meaning

HF_CLEAR 0 Clear bit #3 of the DSP’s HSR.

HF_SET 1 Set bit #3 of the DSP’s HSR.

HF_INQUIRE -1 Return the current value of bit #3 of the DSP’s HSR.
move.w flag,-(sp)

move.w #$77,-(sp)

trap #14

addq.l #4,sp

If flag is HF_INQUIRE (-1), Dsp_HfO() returns the current state of bit #3 of the
HSR register.

Dsp_Hf1()

Dsp_Hf1()

WORD Dsp_Hf1(flag)

WORD flag;

OPCODE

AVAILABILITY

PARAMETERS

BINDING

RETURN VALUE

Dsp_Hf1() reads/writes to bit #4 of the HSR.
120 (0x78)
This call is only available if the fifth bit of the *_SND’ cookie is set.

flag has three legal values as follows:

Name ‘ flag Meaning

HF_CLEAR 0 Clear bit #4 of the DSP’s HSR.

HF_SET 1 Set bit #4 of the DSP’s HSR.

HF_INQUIRE -1 Return the current value of bit #4 of the DSP’s HSR.
move.w flag,-(sp)

move.w #$78,-(sp)

trap #14

addq.! #4,sp

If flag is HF_INQUIRE (-1), Dsp_Hf1() returns the current state of bit #4 of the
HSR register.

THE ATARI COMPENDIUM

Dsp_Hf2() — 4.43

SEE ALSO

Dsp_Hf0()

Dsp_ Hf2()

WORD Dsp_Hf2(VOID)

OPCODE

AVAILABILITY

BINDING

RETURN VALUE

SEE ALSO

Dsp_Hf2() returns the current status of bit #3 of the DSP’s HCR.
121 (0x79)

This call is only available if the fifth bit of the *_SND’ cookie is set.

move.w #$79,-(sp)
trap #14
addq.| #2,sp

Dsp_Hf2() returns the current setting of bit #3 of the HCR register (valid values
are O or 1).

Dsp_Hf3()

Dsp_Hf3()

WORD Dsp_Hf3(VOID)

OPCODE

AVAILABILITY

BINDING

RETURN VALUE

SEE ALSO

Dsp_Hf3() returns the current status of bit #4 of the DSP’s HCR.
122 (0X7A)

This call is only available if the fifth bit of the ‘_SND’ cookie is set.

move.w #B7A,-(sp)
trap #14
addq.| #2,sp

Dsp_Hf3() returns the current setting of bit #4 of the HCR register (valid values
are O or 1).

Dsp_Hf2()

THE ATARI COMPENDIUM

4.44 — XBIOS Reference

Dsp_ HStat()

BYTE Dsp_Hstat(VOID)

Dsp_HStat() returns the value of the DSP’s ICR register.

OPCODE 125 (0x7D)
AVAILABILITY This call is only available if the fifth bit of the *_SND’ cookie is set.
BINDING move.w #$7D,-(sp)

trap #14

addq. #2,sp

RETURN VALUE Dsp_Hstat() returns an 8-bit value representing the current state of the DSP’s ICR
register as follows:

Name Bit Meaning
ICR_RXDF 0 ISR Receive data register full (RXDF)
ICR_TXDE 1 ISR Transmit data register empty (TXDE)
ICR_TRDY 2 ISR Transmitter ready (TRDY)
ICR_HF2 3 ISR Host flag 2 (HF2)
ICR_HF3 4 ISR Host flag 3 (HF3)
— 5 Reserved
ICR_DMA 6 ISR DMA Status (DMA)
ICR_HREQ 7 ISR Host Request (HREQ)

Dsp_InqSubrAbility()

WORD Dsp_IngSubrAbility(ability)

WORD ability;
Dsp_IngSubrAbility() determines if a subroutine with the specified ability code
exists in the DSP.
OPCODE 117 (0x75)
AVAILABILITY This call is only available if the fifth bit of the *_SND’ cookie is set.
PARAMETERS ability is the ability code you wish to check.
BINDING move.w ability,-(sp)

move.w #$75,-(sp)

THE ATARI COMPENDIUM

Dsp_InStream() — 4.45

RETURN VALUE

SEE ALSO

trap #14
addq. #2,sp

Dsp_IngSubrAbility() returns a handle to the subroutine if found or 0 if not.

Dsp_RunSubroutine()

Dsp_InStream()

VOID Dsp_InStream(data_in, block_sizenum_blocks blocks_dong

char *data_in

LONG block_size
LONG num_blocks

LONG *blocks_done

OPCODE

AVAILABILITY

PARAMETERS

BINDING

CAVEATS

COMMENTS

SEE ALSO

Dsp_InStream() passes data to the DSP via an interrupt handler.
99 (0x63)
This call is only available if the fifth bit of the *_SND’ cookie is set.

data_inis a pointer to unsigned character data which should be transferred to the
DSP.block_sizéndicates the number of DSPORDs that will be transferred at
each interruptaum_blocksndicates the number of blocks to transfer.

TheLONG pointed to byblocks_donavill be constantly updated to let the
application know the progress of the transfer.

pea blocks_done
move.| num_blocks,-(sp)
move.| block_size,-(sp)
pea data_in

move.w #%$63,-(sp)

trap #14

lea 18(sp),sp

No handshaking is performed with this call. If the data you are transmitting is error
sensitive, us®sp_BlkHandShake()

This call is suited for transferring small blocks while other blocks are being
prepared for transfer. For larger blocRsp_DoBlock()would be more suitable.

Dsp_BlkHandShake(), Dsp_DoBlock()

THE ATARI COMPENDIUM

4.46 — XBIOS Reference

Dsp_10Stream()

VOID Dsp_IOStream(data_in data_out block_insize block_outsizenum_blocks blocks_doné
char *data_in *data_out

LONG block_insize block_outsizenum_blocks

LONG *blocks_done

OPCODE

AVAILABILITY

PARAMETERS

BINDING

CAVEATS

COMMENTS

SEE ALSO

Dsp_lOStream()uses two interrupt handlers to transmit and receive data from the
DSP.

101 (Ox65)
This call is only available if the fifth bit of the *_SND’ cookie is set.

data_inis a pointer to a buffer in which each output block is pladath_outis a
pointer to a buffer used to receive each data block from the DSP.

block_insizeandblock_outsizeepresent the size of the blocks to send and
receive, respectively, in DS#ORDs. num_blockss the total number of blocks
to transfer.

TheLONG pointed at bylocks_donés constantly updated to indicate the
number of blocks actually transferred.

pea blocks_done
move.l num_blocks,-(sp)
move.l block_outsize,-(sp)
move.l block_insize,-(sp)
pea data_out

pea data_in

move.w #$65,-(sp)

trap #14

lea 26(sp),sp

This call makes the assumption that the DSP will be ready to accept a new block
as input every time it finishes sending a block back to the host.

No handshaking is performed with this call. If your data is error-sensitive, you
should usésp_BlkHandShake()

Dsp_InStream(), Dsp_OutStream()

THE ATARI COMPENDIUM

Dsp_LoadProg() — 4.47

Dsp_LoadProg()

WORD Dsp_LoadProg(file, ability, buf)

char *file;
WORD ability;
char *buf;

OPCODE
AVAILABILITY

PARAMETERS

BINDING

RETURN VALUE

COMMENTS

SEE ALSO

Dsp_LoadProg()loads a ‘.LOD’ file from disk, transmits it to the DSP, and
executes it.

108 (0x6C)
This call is only available if the fifth bit of the *_SND’ cookie is set.

file is a pointer to &ULL -terminated string containing a vaf@EMDOS file
specification ability is the unique ability code that will be assigned to this
programbuf should point to a temporary buffer where the DSP will place the
binary code it generates. The minimum size of the buffer is determined by the
following formula:

3 * (#program/data words + (3 * #blocks in program))

pea buf
move.w ability,-(sp)
pea file
move.w #%$6C,-(sp)
trap #14

lea 12(sp),sp

Dsp_LoadProg()returns a 0 is successful or -1 otherwise.

Before loading you should determine if a program already exists on the DSP with
your chosen ability wittsp_GetProgAbility().

Dsp_LoadSubroutine()

THE ATARI COMPENDIUM

4.48 — XBIOS Reference

Dsp_LoadSubroutine()

WORD Dsp_LoadSubroutine(ptr, size ability)

char *ptr;
LONG size
WORD ability;

OPCODE
AVAILABILITY

PARAMETERS

BINDING

RETURN VALUE

COMMENTS

SEE ALSO

Dsp_LoadSubroutine()transmits subroutine code to the DSP.

116 (0x74)

This call is only available if the fifth bit of the *_SND’ cookie is set.

ptr points to a memory buffer which contains DSP binary subroutine stagds

the length of code to transfer (specified in DSP worlg)ity is theWORD
identifier for the unique ability of this subroutine.

move.w ability,-(sp)
move.l size,-(sp)
pea ptr

move.w #$74,-(sp)
trap #14

lea 12(sp),sp

Dsp_LoadSubroutine()returns the handle assigned to the subroutine or 0 if an
error occurred.

DSP subroutines have many restrictions and you should see the previous
discussion of the DSP for more information.

Dsp_RunSubroutine(), Dsp_IngSubrAbility()

Dsp_Lock()

WORD Dsp_Lock(VOID)

OPCODE

AVAILABILITY

BINDING

Dsp_Lock() locks the use of the DSP to the calling application.
104 (0x68)

This call is only available if the fifth bit of the *_SND’ cookie is set.

move.w #$68,-(sp)
trap #14
addq.! #2,sp

THE ATARI COMPENDIUM

Dsp_LodToBinary() — 4.49

RETURN VALUE Dsp_Lock() returns a 0 if successful or -1 if the DSP has been locked by another
application.

COMMENTS Dsp_Lock() should be performed before each use of the DSP to prevent other
applications from modifying DSP memory or flushing subroutines. A
correspondindPsp_Unlock() should be issued at the end of each usage. You
should limit the amount of time the DSP is locked so other applications may utilize
it.

SEE ALSO Dsp_Unlock()

Dsp_LodToBinary()

LONG Dsp_LodToBinary(file, codeptr)
char *file,*codeptr

Dsp_LodToBinary() reads a ‘.LOD’ file and converts the ASCII data to binary
program code ready to be sent to the DSPg_ExecProg(Jor
Dsp_ExecBoot()

OPCODE 111 (Ox6F)

AVAILABILITY This call is only available if the fifth bit of the *_SND’ cookie is set.

PARAMETERS file is a character pointer to a null-termina€&@@MDOS file specification.
codeptrshould point to a large enough buffer to hold the resulting binary program
code.

BINDING pea codeptr
pea file
move.w #$6F,-(sp)
trap #14
lea 10(sp),sp

RETURN VALUE Dsp_LodToBinary() returns the size of the resulting program code in DSP words
or a negative error code.

SEE ALSO Dsp_ExecProg(), Dsp_LoadProg()

THE ATARI COMPENDIUM

4.50 — XBIOS Reference

Dsp_MultBlocks()

VOID Dsp_MultBlocks(numsend numreceive sendblks receiveblks)
LONG numsend numreceive
DSPBLOCK *sendblks *receiveblks

OPCODE

AVAILABILITY

PARAMETERS

BINDING

CAVEATS

Dsp_MultBlocks() transmit and receive multiple blocks of DSP data of varying
size.

127 (OX7F)
This call is only available if the fifth bit of the *_SND’ cookie is set.

numsendindnumreceivéndicate the number of blocks of DSP data to send and
receive respectivelypendblksandreceiveblksare both pointers to arrays of type
DSPBLOCK which contain information for each blodRSPBLOCK is defined

as follows:

typedef struct

{

#define BLOCK_LONG 0

#define BLOCK_WORD 1

#define BLOCK_UBYTE 2
/*0 =LONGSs, 1 = WORDs, 2 = UBYTEs */
WORD blocktype;

/* Num elements in block */
LONG blocksize;

/* Start address of block */
VOIDP blockaddr;

} DSPBLOCK;

pea receiveblks

pea sendblks
move.l numreceive,-(sp)
move.l numsend,-(sp)
move.w #$7F,-(sp)

trap #14

lea 20(sp),sp

No handshaking is performed with this call. To transfer blocks with handshaking
useDsp_BlkHandShake()

THE ATARI COMPENDIUM

Dsp_OutStream() — 4.51

Dsp_OutStream()

VOID Dsp_OutStream(data_out block_sizenum_blocks blocks_doné

char *data_out
LONG block_size
LONG num_blocks

LONG *blocks_done

OPCODE

AVAILABILITY

PARAMETERS

BINDING

SEE ALSO

Dsp_OutStream()transfers data from the DSP to a user-specified buffer using
interrupts.

100 (0x64)
This call is only available if the fifth bit of the ‘_SND’ cookie is set.

This call transfers data from the DSP to the buffer pointed @&y outvia an
interrupt handlerblock_sizespecifies the number of DS®ORDs to be
transferred andum_blocksspecifies the number of blocks to transfer.

TheLONG pointed to byblocks_donaill be constantly updated by the interrupt
handler to indicate the number of blocks successfully transferred. The process is
complete whemlocks_donés equal towum_blocks

pea blocks_done
move.| num_blocks,-(sp)
move.l block_size,-(sp)
pea data_out
move.w #%$64,-(sp)

trap #1

lea 18(sp),sp

Dsp_DoBlock(), Dsp_MultBlocks(), Dsp_InStream()

Dsp_Removelnterrupts()

VOID Dsp_Removelnterrupts(mask)

WORD mask

OPCODE

AVAILABILITY

Dsp_Removelnterrupts()turns off the generation of DSP interrupts.
102 (0x66)

This call is only available if the fifth bit of the *_SND’ cookie is set.

THE ATARI COMPENDIUM

4.52 — XBIOS Reference

PARAMETERS

BINDING

COMMENTS

SEE ALSO

maskis anWORD bit mask indicating which interrupts to turn off composed of
one or both of the following values:

Name Mask Meaning
RTS_OFF 0x01 Disable DSP Ready to Send Interrupts
RTR_OFF 0x02 Disable DSP Ready to Receive Interrupts
move.w mask,-(sp)
move.w #$66,-(sp)
trap #14
addq. #4,sp

This call is used to terminate interrupts when an interrupt driven block transfer
function does not terminate as expected (this will occur when less than the
expected number of blocks is returned) and to shut off interrupts installed by
Dsp_SetVectors()

Dsp_SetVectors()

Dsp RequestUniqueAbility()

WORD Dsp_RequestUniqueAbility(VOID)

OPCODE

AVAILABILITY

BINDING

RETURN VALUE

COMMENTS

SEE ALSO

Dsp_RequestUniqueAbility()generates a random ability code that is currently not
in use.

113 (0x71)

This call is only available if the fifth bit of the *_SND’ cookie is set.

move.w #$71,-(sp)
trap #14
addq. #2,sp

Dsp_RequestUniqueAbility()returns a unique ability code to assign to a
subroutine or program.

Using this function allows you to cdlsp_IngSubrAbility() and
Dsp_GetProgAbility() to determine if the DSP code your application has already
loaded is still present (i.e. has not been flushed by another application).

DsplnqSubrAbility(), Dsp_GetProgAbility()

THE ATARI COMPENDIUM

Dsp_Reserve() — 4.53

Dsp_Reserve()

WORD Dsp_Reservefreserveyreserve)
LONG xreserveyreserve

OPCODE

AVAILABILITY

PARAMETERS

BINDING

RETURN VALUE

COMMENTS

Dsp_Reserve(yeserves DSP memory for program usage.

107 (0x6B)

This call is only available if the fifth bit of the *_SND’ cookie is set.
Xreserveandyreservespecify the amount of memory (in DSP words) to reserve
for a DSP program in X and Y memory space respecti¥ehgerveandyreserve

must include all program/data space so that subroutines do not overwrite your
reserved area.

move.l yreserve,-(sp)
move.| xreserve,-(sp)
move.w #3$6B,-(sp)
trap #14

lea 10(sp),sp

Dsp_Reserve(Yeturns a 0 if the memory was reserved successfully or -1 if not
enough DSP memory was available.

If this call fails you should caPsp_FlushSubroutines(Jand then retry it. If it
fails a second time, the DSP lacks enough memory space to run your program.

Dsp_RunSubroutine()

WORD Dsp_RunSubroutine(handle)

WORD handle

OPCODE
AVAILABILITY
PARAMETERS

BINDING

Dsp_RunSubroutine()begins execution of the specified subroutine.
118 (0x76)
This call is only available if the fifth bit of the *_SND’ cookie is set.

handleis theWORD identifier of the DSP subroutine to engage.

move.w handle,-(sp)
move.w #3$76,-(sp)
trap #14

addq.! #4,sp

THE ATARI COMPENDIUM

4.54 — XBIOS Reference

RETURN VALUE Dsp_RunSubroutine()returns a 0 if successful or a negative code indicating
failure.

SEE ALSO Dsp_LoadSubroutine()

Dsp_SetVectors()

VOID Dsp_SetVectors(receiver transmitter)
VOID (* receive)();
LONG (*transmitten)();

Dsp_SetVectors(ksets the location of application interrupt handlers that are
called when the DSP is either ready to send or receive data.

OPCODE 126 (OX7E)
AVAILABILITY This call is only available if the fifth bit of the *_SND’ cookie is set.
PARAMETERS receiveris the address of an interrupt handler which is called when the DSP is

ready to send a DSP word of datdN&H.LFUNC (VOID (*)() OL) if you do not
wish to set this interrupt.

Likewise,transmitteris a pointer to an interrupt handler which is called when the
DSP is ready to receive a DSP word of dattldkLFUNC if you do not wish to
install atransmitterinterrupt.

Any function installed to handigansmitterinterrupts should returnlécONG
which has one of the following values:

transmitter ‘
Name Return Value Meaning
DSPSEND_NOTHING 0x00000000 Do not send any data to the DSP.
DSPSEND_ZERO 0xFF000000 | Transmit a DSP word of O to the DSP.

— Any other Transmit the low 24 bits to the DSP.

BINDING move.l #transmitter,-(sp)

move.l #receiver,-(sp)

move.w #$7E,-(sp)

trap #14

lea 10(sp),sp
COMMENTS UseDsp_Removelnterrupts()to turn off interrupts set with this call.
SEE ALSO Dsp_Removelnterrupts()

THE ATARI COMPENDIUM

Dsp_TriggerHC() — 4.55

Dsp_TriggerHC()

VOID Dsp_TriggerHC(vector);

WORD vector,

OPCODE

AVAILABILITY

PARAMETERS

BINDING

CAVEATS

Dsp_TriggerHC() causes a host command set aside for DSP programs to execute.
112 (0x70)
This call is only available if the fifth bit of the *_SND’ cookie is set.

vectorspecifies the vector to execute.

move.w vector,-(sp)
move.w #3$70,-(sp)
trap #14

addq.l #4,sp

Currently vectors 0x13 and 0x14 are the only vectors available for this purpose.
All other vectors are overwritten by the system on program load and are used by
the system and subroutines.

Dsp_Unlock()

VOID Dsp_Unlock(VOID)

OPCODE

AVAILABILITY

BINDING

SEE ALSO

Dsp_Unlock() unlocks the sound system from use by a process which locked it
previously usingsp_Lock().

105 (0x69)

This call is only available if the fifth bit of the *_SND’ cookie is set.

move.w #%$69,-(sp)
trap #14

addq.! #2,sp
Dsp_Lock()

THE ATARI COMPENDIUM

4.56 — XBIOS Reference

Dsptristate()

LONG Dsptristate(dspxmit dsprec)
WORD dspxmit dspre¢

Dsptristate() connects or disconnects the DSP from the connection matrix.

OPCODE 137 (0x89)
AVAILABILITY Available if *_SND’ cookie has bits 3 and 4 set.
PARAMETERS dpsxmitanddsprecspecify whether data being transmitted and/or recorded into

the DSP passes through the connection matrix. A val&Bf TRISTATE (0)
indicates a ‘tristate’ condition where data is not fed through the matrix. A value of
DSP_ENABLE (1) enables the use of the connection matrix.

BINDING move.w dsprec,-(sp)
move.w dspxmit,-(sp)
move.w #$89,-(sp)
trap #14
addq. #6,sp

RETURN VALUE Dsptristate() returns O if no error occurred or non-zero otherwise.

COMMENTS This call is used in conjunction withevconnect()to link the DSP to the internal
sound system.

SEE ALSO Devconnect()

EgetPalette()

VOID EgetPalette(start, count, paldata)
WORD start, count;

WORD *paldatg

EgetPalette()copies the current TT030 color palette data into a specified buffer..
OPCODE 85 (0x55)
AVAILABILITY This call is available when the high word of the *_VDO’ cookie has a value of 2.
PARAMETERS start gives the index (0-255) of the first color register to copy datadatont

specifies the total number of registers to cq@datais a pointer to an array
where the TT030 palette data will be stored. B&EPRD will be formatted as

THE ATARI COMPENDIUM

EgetShift() — 4.57

BINDING

CAVEATS

COMMENTS

SEE ALSO

follows:
Bits 15-12] Bits 11-8 Bits 7-4
Reserved Red Green Blue
pea palette
move.w count,-(sp)
move.w start,-(sp)
move.w #3$55,-(sp)
trap #14
lea 10(sp),sp

This call is machine-dependent to the TT030. It is therefore recommended that
vq_color() be used in most instances.

Unlike Setpalette()this call encodes color nibbles from the most signifigant to
least signifigant bit (3-2-1-0) as opposed to the compatibilty method of 0-3-2-1.

Esetpalette(), vg_color()

EgetShift()

WORD EgetShift(VOID)

OPCODE

AVAILABILITY

BINDING

RETURN VALUE

EgetShift() returns the current mode of the video shifter.
81 (0x51)

This call is available when the high word of the *_ VDO’ cookie has a value of 2.

move.w #3$51,-(sp)
trap #14
addq. #2,sp

EgetShift() returns aVORD bit array which is divided as follows:

Mask Name ‘ Bit(s) ‘Meaning

ES_BANK 0-3 These bits determine the current color bank being used by the TT

(in all modes with less than 256 colors).

The macro ColorBank() as defined below will extract the current
bank code.

#define ColorBank(x) ((x) & ES_BANK)

Unused

THE ATARI COMPENDIUM

4.58 — XBIOS Reference

SEE ALSO

ES_MODE 8-10 These bits determine the current mode of the TT video shifter as
follows:

Name Value

ST_LOW 0x0000
ST_MED 0x0100
ST_HIGH 0x0200
TT_MED 0x0300
TT_HIGH 0x0600
TT_LOW 0x0700

The current shifter mode code can be extracted with the following
macro:

#define ScreenMode(x) ((x) & ES_MODE)

— 11 Unused

ES_GRAY 12 This bit determines if the TT video shifter is currently in grayscale
mode. The following macro can be used to extract this information:

#define IsGrayMode(x) ((x) & ES_GRAY)

— 13-14 | Unused

ES_SMEAR 15 If this bit is set, the TT video shifter is currently in smear mode. The
following macro can be used to extract this information:

#define IsSmearMode(x) ((x) & ES_SMEAR)

EsetGray(), EsetShift(), EsetSmear(), EsetBank()

EsetBank()

WORD EsetBank(bank)

WORD bank;

OPCODE
AVAILABILITY

PARAMETERS

BINDING

RETURN VALUE

EsetBank() chooses which of 16 banks of color registers is currently active.
82 (0x52)
This call is available when the high word of the *_ VDO’ cookie has a value of 2.

bankspecifies the index of the color bank to activate. A valueS#_INQUIRE
(-1) does not change anything but still returns the current bank.

move.w bank,-(sp)
move.w #$52,-(sp)
trap #14

addq.l #4,sp

EsetBank() returns the index of the old blank.

THE ATARI COMPENDIUM

EsetColor() — 4.59

CAVEATS

SEE ALSO

This call is machine-dependent to the TT030.

EgetShift()

EsetColor()

WORD EsetColor(idx, color)

WORD idx, color;

OPCODE
AVAILABILITY

PARAMETERS

BINDING

RETURN VALUE

CAVEATS

COMMENTS

SEE ALSO

EsetColor() sets an individual color in the TTO30's palette.
83 (0x53)
This call is available when the high word of the * VDO’ cookie has a value of 2.

idx specifies the color index to modify (0-256plor is a TT030 format color
WORD bit array divided as follows:

Bits 15-12] Bits 11-8 Bits 7-4 Bits 3-0

Reserved Red Green Blue

If color is EC_INQUIRE (-1) then the call does not change the register but still
returns it value.

move.w color,-(sp)
move.w idx,-(sp)
move.w #$53,-(sp)
trap #14

addq.l #6,sp

EsetColor() returns the old value of the color register.

This call is machine-dependent to the TT030. It is therefore recommended that
vs_color() be used instead for compatibility.

Unlike Setpalette()this call encodes color nibbles from the most signifigant to
least signifigant bit (3-2-1-0) as opposed to the compatibilty method of 0-3-2-1.

EsetPalette(), vs_color()

THE ATARI COMPENDIUM

4.60 — XBIOS Reference

EsetGray()

WORD EsetGray(mode)

WORD mode
EsetGray() reads/modifies the TT030's video shifter gray mode bit.
OPCODE 86 (0x56)
AVAILABILITY This call is available when the high word of the *_VDO’ cookie has a value
of 2.
PARAMETERS modeis defined as follows:
Name mode ‘ Meaning
ESG_INQUIRE -1 Return the gray bit of the video shifter.
ESG_COLOR 0 Set the video shifter to interpret the lower 16 bits of a
palette entry as a TT030 color value (RGB 0-15).
ESG_GRAY 1 Set the video shifter to interpret the lower 8 bits of a
palette entry as a TT030 gray value (0-255)
BINDING move.w mode,-(sp)
move.w #$56,-(sp)
trap #14
addq.! #4,sp

RETURN VALUE EsetGray() returns the previous value of the video shifter’s gray bit.
CAVEATS This call is machine-dependent to the TT030.

SEE ALSO EgetShift()

EsetPalette()

VOID EsetPalette(start, count, paldata)
WORD start,count,

WORD *paldatg
EsetPalette()copies TT030 coloWWORDs from the specified buffer into the
TTO30 Color Lookup Table (CLUT).

OPCODE 84 (0x54)

AVAILABILITY This call is available when the high word of the *_VDO’ cookie has a value of 2.

THE ATARI COMPENDIUM

EsetShift() — 4.61

PARAMETERS start specifies the index of the starting color register to copy color datauot
indicates the number of paleiféORDs to copypaldatais a pointer to an array
of paletteWORDs to copy.

BINDING pea palette
move.w count,-(sp)
move.w start,-(sp)
move.w #3$54,-(sp)
trap #14
lea 10(sp),sp
CAVEATS This call is machine-dependent to the TT030. It is therefore recommended that

vs_color() be used instead for compatibility.
COMMENTS For the format of the colMVORDs, sed=getPalette()

SEE ALSO EgetPalette(), vg_color()

EsetShift()

WORD EsetShift(mode)

WORD mode
EsetShift() reads/modifies the TT030 video shifter.
OPCODE 80 (0x50)
AVAILABILITY This call is available when the high word of the *_VDO’ cookie has a value of 2.
PARAMETERS modeis aWORD bit array which defines the new setting of the video shifter as
follows:
Name ‘ Bit(s) ‘ Meaning

— 0-3 These bits determine the current color bank being used by the TT
(in all modes with less than 256 colors).
— 4-7 Unused

— 8-10 These bits determine the current mode of the TT video shifter as

follows:
Name Bit Mask
ST_LOW 0x0000
ST_MED 0x0100
ST_HIGH 0x0200
TT_MED 0x0300
TT_HIGH 0x0600
TT_LOW 0x0700

THE ATARI COMPENDIUM

4.62 — XBIOS Reference

BINDING

RETURN VALUE

— 11 Unused

ES_GRAY 12 Setting this bit places the TT video shifter in grayscale mode.
— 13-14 | Unused

ES_SMEAR 15 Setting this bit places the TT video shifter in smearsmear mode.

move.w mode,-(sp)

move.w #$50,-(sp)

trap #14

addq. #4,sp

EsetShift() returns the oldnodesetting of the video shifter.

CAVEATS This call is machine-dependent to the TT030.
SEE ALSO EgetShift(), EsetGray(), EsetSmear(), EsetBank()
WORD EsetSmear(mode)
WORD mode
EsetSmear()reads/modifies the current state of the video shifter's smear mode
bit.
OPCODE 87 (0x57)
AVAILABILITY This call is available when the high word of the * VDO’ cookie has a value of 2.
PARAMETERS modespecifies the action of this call as follows:
Name mode ‘ Meaning
ESM_INQUIRE -1 Return the smear bit of the video shifter.
ESM_NORMAL 0 Set the video shifter to process video data normally.
ESM_SMEAR 1 Set the video shifter to repeat the color of the last
displayed pixel each time a 0x0000 is read from video
memory.
BINDING move.w mode,-(sp)
move.w #$57,-(sp)
trap #14
addq. #4,sp

RETURN VALUE

SEE ALSO

EsetSmear()returns the prior setting of the video shifter's smear mode bit.

Egetshift(), EsetShift()

THE ATARI COMPENDIUM

Flopfmt() — 4.63

Flopfmt()

WORD Flopfmt(buf, skew dey spt, track, side intlv, magic, virgin)

VOIDP buf;

WORD *skew

WORD dey, spt, track, side intlv;

LONG magic,

WORD virgin;

Flopfmt() formats a specified track on a floppy disk.

OPCODE 10 (Ox0A)

AVAILABILITY All TOS versions.

PARAMETERS bufis a pointer to a word-aligned buffer large enough to hold one disk track which
is used to build a copy of each sector to wkewshould beNULL for non-
interleaved sectors or point tdMORD array containingptentries which
specifies the sector interleave order.
devspecifies which floppy drive to format (‘A ELOP_DRIVEA (0), ‘B:’ =
FLOP_DRIVEB (1)). sptindicates the number of sectors to fornr@ck
indicates which track to format.
sideindicates the side to formaintlv should bed-LOP_NOSKEW (1) for
consecutive sectors 6LOP_SKEW (-1) to interleave the sectors based on the
array pointed to bgkew
magicis a fixed magic number which mustBeOP_MAGIC (0x87654321).
virgin is the value to assign to uninitialized sector data (should be
FLOP_VIRGIN (OXE5ES)).

BINDING move.w virgin,-(sp)
move.| magic,-(sp)
move.w intlv,-(sp)
move.w side,-(sp)
move.w track,-(sp)
move.w spt,-(sp)
move.w dev,-(sp)
pea skew
pea buf
move.w #3$0A,-(sp)
trap #14
lea 26(sp).sp

RETURN VALUE Flopfmt() returns 0 if the track was formatted successfully or non-zero otherwise.

THE ATARI COMPENDIUM

4.64 — XBIOS Reference

Also, upon exitbuf will be filled in with aWORD array of sectors that failed
formatting terminated by an entry of 0. If no errors occurred then th¥WpstD
of bufwill be 0.

COMMENTS The steps required to a format a floppy disk are as follows:

1. CallFlopfmt() to format the disk as desired.
2. CallProtobt() to create a prototype boot sector in memory.
3. CallFlopwr() to write the prototype boot sector to track 0, side 0, sector 1.

Interleaved sector formatting is only possible a$@f 1.2.skewshould be set to
NULL andintlv should be set t6LOP_NOSKEW underTOS 1.0.

Specifying arintlv value ofFLOP_SKEW and askewarray equalling { 1, 2, 3, 4,
5,6, 7, 8, 9 }is the same as specifyingrihv value ofFLOP_NOSKEW. To
accomplish a 9 sector 2:1 interleave you would w8kewarray which looked
like: {1,6,2,7,3,8,4,9,5}.

The *_FDC’ cookie (if present) contains specific information regarding the
installed floppy drives. The lower three bytes of the cookie value contain a three-
letter code indicating the manufacturer of the drive (Atari is 0x415443 ‘ATC’).
The high byte determines the capabilities of the highest density floppy drive
currently installed as follows:

Name Value Meaning

FLOPPY_DSDD 0 Standard Density (720K)
FLOPPY_DSHD 1 High Density (1.44MB)
FLOPPY_DSED 2 Extra High Density (2.88MB)

To format a high density diskette, multiple #1@ parameter by 2. To format a
extra-high density diskette, multiply tptparameter by 4.

This call forces a ‘media changed’ state on the device which will be returned on
the nextMediach() or Rwabs() call.

SEE ALSO Floprate(), Floprd(), Flopwr()

Floprate()

WORD Floprate(dey rate)
WORD dey, rate;

Floprate() sets the seek rate of the specified floppy drive.

THE ATARI COMPENDIUM

Floprd() — 4.65

OPCODE 41 (0x29)

AVAILABILITY Available on allTOS versions except 1.00.

PARAMETERS devindicates the floppy drive whose seek rate you wish to modify (‘A:’ =
FLOP_DRIVEA (0), ‘B:’ = FLOP_DRIVEB (1)). rate specifies the seek rate as
follows:

Name rate ‘ Meaning

FRATE_6 0 Set seek rate to 6ms
FRATE_12 1 Set seek rate to 12ms
FRATE_2 2 Set seek rate to 2ms
FRATE_3 3 Set seek rate to 3ms

A rate value ofFRATE_INQUIRE (-1) will inquire the current seek rate without

modifying it.

BINDING move.w rate,-(Sp)
move.w dev,-(sp)
move.w #%$29,-(sp)
trap #14
addq. #6,sp

RETURN VALUE Floprate() returns the prior seek rate for the specified drive.

COMMENTS TOS version 1.00 can have its seek rates set by setting the system variable
(_seekratgWORD *)0x440) to the desired value (asrit€). Note that you can
only set the seek rate fopthdrives in this manner.

Floprd()

WORD Floprd(buf, rsrvd, dey, sector track, side count)
VOIDP buf;

LONG rsrvd,

WORD dey, sector track, side count;

Floprd() reads sectors from a floppy disk.

OPCODE 8 (0x08)
AVAILABILITY All TOS versions.
PARAMETERS buf points to a word-aligned buffer where the data to be read will be stered.

is currently unused and should b&l®vspecifies the floppy drive to read from

THE ATARI COMPENDIUM

4.66 — XBIOS Reference

(‘A = FLOP_DRIVEA (0), ‘B’ = FLOP_DRIVEB (1)). The function reads
countphysical sectors starting at secsector tracktrack, sideside

BINDING move.w count,-(sp)
move.w side,-(sp)
move.w track,-(sp)
move.w sector,-(sp)
move.w dev,-(sp)
move.l rsrvd,-(sp)
pea buf
move.w #$08,-(sp)
trap #14
lea 20(sp),sp

RETURN VALUE Floprd() returns 0 if the operation was successful or non-zero otherwise.

CAVEATS This function reads sectors in physical order (not taking interleave into account).
UseRwabs()to read logical sectors.

SEE ALSO Flopwr(), Flopfmt(), Flopver(), Rwabs()

Flopver()

WORD Flopver(buf, rsrvd, dey sector track, side count)
VOIDP buf;

LONG rsrvd;

WORD dey, sectot track, side count;

Flopver() verifies data on a floppy disk with data in memory.

OPCODE 19 (0x13)
AVAILABILITY All TOS versions.
PARAMETERS bufis a pointer to a word-aligned buffer to compare the sector agaiivstis

unused and should bedEVvspecifies the drive to verify (‘A:’ #LOP_DRIVEA
(0), ‘B:’ = FLOP_DRIVEB (1)). This function verifiesountsectors starting at
sectorsector tracktrack, sideside

BINDING move.w count,-(sp)
move.w side,-(sp)
move.w track,-(sp)
move.w sector,-(sp)
move.w dev,-(sp)
move.l rsrvd,-(sp)
pea buf
move.w #$13,-(sp)
trap #14
lea 20(sp),sp

THE ATARI COMPENDIUM

Flopwr() — 4.67

RETURN VALUE

CAVEATS

COMMENTS

SEE ALSO

Flopver() returns 0 if all sectors were successfully verified or a non-zero value
otherwise.

This function only verifies sectors in physical order.

As with Flopfmt(), upon the return of the functidpyf is filled in with aWORD
array containing a list of any sectors which failed. The array is terminated with a
NULL .

Flopwr(), Flopfmt()

Flopwr()

WORD Flopwr(buf, rsrvd, dey, sector, track, side count)

VOIDP buf;
LONG rsrvd;

WORD dey, sector track, side count;

OPCODE

AVAILABILITY

PARAMETERS

BINDING

RETURN VALUE

CAVEATS

COMMENTS

Flopwr() writes sectors to the floppy drive.
9 (0x09)
All TOS versions.

bufis a pointer containing data to writsrvd is currently unused and should be
set to 0devspecifies the floppy drive to write to (‘A = 0,'B:’ = 1). This
function writescountsectors starting at sectgctor, tracktrack, sideside

move.w count,-(sp)
move.w side,-(sp)
move.w track,-(sp)
move.w sector,-(sp)
move.w dev,-(sp)
move.| rsrvd,-(sp)
pea buf
move.w #$09,-(sp)
trap #14

lea 20(sp),sp

Flopwr() returns 0 if the sectors were successfully written or non-zero otherwise.

This function writes sectors in physical order only (ignoring interleave). Use
Rwabs()to write sectors in logical order.

If this call is used to write to track 0, sector 1, side 0, the device will enter a

THE ATARI COMPENDIUM

4.68 — XBIOS Reference

SEE ALSO

‘media might have changed’ state indicated upon theRwabs() or Mediach()
call.

Floprd(), Flopfmt(), Flopver(),Rwabs()

Getrez()

WORD Getrez(VOID)

OPCODE

AVAILABILITY

BINDING

RETURN VALUE

CAVEATS

COMMENTS

Getrez() returns a machine-dependent code representing the current screen
mode/ratio.

4 (0x04)

All TOS versions.

move.w #$04,-(sp)
trap #14
addq. #2,sp

Getrez() returns a value representing the current video display mode. To find the
value you will receive back based on current Atari manufactured video hardware,
refer to the following chart:

Colors:

Screen

Dimension: 2 4 5
320x200 X X 0 0 X
320x240 X 0 0 0 0
320x480 X 7 7 7 7
640x200 1 X X X X
640x400 2 X X X X
640x480 2 2 27 2 2
1280x960 6 X X X X

T This value varies. TT030 Medium resolution returns a value of 4, however, the
Falcon returns a value of 2.

This call isextremelymachine-dependent. Dependence on this call will make your
program incompatible with third-party video boards and future hardware. Use the
values returned by_opnvwk() to determine screen attributes.

Use of this call in preparing to call opnvwk() is acceptable and must be done to
specify the correct fonts to load frdaDOS,

THE ATARI COMPENDIUM

Gettime() — 4.69

SEE ALSO

VsetMode(), Egetshift(), Setscreen()

Gettime()

LONG Gettime(VOID)

OPCODE

AVAILABILITY

BINDING

RETURN VALUE

SEE ALSO

Gettime() returns the current IKBD time.
23 (0x17)

All TOS versions.

move.w #$17,-(sp)
trap #14
addq. #2,sp

Gettime() returns dONG bit array packed with the current IKBD time as

follows:
Bits Meaning

0-4 Seconds/2 (0-29)
5-10 Minute (0-59)
11-15 Hour (0-23)

16-20 Day (1-31)
21-24 Month (1-12)
25-31 Year-1980 (0-127)

The return value can be represented in a C structure as follows:

typedef struct

{
unsigned year:7;
unsigned month:4;
unsigned day:5;
unsigned hour:5;
unsigned minute:6;
unsigned second:5;

} BIOS_TIME;

Settime(), Tgettime(), Tgetdate()

THE ATARI COMPENDIUM

4.70 — XBIOS Reference

Giaccess()

WORD Giaccess(data, register)
WORD data, register,

OPCODE

AVAILABILITY

PARAMETERS

Giaccess(reads/sets the registers of the FM sound chip and Port A/B

peripherals.
28 (0x1C)

All TOS versions.

The lower eight bits oflataare written to the register selectedrbgisterif the
value forregisteris OR’ed with 0x80 (high bit set). If this bit is not Sdatais
ignored and the value of tihegisteris returnedregisterselects the register to

read/write to as follows:

Name register ‘ Meaning

PSG_APITCHLOW 0 Set the pitch of the PSG’s channel A to the value in
PSG_BPITCHHIGH 1 registers 0 and 1. Register 0 contains the lower 8 bits
of the frequency and the lower 4 bits of register 1
contain the upper 4 bits of the frequency’s 12-bit value.
PSG_BPITCHLOW 2 Set the pitch of the PSG’s channel B to the value in
PSG_BPITCHHIGH 3 registers 0 and 1. Register 0 contains the lower 8 bits
of the frequency and the lower 4 bits of register 1
contain the upper 4 bits of the frequency’s 12-bit value.
PSG_CPITCHLOW 2 Set the pitch of the PSG’s channel C to the value in
PSG_CPITCHHIGH 3 registers 0 and 1. Register O contains the lower 8 bits
of the frequency and the lower 4 bits of register 1
contain the upper 4 bits of the frequency’s 12-bit value.
PSG_NOISEPITCH 6 The lower five bits of this register set the pitch of white
noise. The lower the value, the higher the pitch.
PSG_MODE 7 This register contains an eight bit map which

determines various aspects of sound generation.
Setting each bit on causes the following actions:

Name Bit Mask Meaning

PSG_ENABLEA 0x01 Chnl A tone enable
PSG_ENABLEB 0x02 Chnl B tone enable
PSG_ENABLEC 0x04 Chnl C tone enable

PSG_NOISEA 0x08 Chnl A white noise on
PSG_NOISEB 0x10 Chnl B white noise on
PSG_NOISEC 0x20 Chnl C white noise on
PSG_PRTAOUT 0x40 Port A: 0 =input

1 = output
PSG_PRTBOUT 0x80 PortB: 0 - input

1 = output

THE ATARI

COMPENDIUM

Gpio() —4.71

PSG_AVOLUME 8 This register controls the volume of channel A. Values
from 0-15 are absolute volumes with 0 being the
softest and 15 being the loudest. Setting bit 4 causes
the PSG to ignore the volume setting and to use the
envelope setting in register 13.

PSG_BVOLUME 9 This register controls the volume of channel B. Values
from 0-15 are absolute volumes with 0 being the
softest and 15 being the loudest. Setting bit 4 causes
the PSG to ignore the volume setting and to use the
envelope setting in register 13.

PSG_CVOLUME 10 This register controls the volume of channel C. Values
from 0-15 are absolute volumes with 0 being the
softest and 15 being the loudest. Setting bit 4 causes
the PSG to ignore the volume setting and to use the
envelope setting in register 13.

PSG_FREQLOW 11 Register 11 contains the low byte and register 12
PSG_FREQHIGH 12 contains the high byte of the frequency of the
waveform specified in register 13. This value may
range from 0 to 65535.

PSG_ENVELOPE 13 The lower four bits of the register contain a value
which defines the envelope wavefrom of the PSG. The
best definition of values is obtained through
experimentation.

PSG_PORTA 14 This register accesses Port A of the Yamaha PSG. It
is recommended that the functions Ongibit() and
Offgibit() be used to access this register.
PSG_PORTB 15 This register accesses Port B of the Yamaha PSG.
This register is currently assigned to the data in/out
line of the Centronics Parallel port.

BINDING move.w register,-(sp)
move.w data,-(sp)
move.w #3$1C,-(sp)
trap #14
addq.| #6,sp

RETURN VALUE Giaccess()eturns the value of the register in the lower eight bits of the word if

datawas OR’ed with 0x80.
Gpio()

LONG Gpio(mode data)
WORD mode data;

Gpio() reads/writes data over the general purpose pins on the DSP connector.
OPCODE 138 (0x8A)

AVAILABILITY Available if *_SND’ cookie has bit 3 set.

THE ATARI COMPENDIUM

4.72 — XBIOS Reference

PARAMETERS modespecifies the meaning dataand the return value as follows:

Name mode ‘ Meaning

GPIO_INQUIRE 0 Return the old value.

GPIO_READ 1 Read the three general purpose pins and return their
state in the lower three bits of the returned value. data
is ignored.

GPIO_WRITE 2 Write the lower three bits of data to the corresponding
DSP pins. The return value is 0.

BINDING move.w data,-(sp)
move.w mode,-(sp)
move.w #$8A,-(sp)
trap #14
addq.! #6,sp

Ikbdws()

VOID Ikbdws(len, buf)

WORD len;
CHAR *buf;

Ikbdws() writes the contents of a buffer to the intelligent keyboard controller.
OPCODE 25 (0x19)
AVAILABILITY All TOS versions.
PARAMETERS This function writeden + 1 characters from bufféufto the IKBD.
BINDING pea buf

move.w len,-(sp)

move.w #$19,-(sp)

trap #14

addq. #8,sp

THE ATARI COMPENDIUM

Initmous() — 4.73

Initmous()

VOID Initmous(mode param, vec)
WORD mode

VOIDP param

VOID (* veq();

Initmous() determines the method of handling IKBD mouse packets from the

system.
OPCODE 0 (0x00)
AVAILABILITY All TOS versions.
PARAMETERS modeindicates a IKBD reporting mode and defines the meaning of the other

parameters as listed belodandpoints to a mouse packet handler which is called
when each mouse packet is sent. Register AO contains the mouse packet address

when called.
Name ‘ mode Meaning
IM_DISABLE 0 Disable mouse reporting.
IM_RELATIVE 1 Enable relative mouse reporting mode. Packets report

offsets from the previous mouse position. In this mode,
param is a pointer to a structure as follows:

struct param

{
BYTE topmode;

BYTE buttons;
BYTE xparam;
BYTE yparam;

}

topmode is IM_YBOT (0) to indicate that Y=0 means
bottom of the screen. A topmode value of IM_YTOP (1)
indicates that Y=0 means the top of the screen.

buttons is a bit array which affect the way mouse clicks are
handled. A value of IM_KEYS (4) causes mouse buttons to
generate keycodes rather than mouse packets. A value of
IM_PACKETS (3) causes the absolute mouse position to
be reported on each button press.

xparam and yparam specify the number of mouse X/Y
increments between position report packets.

This mode is the default mode of the AES and VDI.

THE ATARI COMPENDIUM

4.74 — XBIOS Reference

IM_ABSOLUTE 2 Enable absolute mouse reporting mode. Packets report
actual screen positions. In this mode, param is a pointer to
a structure as follows:

struct param

{
BYTE topmode;

BYTE buttons;
BYTE xparam;
BYTE yparam;
WORD xmax;
WORD ymax;
WORD xinitial;
WORD vyinitial;
}

topmode, buttons, xparam, and yparam are the same as
for mode 2.

xmax and ymax specify the maximum X and Y positions
the mouse should be allowed to move to. xinital and yinitial
specify the mouse’s initial location.

— 3 Unused

IM_KEYCODE 4 Enable mouse keycode mode. Keyboard codes for mouse
movements are sent rather than actual mouse packets.

param is handled the same as in mode 1.

BINDING pea hand
pea param
move.w mode,-(sp)
clr.w -(sp)
trap #14
lea 12(sp),sp
CAVEATS Changing the mouse packet handler to anything but relative mode will cause the

AES andVDI to stop receiving mouse input.

SEE ALSO Kbdvbase()

lorec()

IOREC *lorec(dev)

WORD dey,
lorec() returns the address in memory of system data structures relating to the
buffering of input data.

OPCODE 14 (OxOE)

AVAILABILITY All TOS versions.

THE ATARI COMPENDIUM

Jdisint() — 4.75

PARAMETERS

BINDING

RETURN VALUE

SEE ALSO

devspecifies the device to return information about as follows:

Name dev Meaning
10_SERIAL 0 Currently mapped serial device
(see Bconmap())
10_KEYBOARD 1 Keyboard
10_MIDI 2 MIDI
move.w dev,-(sp)
move.w #3$0E,-(sp)
trap #14
addq.| #4,sp

lorec() returns the address of KAREC array with either one element (Keyboard
or MIDI) or two elements (RS-232 - 1st = input, 2nd = output). THEC
structure is defined as follows:

typedef struct

[* start of buffer */
char *ibuf;

/* size of buffer */
WORD ibufsize;

/* head index mark of buffer */
WORD ibufhd;

/* tail index mark of buffer */
WORD ibuftl;

/* low-water mark of buffer */
WORD ibuflow;

/* high-water mark of buffer */

WORD ibufhi;
} IOREC;

Bconmap()

Jdisint()

VOID Jdisint(intno)
WORD intno;

Jdisint() disables an MFP interrupt.

OPCODE 26 (0x1A)

THE ATARI

COMPENDIUM

4.76 — XBIOS Reference

AVAILABILITY All TOS versions.
PARAMETERS intno specifies the interrupt to disable (étpint() for a list).
BINDING move.w intno,-(sp)
move.w #$1A,-(sp)
trap #14
addq.l #4,sp
SEE ALSO Jenabint(), Mfpint()

Jenabint()

VOID Jenabint(intno)

WORD intno;
Jenabint() enables an MFP interrupt.
OPCODE 27 (0x1B)
AVAILABILITY All TOS versions.
PARAMETERS intno specifies the interrupt to enable (dépint() for a list).
BINDING move.w intno,-(sp)
move.w #$1B,-(sp)
trap #14
addq.l #4,sp
SEE ALSO Jdsint(), Mfpint()

Kbdvbase()

KBDVECS *Kbdvbase(VOID)

Kbdvbase()returns a pointer to a system structure containing a ‘jump’ table to
system vector handlers.

OPcCODE 34 (0x22)

AVAILABILITY All TOS versions.

BINDING move.w #$22,-(sp)
trap #14

THE ATARI COMPENDIUM

Kbrate() — 4.77

RETURN VALUE

COMMENTS

SEE ALSO

addq.| #2,sp

Kbdvbase()returns a pointer to a system struct{BOVECS which is defined as
follows:

typedef struct

VOID (*midivec)(UBYTE data); /* MIDI Input */
VOID (*vkbderr)(UBYTE data); /* IKBD Error */
VOID (*vmiderr)(UBYTE data); /* MIDI Error */

VOID (*statvec)(char *buf); /* IKBD Status */
VOID (*mousevec)(char *buf); /* IKBD Mouse */
VOID (*clockvec)(char *buf); /* IKBD Clock */
VOID (*joyvec)(char *buf); /* IKBD Joystick */
VOID (*midisys)(VOID); /* Main MIDI Vector */
VOID (*ikbdsys)(VOID); /* Main IKBD Vector */
char ikbdstate; /* See below */

} KBDVECS;

midivecis called with the received data byte in dO. If an overflow error occurred
on either ACIA vkbderror vmiderrwill be called, as appropriate Ipyidisysor
ikbdsys with the contents of the ACIA data register in dO.

statve¢ mousevealockveg andjoyvecall are called with the address of the
packet in register AQ.

midisysandikbdsysare called by the MFP ACIA interrupt handler when a
character is ready to be read from either the midi or keyboard ports.

ikbdstateis set to the number of bytes remaining to be read Githidsyshandler
from a multiple-byte status packet.

If you intercept any of these routines you should either JMP through the old handler
or RTS.

Initmous()

Kbrate()

WORD Kbrate(delay, rate)

WORD delay; rate;

OPCODE

AVAILABILITY

Kbrate() reads/modifies the keyboard repeat/delay rate.
35 (0x23)

All TOS versions.

THE ATARI COMPENDIUM

4.78 — XBIOS Reference

PARAMETERS delayspecifies the amount of time (in 50Hz ticks) before a key begins repeating.
rate indicates the amount of time between repeats (in 50Hz ticks). A parameter of
KB_INQUIRE (-1) for either of these values leaves the value unchanged.

BINDING move.w rate,-(sp)
move.w delay,-(sp)
move.w #$23,-(sp)
trap #14
addq.! #6,sp

RETURN VALUE Kbrate() returns &VORD with the low byte being the old value f@te and the
high byte being the old value fdelay.

Keytbl()

KEYTAB *Keytbl(normal, shift, caps)
char *unshift, *shift, *caps

Keytbl() reads/modifies the internal keyboard mapping tables.

OPCODE 16 (0x10)
AVAILABILITY All TOS versions.
PARAMETERS normalis a pointer to an array of 12Z8HARs which can be indexed by a

keyboard scancode to return the correct ASCII value for a given unshifted key.
shiftandcapspoint to similar array except their values are only utilized when
SHIFT andCAPS-LOCK respectively are used. Passing a value of
KT_NOCHANGE ((char *)-1) will leave the table unchanged.

BINDING pea caps
pea shift
pea normal
move.w #$10,-(sp)
trap #14
lea 14(sp),sp

RETURN VALUE Keytbl() returns a pointer toldEEYTAB structure defined as follows:

typedef struct

char *unshift;
char *shift;
char *caps;

} KEYTAB;

The entries in this table each point to the current keyboard lookup table in their
category.

THE ATARI COMPENDIUM

Locksnd() — 4.79

SEE ALSO

Entries are indexed with a keyboard scancode to obtain the ASCII value of a key.
A value of 0 indicates that no ASCII equivalent exists.

Bioskeys()

Locksnd()

LONG Locksnd(VOID)

OPCODE

AVAILABILITY

BINDING

RETURN VALUE

COMMENTS

SEE ALSO

Locksnd() prevents other applications from simultaneously attempting to use the
sound system.

128 (0x80)

Available if the *_SND’ cookie has bit 2 set.

move.w #%$80,-(sp)
trap #14
addq.! #2,sp

Locksnd() returns 1 if the sound system was successfully locked or
SNDLOCKED (-129) if the sound system was already locked.

This call should be used prior to any usage of the 16-bit DMA sound system.

Unlocksnd()

Logbase()

VOIDP Logbase(VOID)

OPCODE

AVAILABILITY

BINDING

RETURN VALUE

Logbase()returns a pointer to the base of the logical screen.
3 (0x03)

All TOS versions.

move.w #3$03,-(sp)
trap #14
addq.| #2,sp

Logbase()returns a pointer to the base of the logical screen.

THE ATARI COMPENDIUM

4.80 — XBIOS Reference

COMMENTS The logical screen should not be confused with the physical screen. The logical
screen is the memory area where\th¥ does any drawing. The physical screen
is the memory area where the video shifter gets its data from. Normally they are
the same; however, keeping the addresses separate facilitates screen flipping.

SEE ALSO Physbase()

Metainit()

VOID Metainit(metainfo)
METAINFO * metainfo,

Metainit() returns information regarding the current version and installed drives

of MetaDOS,
OPCODE 48 (0x30)
AVAILABILITY To test for the availability dfletaDOS the following steps must be taken:

1. Fill theMETAINFO structure with all zeros.
2. CallMetainit() .
3. If metainfo.versions NULL , MetaDOS is not installed.

PARAMETERS metainfois a pointer to METAINFO structure which is filled in by the call.
METAINFO is defined as:

typedef struct

/* Bitmap of drives (Bit0 = A, 1 = B, etc... */
ULONG drivemap;

/* String containing name and version */
char *version;

[* Currently unused */
LONG reserved[2];

} METAINFO;

BINDING pea metainfo
move.w #$30,-(sp)
trap #14
addq.l #6,sp

Mfpint()

THE ATARI COMPENDIUM

Mfpint() — 4.81

VOID Mfpint(intno, vector)
WORD intno;
VOID (* vectop();

Mfpint() defines an interrupt handler for an MFP interrupt.

OPCODE 13 (Ox0D)

AVAILABILITY All TOS versions.

PARAMETERS intnois an index to a vector to replace wigctoras follows:
Name intno Vector
MFP_PARALLEL 0 Parallel port
MFP_DCD 1 RS-232 Data Carrier Detect
MFP_CTS 2 RS-232 Clear To Send
MFP_BITBLT 3 BitBIt Complete
MFP_TIMERD or 4 Timer D (RS-232 baud rate generator)
MFP_BAUDRATE
MFP_200HZ 5 Timer C (200Hz system clock)
MFP_ACIA 6 Keyboard/MIDI vector
MFP_DISK 7 Floppy/Hard disk vector
MFP_TIMERB or 8 Timer B (Horizontal blank)
MFP_HBLANK
MFP_TERR 9 RS-232 transmit error
MFP_TBE 10 RS-232 transmit buffer empty
MFP_RERR 11 RS-232 receive error
MFP_RBF 12 RS-232 receive buffer full.
MFP_TIMERA or 13 Timer A (DMA sound)
MFP_DMASOUND
MFP_RING 14 RS-232 ring indicator
MFP_MONODETECT 15 Mono monitor detect/DMA sound complete

BlNDlNG pea vector
move.w intno,-(sp)
move.w #3$0D,-(sp)
trap #14
addq.| #8,sp

CAVEATS This call does not return the address of the old handler.

The only RS-232 vector that may be set on the Falcon030 with this function is the
ring indicator.

COMMENTS Newly installed interrupts must be enabled wigmabint().

THE ATARI COMPENDIUM

4.82 — XBIOS Reference

SEE ALSO Jenabint(), Jdisint()

Midiws()

VOID Midiws(count, buf)

WORD count;
char *buf;

Midiws() outputs a data buffer to the MIDI port.
OPCODE 12 (0x0C)
AVAILABILITY All TOS versions.
PARAMETERS count+ 1 characters are written from the buffer pointed tougy
BINDING pea buf

move.w count,-(sp)

move.w #$0C,-(sp)

trap #14

addq.! #8,sp

NVMaccess()

WORD NVMaccess(op, start, count, buffer)

WORD op, start, count,
char *buffer;

NVMaccess()reads/modifies data in non-volatile (battery backed-up) memory.

OPCODE 46 (0x2E)

AVAILABILITY This function’s availability is variable. If it returns Ox2E (its opcode) when
called, the function is non-existent and the operation was not carried out.

PARAMETERS opindicates the operation to perform as follows:
Name op Meaning
NVM_READ 0 Read count bytes of data starting at offset start and place the data
in buffer.
NVM_WRITE Write count bytes of data from buffer starting at offset start.
NVM_RESET Resets and clears all data in non-volatile memory.

THE ATARI COMPENDIUM

Offgibit() — 4.83

BINDING pea buffer
move.w count,-(sp)
move.w start,-(sp)
move.w op,-(sp)
move.w #$2E,-(sp)
trap #14
lea 12(sp),sp

RETURN VALUE NVMaccess()returns 0 if the operation succeeded or a negative error code

otherwise.

CAVEATS All of the locations are reserved for use by Atari and none are currently
documented.

COMMENTS Currently there is a total of 50 bytes in non-volatile RAM.

Offgibit()

VOID Offgibit(mask)

WORD mask
Offgibit() clears individual bits of the sound chip’s Port A.
OPCODE 29 (0x1D)
AVAILABILITY All TOS versions.
PARAMETERS maskis a bit mask arranged as shown below. For each of the lower eight bits in
maskset to 0, that bit will be reset. Other bits (set as 1) will remain unchanged.
Name ‘ Mask Meaning
GI_FLOPPYSIDE 0x01 | Floppy side select
GI_FLOPPYA 0x02 | Floppy A select
GI_FLOPPYB 0x04 | Floppy B select
GI_RTS 0x08 RS-232 Request To Send
GI_DTR 0x10 RS-232 Data Terminal Ready
GI_STROBE 0x20 | Centronics strobe
GI_GPO 0x40 | General purpose output (On a Falcon030, this bit
controls the state of the internal speaker)
GI_SCCPORT 0x80 | OnaMega STe or TT030, calling Ongibit(0x80)
will cause SCC channel A to control the Serial 2
port rather than the LAN. To select the LAN, use
Offgibit(Ox7F).
BINDING move.w maSk,-(Sp)

THE ATARI COMPENDIUM

4.84 — XBIOS Reference

SEE ALSO

move.w #$1D,-(sp)
trap #14
addq.l #4,sp

Giaccess(), Ongibit()

Ongibit()

VOID Ongibit(mask)

WORD mask

OPCODE
AVAILABILITY

PARAMETERS

BINDING

SEE ALSO

Ongibit() sets individual bits of the sound chip’s assigned Port A.
30 (OX1E)
All TOS versions.

maskis a bit mask arranged as definediffigibit() . For each of the lower eight
bits inmaskset to 1, that bit will be set. Other bits (set as 0) will remain
unchanged.

move.w mask,-(sp)
move.w #$1E,-(sp)
trap #14

addq.l #4,sp

Giaccess(), Offgibit()

Physbase()

VOIDP Physbase(VOID)

OPCODE

AVAILABILITY

BINDING

RETURN VALUE

COMMENTS

Physbase(returns the address of the physical base of screen memory.
2 (0x02)

All TOS versions.

move.w #$02,-(sp)
trap #14
addq.l #2,sp

Physbase(returns the physical base address of the screen.

The physical base address is the memory area where the video shifter reads its

THE ATARI COMPENDIUM

Protobt() — 4.85

SEE ALSO

data. The logical address is the memory area wheM2heraws. These are
normally the same but are addressed individually to enable screen flipping.

Logbase()

Protobt()

VOID Protobt(buf, serial, typg execflag)

VOIDP buf;

LONG serial;

WORD typeg execflag
Protobt() creates a prototype floppy boot sector in memory for writing to a floppy
drive.

OPCODE 18 (0x12)

AVAILABILITY All TOS versions.

PARAMETERS bufis a 512 byte long buffer where the prototyped buffer will be written. If you

are creating an executable boot sector, the memory buffer should contain the code
you requireserial can be any of the following values:

Name ‘ serial ‘ Meaning
SERIAL_NOCHANGE -1 Don’t change the serial number already in
memory.
SERIAL_RANDOM >0x01000000 Use a random number for the serial number
— any other positive | Set the serial number to serial.
number

typedefines the type of disk to prototype as follows:

Name type Meaning

DISK_NOCHANGE -1 Don’t change disk type.
DISK_SSSD 0 40 Track, Single-Sided (180K)
DISK_DSSD 1 40 Track, Double-Sided (360K)
DISK_SSDD 2 80 Track, Single-Sided (360K)
DISK_DSDD 3 80 Track, Double-Sided (720K)
DISK_DSHD 4 High Density (1.44MB)
DISK_DSED 5 Extra-High Density (2.88MB)

execflagspecifies the executable status of the boot sector as follows:

THE ATARI COMPENDIUM

4.86 — XBIOS Reference

BINDING

CAVEATS

COMMENTS

SEE ALSO

Name [execflag Meaning
EXEC_NOCHANGE -1 Don't alter executable status
EXEC_NO 0 Disk is not executable
EXEC_YES 1 Disk is executable

move.w execflag,-(sp)

move.w type,-(sp)

move.l serial,-(sp)

pea buf

move.w #$12,-(sp)

trap #14

lea 14(sp),sp

typevalues oDISK_DSHD andDISK_DSED are only available when the high
byte of the *_FDC’ cookie has a valuefdfOPPY_DSHD (1) and
FLOPPY_DSED (2) respectively.

To create an MS-DOS compatible disk you must set the first three bytes of the
prototyped boot sector to OXE9, 0x00, and Ox4E.

Flopfmt(), Flopwr()

Prtblk()

WORD Priblk(blk)

PRTBLK * blk;

OPCODE
AVAILABILITY

PARAMETERS

Prtblk() accesses the built-in bitmap/text printing code.
36 (0x24)
All TOS versions.

blk is aPRTBLK pointer containing information about the bitmap or text to print.
PRTBLK is defined as follows:

typedef struct

VOIDP blkptr; /* pointer to screen scanline */
UWORD offset; /* bit offset of first column */
UWORD width; /* width of bitmap in bits */
UWORD height; /* height of bitmap in scanlines */
UWORD left; [* left print margin (in pixels) */
UWORD right; /* right print margin (in pixels) */
UWORD srcres; /* same as Getrez() */

UWORD destres; /* 0 = draft, 1 = final */

UWORD *colpal; /* color palette pointer */

/*

THE ATARI COMPENDIUM

Puntaes() — 4.87

* 0 = B/W Atari

* 1 = Color Atari

* 2 = Daisy Wheel

* 3 = B/W Epson

*/

UWORD type;

/* 0 = parallel, 1 = serial */

UWORD port;

/* halftone mask pointer or NULL to use default */
char *masks;

} PRTBLK;

BINDING pea priblk
move.w #%$24,-(sp)
trap #14
addq.| #6,sp

CAVEATS This call is extremely device dependentbit_image() with GDOS installed
should be used instead. Only ST compatible screen resolution bitmaps may be
printed with this utility function.

COMMENTS When printing textblkptr should point to the text stringjidth should be the length
of the text stringheightshould be 0, anghasksshould beNULL .
In graphic print modenaskscan beNULL to use the default halftone masks.
The system variableprt_cnt(WORD *)0x4EE should be set to 1 to disable the
ALT-HELP key before calling this function. It should be restored to a value of -1
when done.

SEE ALSO Scrdump(), SetPrt()

Puntaes()

VOID Puntaes(VOID)

OPCODE

AVAILABILITY

BINDING

RETURN VALUE

Puntaes()discards thé\ES (if memory-resident) and restarts the system.
39 (0x27)

All TOS versions.

move.w #$27,-(sp)
trap #14
addq.l #2,sp

If successful, this function will not return control to the caller.

THE ATARI COMPENDIUM

4.88 — XBIOS Reference

CAVEATS Puntaes()is only valid with disk-loaded AES'’s.

COMMENTS Puntaes()discards thé\ES by freeing any memory it allocated, resetting the
system variables_magiqthis variable should contain the magic number
0x87654321, however if reset, tAES will not initialize), and rebooting the
system.

Random()

LONG Random(VOID)

Random() returns a 24 bit random number.

OpcoODE 17 (0x11)
AVAILABILITY All TOS versions.
BINDING move.w #$11,-(sp)
trap #14
addq.| #2,sp

RETURN VALUE Random() returns a 24-bit random value in the lower three bytes of the returned
LONG.

CAVEATS The algorithm used provides an exact 50% occurrence of bit O.

Rsconf()

ULONG Rsconf(speedflow, ucr, rsr, tsr, scr)
WORD speedflow, ucr, rsr, tsr, scr,

Rsconf() reads/modifies the configuration of the serial device currently mapped to
BIOS device #1 GEMDOS ‘aux:’).

OPCODE 15 (Ox0F)

AVAILABILITY All TOS versions.

PARAMETERS speedsets the serial device speed as follows:
Name speed ‘ Baud Rate Name speed Baud Rate
BAUD_19200 0 19200 BAUD_600 8 600
BAUD_9600 1 9600 BAUD_300 9 300

THE ATARI COMPENDIUM

Rsconf() — 4.89

BAUD_4800 2 4800 BAUD_200 10 200
BAUD_3600 3 3600 BAUD_150 11 150
BAUD_2400 4 2400 BAUD_134 12 134
BAUD_2000 5 2000 BAUD_110 13 110
BAUD_1800 6 1800 BAUD_75 14 75
BAUD_1200 7 1200 BAUD_50 15 50

If speeds set tdBAUD_INQUIRE (-2), the last baud rate set will be returned.

flow selects the flow control method as follows:

Name flow Meaning

FLOW_NONE 0 No flow control

FLOW_SOFT 1 XON/XOFF flow control (CTRL-S/CTRL-Q)
FLOW_HARD 2 RTS/CTS flow control (hardware)
FLOW_BOTH 3 Both methods of flow control

ucr, rsr, andtsr are each status bit arrays governing the serial devices. Each
parameter uses only the lower eight bits ofMH8RD. They are defined as
follows:

Mask ucr rsr and tsr
0x01 Unused Receiver enable:
RS_RECVENABLE

0x02 Enable odd parity Sync strip
RS_ODDPARITY (0x02) RS_SYNCSTRIP
RS_EVENPARITY (0x00)

0x04 Parity enable Match busy
RS_PARITYENABLE RS_MATCHBUSY

0x08 Bits 3-4 of the ucr collectively define the Break detect

start and stop bit configuration as follows: RS_BRKDETECT

00 = No Start or Stop bits
RS_NOSTOP (0x00)

01 =1 Start bit, 1 Stop bit
RS_1STOP (0x08)

10 = 1 Start bit, 1% Stop bits
RS_15STOP (0x10)

11 = 1 Start bit, 2 Stop bits
RS_2STOP (0x18)

0x10 See above. Frame error
RS_FRAMEERR
0x20 Bits 5 and 6 together define the number of | Parity error
bits per word as follows: RS_PARITYERR
00 = 8 bits
RS_8BITS (0x00)
01 =7 bits

RS_7BITS (0x20)

THE ATARI COMPENDIUM

4.90 — XBIOS Reference

10 = 6 hits

RS_6BITS (0x40)

11 =5 hits

RS_5BITS (0x60)
0x40 See above. Overrun error

RS_OVERRUNERR
0x80 CLK/16 Buffer full
RS CLK16 RS BUFFULL

Scr sets the synchronous character register in which the low byte is used as the
character to search for in an underrun error condition.

If a RS_INQUIRE (-1) is used for eithescr, rsr, tsr, or scr, then that parameter
is read and the register is unmodified.

BINDING move.w scr,-(sp)
move.w tsr,-(sp)
move.w rsr,-(sp)
move.w ucr,-(sp)
move.w flow,-(sp)
move.w speed,-(sp)
move.w #$0F,-(sp)
trap #14
lea 14(sp),sp

RETURN VALUE Rsconf()returns the last set baud ratspeeds set toRS_LASTBAUD (-2).
Otherwise, it returns the old settings in a padketNG with ucr being in the high
byte, down tccr being in the low byte.

COMMENTS Bits in theucr, rsr, tsr, andscr should be set atomically. To correctly change a
value, read the old value, mask it as appropriate and then write it back.

Baud rates higher than 19,200 bps available with SCC-based serial devices may
be set by using the appropri&tentl() call undeMiNT or by directly
programming the SCC chip.

CAVEATS The baud rate inquiry mode (spee®S_LASTBAUD) does not work at all on
TOS versions less than 1.0B0S version 1.04 requires the patch program
TOS14FX2.PRG (available from Atari Corp.) to allow this mode to function. All
otherTOS versions support the function normally.

SEE ALSO Bconmap()

THE ATARI COMPENDIUM

Scrdmp() — 4.91

Scrdmp()

VOID Scrdmp(VOID)

OPCODE

AVAILABILITY

BINDING

CAVEATS

COMMENTS

SEE ALSO

Scrdmp() starts the built-in hardware screen dump routine.
20 (0x14)

All TOS versions.

move.w #3$14,-(sp)
trap #14
addq.l #2,sp

Scrdmp() only dumps ST compatible screen resolutions.
This routine is extremely device-dependent. You should uséhénstead.

Prtblk(), v_hardcopy()

Setbuffer()

LONG Setbuffer(mode begaddr endaddr)

WORD mode
VOIDP begaddr
VOIDP endaddr

OPCODE
AVAILABILITY

PARAMETERS

BINDING

Setbuffer() sets the starting and ending addresses of the internal play and record
buffers.

131 (0x83)
Available when bit #2 of the *_SND’ cookie is set.

modespecifies which registers are to be set@devalue ofPLAY (0) sets the
play registers, a value B ECORD (1) sets the record registepegaddr
specifies the starting location of the buffendaddrspecifies the first invalid
location for sound data pastgaddr

pea endaddr
pea begaddr
move.w mode,-(sp)
move.w #$83,-(sp)
trap #14

lea 12(sp),sp

THE ATARI COMPENDIUM

4,92 — XBIOS Reference

RETURN VALUE Setbuffer() returns a 0 if successful or non-zero otherwise.

SEE ALSO Buffoper()

Setcolor()

WORD Setcolor(idx, new)
WORD idx, new,

Setcolor() sets a ST/TT030 color register.

OPCODE 7 (0x07)
AVAILABILITY All TOS versions.
PARAMETERS idx specifies the color register to modify (0-16 on an ST, 0-255 on a STe or

TTO030).newis a bit array specifying the new color as follows:

Bits 15-12] Bits 11-8 Bits 7-4 Bits 3-0

Unused Red Green Blue

Each color value has its bits packed in an unusual manner to stay compatible
between machines. Bits are ordered 0, 3, 2, 1 with 0 being the least signifigant bit.
If newis COL_INQUIRE (-1) then the old color is returned.

B|ND|NG move.w neW,'(Sp)

move.w idx,-(sp)

move.w #$06,-(sp)

trap #14

addq. #6,sp
RETURN VALUE Setcolor() returns the old value of the color register.
CAVEATS This call is extremely device-dependerst. color() should be used instead.
COMMENTS The top bit of each color nibble is unused on the original ST machines.
SEE ALSO VsetRGB(), EsetColor(), Setpalette()

THE ATARI COMPENDIUM

Setinterrupt() — 4.93

Setinterrupt()

LONG Setinterrupt(mode cause)
WORD mode cause

OPCODE

AVAILABILITY

PARAMETERS

BINDING

RETURN VALUE

COMMENTS

SEE ALSO

Setinterrupt() defines the conditions under which an interrupt is generated by the
sound system

135 (0x87)
Available when bit #2 of the *_SND’ cookie is set.

modeconfigures interrupts to occur when the end of a buffer is reached. A value of
INT_TIMERA (0) for modesets Timer A, a value dRT_I7 (1) sets the MFP i7
interrupt.causedefines the conditions for the interrupt as follows:

Name cause Meaning
INT_DISABLE 0 Disable interrupt
INT_PLAY 1 Interrupt at end of play buffer
INT_RECORD 2 Interrupt at end of record buffer
INT_BOTH 3 Interrupt at end of both buffers
move.w cause,-(sp)
move.w mode,-(sp)
move.w #3$87,-(sp)
trap #14
addq. #6,sp

Setinterrupt() returns 0 if no error occurred or non-zero otherwise.

If either buffer is in repeat mode, these interrupts can be used to double-buffer
sounds.

Buffoper()

Setmode()

LONG Setmode(mode)

WORD mode

OPCODE

Setmode()sets the mode of operation for the play and record registers.
132 (0x84)

THE ATARI COMPENDIUM

4,94 — XBIOS Reference

AVAILABILITY Available if bit #2 of the *_SND’ cookie is set.
PARAMETERS modedefines the playback and record mode as follows:
Name mode ‘ Meaning
MODE_STEREO8 0 8-bit Stereo Mode
MODE_STEREO16 1 16-bit Stereo Mode
MODE_MONO 2 8-bit Mono Mode
BINDING move.w mOde,-(Sp)
move.w #$84,sp
trap #14
addq.l #4,sp

RETURN VALUE Setmode()returns 0 if the operation was successful or non-zero otherwise.
CAVEATS Recording only works in 16-bit stereo mode.

SEE ALsSO Buffoper()

Setmontracks()

LONG Setmontracks(track)
WORD track;

Setmontracks()defines which playback track is audible through the internal

speaker.
OPCODE 134 (0x86)
AVAILABILITY Available only when bit #2 of the *_SND’ cookie is set.
PARAMETERS track specifies the playback track to monitor (0-3).
B|ND|NG move.w traCk,'(Sp)

move.w #$86,-(sp)

trap #14

addq.! #4,sp

RETURN VALUE Setmontracks()returns a 0 if the operation was successful or non-zero otherwise.

THE ATARI COMPENDIUM

Setpalette() — 4.95

Setpalette()

VOID Setpalette(palette)

WORD *palette

OPCODE

AVAILABILITY

PARAMETERS

BINDING

COMMENTS

SEE ALSO

Setpalette()loads the ST color lookup table with a new palette.
6 (0x06)
All TOS versions.

paletteis a pointer to /ORD array containing 16 color encod®ORDs as
defined inSetcolor().

pea palette
move.w #%06,-(sp)
trap #14

addq.! #6,sp

The actual palette data is not copied from the specified array until the next vertical
blank interrupt. For this reason, this call should be followedsync() to be sure
the array memory is not modified or reallocated prior to the transfer.

Setcolor(), EsetPalette(), VsetRGB(), vs_color()

Setprt()

WORD Setprt(new)

WORD new,

OPCODE

AVAILABILITY

PARAMETERS

Setprt() sets the OS’s current printer configuration bits.
33 (0x21)
All TOS versions.

newis aWORD bit array defined as follows:

Mask When clear When Set
0x01 Dot Matrix Daisy Wheel
PRT_DOTMATRIX PRT_DAISY
0x02 Monochrome Color
PRT_MONO PRT_COLOR
0x04 Atari Printer Epson Printer

THE ATARI COMPENDIUM

4,96 — XBIOS Reference

BINDING

RETURN VALUE

PRT_ATARI PRT_EPSON

0x08 Draft Mode Final Mode
PRT_DRAFT PRT_FINAL

0x10 Parallel Port Serial Port
PRT_PARALLEL PRT_SERIAL

0x20 Continuous Feed Single Sheet Feed
PRT_CONTINUOUS PRT_SINGLE

- Unused Unused

If newis set tdPRT_INQUIRE (-1) Setprt() will return the current configuration
without modifying the current setup.

move.w new,-(sp)
move.w #$33,-(sp)
trap #14

addq. #4,sp

Setprt() returns the prior configuration.

CAVEATS This call only affects the internal screen dump code which only operates on ST
compatible resolutions.

SEE ALSO Prtblk(), Scrdmp(), v_hardcopy()

Setscreen()

VOID Setscreen(log, phys mode)

VOIDP log, phys

WORD mode

OPCODE

AVAILABILITY

PARAMETERS

BINDING

Setscreen(kchanges the base addresses and mode of the current screen.

5 (0x05)

All TOS versions.

log is the address for the new logical screen kl¥sis the new address for the
physical screen baseodedefines the screen mode to switch to (same as

Getrez()). If any of these three parameters is s&@R_NOCHANGE (-1) then
that value will be left unchanged.

move.w mode,-(sp)
pea phys

pea log
move.w #$5,-(sp)
trap #14

lea 12(sp),sp

THE ATARI COMPENDIUM

Settime() — 4.97

CAVEATS

COMMENTS

SEE ALSO

Changing screen modes with this call does not reinitializAE$® TheVDI and
VT52 emulator are, however, correctly reinitialized. BteS should not be used
after changing screen mode with this call until the old screen mode is restored.

The Atari ST and Mega ST required that its physical screen memory be on a 256
byte boundary. All other Atari computers only requi@RD boundary.

To access the unique video modes of the Falcon030 thésedfbcreen()(which
is actually an alternate binding of this call with the same opcode) should be used
in place of this call.

VsetMode(), VsetScreen(), EsetShift()

Settime()

VOID Settime(time)

LONG time;

OPCODE
AVAILABILITY

PARAMETERS

Settime() sets a neyKBD date and time.
22 (0x16)
All TOS versions.

timeis aLONG bit array defined as follows:

Bits ‘ Meaning

0-4 Seconds / 2 (0-29)
5-10 Minute (0-59)
11-15 Hour (0-23)
16-20 Day (1-31)
21-24 Month (1-12)
25-31 Year - 1980 (0-127)

The value can be represented in a C structure as follows:

typedef struct

unsigned year:7;
unsigned month:4;
unsigned day:5;
unsigned hour:5;
unsigned minute:6;
unsigned second:5;

THE ATARI COMPENDIUM

4,98 — XBIOS Reference

BINDING

COMMENTS

SEE ALSO

} BIOS_TIME;

move.l time,-(sp)
move.w #$16,-(sp)
trap #14

addq.l #6,sp

As of TOS 1.02, this function also updates tREMDOS time.

Gettime(), Tsettime(), Tsetdate()

Settracks()

LONG Settracks(playtracks rectracks)
WORD playtracks rectracks

OPCODE

AVAILABILITY

PARAMETERS

BINDING

RETURN VALUE

COMMENTS

SEE ALSO

Setttracks() sets the number of recording and playback tracks.
133 (0x85)
Available only when bit #2 of the *_SND’ cookie is set.

playtracksspecifies the number of playback tracks (0-3) faafracksspecifies
the number of recording tracks.

move.w rectracks,-(sp)
move.w playtracks,-(sp)
move.w #%$85,-(sp)

trap #14

addq. #6,sp

Settracks() returns O if the operation was successful or non-zero otherwise.

The tracks specified are stereo tracks. When in 8-bit Mono mode, two samples are
read at a time.

Setmode(), Setmontracks()

THE ATARI COMPENDIUM

Sndstatus() — 4.99

Sndstatus()

LONG Sndstatus(reset)

WORD reset

OPCODE
AVAILABILITY

PARAMETERS

BINDING

RETURN VALUE

COMMENTS

Sndstatus()can be used to test the error condition of the sound system and to
completely reset it.

140 (0x8C)
Available only when bit #2 of the *_SND’ cookie is set.

resetis a flag indicating whether the sound system should be reset. A value of
SND_RESET (1) will reset the sound system.

move.w reset,-(sp)
move.w #$8C,-(sp)
trap #14

addq.l #4,sp

Sndstatus(Jreturns & ONG bit array indicating the current error status of the
sound system defined as follows:

0-3 These bits form a value indicating the error condition of the
sound system as follows:
Name Mask Meaning
SND_ERROR OxF Use to mask error code
Name Value Meaning
SND_OK 0 No Error
SND_BADCONTROL 1 Invalid Control Field
SND_BADSYC 2 Invalid Sync Format
SND_BADCLOCK 3 Clock out of range
4 If this bit is set, left channel clipping has occurred. Use the
mask SND _LEFTCLIP (0x10) to isolate this bit.
5 If this bit is set, right channel clipping has occurred. Use the
mask SND_RIGHTCLIP (0x20) to isolate this bit.
6-31 Unused.

On reset, the following things happen:

* DSP is tristated

* Gain and attentuation are zeroed
* Old matrix connections are reset
* ADDERIN is disabled

THE ATARI COMPENDIUM

4.100 — XBIOS Reference

Mode is set to 8-Bit Stereo

Play and record tracks are set to 0
Monitor track is set to 0

Interrupts are disabled

Buffer operation is disabled

Soundcmd()

LONG Soundcmd(mode data)
WORD mode data

Soundcmd()sets various configuration parameters in the sound system.

OPCODE 130 (0x82)

AVAILABILITY Available only when bit #2 of *_SND’ cookie is set.

PARAMETERS modespecifies howlatais interpreted as follows:

Name
LTATTEN

mode
0

Meaning
Set the left attenuation (increasing attentuation is the same as

decreasing volume). data is a bit mask as follows:
XXXX XXXX LLLL XXXX

‘L’ specifies a valid value between 0 and 15 used to set the
attenuation of the left channel in -1.5db increments. The bits
represented by ‘X’ are reserved and should be 0.

RATTEN

Set the right attentuation. data is a bit mask as follows:
XXXX XXXX RRRR XXXX
‘R’ specifies a valid value between 0 and 15 used to set the

attenuation of the right channel in -1.5db increments. The bits
represented by ‘X’ are reserved and should be 0.

LTGAIN

Set the left channel gain (boost the input to the ADC). data is a
bit mask as follows:

XXXX XXXX LLLL XXXX
‘L’ specifies a valid value between 0 and 15 used to set the

gain of the left channel in 1.5db increments. The bits
represented by ‘X’ are reserved and should be 0.

THE ATARI COMPENDIUM

Soundcmd() — 4.101

BINDING

RETURN VALUE

CAVEATS

SEE ALSO

RTGAIN

Set the right channel gain (boost the input to the ADC). data is
a bit mask as follows:

XXXX XXXX RRRR XXXX
‘R’ specifies a valid value between 0 and 15 used to set the

gain of the right channel in 1.5Db increments. The bits
represented by ‘X’ are reserved and should be 0.

ADDERIN

Set the 16 bit ADDER to receive its input from the source(s)
specified in data. data is a bit mask where each bit indicates a
possible souce. Bit O represents the ADC (ADDR_ADC). Bit 1
represents the connection matrix (ADDR_MATRIX). Setting
either or both of these bits determines the source of the
ADDER.

ADCINPUT

Set the inputs of the left and right channels of the ADC. data is
a bit mask with bit 0 being the right channel: LEFT_MIC (0x00)
or LEFT_PSG (0x02) and bit 1 being the left channel:
RIGHT_MIC (0x00) or RIGHT_PSG (0x01).

Setting a bit causes that channel to receive its input from the
Yamaha PSG. Clearing a bit causes that channel to receive its
input from the microphone.

SETPRESCALE

This mode is only valid when Devconnect() is used to set the
prescaler to TTO30 compatibility mode. In that case, data
represents the TTO30 compatible prescale value as follows:

Name Value Meaning
CCLK_6K 0 Divide by 1280 (6.25 MHz)

CCLK_12K 1 Divide by 640 (12.5 Mhz)
CCLK_25K 2 Divide by 320 (25 MHz)
CCLK 50K 3 Divide by 160 (50 MHz)

Settingdatato SND_INQUIRE (-1) with any command will cause that
command’s current value to be returned and the parameter unchanged.

move.w
move.w
move.w
trap

#14
addq.| #2,sp

Soundcmd()returns the prior value of the specified command if data is

SND_INQUIRE (-1).

Using theSETPRESCALE mode to set a frequency of 6.25 MHXGLK_6K)

will cause the sound system to mute on a Falcon030 as it does not support this

sample rate.

On current systems, a bug exists that causesdgvalue ofLTGAIN to set the

gain for both channels.

Devconnect()

THE ATARI COMPENDIUM

4.102 — XBIOS Reference

Ssbrk()

VOIDP Ssbrk(len)

WORD len;
Ssbrk() is designed to reserve memory at the top of RAM prior to the initialization
of GEMDOS.

OPCODE 1 (0x01)

AVAILABILITY All TOS versions.

PARAMETERS lenis aWORD value specifying the number of bytes to reserve at the top of
RAM.

BINDING move.w len,-(sp)
move.w #$01,-(sp)
trap #14
addq.! #4,sp

RETURN VALUE Ssbrk() returns a pointer to the allocated block.

CAVEATS Ssbrk() was only used on early development systems. Currently the function is
unimplemented and does not do anything.

Supexec()

LONG Supexec(func)
LONG (*func)(VOID);

Supexec()executes a user-defined function in supervisor mode.

OPCODE 38 (0x26)
AVAILABILITY All TOS versions.
PARAMETERS funcis the address to a function which will be called in supervisor mode.
BINDING pea func
move.w #$26,-(sp)
trap #14
addq.! #6,sp

THE ATARI COMPENDIUM

Unlocksnd() — 4.103

RETURN VALUE

CAVEATS

SEE ALSO

Supexec(returns thd-ONG value returned by the user function.

Care must be taken when calling the operating system in supervisor mode. The
AES must not be called while in supervisor mode.

Super()

Unlocksnd()

LONG Unlocksnd(VOID)

OPCODE

AVAILABILITY

BINDING

RETURN VALUE

SEE ALSO

Unlocksnd() unlocks the sound system so that other applications may utilize it.
129 (0x81)

All TOS versions.

move.w #$81,-(sp)
trap #14
addq.| #2,sp

Unlocksnd() returns a 0 if the sound system was successfully unlocked or
SNDNOTLOCK (-128) if the sound system wasn't locked prior to the call.

Locksnd()

VgetMonitor()

WORD VgetMonitor(VOID)

OPCODE

AVAILABILITY

BINDING

RETURN VALUE

VgetMonitor() returns a value which determines the kind of monitor currently
being used.

89 (0x59)

Available if the *_VDO’ cookie has a value of 0x00030000 or greater.

move.w #%$59,-(sp)
trap #14
addq.| #2,sp

VgetMonitor() returns a value describing the monitor currently connected to the
system as follows:

THE ATARI COMPENDIUM

4.104 — XBIOS Reference

Name ’ Return Value Monitor Type
MON_MONO 0 ST monochrome monitor
MON_COLOR 1 ST color monitor
MON_VGA 2 VGA monitor

MON_TV 3 Television

VgetRGB()

VOID VgetRGB(index, count, rgb)
WORD index, count,

RGB *rgb;

OPCODE

AVAILABILITY

PARAMETERS

BINDING

COMMENTS

SEE ALSO

VgetRGB() returns palette information as 24-BiGB data.

94 (OX5E)

Available if the *_ VDO’ cookie has a value of 0x00030000 or greater.

indexspecifies the beginning color index in the palette to read datadmmmt
specifies the number of palette entries to régllis a pointer to an array of
RGBs which will be filled in by the function&GB is defined as:

pea
move.w
move.w
move.w
trap

lea

typedef struct

} RGB:

rgb
count,-(sp)
index,-(sp)
#$5E,-(sp)
#14
10(sp),sp

BYTE reserved;
BYTE red;
BYTE green;
BYTE blue;

VgetRGB() is device-dependent in nature and it is therefore recommended that
vq_color() be used instead.

VsetRGB()

THE ATARI

COMPENDIUM

VgetSize() — 4.105

VgetSize()

LONG VgetSize(mode)

WORD mode
VgetSize()returns the size of a screen mode in bytes.
OPCODE 91 (0Ox5B)
AVAILABILITY Available if the *_VDO’ cookie has a value of 0x00030000 or greater.
PARAMETERS modeis a modecode as definedvisetMode().
BINDING move.w mode,-(sp)
move.w #3$5B,-(sp)
trap #14
addq.! #4,sp

RETURN VALUE VgetSize()returns the size in bytes of a screen mode ofnypde

VsetMask()

VOID VsetMask(ormask andmask overlay)
LONG ormask andmask
WORD overlay,

VsetMask() provides access to ‘overlay’ mode.

OPCODE 146 (0x92)

AVAILABILITY Available if the *_VDO’ cookie has a value of 0x00030000 or greater.

PARAMETERS When theVDI processes ¥s_color() call. It converts the desired color into a
hardware palette register. In 16-bit true-color mode, this$¥O&D formatted as
follows:

RRRR RGGG GGXB BBBB

The X’ is the system overlay bit. In 24-bit true coldr@NG is formatted as
follows:

XXXXXXXX RRRRRRRR GGGGGGGG BBBBBBBB

VsetMask() sets a logical OR and AND mask which are applied to this register

THE ATARI COMPENDIUM

4.106 — XBIOS Reference

before being stored. The default system valu@figraskis 0x00000000 and the
default value foendmasks OxFFFFFFFF.

overlayshould béDVERLAY_ON (1) to enable overlay mode or
OVERLAY_OFF (0) to disable it.

BINDING move.w #overlay,-(sp)
move.l #andmask,-(sp)
move.l #ormask,-(sp)
move.w #$92,-(sp)

trap #14
add. #12,sp

COMMENTS To make colors defined by thMbI transparent in 16-bit true color with overlay
mode enabled, use andmaskalue of OXFFFFFFDF and aimaskvalue of
0x00000000. To make colors visible, useaadmaskof 0x00000000 and an

ormaskof 0x00000020.

VsetMode()

WORD VsetMode(mode)
WORD mode

VsetMode() places the video shifter into a specific video mode.

OPCODE 88 (0x58)
AVAILABILITY Available if the *_VDO’ cookie has a value of 0x00030000 or greater.
PARAMETERS modeis aWORD bit array arranged as follows:

Name Bit(s) ‘ Meaning

NTSC (0x00)

BPS1 (0x00) 0-2 These bits form a value so that 2 * X represents the
BPS2 (0x01) number of bits per pixel.

BPS4 (0x02)

BPS8 (0x03)

BPS16 (0x04)

COL80 (0x08) 3 80 Column Flag (if set, 80 columns, otherwise 40)
COL40 (0x00)

VGA (0x10) 4 VGA Flag (if set, VGA mode will be used, otherwise
TV (0x00) television/monitor mode)

PAL (0x20) 5 PAL Flag (if set, PAL will be used, otherwise NTSC)

OVERSCAN (0x40)

Overscan Flag (not valid with VGA)

STMODES (0x80)

ST Compatibility Flag

VERTFLAG (0x100)

Vertical Flag (is set, enables interlace mode on a color
monitor or double-line mode on a VGA monitor)

THE ATARI

COMPENDIUM

VsetRGB() — 4.107

BINDING

RETURN VALUE

CAVEATS

COMMENTS

SEE ALSO

I_ | 9-15 |Reserved (setto 0) I

If modeis VM_INQUIRE (-1) then the current mode code is returned without
changing the current settings.

move.w mode,-(sp)
move.w #%$58,sp
trap #14

addq.| #4,sp

VsetMode() returns the prior video mode.

VsetMode() does not reset the video base address, reserve memory, or
reinitialize theVDI . To do this, us¥/setScreen()

Some video modes are not legal. 40 column monoplane modes and 80 column
VGA true color modes are not supported.

VsetScreen(), Setscreen()

VsetRGB()

VOID VsetRGB(index, count, rgh)
WORD index, count,

RGB *rgb;

OPCODE

AVAILABILITY

PARAMETERS

BINDING

COMMENTS

VsetRGB() sets palette registers using 248%&B values.

93 (0x5D)

Available if the *_VDO’ cookie has a value of 0x00030000 or greater.
indexspecifies the first palette index to modifpuntspecifies the number of

palette entries to modifygb is a pointer to an array &GB elements which will
be copied into the palette.

pea rgh
move.w count,-(sp)
move.w index,-(sp)
move.w #3$5D,-(sp)
trap #14

lea 10(sp),sp

This call is device-dependent by nature. It is therefore recommended that
vs_color() be used instead.

THE ATARI COMPENDIUM

4.108 — XBIOS Reference

SEE ALsSO VgetRGB(), EsetPalette(), Setpalette(), vs_color()

VsetScreen()

VOID VsetScreen(log, phys mode modecodg
VOIDP log, phys
WORD mode modecodg

VsetScreen()changes the base addresses and mode of the current screen.
OPCODE 5 (0x05)

AVAILABILITY All TOS versions. The ability of this call to utilize theodecodgarameter and
the memory allocation feature is limited to systems having a VDO’ cookie with a
value of 0x00030000 or greater.

PARAMETERS log is the address for the new logical screen kei¥sis the new address for the
physical screen base. If eitdeg or physis NULL , theXBIOS will allocate a
new block of memory large enough for the current screen and reset the parameter
accordingly.

modedefines the screen mode to switch to (sanfeeisez()). Settingmodeto
SCR_MODECODE (3) will causemodecodeo be used to set the graphic mode
(seeVsetMode() for valid values for this parameter), otherwigedecodés
ignored. If any of these three parameters is s8€8_ NOCHANGE (-1) then

that value will be left unchanged.

BINDING move.w modecode,-(sp)
move.w mode,-(sp)
pea phys
pea log
move.w #$05,-(sp)
trap #14
lea 14(sp),sp
CAVEATS Changing screen modes with this call does not reinitializ&&#& TheVDI and

VT52 emulator are, however, correctly reinitialized. RS should not be used
after changing screen mode with this call until the old screen mode is restored.

COMMENTS TOS 1.00 and 1.02 required that its physical screen memory be on a 256 byte
boundary. All other Atari computers only requirédV&RD boundary.

This call is actually a revised binding 8etscreen()developed to allow access
to the newly available modecode parameter.

SEE ALSO Setscreen(), VsetMode()

THE ATARI COMPENDIUM

VsetSync() — 4.109

VsetSync()

VOID VsetSync(external)
WORD external

VsetSync()sets the external video sync mode.

OPCODE 90 (0Ox5A)
AVAILABILITY Available if the *_VDO’ cookie has a value of 0x00030000 or greater.
PARAMETERS externalis aWORD bit array defined as follows:
Name ’ Bit Meaning
VCLK_EXTERNA 0 Use external clock.
L
VCLK_EXTVSYN 1 Use external vertical sync.
c
VCLK_EXTHSYN 2 Use external horizontal sync.
c
- 3-15 Reserved (set to 0)
BINDING move.w external,-(sp)
move.w #3$5A,-(sp)
trap #14
addq.l #2,sp
CAVEATS This call only works in Falcon video modes, not in compatibility or any four color
modes.

Vsync()
VOID Vsync(VOID)

Vsync() pauses program execution until the next vertical blank interrupt.

OPCODE 37 (0x25)
AVAILABILITY All TOS versions.
BINDING move.w #$25,-(sp)
trap #14
addq.| #2,sp

THE ATARI COMPENDIUM

4,110 — XBIOS Reference

WavePlay()

WORD WavePlay(flags, rate, sptr, slen)

WORD flags;
LONG rate;
VOIDP sptr,
LONG slen

OPCODE
AVAILABILITY

PARAMETERS

WavePlay() provides a easy method for applications to utilize the DMA sound
system on the STe, TT030, and Falcon030 and playback user-defined event sound
effects.

165 (OxAb)
Available only when the ‘SAM\0’ cookie exists.
flagsis a bit mask consisting of the following options:

Name ‘ Mask Meaning

WP_MONO 0x00 The sound to be played back is

monophonic.

WP_STEREO 0x01 The sound to be played back is in stereo.

WP_8BIT 0x00 The sound to be played back was
sampled at 8-bit resolution.

WP_16BIT 0x02 The sound to be played back was
sampled at 16-bit resolution.

WP_MACRO 0x100 Play back a user-assigned macro or

application global sound effect. This flag is
exclusive and modifies the meaning of the
other parameters to this call as shown
below.

rate specifies the sample rate in Hertz (for example 49170L to play back at 49170
Hz). If WP_MACRO was specified iilags, then this parameter is ignored and
should be set to OL.

sptris a pointer to the sound sample in memorWH_MACRO was specified in
flagsthen this parameter should be@NG containing either the application
cookie specified in the .SAA file or the ‘'SAM\0’ cookie to play an application
global.

slenis the length of the sample in bytesMP_MACRO was specified iiflags
thenslenis the macro or application global index as specified in the .SAA file.
Valid application global values are as follows:

Name slen Usage

THE ATARI COMPENDIUM

WavePlay() — 4.111

BINDING

RETURN VALUE

CAVEATS

AG_FIND 0 Call WavePlay() with this value when the user requests
display of the ‘Find’ dialog box.

AG_REPLACE 1 Call WavePlay() with this value when the user requests
display of the ‘Replace’ dialog box.

AG_CUT 2 Call WavePlay() with this value when the user requests a
‘Cut’ operation.

AG_COPY 3 Call WavePlay() with this value when the user requests a
‘Copy’ operation.

AG_PASTE 4 Call WavePlay() with this value when the user requests a
‘Paste’ operation.

AG_DELETE 5 Call WavePlay() with this value when the user requests a
‘Delete’ operation. This should not be called when the user
presses the ‘Delete’ key.

AG_HELP 6 Call WavePlay() with this value when the user requests
display of application ‘Help.” This should not be called
when the user presses the ‘Help’ key.

AG_PRINT 7 Call WavePlay() with this value when the user requests
display of the ‘Print’ dialog box.

AG_SAVE 8 Call WavePlay() with this value when the user requests
that the current document be saved. This should not be
used for any operation that calls the file selector.

AG_ERROR 9 Call WavePlay() with this value when the application
encounters an error not presented to the user in an alert or
error dialog (error dialogs may be assigned sounds).

AG_QUIT 10 Call WavePlay() with this value when the user requests
that the application exit. Use this global after the user has
confirmed a quit with any dialog box that may have been
necessary.

move.l slen,-(sp)

pea

move.l rate,-(sp)

move.w flags,-(sp)

move.w #3$A5,-(sp)

trap

lea 16(sp),sp

WavePlay() returnsWP_OK (0) if the call was successfWWP_ERROR (-1) if
an error occurred, SWP_NOSOUND (1) to indicate that no sound was played

(either because the user had not previously assigned a sound to the given macro or
SAM was disabled).

This function is only available when the System Audio Manager TSR (available

from Atari Corp. or SDS) is installed. Extended development information is
available online the Atari Developer’s roundtable on GEnie.

Because of previously misdocumented sample rates, the value for rate must be

33880 to play back a sample at 32880 Hz, 20770 to play back a sample at
19668 Hz, and 16490 to play back a sample at 16390 Hz.

THE ATARI

COMPENDIUM

4,112 — XBIOS Reference

COMMENTS Even if an application does not install any custom events in a .SAA file, an
application must still provide a .SAA file if it wishes to use application globals so
that the SAM configuration accessory allows the user to assign those sounds.

A macro is commonly used to access the application global sounds available as
follows:

#define WavePlayMacro(a) WavePlay(WP_MACRO, OL, SAM_COOKIE, a

Xbtimer()

VOID Xbtimer(timer, control, data, hand)
WORD timer, control, data
VOID (* hand)(VOID);

Xbtimer() sets an interrupt on the 68901 chip.

OPCODE 31 (Ox1F)

AVAILABILITY All TOS versions.

PARAMETERS timeris a value defining which timer to set as follows:
Name Timer Meaning
XB_TIMERA 0 Timer A (DMA sound counter)
XB_TIMERB Timer B (Hblank counter)

1
XB_TIMERC 2 Timer C (200Hz system clock)
XB_TIMERD 3 Timer D (RS-232 baud rate generator)

controlis placed into the control register of the tinggtais placed in the data
register of the timehandis a pointer to the interrupt handler which is called by the

interrupt.

BINDING pea hand
move.w data,-(sp)
move.w control,-(sp)
move.w timer,-(sp)
move.w #3$1F,-(sp)
trap #14
lea 12(sp),sp

SEE ALSO Mfpint(), Jenabint(), Jdisint()

THE ATARI COMPENDIUM

— CHAPTER 5 —

HARDWARE

THE ATARI COMPENDIUM

Overview — 5.3

Overview

This chapter will cover those aspects of Atari software programming that can only be
accomplished by accessing hardware registers directly. In most cases, Atari has provided OS
calls to manipulate the hardware. When an OS call exists to access hardware, algraydd

be used to ensure upward and backward compatibility. Keep in mind that access to hardware
registers is limited to those applications operating in supervisor mode only (except where noted
otherwise).

Besides those hardware registers discussed here, a complete list of I/O registers, system
variables, and interrupt vectors are containefigpendix BMemory Map

The 680x0 Processor

Atari computers use the Motorola MC68000 or MC68030. Third party devices have also been
created to allow the use of a MC68010, MC68020, or MC68040 processor. The system cookie
‘ CPU’ should be used to determine the currently installed processor. The following table lists
the 680x0’s interrupt priority assignments:

Level Assignment

7 NMI

MK68901 MFP
scct

VBLANK (Sync)
VME Interrupter®
HBLANK (Sync)
Unused

RPIN|W|[d_ (OO

Interrupts may be disabled by setting the system interrupt mask (bits 8-10 of the SR register) to ¢
value higher than the interrupts you wish to disable. Setting the mask to a value of 7 will
effectively disable all interrupts (except the level 7 non-maskable interrupt).

The Data/Instruction Caches
The Atari TTO30 and Falcon030 contain onboard data and instruction caches. These caches mg
be controlled by writing to the CACR register (in supervisor mode). The following table lists
longword values that may be written to the CACR to enable or disable the caches:

Value to Write to Effect

CACR

OxAOA Flush and disable both caches.
0x101 Enable both caches.

0xAQ00 Flush and disable the data cache.
0x100 Enable the data cache.

lona computer without an SCC chip, this interrupt is unused.
20na computer without a VME bus, this interrupt is unused.

THE ATARI COMPENDIUM

5.4 — Hardware

OxA Flush and disable the instruction cache.
Ox1 Enable the instruction cache.

The 68881/882 Floating Point Coprocessor

A MC6888x math coprocessor may be installed in a Mega ST, Mega STe, or a Falcon030. The
TTO030 has one installed in its standard configuration. The 6888x is interfaced to the 68000 in
peripheral mode and to the 68030 in coprocessor mode. Thus, the TT030 and Falcon030
computers access the 6888x in coprocessor mode while the Mega ST and MegaSTe computers
access the 6888x in peripheral mode.

Coprocessor Mode
When the 6888x is interfaced in coprocessor mode, using it is as simple as placing floating-point
instructions in the standard instruction stream (use a coprocessor ID of 1). The 68030 will
properly dispatch the instruction and respond to exceptions through the following vectors:

Vector Address Assignment

0x0000001C FTRAPCcc Instruction

0x0000002C F-Line Emulator

0x00000034 Co-processor Protocol Violation
0x000000C0 Branch or Set on Unordered Condition
0x000000C4 Inexact Result

0x000000C8 Floating-Point Divide by Zero
0x000000CC Underflow

0x000000D0 Operand Error

0x000000D4 Overflow

0x000000D8 Signaling NAN

Peripheral Mode
Utilizing an installed math coprocessor interfaced using peripheral mode requires the use of
several hardware registers mapped to special coprocessor registers. Unlike most hardware
registers, these do not have to be accessed in supervisor mode. Atari computers map the 6888x
registers to the following locations:

Address [Length Register Description
OxFFFFFA40 WORD FPCIR Status register
OXFFFFFA42 WORD FPCTL | Control Register
OxXFFFFFA44 WORD FPSAV Save Register
OXFFFFFA46 WORD | FPREST | Restore Register
OxXFFFFFA48 WORD FPOPR | Operation word register
OXFFFFFA4A WORD | FPCMD | Command register
OXFFFFFA4C | WORD | FPRES | Reserved
OXFFFFFA4E WORD FPCCR | Condition Code Register
OxFFFFFA50 LONG FPOP Operand Register

To execute a floating point instruction, use the following protocol for communicating data with
the 6888x:

THE ATARI COMPENDIUM

The 68881/882 Floating Point Coprocessor — 5.5

Wait for the chip to be idle.
Write a valid 6888x command Eg°CMD.

If necessary for the command, write an operarkdPOP.

A 0N PE

Wait for the status port to indicate the command is complete.

5. Read any return data frdaPOP.
Step one is achieved by waiting for a value of 0x0802 to appear in the status register (after
ANDing with OXxBFFF) as follows:

while((FPCIR & OXBFFF) I= 0x0802) ;

Steps two and three involve writing the command woféREMD and any necessary operand
data toFPOP. A primitive response code will be generated (and should be read) between each
write to either=PCMD or FPOP. For a listing of primitive response codes returned by the
68881, consult th®1C68881/68882 Floating-Point Coprocessor User's Manual (2nd

edition), Motorola publication MC68881UM/AD rev. 2, ISBN 0-13-567-009-8

After the operation is complete (step 4), data may be read from the 6888Dh(step 5).

When sending or receiving dataRROP, the following chart details the transfer ordering and
alignment;

Order - _ _
3 24 23 15 1h a8 i
RYTE 1st [EBYTE] UHCSED |
WORD 1at | WORD [TR |
LONG/ 1st | TOME/STHE R |
SINGLE
DOUBLE lat [vs2 Doubh e “rec’sicn |
7nd [Cporanc, I5E |
EXTENDED 1st
2nd ME -3 FyT.anderd
Jrecisio
3rd Dperand TSR

The following code demonstrates transferring two single precision floating-point numbers to the
68881, multiplying them, and returning the result.

/* Number of iterations before an error is triggered */
#define FPCOUNT 0x80

#define FPCIR
#define FPCMD
#define FPOP ((float *)(OxFFFFFA50L))

THE ATARI

((WORD *)(0XFFFFFA40L))
((WORD *)(OXFFFFFA4AL))

COMPENDIUM

5.6 — Hardware

WORD fpcount, dum;
[* fperr() is user-defined */

#define FPwait() { fpcount = FPCOUNT; \
while((*FPCIR & OXBFFF) != 0x0802) \
if(!(--fpcount)) fperr(); }

#define FPsglset(r,v) { FPwait(); \
*FPCMD = (0x5400 | ((r) << 7)); \
while((*FPCIR & OxFFF0) I= 0x8C00) \

if(!(--fpcount)) fperr(); \
*FPOP = (v); }
#define FPsglmul(rl,r2) { FPwait(); \
*FPCMD = (0x0027 | ((r2) << 10) | ((r1) << 7)); \

dum =*FPCIR + 1;}

/* dum = FPCIR +1; forces the status register to be read
(we assume the data’s good) */

#define FPsglget(r,var) { FPwait(); \
*FPCMD = (0x6400 | ((r) << 7)); \
while(*FPCIR != 0xb104) \
if(!(--fpcount)) fperr(); \
var = *FPOP; }

/*
* void sglmul(float *f1, float *f2);

* Multiplies f1 by f2. Returns result in f1.
*
*

void
sglmul(float &f1, float &f2)
{

FPsglset(0, *f1);
FPsglset(1, *f2);
FPsglmul(0, 1);

FPsglget(0, *f1);

‘

Cartridges

All Atari computers support an external 128K ROM cartridge port. Cartridges may be created to
support applications or diagnostic tools. The 128K of address space allocated to cartridges
appears from address OxFA0000 to OxFBFFFF. Newer Atari computers support larger
cartridges (this is because the address space would no longer overlap the OS). All program
code must be compiled to be relative of this base address.

TheLONG appearing at 0XFAO0OO0O determines the type of cartridge installed as follows:

Cartridge LONG Value
Application O0xABCDEF42

THE ATARI COMPENDIUM

Cartridges — 5.7

| Diagnostic | o0oxFA52255F |

Diagnostic Cartridges
Diagnostic cartridges are executed almost immediately after a system reset. The OS uses a
680x0 JMP instruction to begin execution at address 0xFA0004 after having set the Interrupt
Priority Level (IPL) to 7, entering supervisor mode, and executing a RESET instruction to reset
external hardware devices.

Upon execution, register A6 will contain a return address which should be JMP’d to if you wish
to continue system initialization at any point. The stack pointers will contain garbage. In
addition, keep in mind that no hardware has been initialized, particularly the memory controller.
All system memory sizing and initialization must be performed by the diagnostic cartridge.

Application Cartridges
Application cartridges should contain one or more application headers beginning at location
0xFA0004 as follows (one cartridge may contain one or many applications):

Name \ Offset \ Meaning

CA_NEXT 0x00 Pointer to the next application header
(or NULL if there are no more).

CA_INIT 0x04 Pointer to the application’s

initialization code. The high eight bits
of this pointer have a special
meaning as follows:

Bit Set Meaning
0 Execute prior to display
memory and interrupt
vector initialization.

1 Execute just before
GEMDOS is initialized.
2 (unused)
3 Execute prior to boot
disk.
4 (unused)
5 Application is a Desk
Accessory.
6 Application is not a GEM
application.
7 Application needs
parameters.
CA_RUN 0x08 Pointer to application’s main entry
point.
CA _TIME 0x0C Standard GEMDOS time stamp.
CA _DATE 0X0E Standard GEMDOS date stamp.
CA_SIZE 0x10 Size of application in bytes.
CA_NAME 0x14 NULL terminated ASCII filename in

standard GEMDOS 8+3 format.

THE ATARI COMPENDIUM

5.8 — Hardware

When application cartridges are pres&EMDOS will allow a special ‘c’ (lowercase) drive
to be accessed. Executable files appear on this drive as they would on any standard disk. This
‘drive’ may also be installed on the desktop.

Game Controllers

The Atari 1040STe and Falcon030 support new enhanced joystick controls as well as older
style CX-40 controls. For the usage and polling of the older style controls, refer to the following
section which discusses the IKBD controller. This section will focus specifically on the newer
style of controllers.

Joysticks
Enhanced joysticks are read by a two-step processSNORD at address 0xFF9202 is written
to using a mask which determines which values may subsequently be read Vd@RREs at
address 0xFF9200 and OxFF9202. Valid mask values and the keys that may be read follow:

Read Controller 0 at 0OxFF9200

Write Bit 0 Bit 1

Mask Clear Clear
OXFFFE Pause Fire 0
OXFFFD - Fire 1
0xFFFB - Fire 2
OXFFF7 - Option

Read Controller 1 at 0OxFF9200

Write Bit 2 211 ¢

Mask Clear Clear
OxFFEF Pause Fire 0
OXFFDF - Fire 1
OxFFBF - Fire 2
OXFF7F - Option

Read Controller 0 at 0xFF9202

Bit 9

Clear
OXFFFE Up Down Left Right
OXFFFED Key * Key 7 Key 4 Key 1
OxXFFFB Key 0 Key 8 Key 5 Key 2
OXFFEF7 Key # Key 9 Key 6 Key 3

Read Controller 1 at OxFF9202

Bit 13 Bit 14

Clear Clear
OXFFEF Up Down Left Right
OxXFFDF Key * Key 7 Key 4 Key 1
OxXFFBF Key 0 Key 8 Key 5 Key 2
OXFFE7F Key # Key 9 Key 6 Key 3

THE ATARI COMPENDIUM

The IKBD Controller — 5.9

To read the joystick, write a mask value corresponding to the row of keys/paositions you wish to
interrogate to 0xFF9202. Next, read badk@RD from either 0OxFF9200 or OxFF9202. As
indicated in the table, cleared bits mean that a key is being pressed or a joystick is moved in tha
direction.

Paddles
Two paddles may be plugged into each joystick port. Each paddle returns an 8-bit value
indicating its position (0 = full counter-clockwise, 255 = full clockwise) at the addresses
shown below. Unlike joysticks, paddle positions are returned automatically with no need to
write to an address prior to a read. Paddle fire buttons, however, are mapped and read in the
same manner as the joysticks. See the discussion of joysticks above for an explanation.

Byte Address Paddle

0OxFF9211 X Paddle 0
OxFF9213 Y Paddle 0
0xFF9215 X Paddle 1
OxFF9217 Y Paddle 1

Light Gun/Pen
Joystick port O supports a light gun or pen. The position that the gun is pointing to is returned in
theWORD registers at 0xFF9220 (X position) and 0xFF9222 (Y position). Only the lower 10
bits are significant giving a range of values from 0-1023.

The IKBD Controller

The Atari 16/32 bit computer line uses the Intelligent Keyboard Controller (IKBD) for
keyboard, joystick (old-style CX-40), mouse, and clock communication. The 6850 ACIA serial
communications chip is used to transfer data packets from the IKBD interface to the host
computer.

TheTOS callsBconout(4, ??79, Ikbdws(), andinitmous() handle communication to the
controller. Return messages from the controller must be processed by placing a specialized
handler in the vector table returned by ¥®OS call Kbdvbase(). Kbdvbase()returns the
pointer to a vector table as follows:

typedef struct

void (*midivec)(UBYTE data); /* Passed in dO */
void (*vkbderr)(UBYTE data); /* Passed in dO */
void (*vmiderr)(UBYTE data); /* Passed in dO */
void (*statvec)(char *packet); /* Passed in a0 */
void (*mousevec)(char *packet); /* Passed in
a0 */

void (*clockvec)(char *packet); /* Passed in
a0 */

void (*joyvec)(char *packet); /* Passed in a0 */

void (*midisys)(VOID);
void (*ikbdsys)(VOID);
char ikbdstate;

THE ATARI COMPENDIUM

5.10 — Hardware

} KBDVECS;

When an IKBD message is pending, the interrupt handler for the ACIAs calls either the midisys
handler or the ikbdsys handler to retrieve the data and handle any errors. The default action for
theikbdsyshandler is to decide whether the packet contains error, status, joystick, clock, or

mouse information and to route it appropriatelykbderr, statve¢joyveg clockveg or
mousevecKeyboard packets are handled internallykibdsys

Your handler should be patched into the appropriate vector and, if appropriate, expect the packet
buffer to be pointed to by register AO. Unless your handler is designed to completely replace the
functions of the default handler you should jump through the original vector pointer upon exit,

otherwise simply use the 680x0 RTS instruction.

Each byte received through the keyboard ACIA falls into one of the following categories as

follows:

Category VEIEIS) Meaning

Keyboard Make Code 0x00-0x7F | One of these values is generated each time a key is
depressed.This value may be used with Keytbl() to
generate an ASCII code for the scan code.

Keyboard Break Code 0x80-0xFF | This code is generated when a key previously
depressed has been released. It represents the make
code logically OR’ed with 0x80.

Status Packet Header 0xF6 This codes indicate the beginning of a multiple byte
status packet.

Absolute Mouse Position OxF7 See Below

Relative Mouse Position 0xF8-0xFB | See Below

Time-of-Day OxFC See Below

Joystick Report 0xFD See Below

Joystick 0 Event OXFE See Below

Joystick 1 Event OxFF See Below

Status Packet Data Any When the ikbdstate variable (found in the KBDVECS
structure) is non-zero, it represents the number of
remaining bytes to retrieve that are part of a status
packet and should thus not be treated as any of the
above codes.

THE ATARI

COMPENDIUM

The IKBD Controller — 5.11

The Keyboard
Keyboard keys generate both a ‘make’ and ‘break’ code for each complete press and release
respectively. The ‘make’ code is equivalent to the high byte of the IKBD scan code. ‘make’
codes are not related in any way to ASCII codes. They represent the physical position of the key
in the keyboard matrix and may vary in keyboards designed for other countrie€B{e
functionKeytbl() provides lookup values which make internationalization possible. The key
‘break’ code is the ‘make’ code logically ORed with 0x80.

It should be noted that ‘key repeats’ are not generated by the ACIA but by a coordination of the
ikbdsysand system timer handlers.

The Mouse
The mouse may be programmed to return position reports in either absolute, relative, or keycode
mode (it is by default programmed to return relative position reports).

In relative reporting mode, the IKBD generates a mouse packet each time a mouse button is
pressed or released, and every time the mouse is moved over a preset threshold distance (whi
is configurable). A relative mouse report packet is headed by a byte value between 0xF8 and
O0xFB followed by the X and Y movement of the mouse as signed bytes. If the movement is
greater than can be represented as signed bytes (-128 to 127), multiple packets are sent.

The header byte determines the state of the mouse buttons as follows:

Header Mouse Button State

0xF8 No buttons depressed.
0xF9 Left button depressed.
OxFA Right button depressed.
0xFB Both buttons depressed.

In absolute reporting mode, the IKBD only generates a mouse packet when interrogated. Mouse
packets in absolute mode are headed by a OxF7 byte followed by the MSB and LSB of the X
value and the MSB and LSB of the Y value respectively. The minimum and maximum X and Y
values are user-definable.

Keycode reporting mode generates keyboard ‘make’ and ‘break’ codes for mouse movements
rather than sending standard mouse packets. Mouse movement is translated into the arrow keys
and the codes 0x74 and 0x75 represent the left and right mouse button respectively. ‘break’
codes are sent immediately after the corresponding ‘make’ code is delivered.

THE ATARI COMPENDIUM

5.12 — Hardware

The Joystick
The basic CX-40 style joystick controls are still present on every Atari computer. Atari
recommends that these ports should not be supported when STe/Falcon030 enhanced joysticks
are present unless the option for four-player play is desired. While nodi?&ctupport is
available for reading these ports, it is possible using the IKBD controller in one of several
joystick reporting modes.

Joystick event reporting mode (the default) sends a joystick packet each time the status of one of
the joysticks changes. The joystick packet header is OxFE if the state of joystick 0 has changed or
OxFF if the status of joystick 1 has changed. This header byte is followed¥lEacontaining

the new state of the joystick as follows:

Bit 7 Bit 0

OOO0OOodc
Ll 1 [Joystick Position

Trigger State (1 = depressed)

The four bits corresponding to joystick position can be interpreted as follows:

0001 (1)
0101 (5) T 1001 (9)

0100 (4) «<—— ppooo —> 1000 (8)

-

0010 (2)

0110 (8) 101C (10)

Joysticks may be interrogated at any time by sending an interrogate command (as described later
in this chapter). The packet response to this command is OxFD followed BY thereport of
joystick 0 and 1 (as shown above).

The joysticks may be placed into joystick monitoring or fire button monitoring mode. In these
modes, all other IKBD communication is stopped and all processor time is devoted to the
processing of packets. Joystick monitoring mode cause the IKBD to send a continuous stream of
two-byte packets as follows: The first byte contains the status of joystick buttons 0 and 1 in bits
1 and 0 respectively. The second byte contains the position state of joystick 0 in the high nibble
and joystick 1 in the lower nibble (the position state can be interpreted as shown in the diagram
above).

THE ATARI COMPENDIUM

The IKBD Controller — 5.13

Fire button monitoring mode constantly scans joystick button 1 and returns the reé3¥lt&Em
packed with 8 reports each (one per bit). These modes may be paused or halted using the
appropriate commands.

Joystick keycode mode is similar to mouse keycode mode. This mode translates all joystick
position information into arrow keys. A ‘make’ code of 0x74 is generated when joystick button 0
is depressed and a ‘make’ code of 0x75 is generated when joystick button 1 is depressed. The
rate at which the IKBD controller generates these joystick events can be controlled using
commands discussed in the following section.

Time-of-Day
The IKBD controller maintains a separate time-of day clock that is kept synchronized with
GEMDOS time by OS calls. A time-of-day packet may be requested using the method shown
below under IKBD commands.

The response packet from the IKBD is seven bytes in length identified by its header byte of
0xFC and followed by six UBYTES containing the year (last two digits), month, day, hours (0-
24), minutes, and seconds in BCD format (ex: a month byte in December would be 0x12).

IKBD Commands

Commands may be sent to the IKBD using any oftB& function calls described above. Some
commands may generate packets while other commands change the operating state of the IKBD
controller. Unrecognized command codes are treated as NOPs. The following lists valid IKBD
command codes:

Command ‘

BYTE Result

0x07 Set mouse button action. This command BYTE should be
followed by a BYTE which describes how the mouse
buttons should be treated as follows:

BYTE Meaning
0x00 Default mode.

0x01 Mouse button press triggers an absolute
position report.
0x02 Mouse button release triggers an
absolute position report.
0x03 Mouse button press and release triggers
absolute position reports.
0x04 Mouse buttons report key presses.
0x08 Enable relative mouse position reporting (default).
0x09 Enable absolute mouse position reporting. This
command is followed by the MSB and LSB of the X and Y
coordinate maximum values for the mouse.
O0x0A Enable mouse keycode mode. This command is followed
by two BYTESs indicating the maximum number of mouse
‘ticks’ required to generate a keycode for the X and Y
axis respectively.

THE ATARI COMPENDIUM

5.14 — Hardware

0x0B

Set mouse threshold. This command is followed by two
BYTESs which determine the number of mouse ‘ticks’
required to generate a mouse position report in relative
positioning mode.

0xoC

Set mouse scale. This command is followed by two
BYTESs which determine the number of mouse ‘ticks’ for
each single coordinate on the X and Y axis respectively.

0x0D

Interrogate mouse position. This command generates an
absolute mouse position report.

Ox0E

Load mouse position. This command sets the mouse
position based on the current coordinate system in
absolute reporting mode. The command is followed by a
filler BYTE of 0x00 and the MSB and LSB of the new X
and Y axis for the mouse.

OxOF

Set Y=0 to the bottom. This command changes the origin
of the mouse coordinate system to the upper left of the
screen.

0x10

Set Y=0 to the top. This command changes the origin of
the mouse coordinate system to the lower left of the
screen.

Ox11

Resume sending data. This command (or for that matter
any command) will cause the IKBD to resume sending
packet data to the host.

0x12

Disable all mouse packet reporting. Any valid mouse
command resets this state. If the mouse buttons have
been programmed to act like keyboard keys, this
command will have no effect on them.

0x13

Pause output. All output from the IKBD controller is halted
until a ‘Resume’ or other command is received.

0x14

Set joystick event reporting mode. This command causes
a joystick report to be generated whenever the state of
either joystick changes.

0x15

Set joystick interrogation mode. This command causes
the IKBD to generate joystick packets only when
requested by the host.

0x16

Joystick interrogation. This command causes a joystick
packet indicating the status of both joysticks to be
generated.

0x17

Enables joystick monitoring mode. Besides serial
communication and the maintenance of the time-of-day
clock, this command causes only special joystick reports
to be generated.

The command BYTE should be followed by a BYTE
indicating how often the joystick should be polled in
increments of 1/100ths of a second.

0x18

Enables fire button monitoring mode. As above, this
mode limits the IKBD to serial communication, updating
the time-of-day clock, and the reporting of the state of
joystick button 1.

THE ATARI COMPENDIUM

The IKBD Controller — 5.15

0x19 Set joystick keycode mode. This command is followed by
six BYTEs as follows:

BYTE Meaning

1 The length of time (in tenths of a
second) before the horizontal breakpoint is
reached.

2 Same as above for the vertical plane.

3 The length of time (in tenths of a
second) between key repeats before the
velocity breakpoint is reached.

4 Same as above for the vertical plane.

5 The length of time (in tenths of a
second) between key repeats after the
velocity breakpoint is reached.

6 Same as above for the vertical plane.
0x1A Disable joystick event reporting.
0x1B Set the time of day clock. This command is followed by

six BYTESs used to set the IKBD clock. These BYTES are
in binary-coded decimal (BCD) format. Each BYTE
contains two digits (0-9), one in each nibble. The format
for these BYTES is as follows:

BYTE Meaning

Year (last two digits)
Month

Date

Hours (0-23)
Minutes (0-59)
Seconds (0-59)

OO0 wWNE

0x1C Interrogate the time-of-day clock. This command returns a
packet headed by the value OxFC followed by six BYTEs
as indicated above.

0x20 Load BYTESs into the IKBD memory. This command is
followed by at least three BYTESs containing the MSB and
LSB of the address into which to load the data, the
number of BYTES to load (0-127), and the data itself.

0x21 Read BYTEs from the IKBD controller. This command is
followed by two BYTESs containing the MSB and LSB of
the address to read from. This returns a packet headed
by the BYTE values 0xF6 and 0x20 followed by the
memory data.

0x22 Execute a subroutine on the IKBD controller. This
command BYTE is followed by two BYTES containing the
MSB and LSB of the memory location of the subroutine to
execute.

0x80 Reset the IKBD controller. This command is actually a
two-BYTE command. The BYTE 0x80 must be followed
by a BYTE of 0x01 or the command will be ignored.

THE ATARI COMPENDIUM

5.16 — Hardware

0x87

Return a status message containing the current mouse
action state. After receiving this command the IKBD will
respond by sending a status packet (which may be
intercepted at statvec) as follows:

BYTE

wWnN

4-8

Meaning

OxF6

0x07

Current mouse action state
(see command 0x07)

0

0x88

Return a status message containing the current mouse
mode. After receiving this command the IKBD will
respond by sending a status packet (which may be
intercepted at statvec) as follows:

BYTE
1
2

7-8

Meaning
OxF6
Current mode as follows:

0x08 = Relative mode

0x09 = Absolute mode

0xO0A = Keycode mode
Absolute mode: MSB of maximum X
position (units to current scale).
Keycode mode: Horizontal distance
threshold that must be passed prior to
sending a keycode.
Relative mode: 0
Absolute mode: LSB of maximum X
position.
Keycode mode: Vertical distance
threshold that must be passed prior to
sending a keycode.
Relative mode: 0
Absolute mode: MSB of maximum Y
position (units to current scale).
Keycode mode: 0
Relative mode: 0
Absolute mode: LSB of maximum Y
position.
Keycode mode: 0
Relative mode: 0
0

0X89

Same as 0x88.

0X8A

Same as 0x88.

THE ATARI COMPENDIUM

The IKBD Controller — 5.17

0x8B Return a status message containing the current mouse
threshold state. After receiving this command the IKBD
will respond by sending a status packet (which may be
intercepted at statvec) as follows:

BYTE Meaning

OxF6

0x0B

Number of horizontal mouse ‘ticks’ that

must be traveled prior to sending a mouse

packet.

4 Number of vertical mouse ‘ticks’ that

must be traveled prior to sending a mouse
packet.

5-8 0

WN -

0x8C Return a status message containing the current mouse
scaling factor. After receiving this command the IKBD will
respond by sending a status packet (which may be
intercepted at statvec) as follows:

BYTE Meaning

1 OxF6

2 0x0C

3 Horizontal mouse ‘ticks’ between a change
in mouse position on the X axis.

4 Vertical mouse ‘ticks’ between a change
in mouse position on the Y axis.

5-8 0
0x8F Return a status message containing the current origin

point of the Y axis used for mouse position reporting.
After receiving this command the IKBD will respond by
sending a status packet (which may be intercepted at
statvec) as follows:

BYTE Meaning
1 OxF6
2 O0xOF = Bottom is (Y=0)
0x10 =Topis (Y=0)

3-8 0
0x90 Same as Ox8F.
0x92 Return a status message containing the current state of

mouse reporting. After receiving this command the IKBD
will respond by sending a status packet (which may be
intercepted at statvec) as follows:

BYTE Meaning

1 OxF6
2 0x00 = Mouse reporting enabled.
0x12 = Mouse reporting disabled.
3-8 0

THE ATARI COMPENDIUM

5.18 — Hardware

0x94 Return a status message containing the current joystick
mode. After receiving this command the IKBD will
respond by sending a status packet (which may be
intercepted at statvec) as follows:
BYTE Meaning
1 0xF6
2 Current mode as follows:
0x14 = Event reporting mode
0x15 = Interrogation mode
0x19 = Keycode mode
3 Keycode mode: This value represents the
amount of time (in tenths of a second)
that keycodes are returned to the host
for horizontal position events at the initial
velocity level (after this time expires, the
secondary velocity level is used).
Event recording mode: 0
Interrogation mode: 0
4 Keycode mode: Same as BYTE 3 for
vertical events.
Event recording mode: 0
Interrogation mode: O
5 Keycode mode: This value represents the
initial horizontal velocity level (in tenths of a
second). This is the initial rate at which
keycodes are generated.
Event recording mode: 0
Interrogation mode: 0
6 Keycode mode: Same as byte 5 for vertical
events.
Event recording mode: 0
Interrogation mode: 0
7 Keycode mode: This value represents the
secondary horizontal velocity level (in
tenths of a second). This is the rate used
after the amount of time specified in bytes
3-4 expires.
Event recording mode: 0
Interrogation mode: 0
8 Keycode mode: Same as byte 7 for vertical
events.
Event recording mode: 0
Interrogation mode: 0
0x95 Same as 0x94.
0x99 Same as 0x94.

THE ATARI COMPENDIUM

STe/TT030 DMA Sound — 5.19

O0x9A Return a status message containing the current status of
the joystick. After receiving this command the IKBD will
respond by sending a status packet (which may be
intercepted at statvec) as follows:

BYTE Meaning
1 OxF6

2 0x00 = Joystick enabled
0x1A = Joystick disabled
3-8 0

STe/TT030 DMA Sound

The Atari STe, Mega STe, TT030, and Falcon030 are all equipped with the ability to playback
stereo digital audio. Only the Falcon030, however, has supp&iligS calls which eliminate

the need for the programmer to directly access the sound system hardware. Although the
Falcon030 has a more sophisticated sound system than the earlier Atari machines, the hardwar
registers have been kept compatible so older applications should function as expected.
Programmers designing Falcon030 applications which use digital audio should use the
appropriateXBIOS calls.

The STe, MegaSTe, and TT030 support 8-bit monophonic or stereophonic sound samples.
Samples should be signed (-128 to 127) with alternating left and right channels (for stereo)
beginning with the left channel. Samples may be played at 50 kHz, 25 kHz, 12.5 kHz, or
6.25 kHz (6.25 kHz is not supported on the Falcon030).

DMA Sound Registers
Several hardware registers control DMA sound output as follows:

Address Bit Layout | Meaning

OxFF8900 | ---- --=- ---- -- cc Sound DMA Control

O0xFF8902 | ---- ---- 00XX XXXX Frame Base Address High (bits 21-16)
OxFF8904 | ---- ---- XXXX XXXX Frame Base Address Middle (bits 15-8)
OxFF8906 | ---- ---- XXXX XXX0 Frame Base Address Low (bits 7-1)
OxFF8908 | ---- ---- 00XX XXXX Frame Address Counter (bits 21-16)
OXFF890A | ---- ---- XXXX XXXX Frame Address Counter (bits 15-8)
O0xFF890C | ---- ---- XXXX XXX0 Frame Address Counter (bits 7-1)
OXFF890E | ---- ---- 00XX XXXX Frame End Address High (bits 21-16)
OxFF8910 | ---- ---- XXXX XXXX Frame End Address Middle (bits 15-8)
OxFF8912 | ---- ---- XXXX XXX0 Frame End Address Low (bits 7-1)
0xFF8920 | 0000 0000 mO0O O0rr Sound Mode Control

Addresses placed in the three groups of address pointer registers must begin on an even addre
In addition, only sounds within the first 4 megabytes of memory may be accessed (this limitation
has been lifted on the Falcon030). Sounds may not be played from alternate RAM.

THE ATARI COMPENDIUM

5.20 — Hardware

Playing a Sound
To begin sound playback, place the start address of the sound in the Frame Base Address
registers. Place the address of the end of the sound in the Frame End Address registers. The
address of the end of the sound should actually be the first byte in memory past the last byte of
the sample.

Set the Sound Mode Control register to the proper value. Bit 7, notated as ‘m’ should be set to 1
for a monophonic sample or O for a stereophonic sample. Bits 0 and 1, notated as ‘r’, control the
sample playback rate as follows:

is \Playback Rate

00 6258 Hz

01 12517 Hz
10 25033 Hz
11 50066 Hz

To begin the sample playback, set bits 0 and 1 of the Sound DMA Control register, notated as
‘c’, as follows:

‘¢’ Sound Control

00 Sound Disabled (this will stop any sound
currently being played)

01 Sound Enabled (play once)

11 Sound Enabled (repeat until stopped)

Sound playback may be prematurely halted by writing a 0 to address 0xO0FF8900.

Sound Interrupts using MFP Timer A
Discontinuous sample frames may be linked together using the MFP Timer A interrupt. When a
sound is played using repeat mode an interrupt is generated at the end of every frame. By
configuring Timer A to ‘event count’ mode you can ensure the seamless linkage and variable
repeating of frames.

For example, suppose you have three sample frames, A, B, and C, in memory and you want to
play A five times, B five times, and C only once. Use the following steps to properly configure
Timer A and achieve the desired result:

» UseXbtimer() to set Timer A to event count mode with a data value of 4 (the first
data value should be one less than actually desired since the sound will play once
before the interrupt occurs).

* Configure the sound registers as desired and start sound playback in repeat mode.

* When the interrupt fires, place the address of frame B in the sound playback
registers (these values aren'’t actually used until the current frame finishes).

* Reset Timer A’s data register to 5 and exit your interrupt handler.

THE ATARI COMPENDIUM

The MICROWIRE Interface — 5.21

* When the second interrupt fires, place the address of frame C in the sound
playback registers.

* Reset Timer A’s data register to 1 and exit your interrupt handler.

* When the final interrupt is triggered, write a 0x01 to the sound control register to
cause sound playback to end at the end of the current frame.

Sound Interrupts using GPIP 7
Another method of generating interrupts at the end of sound frames is by using the MFP’s
General Purpose Interrupt Port (GPIP) 7. This interrupt does not support an event count mode s
it will generate an interrupt at the end of every frame. In addition, the interrupt must be
configured differently depending on the type on monitor connected to the system (this is because
GPIP 7 serves double-duty as the monochrome detect signal).

To program GPIP 7 for interrupts, disable all DMA sound by placing a 0x00 in the sound control
register. Next, check bit 7 of the GPIP port at location OXFFFAO1L. If a monochrome monitor is
connected the bit will be 0. The bit will be 1 if a color monitor is connected.

Bit 7 of the MFP’s active edge register (at OXFFFAO03) should be set to the opposite of the GPIP
port’s bit 7. This will cause an interrupt to trigger at the end of every frameMipga() to set

the location of your interrupt handler afghabint() to enable interrupts. From this point,

interrupts will be generated at the end of every frame playing in ‘play once’ mode or repeat
mode until the interrupt is disabled.

The MICROWIRE Interface

The STe and TT030 computers use the MICROWIRE interface to control volume, mixing of the
PSG and DMA output, and tone control. The original ST is limited to amplitude control through
the use of the appropriate PSG register. The Falcon030 suppordit@d calls which allow
volume and mixing control.

The MICROWIRE interface is a write-only device accessed using two hardware registers
OxFFFF8924 (mask) and OXFFFF8922 (data). To write a command to the MICROWIRE you
must first place the value OxO7FF into the mask register and then write the appropriate commanc
to the data register. The format for the dM@QRD is shown below:

Bit 15 Bit O

<[] [0] [e] [e]le][a][a] [d] [d] [d] [d]

Bits labeled ‘X’ will be ignored. Bits 9 and 10 should always be %10 to correctly specify the
device address which is a constant. Bits labeled ‘c’ specify the command and bits labeled ‘d’
contain the appropriate data for the command. The following table explains the valid
MICROWIRE commands:

THE ATARI COMPENDIUM

5.22 — Hardware

Command ‘ccc’ ‘dddddd’

Set Master Volume 011 Example Value Result

%000000 -80dB Attenuation

%010100 -40dB Attenuation

%2101000 0dB Attenuation (Maximum)
Set Left Channel Volume 101 Example Value Result

%000000 -40dB Attenuation

%001010 -20dB Attenuation

%010100 0dB Attenuation (Maximum)
Set Right Channel Volume 100 Example Value Result

%000000 -40dB Attenuation

%001010 -20dB Attenuation

%010100 0dB Attenuation (Maximum)
Set Treble 010 Example Value Result

%000000 -12dB Attenuation

%000110 0dB Attenuation

%001100 +12dB Attenuation (Maximum)
Set Bass 001 Example Value Result

%000000 -12dB Attenuation

%000110 0dB Attenuation

%001100 +12dB Attenuation (Maximum)
Set PSG/DMA Mix 000 Example Value Result

%000000 -12dB Attenuation

%000001 Mix PSG sound output.

%000010 Don't Mix PSG sound output.

When configuring multiple settings at once, you should program a delay between writes since the
MICROWIRE takes at least il§ec to completely read the data register. During a read the
MICROWIRE rotates the mask register one bit at a time. You will know a read operation has
completed when the mask register returns to Ox07FF. The following assembly segment illustrates

this by setting the left and right channel volumes to their maximum values:

; First write the mask and data values

; loop until MWMASK reaches $7FF again

MWMASK EQU $FFFF8924
MWDATA EQU $FFFF8922
MASKVAL EQU $7FF
HIGHLVOL EQU $554
HIGHRVOL EQU $514
text
maxvol:
move.w MASKVAL,MWMASK
move.w #HIGHLVOL,MWDATA
mwwrite:
cmp.w MASKVAL,MWMASK
bne.s mwwrite
move.w #HIGHRVOL,MWDATA
rts
.end

THE ATARI

; ok, safe to write second value

COMPENDIUM

Video Hardware — 5.23

Video Hardware

Video Resolutions
Atari computers support a wide range of video resolutions as shown in the following tables:

‘ Modes Possible
Computer System (width ~ height “ colors) Colors
ST, Mega ST 320x200x16 512
640x200x4
640x400x2
STe, Mega STe 320x200x16 4096
640x200x4
640x400x2
STacy 640x400x2 N/A
TT030 320x200x256 4096
640x200x4
640x400x2
320x480x256
640x480x16
Falcon030 See below. 262,144

Falcon030 Video Modes
The Falcon030 is equipped with a much more flexible video controller than earlier Atari
computers. The display area may be output on a standard television, an Atari color or
monochrome monitor, or a VGA monitor. Overscan is supported with all monitor configurations
with the exception of VGA. Also, hardware support for NTSC and PAL monitors is software
configurable.

The Falcon030 supports graphic modes of 40 or 80 columns (320 or 640 pixels across)
containing 1, 2, 4, 8, or 16 bits per pixel resulting in 2, 4, 16, 256, or 262,144 colors
respectively. All modes except the 16 bit per pixel mode supply the video shifter with palette
indexes. The 16 bit per pixel mode is a ‘true-color’ mode where each 16 bit value determines
the color rather than being an index into a palette. Each Y6MRD value is arranged as

follows:

Bit 15 Bit O

IR el e] e el el e o] = (e] e]

Falcon030 True-Color Video Word

The ‘R’, ‘G’, and ‘B, represent the red, green, and blue components of the color. Because red
and blue are each allocated five bits, they can represent a color range of 0-31. The green
component is allocated six bits so it can represent a color range of 0-63.

The Falcon030 also supports an overlay mode\(setMask()) where certain colors can be
defined as transparent to a connected Genlock (or similar) device. In this mode, the least
signifigant green bit (Bit #5) is treated as the transparent flag bit and the resolution of the green

THE ATARI COMPENDIUM

5.24 — Hardware

color component is slightly reduced. If the transparent flag bit of a pixel is set, that pixel will
display video from the Falcon030’s video shifter, otherwise the external video source will be
responsible for its display.

Another feature of the Falcon030'’s video shifter is an optional interlace/double-line mode.
When operating on a VGA monitor, this mode doubles the pixel height effectively reducing the
vertical screen resolution by half. On any other video display, this mode engages interlacing
which increases the video resolution.

The operating system caWsetMode() or VsetScreen()can be used to manipulate the

operating mode of the Falcon030'’s video shifter. These calls do not, however, do any checking
to ensure the selected video mode is actually attainable on the connected monitor or that the
mode is legal. In particular, you should not attempt to set the video shifter to either 40 column
mode with only one bit per pixel or 80 column VGA mode with 16 bits per pixel.

Video Memory
Most of the available video modes are palette-based. The number of bits required per pixel
depends on the number of palette entries as shown in the table below. The Falcon030 also offers
a true color video mode which requires 16 bits per pixel.

Palette ‘ Bits per
Entries Pixel
2 1
4 2
16 4
256 8

Directly accessing video memory is normally not recommended because it may create
compatibility problems with future machines and wreak havoc with other system applications.
TheVDI provides a rich set of function calls which should be used when outputting to the
screen. The function calt_trnfm() , for instance, can be useful in transforming video images
into a pattern compatible with the current video shifter. Certain software, however, does need
exclusive access to video memory.

With the exception of the 16-bit true color mode of the Falcon030, all video images are stored in
memory iNWORD interleaved format. The video shifter grabs one at a time from each plane
present as shown in the following diagram which represents a 16-color (four plane) screen
layout:

THE ATARI COMPENDIUM

Video Hardware — 5.25

[TT T T ITT T I I T IT T TI I I ITIITITITITITIT
WORD #3 WORD #7
[TTTTTTT T T I I I TR I I I I T I]
WORD #2 WORD #6
[TTTTTTIT T T I T I T T I I ITIITIT]
(0.0} WORD #1 WORD #5
[T T T T T ITT I T T I T TIR T TITTITITITITITITIITIIIT]
WORD #0 T WORD #4
Flane 4
{16, 0
Plane 3
Plane 2
Plang 1

The Falcon030’s 16-bit true color mode is pixel-packed soM@ARD #0 in memory is the
complete coloWORD for the pixel at (0, 0 WORD #1 is the complete cold¥ORD for the
pixel at (1, 0), etc.

Fine Scrolling
All Atari computers except the original ST and Mega ST support both horizontal and vertical
fine scrolling in hardware. To accomplish this, an application must place a special handler in
the vertical blank vector (at 0x00000070) which resets the scroll registers and video base
address as needed.

The following registers are manipulated during the vertical-blank period to shift the screen
across any number of virtual ‘screens’

Register Address Contents

VBASEHI OXFFFF8200 | Low byte contains bits 23-16 of the video
display base address.

VBASEMID OXFFFF8202 | Low byte contains bits 15-8 of the video
display base address.

VBASELO OXFFFF820C | Low byte contains bits 7-0 of the video
display base address.

LINEWID OXFFFF820E | Number of extra WORDs per scanline
(normally 0).

HSCROLL OxFFFF8264 | Low four bits contain the bitwise offset

(0-15) of the screen (normally O unless
scrolling is in effect).

VCOUNTHI OXFFFF8204 | Low byte contains bits 23-16 of the
current video refresh address (use with
care).

VCOUNTMID | OxFFFF8206 | Low byte contains bits 15-8 of the current
video refresh address (use with care).
VCOUNTLO OXFFFF8208 | Low byte contains bits 7-0 of the current
video refresh address (use with care).

THE ATARI COMPENDIUM

5.26 — Hardware

To accommodate virtual screens wider than the display can shdulNE&WID to the number

of extraWORDs per scanline. For instance, to create a virtual display two screens wide for a
320x200 16-color display, setNEWID to 80.

To scroll vertically, simply alter the video base address by adding or subtracting the number of
WORDs per scanline for each line you wish to scroll during the vertical blank.

To scroll horizontally, alter the video base addre$&/@®RD increments to move the physical
screen left and right over the virtual screen. This by itself will cause the screen to skip in 16
pixel jumps. To scroll smoothly, use tHECROLL register to shift the display accordingly.
WhenHSCROLL is non-zero, subtract one frddNEWID for each plane.

To illustrate this more clearly, imagine a physical screen of 320x200 (16 colors) which is laid
out over 4 virtual screens in a 2x2 grid. The following diagram and table shows example values
to move the physical screen to the desired virtual coordinates:

640 pivel width
P 80 WORD width o
o Ll
I [Plane 4
(0.01] Pl d]
A Planes 1
P 320 pivel width .
[
- (xyi
=
=]
15
= =
- <]
= o
e -
8
g ||
o —J
v |
{ 838, 398
Sample Values
Virtual Coordinates VBASE Address LINEWID HSCROLL
(0,0) 0x80000 80 0
(16,0) 0x80004 80 0
(0,1) 0x80140 80 0
(1,0) 0x80000 76 1
(0,10) 0x80B40 80 0
(100, 100) 0x87BE4 76 4

THE ATARI COMPENDIUM

— CHAPTER 6 —

AES

THE ATARI COMPENDIUM

Overview — 6.3

Overview

The Application Environment Service8KS) compose the highest level of the operating

system. ThAES uses th&/DI, GEMDOS, andXBIOS to provide a global utility library of

calls which provide applications with th#EM interface. Usage of tlES makes application
development simpler and makes user interfaces more consistent. The services provided by the
AES include:

* Application Control/Interaction
* Event Management

* Menu Services

* Object Rendering/Manipulation
* Form Management

* Graphic Utility Functions

* Scrap (Clipboard) Management
* Common Dialog Display

* Window Management

* Resource Management

* Shell (Desktop) Interaction

System-specifi@ES information and variables may be determined through reserved fields in
the application’s global array (seppl_init()) or by using the various modesagfpl_getinfo().

Process Handling

The AES manages two types of user programs. NofgfeM applications have file extensions
of .PRG’, ‘. APP’, or ‘.GTP'. Desk Accessories have file extensions of ‘. ACC".

WithoutMultiTOS | theAES can have a maximum of one application and six desk accessories
(four desk accessories undépS 1.0) executing concurrently. The currently running application
(or the Desktop if no application is running) is given primary control over the system. Desk
accessories are allocated processor timigwhen the foreground application releases control
by calling one of the event library functions. An application which does not have a standard
event loop (as illustrated below) will cause desk accessories to stop functioning while it is
being executed.

THE ATARI COMPENDIUM

6.4 - AES

UnderMultiTOS |, an unlimited amount of applications and desk accessories may be loaded

concurrently. MultiTOS is a pre-emptive system where all system processes are given time
regardless of other applications.

Applications

When an application is launchddfEM allocatesall remaining system memory and loads the
application into this aréalt is the responsibility of the application to free whatever memory it
doesn’t immediately need for its text, data, bss, and stack area. Most high level languages do this
for you in the startup stub linked with every application.

GEM applications begin with a@ppl_init() function call. This call will return a valid

application ID if the process can be successfully registered or a -1 if it fails. If the call fails, the
application should immediately exit without making &S calls. Upon success, however, the

ID should be stored for future use within the application. Applications running MudiefOS

should calimenu_register()to display the program title in the application list rather than the
filename.

The next steps @EM application will follow are variable, however, mésEM applications
will initialize themselves further by performing some or all of the following steps:
* Open avDI workstation.

* Verify that the computer the application is being run on has the minimum
requirements (screen resolution, OS versions, memory needs, hardware features)
necessary to continue.

* Load the application *.RSC’ file and fix it up as necessary.
* Display the menu bar.
* Change the mouse form to an arrow @S defaults to 8USY_BEE shape).

* Enter the application’s main event loop.

The following represents a basic skeleton foA&S® application:

#include <AES.H>
#include <VDI.H>
#include <OSBIND.H>
#include <VDIWORK.H>
#include “skel.h”

#define CNTRL_Q 0x11

1SomeMultiTOS versions limit this based upon the available space in the leftmost menu.
2705 5.0 does allow the user to set limits on the amount of memory allowed to an application.

THE ATARI COMPENDIUM

Applications — 6.5

int main(int, char *[]);
extern int _AESglobal[15];

short ap_id;
VDI_Workstation ws; /* See entry for V_Opnvwk() in VDI docs */
OBJECT *mainmenu;

char RSCname[] = “skeleton.rsc”;
char menu_title[] =“ Skeleton™;

int
main(int argc, char *argv([])

char *altNoVDIWork = “[3][GEM is unable tolallocate a workstation.|The

program must abort.][OK]%;

char *altNoRSC = “[3][The program cannot locate| SKELETON.RSC. Please
ensure|that it resides in the|same directory as|SKELETON.PRG.][OK %

short ret,msg[8],kc,quit,dum;

ap_id = appl_init();
if(ap_id == -1)

return -1;
if('OpenVwork(&ws))
{

graf_mouse(ARROW, OL);
form_alert(1, altNoVDIWork);

appl_exit();
return -1;
}
if(!rsrc_load(RSCname))
{
graf_mouse(ARROW, OL);
form_alert(1, altNoRSC);
v_clsvwk(ws.handle);
appl_exit();
return -1;
}
if(_AESglobal[1] == -1) /* MultiTOS present?
*
menu_register(ap_id, menu_title); /* Yes, make name pretty. */

rsrc_gaddr(R_TREE, MAINMENU, &mainmenu);

menu_bar(mainmenu,1);
graf_mouse(ARROW, OL);

quit = FALSE;
while(!quit)
{

ret = evnt_multiMU_MESAG|MU_KEYBD,2,1,1,0,0,0,0,0,0,0,0,0,0,msg,0,0,
&dum,&dum,&dum,&dum,&kc,&dum);

if(ret & MU_MESAG)
{

THE ATARI COMPENDIUM

6.6 — AES

switch(msg[0])
{

case MN_SELECTED:
switch(msg(3])
{

/* Other menu selections */

case mmExit: /* Defined in SKEL.H */
quit = TRUE;
break;

break;

}

if(ret & MU_KEYBD)

{
switch(kc & OxFF)

{

/* Other keyboard equivalents */

case CNTRL_Q:
quit = TRUE;
break;

}

menu_bar(mainmenu, 0);
v_clsvwk(ws.handle);
rsrc_free();

appl_exit();

return O;

}

The Command Line
GEM applications, likel OS applications, may be started with a command line (for a detailed
description of command line processing, €d@pter 2.GEMDOS). .PRG’ files and ‘.APP’
files will have items on the command line if a document file which was registered with the
application was double-clicked or if a valid document file was dropped over the application’s
icon in the Desktop. Launching a *.GTP’ application will cause the Desktop to prompt the user
for a command line in the same manner as . TTP’ programs are handled. Applications which
find one or more valid document names on their command line should automatically load them
on program start.

THE ATARI COMPENDIUM

Desk Accessories — 6.7

Desk Accessories

Upon bootup, any files with the extension . ACC’ found in the root directory of the user’s boot
drive will be loaded and executed up until their first event library BRItiTOS allows desk
accessories to be loaded and unloaded after bootup.

Unlike applications, desk accessories are not given all of available system memaory on startup.
They are only allocated enough memory for their text, data, and bss segments. No stack space i
allocated for a desk accessory either. Many high level language stubs reserve space in the BSS
or overwrite startup code to provide a stack but keep in mind that desk accessory stacks are
usually small compared to applications.

As with applicationsGEM desk accessories should begin witragpl_init() function call.
Upon success, the ID should be stored and used with@na_register()call to place the
applications’ name on the menu bar.

Desk accessories, unlike applications, do not begin user interaction immediately. Most desk
accessories initialize themselves and enter a message loop waitind\for @REN message.

Some desk accessories wait for timer events or custom messages from another application. Aft
being triggered, they usually open a window in which user interaction may be performed
(dialogs and alerts may also be presented but are not recommended because they prevent
shuffling between other system processes).

Desk accessories should not use a menu bar and should never exita@pllgs#() fails) after
callingmenu_register() If an error condition occurs which would make the accessory
unusable, simply enter an indefinite message loop.

Any resources loaded by an accessory should be loaded prior to entering the first event loop an
should never be freed after the accessory has ¢aleel_register() Resource data for desk
accessories should be embedded in the executable rather than being soft-loaded because mem
allocated to a desk accessory is not freed during a resolution chah@Saersions less than

2.06. This causes resource memory allocatetsy load() to be lost to the system after a
resolution change and will likely cause memory fragmentation.

An AC_CLOSE message is sent to an accessory when it is being closed at the request of the
OS. At this point, it should perform any cleanup necessary to release system resources and clos
files opened aAC_OPEN (accessory windows will be closed automatically byARS).

After cleanup, the event loop should be reentered to wait for subséque@PEN messages.

The following code represents a basic skeleton fdkkEn desk accessory:

#include <AES.H>
#include <vVDI.H>
#include <OSBIND.H>
#include <VDIWORK.H>

THE ATARI COMPENDIUM

6.8 — AES

int main(int, char *[]);

short ap_id;

VDI_Workstation ws;

char menu_title[] = “ Skeleton”;

int

main(int argc, char *argv[])

/* See entry for V_Opnvwk() in VDI docs */

char *altNoVDIWork = “[3][GEM is unable to|allocate a workstation.|The

program must abort.][OK]%;
short ret,msg[8],kc,dum;

ap_id = appl_init();
if(ap_id == -1)
return -1;
if('OpenVwork(&ws))
form_alert(1, altNoVDIWork);
appl_exit();
return -1;

}

menu_id = menu_register(ap_id, menu_title);
*/

for(;;)

{
evnt_mesag(msg);
switch(msg[0])
{

case AC_OPEN:
if(msg[3] == menu_id)

OpenAccessoryWindow();

break;
case AC_CLOSE:
if(msg[3] == menu_id)

v_clsvwk(ws.handle);
break;

/* Place name on menu bar

THE ATARI COMPENDIUM

The Environment String — 6.9

[The EnvironmentSting ___________________________

OneAES environment string exists in the system. This environment string is the one initially
allocated for théAES by GEMDOS., TheAES environment string should not be confused with
GEMDOS environment strings. Ea6BEMDOS process receives its own environment string
when launched. This string may have been purposely altered (or omitted) by its parent.

TheAES environment string is a collection of variables which the AES (and other processes)
may use as global system variables. Environment data may be set by a CPX designed to
configure the environment, in the user's GEM.CNF file, or by an application.

In actuality, the environment string is actually one or many string entries separateti by
bytes with the full list being terminated by a douBIdLL byte. Examples of environment string
entries include:

PATH=C:\;D:\;E:\BIN\
TEMP=C:\
AE_SREDRAW=0

The environment variable name is followed by an equal sign which is followed by the variable
data. Multiple arguments (such as path names) may be separated by semicolons of.commas

TheAES call shel_envrn()may be used to search for an environment variable and new modes
of shel_write() (afterAES version 4.0) may be used to alter environment variables or copy the
entire environment string.

Most versions of th@ES contain a bug which causes the ‘PATH’ environment variable to be
set incorrectly upon bootup to ‘PATIHuI] A:\[nul][nul] °. If an environment string like this is
found it may be safely reset or simply ignored.

The Event Dispatcher

MostGEM applications and all desk accessories rely on one @H&eevent processing calls

to direct program flow. After program initialization, an application enters a message loop which
waits for and reacts to messages sent b\l Five basic types of events are generated by
theAES and each can be read by a specialized event library call as follows:

Event Type AES Function

Message evnt_mesag()
Mouse Button evnt_button()

Keyboard evnt_keybd()

Timer evnt_timer()

3TheAES only began recognizing commas as valid argument separators (for the PATH environment variahe$ asision 1.4.

THE ATARI COMPENDIUM

6.10 - AES

| Mouse Movement

| evnt mouse() |

In addition to these five basic calls, thES offers one multi-purpose call which waits for any
combination of the above events caktht_multi(). Theevnt_muilti() call is often the most
important function call in anGEM application. A typical message loop follows:

#include <AES.H>

void
MessagelLoop(void)

short mx, my;
short mb, mc;
short ks, kc;
short quit;
short msg[8];
short events;

/* Mask for all events */
#define ALL_EVENTS

quit = FALSE;
while(!quit)
{

/* Mouse Position */

/* Mouse button/# clicks */
/* Key state/code */

/* Exit flag */

/* Message buffer */

/* What events are valid? */

(MU_MESAG|MU_BUTTON|MU_KEYBD|MU_TIMER|MU_M1|MU_M2)

events = evnt_multi(ALL_EVENTS,

if(events & MU_MESAG)

switch(msg[0])
{

2,1,1,
0,0,0, 128, 128,
1,0,0, 128, 128,

/* Single/double clicks */
/* M1 event */
/* M2 event */

msg, /* Pointer to msg */

1000, 0, /* MU_TIMER every 1 sec. */
&mx, &my, &ks, &kc,

&mc);

/* msg[0] is message type */

case MN_SELECTED:
HandleMenuClick(msg);

break;

case WM_CLOSED:
CloseWindow(msg[3]);

break;
/*

* more message events...

*/

}
}
if(events & MU_BUTTON)
{
/*
* Handle mouse button event.
*/
}

if(events & MU_KEYBD)

THE ATARI

COMPENDIUM

The Event Dispatcher — 6.11

{
/~k
* Handle keyboard events.
*/
}
if(events & MU_TIMER)
{
/*
* Handle Timer events.
*
/
}
if(events & MU_M1)
{
/~k
* Handle mouse rectangle event 1.
*/
}
if(events & MU_M2)
{
/*
* Handle mouse rectangle event 2.
*
/
}

}

/* Loop will terminate here when ‘quit’ is set to TRUE. */

When an event library function is called, the program is effectively halted until a message which
is being waited for becomes available. Not all applications will require all events so the above
code may be considered flexible.

Message Events
Each standarEM message evenlU_MESAG) uses some or all of alMBORD message
buffer. Each entry in this buffer is assigned as follows:

msg|[x] \ Meaning

0 Message type.

1 The application identifier of the process sending the
message.

2 The length of the message beyond 16 bytes (in bytes).

For all standard GEM messages, this values is 0.
Depends on message.
Depends on message.
Depends on message.
Depends on message.
Depends on message.

~N O |0~ (W

The entry forevnt_mesag()ater in this chapter has a comprehensive list of all system messages
and the action that should be taken when they are received.

THE ATARI COMPENDIUM

6.12 - AES

User-Defined Message Events
Applications may write customized messages to other applications (or themselves) using
appl_write(). The structure of the message buffer should remain the same as shown above. If
more than the standard ei§MORDs of data are sent, howevappl_read() must be used to
read the additional bytes. It is recommended that user-defined messages be set to a multiple of 8
bytes.

You can use this method to send your own application standard messages by filling in the
message buffer appropriately and usipgl_write(). This method is often used to force redraw
or window events.

Mouse Button Events
When a mouse buttoMU_BUTTON) event happens, ti&ynt_button() or evnt_muilti() call
is returned with the mouse coordinates, the number of clicks that occurred, and the keyboard
shift state.

Keyboard Events
Keyboard eventdMU_KEYBD) are generated whenever a key is struck. The IKBD scan code
(seeAppendix FIKBD Scan Codepand current key shift state are returned by either
evnt_keybd() or evnt_muilti(). If your application is designed to run on machines in other
countries, you might consider translating the scan codes using the tables returnetBt§$he
call Keytbl(),

Timer Events
evnt_timer() or evnt_multil MU_TIMER , ...) can be used to request a timer event(s) be
scheduled in a certain number of milliseconds. The time between the actual function call and the
event may, however, be greater than the time specified.

Mouse Rectangle Events
Mouse rectangle event¥y_M1 and/orMU_M2) are generated t8vnt_mouse()and
evnt_multi() when the mouse pointer enters or leaves (depending on how you program it) a
specified rectangle.

THE ATARI COMPENDIUM

Resources — 6.13

Resources

GEM resources consist of object trees, strings, and bitmaps used by an application. They
encapsulate the user interface and make internationalization easier by placing all program string
in a single file. Resources are generally created using a Resource Construction Set (RCS) and
saved to a .RSC file (ségpendix CNative File Format§ which is loaded bysrc_load() at
program initialization time.

Resources may also be embedded as data structures in source code (some utility programs
convert .RSC files to source code). Desk accessories often do this to avoid complications they
have in loading .RSC files.

Resources contain pointers and coordinates which must be fixed up before being used.
rsrc_load() does this automatically, however if you use an embedded resource you must use
rsrc_rcfix() if available orrsrc_obfix() on each object in each object tree to convert the initial
character coordinates of to screen coordinates. This allows resources designed on screens wit
different aspect ratios and system fonts to appear the same. In any case, you should test your
resources on several different screens, especially screen resolutions with different aspect ratio:
such as ST Medium and ST High.

Once a resource is loaded uske_gaddr() to obtain pointers to individual object trees which
can then be manipulated directly or with &S Object Library. Replacing resources after
they're loaded is accomplished witrc_saddr().

Objects can be boxes, buttons, text, images, and more. An object tree is an@BazGT
structures linked to form a structured relationship to each othe@BBECT structure format
is as follows:

typedef struct object

WORD ob_next;
WORD ob_head;
WORD ob_tail;
UWORD ob_type;
UWORD ob_flags;
UWORD ob_state;
VOIDP ob_spec;
WORD ob_x;
WORD ob_y;
WORD ob_width;
WORD ob_height;
} OBJECT;

Normally OBJECTs are loaded in an application resource file but it is possible to create and
manipulate them on-the-fly using thbjc_add(), objc_delete() andobjc_order() commands.

THE ATARI COMPENDIUM

6.14 — AES

The first object in a®BJECT tree is called th®OOT object OBJECT #£0). It's coordinates
are relative to the upper-left hand corner of the screen.

TheROOT object can have any number of children and each child can have children of their
own. In each case, tiBJECT’s coordinatespb_x ob_y, ob_width andob_heightare

relative to that of its parent. THWES call objc_offset() can, however, be used to determine the
exact screen coordinates of a child objebjc_find() is used to determine the object at a given
screen coordinate.

Theob_nextob_headandob_tail fields determine this relationship between pa@BIECTs
and childOBJECTs. The following alert box is an example of@BJECT tree:

Please Select an Output Device!

EESIITT [Printer |

THE ATARI COMPENDIUM

Objects — 6.15

The tree structure this object has can be represented as follows:

[ROCT ORJIWIT]
Object #0 - BOX
chy he2ad — 1

oh tail = 5
chy nexl = -1
Object #1 - TEXT Object #2 - BOX Object #5 - BUTTON
ob hzad = -1 ch hzad = 3 cb heao = -1
aby Lail = -1 ch Lai™ =1 ob Lzi~ = -1
oh rext = 2 oh next = 3 oh nex= = 0
Chject #3 - BOXTEXT Object #4 - BOXTEXT
ciz_head = 1 cc head — 1
co o tatl — 5 crn Lall = R
o newt — 4 ol next — 7

The exact usage ob_headob_nextandob_tail are as follows:

Element Usage

ob_head | This member gives the exact index from the first object in
the OBJECT tree to the first child of the current object. If
the object has no children then this value should be -1.
ob_tail This member gives the exact index from the first object in
the OBJECT tree to the last child of the current object. If
the object has no children then this value should be -1.
ob_next This member gives the exact index from the first object in
the OBJECT tree to the next child at the same level. The
ROQOT object should be set to -1. The last child at any
given nesting level should be set to the index of its parent.

The low byte of th@b_typefield specifies the object type as follows:

Name \ ob_type & OXFF Meaning

G_BOX 20 Box

G_TEXT 21 Formatted Text
G_BOXTEXT 22 Formatted Text in a Box
G_IMAGE 23 Monochrome Image
G_PROGDEF 24 Programmer-Defined Object.

THE ATARI COMPENDIUM

6.16 — AES

G_IBOX 25 Invisible Box

G_BUTTON 26 Push Button w/String

G_BOXCHAR 27 Character in a Box

G_STRING 28 Unformatted Text

G_FTEXT 29 Editable Formatted Text
G_FBOXTEXT 30 Editable Formatted Text in a Box
G_ICON 31 Monochrome Icon

G _TITLE 32 Menu Title

G_CICON 33 Color Icon (Available as of AES v3.3)

Object Flags
Theob_flagsfield of theOBJECT structure is a bitmask of different flags that can be applied to
any object as follows:

Name Bit(s) ESS Meaning

SELECTABLE 0 0x0001 Object’s selected state may be toggled by
clicking on it with the mouse.

DEFAULT 1 0x0002 An EXIT object with this bit set will have a

thicker outline and be triggered when the
user presses RETURN.

EXIT 2 0x0004 Clicking on this OBJECT and releasing the
mouse button while still over it will cause the
dialog to exit.

EDITABLE 3 0x0008 Set for FTEXT and FBOXTEXT objects to
indicate that they may receive edit focus.

RBUTTON 4 0x0010 This object is one of a group of radio

buttons. Clicking on it will deselect any
selected objects at the same tree level that
also have the RBUTTON flag set.

Likewise, it will be deselected automatically
when any other object is selected.

LASTOB 5 0x0020 This flag signals to the AES that the current
OBJECT is the last in the object tree.
(Required!)

TOUCHEXIT 6 0x0040 Setting this flag causes the OBJECT to

return an exit state immediately after being
clicked on with the mouse.

HIDETREE 7 0x0080 This OBJECT and all of its children will not
be drawn.
INDIRECT 8 0x0100 This flag cause the ob_spec field to be

interpreted as a pointer to the ob_spec
value rather than the value itself.

FL3DIND 9 0x0200 Setting this flag causes the OBJECT to be
drawn as a 3D indicator. This is appropriate
for radio and toggle buttons. This flag is only
recognized as of AES version 3.4.
FL3DACT 10 0x0400 Setting this flag causes the OBJECT to be
drawn as a 3D activator. This is appropriate
for EXIT buttons. This flag is only recognized
as of AES version 3.4.

THE ATARI COMPENDIUM

Objects — 6.17

FL3DBAK 9&10 0x0600 If these bits are set, the object is treated as
an AES background object. If it is
OUTLINED, the outlined is drawn in a 3D
manner. If its color is set to WHITE and its
fill pattern is set to 0 then the OBJECT will
inherit the default 3D background color. This
flag is only recognized as of AES version
3.4.

SUBMENU 11 0x0800 This bit is set on menu items which have a
sub-menu attachment. This bit also indicates
that the high byte of the ob_type field is
being used by the menu system.

Object States
Theob_statefield determines the display state of @BJECT as follows:

Name Bit ESS Meaning

SELECTED 0 0x0001 The object is selected. An object with this
bit set will be drawn in inverse video
except for G_CICON which will use its
‘selected’ image.

CROSSED 1 0x0002 | An OBJECT with this bit set will be drawn
over with a white cross (this state can only
usually be seen over a colored or
SELECTED object).

CHECKED 2 0x0004 An OBJECT with this bit set will be
displayed with a checkmark in its upper-
left corner.

DISABLED 3 0x0008 An OBJECT with this bit set will ignore

user input. Text objects with this bit set will
draw in a dithered pattern.

OUTLINED 4 0x0010 G_BOX, G_IBOX, G_BOXTEXT,
G_FBOXTEXT, and G_BOXCHAR
OBJECT s with this bit set will be drawn
with a double border.

SHADOWED 5 0x0020 G_BOX, G_IBOX, G_BOXTEXT,
G_FBOXTEXT, and G_BOXCHAR
OBJECT s will be drawn with a shadow.

TheAES supports th@bjc_change()call which can be used to change the state of an object and
(optionally) redraw it.

THE ATARI COMPENDIUM

6.18 — AES

The Object-Specific Field

Theob_spedield contains different data depending on the object type as indicated in the table

below:

Object Contents of ob_spec

G_BOX The low 16 bits contain a WORD containing color
information for the OBJECT . Bits 23-16 contain a signed
BYTE representing the border thickness of the box.

G_TEXT The ob_spec field contains a pointer to a TEDINFO
structure.

G_BOXTEXT The ob_spec field contains a pointer to a TEDINFO
structure.

G_IMAGE The ob_spec field points to a BITBLK structure.

G_PROGDEF The ob_spec field points to a APPLBLK structure.

G_IBOX The low 16 bits contain a WORD containing color
information for the OBJECT . Bits 23-16 contain a signed
BYTE representing the border thickness of the box.

G_BUTTON The ob_spec field contains a pointer to the text to be
contained in the button.

G_BOXCHAR The low 16 bits contain a WORD containing color
information for the OBJECT . Bits 23-16 contain a signed
BYTE representing the border thickness of the box. Bits
31-24 contain the ASCII value of the character to display.

G_STRING The ob_spec field contains a pointer to the text to be
displayed.

G_FTEXT The ob_spec field contains a pointer to a TEDINFO
structure.

G_FBOXTEXT The ob_spec field contains a pointer to a TEDINFO
structure.

G_ICON The ob_spec field contains a pointer to an ICONBLK
structure.

G_TITLE The ob_spec field contains a pointer to the text to be
used for the title.

G_CICON The ob_spec field contains a pointer to a CICONBLK
structure.

Object-Specific Structures

Almost all objects referenceVORD containing the object color as defined below (note the
definition below may need to be altered depending upon the bit ordering of your compiler).

typedef struct objc_colorword

UWORD borderc : 4; /* Bits 15-12 contain the border color */
UWORD textc 4 /* Bits 11-8 contain the text color */
UWORD opaque :1; /* Bit 7 is 1 if opaque or O if transparent */
UWORD pattern : 3; [* Bits 6-4 contain the fill pattern index */
UWORD fillc 1 4; /* Bits 3-0 contain the fill color */

} OBJC_COLORWORD;

Available colors for fill patterns, text, and borders are listed below:

THE ATARI COMPENDIUM

Objects — 6.19

Name [Value Color
WHITE 0 White
BLACK 1 Black

RED 2 Red
GREEN 3 Green
BLUE 4 Blue

CYAN 5 Cyan
YELLOW 6 Yellow
MAGENTA 7 Magenta
LWHITE 8 Light Gray
LBLACK 9 Dark Gray
LRED 10 Light Red
LGREEN 11 Light Green
LBLUE 12 Light Blue
LCYAN 13 Light Cyan
LYELLOW 14 Light Yellow
LMAGENTA 15 Light Magenta

TEDINFO
G_TEXT, G_BOXTEXT , G_FTEXT, andG_FBOXTEXT objects all reference BEEDINFO
structure in theipb_spedield. TheTEDINFO structure is defined below:

typedef struct text_edinfo

char * te_ptext;
char * te_ptmplt;
char * te_pvalid;
WORD te_font;
WORD te_fontid;
WORD te_just;
WORD te_color;
WORD te_fontsize;
WORD te_thickness;
WORD te_txtlen;
WORD te_tmplen;
} TEDINFO;

The three character pointer point to text strings require@ f6iTEXT andG_FBOXTEXT
objectste_ptextpoints to the actual text to be displayed and is the only field used by all text
objectste_ptmpltpoints to the text template for editable fields. For each character that the user
can enter, the text string should contain a tilde character (ASCII 126). Other characters are
displayed but cannot be overwritten by the uksarpvalidcontains validation characters for

each character the user may enter. The current acceptable validation characters are:

Character \ Allows

9 Digits 0-9

A Uppercase letters A-Z plus
SPACE

a Upper and lowercase letters
plus SPACE

THE ATARI COMPENDIUM

6.20 - AES

N Digits 0-9, uppercase
letters A-Z, and SPACE

n Digits 0-9, upper and
lowercase letters A-Z, and
SPACE

F Valid GEMDOS filename

characters plus question
mark and asterisk

P Valid GEMDOS pathname
characters plus backslash,
colon, question mark, and

asterisk

p Valid GEMDOS pathname
characters plus backslash
and colon

X All characters

As an example the following diagram shows the correct text, template, and validation strings for
obtaining &GEMDOS filename from the user.

String Contents

te_ptext \O' (NULL char)
te_ptmpit .
te_pvalid FFFFFFFFFFF

te_fontmay be set to any of the following values:

Name te font Meaning

GDOS_PROP 0 Use a SpeedoGDOS font (valid only with an AES version
of at least 4.0 and SpeedoGDOS installed).

GDOS_MONO 1 Use a SpeedoGDOS font (valid only with an AES version

of at least 4.1 and SpeedoGDOS installed) and force
monospaced output.

GDOS_BITM 2 Use a GDOS bitmap font (valid only with an AES version
of at least 4.1 and SpeedoGDOS installed).

IBM 3 Use the standard monospaced system font.

SMALL 5 Use the small monospaced system font.

When using a value &DOS_PROP, GDOS_MONO, or GDOS_BITM, te_fontsize
specifies the font size in points aled fontidspecifies th&peedoGDOSont identification
number. Selecting th8M or SMALL font will causete_fontsizeandte_fontidto be ignored.

te_justsets the justification of the text output as follows:

Name te just \ Meaning
TE_LEFT 0 Left Justify
TE_RIGHT 1 Right Justify
TE_CNTR 2 Center

THE ATARI COMPENDIUM

Objects — 6.21

te_thicknessets the border thickness (positive and negative values are acceptable) of the
G_BOXTEXT or G_FBOXTEXT object.te_txtlenandte_tmplershould be set to the length of
the starting text and template length respectively.

BITBLK
G_IMAGE objects contain a pointer td8aTBLK structure in theipb_spedield. The
BITBLK structure is defined as follows:

typedef struct bit_block

WORD *bi_pdata;
WORD bi_wb;
WORD bi_hl;
WORD bi_x;
WORD bi_y;
WORD bi_color;

} BITBLK;

bi_pdatashould point to a monochrome bit imalge.wb specifies the width (in bytes) of the
image. AlIBITBLK images must be a multiple of 16 pixels wide therefore this value must be
even.

bi_hl specifies the height of the image in scan lines (rdos) andbi_y are used as offsets
into bi_pdata Any data occurring before these coordinates will be igndiedoloris a
standard coloWWORD where the fill color specifies the color in which the image will be
rendered.

ICONBLK
Theob_spedield of G_ICON objects point to alCONBLK structure as defined below:

typedef struct icon_block

WORD * ib_pmask;
WORD * ib_pdata;
char * ib_ptext;
WORD ib_char;
WORD ib_xchar;
WORD ib_ychar;
WORD ib_xicon;
WORD ib_yicon;
WORD ib_wicon;
WORD ib_hicon;
WORD ib_xtext;
WORD ib_ytext;
WORD ib_wtext;
WORD ib_htext;
} ICONBLK;

ib_pmaskandib_pdataare pointers to the monochrome mask and image data respectively.
ib_ptextis a string pointer to the icon teiy,_chardefines the icon character (used for drive
icons) and the icon foreground and background color as follows:

THE ATARI COMPENDIUM

6.22 - AES

ib_char
Bits 15-12 Bits 11-8 Bits 7-0
Icon Foreground Icon Background ASCII Character (or 0
Color Color for no character).

ib_xcharandib_ycharspecify the location of the icon character relativitxiconand
ib_yicon ib_xiconandib_yiconspecify the location of the icon relative to the xandob_yof
the objectib_wiconandib_hiconspecify the width and height of the icon in pixels. As with
images, icons must be a multiple of 16 pixels in width.

ib_xtextandib_ytextspecify the location of the text string relative to@he Xandob_yof the
object.ib_wtextandib_htextspecify the width and height of the icon text area.

CICONBLK
TheG_CICON obiject (available as #fES version 3.3) defines i8b_spedield to be a
pointer to &ICONBLK ' structure as defined below:

typedef struct cicon_blk

ICONBLK monoblk;
CICON * mainlist;
} CICONBLK;

monoblkcontains a monochrome icon which is rendered if a color icon matching the display
parameters cannot be found. In addition, the icon text, character, size, and positioning data from
the monochrome icon are always used for the colorroaglistpoints to the firs€ICON

structure in a linked list of color icons for different resolutié?i§:ON is defined as follows:

typedef struct cicon_data

WORD num_planes;
WORD * col_data;
WORD * col_mask;
WORD * sel_data;
WORD * sel_mask;
struct cicon_data * next_res;

} CICON;

num_planesndicates the number of bit planes this color icon contaiisdataandcol_mask

point to the icon data and mask for the unselected icon respectively. Likeelis#ataand
sel_maslpoint to the icon data and mask for the selected w@xi,_respoints to the next color

icon definition oNULL if no more are available. Bitmap data pointed to by these variables
should be inVDI device-dependent format (they are stored as device-independent images in a
.RSC file).

TheAES searches thelCONBLK object for a color icon that has the same number of planes in
the display. If none is found, tHé&S simply uses the monochrome icon.

THE ATARI COMPENDIUM

Objects — 6.23

APPLBLK
G_PROGDEF objects allow programmers to define custom objects and link them transparently
in the resource. Theb_spedield of G_PROGDEF objects contains a pointer to ARPLBLK
as defined below:

typedef struct appl_blk

WORD (*ab_code)(PARMBLK *);
LONG ab_parm;
} APPLBLK;

ab_codsis a pointer to a user-defined routine which will draw the object. The routine will be
passed a pointer toRARMBLK structure containing the information it needs to render the
object. The routine must be defined with stack checking off and expect to be passed its
parameter on the stacky_parmis a user-defined value which is copied into FA&RMBLK
structure as defined below:

typedef struct parm_blk

OBJECT *tree;
WORD pb_obj;
WORD pb_prevstate;
WORD pb_currstate;
WORD pb_x;
WORD pb_y;
WORD pb_w;
WORD pb_h;
WORD pb_xc;
WORD pb_yc;
WORD pb_wc;
WORD pb_hc;
LONG pb_parm;

} PARMBLK;

tree points to théOBJECT tree of the object being drawn. The object is located at index
pb_obj

The routine is passed the @lbi_stateof the object ipb_prevstatand the nevob_stateof the
object inpb_currstateIf pb_prevstatendpb_currstateis equal then the object should be
drawn completely, otherwise only the drawing necessary to redraw the object from
pb_prevstateo pb_currstateare necessary.

pb_x pb_y, pb_w andpb_hgive the screen coordinates of the objebt.xG pb_y¢ pb_wg and

pb_hcgive the rectangle to clip tpb_parmcontains a copy of tha&p_parmvalue in the
APPLBLK structure.

The custom routine should retur#RD containing any remainingo_statebits you wish the
AES to draw over your custom object.

THE ATARI COMPENDIUM

6.24 — AES

Because the drawing routing will be called from the context oAlHg, using the stack heavily
or defining many local variables is not recommended.

Dialog boxes are modal forms of user input. This means that no other interaction can occur
between the user and applications until the requirements of the dialog have been met and it is
exited. A normal dialog box consists of @BJECT tree with aBBOX as its root object and any
number of other controls that accept user input. Both alert boxes and the file selector are
examples ofAES provided dialog boxes.

TheAES form_do() function is the simplest method of using a dialog box. Simply construct an
OBJECT tree with at least orfeXIT or TOUCHEXIT object and callorm_do(). All

interaction with the dialog like editable fields, radio buttons, and selectable objects will be
maintained by th&ES until the user strikes deXIT or TOUCHEXIT object. The proper
method for displaying a dialog box is shown in the example below:

WORD
do_dialog(OBJECT *tree, WORD first_edit)

GRECT g;
WORD ret;

/* Reserve screen/mouse button */
wind_update(BEG_UPDATE);
wind_update(BEG_MCTRL);

/* Center dialog on screen and put clipping rectangle in g */
form_center(tree, &9.9_X, &g9.9_VY, &g.9_w, &g.g_h);

/* Reserve screen space and draw growing box */

form_dial(FMD_START, 0,0, 0, 0, g.9_X, 9.9_Y, 9.9_w, g.g_h);

form_dial(FMD_GROW, g.g_x + g.g_w/2, 9.0_y + g.g_h/2, 0, 0, g.g_X, 9.0_Y,
g.9_w, g.9_h);

/* Draw the dialog box */
objc_draw(tree, ROOT, MAX_DEPTH, g.g_X, 9.9_Y, 9.g_W, g.g_h);

/* Handle dialog */
ret = form_do(tree, first_edit);

/* Deselect EXIT button */
tree[ret].ob_state &= ~SELECTED;

/* Draw shrinking box and release screen area */

form_dial(FMD_SHRINK, g.g_x + g.g_w/2, g.g_y + g.g_h/2, 0, 0, g.9_X, 9.9_V,
g_w, g.g_h);

form_dial(FMD_FINISH, 0, 0, 0, 0, 9.9_X, 9.9_Y, 9.9_w, g.g_h);

/* Release screen/mouse control. */

wind_update(END_MCTRL);
wind_update(END_UPDATE);

THE ATARI COMPENDIUM

Menus — 6.25

/* Return the object selected */
return ret;

You may wish to create your own specialized dialog handling routines or place dialog boxes in
windows to create modeless input. This can be accomplished by usfagmhbutton(),
form_keybd(), andobjc_edit() AES calls. Specific information about these calls may be found

in theFunction Reference

GEM also provides two generic dialog boxes througlfar@_alert() andform_error() calls.
form_alert() displays an alert dialog with a choice between icons and user-defined text and
buttonsform_error() displays an alert based on predefined system error codes.

Menus

MostGEM applications use a menu bar to allow the user to navigate through program options.
In addition, newer versions of t#é&S now allow popup menus and drop-down list boxes (a
special form of a popup menu). Menus are simply specially desigfaddCT trees activated

using speciabES calls.

The Menu Bar
The menu bar is a specl@BJECT which is usually registered in the beginning stages of a
GEM program which contains choices which the user may select to trigger a special menu event
(MN_SELECTED) to be sent to the application’s message loop. Normally, you will use a
resource construction set to create a menu but if you are desigmt@gSar must create a menu
bar by hand, the format for tieBJECT structure of &EM menu bar is shown below:

| ROOT (G_IBOX) |

| BAR(G_BOX) | | DROPDOWNS (G_IBOX))|

| ACTIVE (G_IBOX) | | . Box | | c_BOX | | 6_BOX

| 6_TTLE || 6_TITLE || G_TITLE |

[a_strinG | [6_sTRING |

|e_sTrRinG | [a_sTRinG |

[a_sTrRing | [6_sTRING |

[a_striNG | [c_sTRING |

[&_sTrinG | [6_sTRING |

[e_sTRING | [6_sTRING |

[c_sTRING | [c_sTRING |

[e_sTRING | [6_5TRING |

[c_sTrRING | [6_5TRING |

[6_strRING | [6_STRING |

|[e_sTrRING | [6_5TRING |

[e_sTrRING | [6_8TRING |

THE ATARI

COMPENDIUM

TheROOT object is &_IBOX and should be set to the same width and height of the screen. It
has two children, thBAR object and th&® ROPDOWNS object.

6.26 — AES

TheBAR object is &5_BOX which should be the width of the screen and the height of the
system font plus two pixels for a border line. THROPDOWNS object is &5_IBOX and
should be of a size large enough to encompass all of the drop-down menu boxes.

TheBAR object has one child, tfCTIVE object, it should be the width of the screen and the
height of the system font. It has as m&nyTITLE children as there are menu titles.

TheDROPDOWNS object has the same numbekfBOX child objects as thACTIVE
object ha$s_TITLE children. Each box must be high enough to support the number of
G_STRING menu items and wide enough to support the longest item.&a8B®X must be
aligned so that it falls underneath its correspon@ingITLE . In addition, eacks_STRING
menu item should be the same length as its p&relBOX object.

EachG_STRING menu item should be preceded by two spaces. Gadhl'LE should be
preceded and followed by one space. The GrIBOX object should appear undeGaTITLE
object named ‘Desk’ and should contain eight children. The first GhilTRING is

application defined (it usually leads to the ‘About...” program credits), the second item should
be a disabled separator (‘----------- ") line. The next six items are dummy objects used by the
AES to display program and desk accessory titles.

Utilizing a Menu Bar
Menu bars can be displayed and their handling initiated by cafiémy_bar(). In addition,
using this command, a menu bar may be turned off or replaced with another menu bar at any time.

Individual menu items may be altered with thAdeS calls.menu_icheck()sets or removes a
checkmark from in front of menu itemgenu_ienable()enables or disables a menu item.
menu_itext() alters the text of a menu item. After receiving a message indicating that a menu
item has been clicked, perform the action appropriate to the menu item and then call
menu_tnormal() to return the menu title text to normal video.

Hierarchical Menus
AES versions 3.3 and above support hierarchical submenus. When a submenu is attached to a
regular menu item, a right arrow is appended to the end of the menu item text and a submenu is
displayed whenever the mouse is positioned over the menu item. The user may select submenu
items which cause an extended version oMhe SELECTED message to be delivered
(containing the menu object tree).

Up to 64 submenu attachments may be in effect at any time per process. Attaching a single
submenu to more than one menu item counts as only one attachment.

Submenus should K& BOX objects with as mang_STRING (or other) child objects as

necessary. One or several submenus may be contained in BIGET tree. If the
submenu’s scroll flag is set, scroll arrows will appear and the menu will be scrollable if it

THE ATARI COMPENDIUM

Menus — 6.27

contains more items than the currently set system scroll value. Submenus containing user-define
objects should not have their scroll flag set.

Submenus are attached and removed withngieu_attach()call. A serious bug exists RES

versions lower than 4.0 which causegnu_attach()to crash the system if you use it to remove

or inquire the state of an existing submenu. This means that submenus may only be removed in
AES versions 4.0 and above. Submenus may be nested to up to four levels though only one leve
is recommended.

Submenus may not be attached to menu items in the left-most ‘Desk’ menu. Individual submenu
items may be aligned with the parent object by usiagu_istart().

Popup Menus
AES versions 3.3 and above support popup menus. Popup menus share t83efié
structure as hierarchical menus but are never attached to a parent menu item. They may be
displayed anywhere on the screen and are often called in response to selecting a special dialoc
item (seeChapter 11:GEM User Interface Guidelines Popup menus are displayed with the
AES call menu_popup()

Menu Settings
TheAES call menu_settings(dmay be used to adjust certain global defaults regarding the
appearance and timing delays of submenus and popup menus. Because this call affects all syste
applications it should only be utilized by a system configuration utility and not by individual
applications.

Drop-Down List Boxes
AES versions 4.0 and later support a special type of popup menu called a drop-down list box.
Setting the menu scroll flag to a value of -1 will cause a popup menu to be displayed as a drop-
down list instead.

A drop-down list reveals up to eight items from a multiple item list to the user. A slider bar is
displayed next to the list and is automatically handled duringnétel_popup()call. Several
considerations must be taken when using a drop-down list box:

* Drop-down lists may only contafd_STRING objects.

* If you want to force the AES to always draw scroll bars for the list box, the
OBJECT tree must contain at least ei§ht STRING objects. If less than that
number of items exist, pad the remaining items with blanks and set the object’s
DISABLED flag.

* Aslong as th©BJECT tree has at least eight STRING objects, it should not
be padded with any additional objects since the size of the slider is based on the
number of objects.

THE ATARI COMPENDIUM

6.28 — AES

The Menu Buffer

A special memory area is allocated by #%S so that it may reserve the screen area underneath
displayed menus. A pointer to this memory and its length may be obtained bywitinget(
WF_SCREEN, ...). Menu buffer memory may be used as a temporary holding arena for

applications as long as the following rules are maintained:

* The application must not use a menu bar or it must be locked with
wind_update(BEG_UPDATE),

* Access to the menu buffer in a multitasking environment is not controlled so
information stored by one application may be overwritten by another. It is
therefore recommended that the menu buffer should not be usedUiTEDS .

GEM applications usually maintain most user-interaction in windows. Windows are

workspaces created wittind_create()with any of several predefined gadgets (controls)

illustrated in the diagram and table below:

NAME F SMALLER
CLOSER — |{¢} — FULLER
INFQ — [1161462 butes used in 62 items,
& AUTO B3/15/91 | ¢ | — UPARROW
& MULTDESK MDX B5/24/92 [|
& SPEEDD 12/15/92
& XBoOT 85/26/92
BMPSHAP ACC 4034 B08/085/92 VSLIDE
COLOR MLT 47 06/04/92
CONTROL IWF 24 B85/11/93 — DNARROW
¢ |>|®] — SIZER
LFARROW RTARROW

HSLIDE

THE ATARI COMPENDIUM

Windows — 6.29

Name
NAME

ESS
0x0001

Meaning

Using this mask will cause the AES
to display the window with a title bar
containing a name that the
application should set with
wind_set(WF_NAME, ...).

CLOSER

0x0002

This mask will attach a closer box to
the window which, when pressed, will
send a WM_CLOSED message to
the application.

FULLER

0x0004

This mask displays a fuller box with
the window which, when pressed, will
cause a WM_FULLED message to
be sent to the application.

MOVER

0x0008

This mask allows the user to move
the window by clicking and dragging
on the window's title bar. This action
will generate a WM_MOVED
message.

INFO

0x0010

This mask creates an information line
just below the title bar which can
contain any user-defined information
as set with wind_set(WF_INFO | ...).

SIZER

0x0020

This mask attaches a sizer object to
the window which, when clicked and
dragged to a new location, will
generate a WM_SIZED message.

UPARROW

0x0040

This mask attaches an up arrow
object to the window which, when
pressed, will generate a
WM_ARROWED message to the
application.

DNARROW

0x0080

This mask attaches a down arrow
object to the window which, when
pressed, will generate a
WM_ARROWED message to the
application.

VSLIDE

0x0100

This mask attaches a vertical slider
object to the window which, when
clicked and dragged, will generate a
WM_VSLID message. Clicking on
the exposed area of the slider will
also generate this message.

LFARROW

0x0200

This mask attaches a left arrow
object to the window which, when
pressed, will generate a
WM_ARROWED message to the
application.

RTARROW

0x0400

This mask attaches a right arrow
object to the window which, when
pressed, will generate a
WM_ARROWED message to the
application.

THE ATARI

COMPENDIUM

6.30 - AES

HSLIDE 0x0800 | This mask attaches a horizontal
slider object to the window which,
when clicked and dragged, will
generate a WM_HSLID message.
Clicking on the exposed area of the
slider will also generate this
message.

SMALLER 0x4000 | This mask attaches a smaller object
which, when clicked, will generate a
WM _ICONIFIED message. If the
object is CTRL-clicked, a
WM_ALLICONIFY message will be
generated.

This object is only valid in AES v4.1
and higher.

wind_create() returns a window handle which should be stored as it must be referenced on any
further calls that open, alter, close, or delete the winddg_create() may fail if too many
windows are already open. Different versions ofAR& impose different limits on the number

of concurrently open windows.

Calling wind_create() does not automatically display the windewvind_open() displays a
window named by its window handle. Any calls needed to initialize the window (such as setting
the window title, etc.) should be made betweering_create() andwind_open() calls.

wind_set() andwind_get() can be used to set and retrieve many various window attributes.
Look for their documentation in the function reference for further details.

wind_close()may be used to remove a window from the screen. The window itself and its
attributes are not deleted as a result of this call, however. A subsequentvizd_topen()

will restore a window to the state it was in prior towied_close()call. Thewind_delete()
function is used to physically delete a window and free any memory it was using.

Two other utility functions for use in dealing with windows are provided byAE®.

wind_calc() will return the border rectangle of a window given the desired work area or the

work area of a window given the desired border area. The call takes into account the sizes of the
various window gadgets.

wind_find() returns the handle of the window currently under the mouse.

THE ATARI COMPENDIUM

Windows — 6.31

The Desktop Window
The desktop window encompasses the entire screen. It has a constant window handle of
DESK (0) so information about it can be inquired witind_get(). Callingwind_get() with a
parameter ofVF_CURRXYWH will return the size of the screen. Calliwgnd_get() with a
parameter oVF_WORKXYWH will return the size of the screen minus the size of the menu
bar.

The desktop draws a custéMBJECT tree in its work area. This tree results in the fill pattern

and color seen on screen. An application may create its own custom desktop object tree by usin
wind_set()with a parameter 0fVF_DESKTOP, TheOBJECT tree specified should be the

exact size of the desktop work area.

MultiTOS will switch between these object trees as applications are switched. The desktop’s
object tree will be visible whenever an application doesn’t specify one of its own.

The Rectangle List
Whenever a window receives a redraw message or needs to update its window because of its
reasons, it should always constrain output to its current rectangle liAEShill calculate
the size and position of a group of rectangles that compromise the area of your window not
covered by other overlapping windows.

wind_get() with parameters oVF_FIRSTXYWH andWF_NEXTXYWH is used to return the
current rectangle list. Redrawing inside a window should also only be attempted when the
window semaphore is locked witvind_update(BEG_UPDATE). This prevents the rectangle
list from changing during the redraw and prevents the user from dropping down menus which
might be overwritten. The following code sample illustrates a routine that correctly steps
through the rectangle list:

. Application Event Loop
case WM_REDRAW:

RedrawWindow(msg[3], (GRECT *)&msg[4]);
break;

VOID
RedrawWindow(WORD winhandle, GRECT *dirty)

GRECT rect;
wind_update(BEG_UPDATE);
wind_get(winhandle, WF_FIRSTXYWH, &rect.g_x, &rect.g_y, &rect.g_w,

&rect.g_h);
while(rect.g_w && rect.g_h)

THE ATARI COMPENDIUM

6.32 - AES

if(rc_intersect(dirty, &rect))

/*
* Do your drawing here...constrained to the rectangle in g.
*
/
}
wind_get(winhandle, WF_NEXTXYWH, &rect.g_x, &rect.g_y, &rect.g_w,

&rect.g_h);
}

wind_update(END_UPDATE);
}

Window Toolbars
AES versions 4.0 and later support window toolbar attachments. Toolb&P8ak"T trees
containing a number JIOUCHEXIT objects. They are attached to a window ug¥ied_set()
with a parameter dVF_TOOLBAR . The following diagram shows a window with a toolbar:

ntitled (WP) (Saved)

<]

Example from Atari Works 2.1

Window toolbars are automatically redrawn whenever necessary anB€@if objects are
automatically repositioned and resized with the window. If any special redrawing is necessary
(ex: changing the visual state of an object after a click), the application may obtain a special
toolbar rectangle list by usingind_get() with parameters ofVF_FTOOLBAR and
WF_NTOOLBAR

If toolbar objects must be modified ¥¥M_SIZED events, simply modify them prior to calling
wind_set(handle WM_CURRXYWH | ...).

A special note about windows with toolbars concerns the usageafcalc(). wind_calc()

doesn't understand the concept of toolbars. The information it returns must be modified by
adjusting the height of its output rectangles according to the current height of the toolbar object
tree.

THE ATARI COMPENDIUM

The Graphics Library — 6.33

The Graphics Libary

The Graphics Library contain many functions which can be used to provide visual clues to the
user. This library also contains functions to inquire and set information about the mouse pointer.

graf_movebox() graf_shrinkbox(), andgraf_growbox() display animations that can be used to
indicate an impending change in the screen display. dragbox(), graf_rubberbox(), and
graf_slidebox() display visual effects that are interactively changed by the mouse position.

graf_mkstate() is used to inquire the current state of the mouse buttons and mouse position.
graf_mouse()can be used to change the shape of the system rgtaiséandle() is used to

return the physical handle of the screen (needed to ogBh aorkstation) and the metrics of
the system default text font.

The File Selector Library

Two routines are provided by tAé€=S to display and handle the common system file selector.
AES versions less than 1.4 do not supieei_exinput() All AES versions support
fsel_input().

Both calls take &EMDOS pathname and filename as parameters. The pathname should include
a complete path specification including a drive letter, colon, path, and filemask. The filemask
may (and usually does include wildcard characters). The application may also pass a default
filename to the selector.

fsel_exinput() allows the application to specify a replacement title for the file selector which
reminds the user about the action they are taking such as ‘Select a .DOC file to open...".

The Scrap Library

Thescrp_read() andscrp_write() calls are provided by th&ES to return and set the current
clipboard path. The clipboard is a global resource in which applications can share data.
Applications supporting the clipboard contain an ‘Edit’ menu title which has at least the
following four items, ‘Cut’, ‘Copy’, ‘Paste’, and ‘Delete’. An appropriate action for each is
listed below:

Implementing ‘Cut’ and ‘Copy’
When the user selects ‘Cut’ or ‘Copy’ from the ‘Edit’ menu and an object is selected (‘Cut’ and
‘Copy’ should only be enabled in the menu when an object is selected which may be transferred
to the clipboard) the following steps may be used to transfer the data to the system clipboard:

1. Callscrp_read()to return the name of the current scrap directory. If the returned
string is empty, no clipboard directory has been defined since the computer has

THE ATARI COMPENDIUM

6.34 - AES

been started. The directory string returned may need to be reformatted. A proper
directory string ends in a backslash, however some applications incorrectly
append a filename to this string.

2. If no clipboard directory was returned or the one specified is invalid, create a
directory in the user’s boot drive called \CLIPBRD’ and write the pathname back
usingscrp_write(). For example, if the user’s boot drive was ‘C:’ then your
parameter tecrp_write() would be ‘C:\CLIPBRD\..

3. Search and delete files in the current clipboard directory with the mask
‘SCRAP.*.

4. Now write a disk file for the selected data to a file named SCRAP.??? where ‘2?7
is the proper file extension for an object of its type. If the object can be
represented in more than one format by your application, write as many formats as
possible all named ‘SCRAP’ with the proper file extension.

5. If the menu choice was ‘Cut’ rather than ‘Copy,’ delete the object from your data
structures and update your application as necessary.

Implementing ‘Paste’
‘Paste’ is used to read a file and insert it appropriately into an application that supports data of
its type. To implement ‘Paste’ follow the steps below:

1. Callscrp_read()to obtain the current system clipboard directory. If the returned
string is empty, no data is in the clipboard.

2. Format the string returned bgrp_read()into a usable pathname and search for
files called ‘'SCRAP’ in that path having a file extension of data that your
application supports. Remember, more than one SCRAP.??? file may be present.

3. Load the data and insert it in your applicatiomgropriate.

MultiTOS Notes
TheAES, when running undéviultiTOS , will create aMiNT semaphore named ‘_SCP’ which
should be used to provide negotiated access to the scrap directory. Access to this semaphore
should be obtained from MiNT prior to any clipboard operation and must be released as soon as
it is complete. Applications should not attempt to destroy this semaphore.

THE ATARI COMPENDIUM

The Shell Library — 6.35

The Shell Library

The Shell Library was originally intended to provileS support to the Desktop application.
Many of the routines, however, are useful to ofBEM applications. Some functionality of the
Shell Library was discussed earlier in this chapter in ‘The Environment String’.

The Shell Buffer
The Desktop application loads the DESKTOP.INF or NEWDESK.INF file (depending on the
TOS version) into the shell buffer. Prior 16©S 2.00, the shell buffer was 1024 bytes long
meaning that was the maximum length of the DESKTOP.INFXHE versions 2.00 to 3.30
allocate a buffer 4096 bytes loiRE=S versions 3.30 and above support variable-length buffers.

The shell buffer contains the ‘working’ copy of the above mentioned system files. The
information in this buffer may be copied by us#tigl_get() Likewise, information can be
written to this buffer usinghel_put(). Extreme care must be used with these functions as their
misuse can confuse or possibly even crash the Desktop.

Miscellaneous Shell Library Functions
shel_find() is used to locate data files associated with an applicatiorAESeises this call to
locate application resource files durifsgc_load().

shel_read()returns information about the process which called the application (usually the
Desktop).

shel_write() was originally used only to spawn new applications. With néV&S versions,
though,shel_write() has taken on an enormous functionality and its documentation should be
consulted for more information.

The GEM.CNF File

When running undéviultiTOS | theAES will load and process an ASCII text file called
‘GEM.CNF’ which contains command lines that set environmen®&afsisystem variables and
may runGEM programs. In addition, a replacement shell program may be specified in this file
(seeChapter 9:Desktopfor more information).

AES environment variables may be set in the ‘GEM.CNF’ file with the command ‘setenv’ as in
the following example:

setenv TOSRUN=c:\multitos\miniwin.app

SeveralAES system variables may also be set in this file as shown in the following example:

AE_FONTID=3

THE ATARI COMPENDIUM

6.36 — AES

Currently recognize@ES system variables that may be set are shown in the following table:

Variable Meaning

AE_FONTID This variable may be set to any valid Speedo outline
font ID which will be used as the AES default text font.

This feature is only valid as of AES version 4.1.
AE_PNTSIZE This variable defines the size of the AES default text
font in points.

This feature is only valid as of AES version 4.1.
AE_SREDRAW | Setting this variable to 1 causes the AES to send a full-
screen redraw message whenever an application
starts. Setting it to O disables this feature. The default is
1.

AE_TREDRAW | Setting this variable to 1 causes the AES to send a full-
screen redraw message whenever an application
terminates. Setting it to O disables this feature. The
default is 1.

The ‘GEM.CNF file may also be used to automatically start applications as shown in the
following example:

run c:\multitos\tclock.prg

AES Function Calling Procedure

TheGEM AES is accessed through a 680x0 TRAP #2 statement. Upon calling the TRAP,

register d0 should contain the magic number 0xC8 and register d1 should contain a pointer to the
AES parameter block. Thglobal data array member of the parameter block is filled in with
information about th&ES after anappl_init() call (seeappl_init() for more details). ThHAES
parameter block is a structure containing pointers to several arrays defined as follows:

struct aespb

{
WORD *contrl;
WORD *global;
WORD *intin;
WORD *intout;
LONG *addrin;
LONG *addrout;

3

Thecontrol array is filled in prior to aAES call with information about the number of

parameters the function is being passed, the number of return values the function expects, and the
opcode of the function itself as follows:

THE ATARI COMPENDIUM

AES Function Calling Procedure — 6.37

contrifx] Contents

0 Function opcode.

1 Number of intin elements the function is
being sent.

2 Number of intout elements the function
is being sent.

3 Number of addrin elements the function
returns.

4 Number of addrout elements the
function returns.

Theintin array andaddrin arrays are used to pass integer and address parameters respectively
(consult each individual binding for details).

Upon return from the call, tHetout andaddroutarrays will be filled in with any appropriate
output values.

To add a binding for thAES to your compiler you will usually write a short procedure that
provides an interface to tfé=S arrays. The following example illustrates the binding to
graf_dragbox() in this manner:

WORD

graf_dragbox(WORD width, WORD height, WORD start_x, WORD start_y,
WORD box_x, WORD box_y, WORD box_w, WORD box_h,
WORD *end_x, WORD *end_y)

contrl[0] = 71;
contrl[1] = 8;
contrl[2] = 3;
contrl[3] = 0;
contrl[4] = O;

intin[0] = width;

intin[1] = height;
intin[2] = start_x;
intin[3] = start_y;
intin[4] = box_x;
intin[5] = box_y;
intin[6] = box_w;
intin[7] = box_h;

aes();

*end_x = intout[1];
*end_y = intout[2];

return intout[0];

THE ATARI COMPENDIUM

6.38 — AES

The following code is the assembly language fun&®®()used by the function above:

.globl _aes
text

_aes:
lea _aespb,a0
move.l a0,d1
move.w #$C8,d0
trap #2
lea _intout,a0
move.w (a0),do
rts
.data

_aespb: .dc.l _contrl, _global, _intin, _intout, _addrin, _addrout
.bss

_contrl: .ds.w 5

_global: .ds.w 15

_intin: .ds.w 16

_intout: .ds.w 7

_addrin: .ds.| 2

_addrout: .ds.| 1
.end

The bindings in th&ES Function Referenceall a specialized function calletys_if() to
actually call theAES. Many compilers use this method as well (Lattice C calls the function
_AESIf()).

crys_if() properly fills in thecontrl array and calls th8ES. It is passed on&/ORD parameter

in dO which contains the opcode of the function minus ten multiplied by four (for quicker table
indexing). This gives an index into a table from whichabetrl array data may be loaded. The
crys_if() function is listed below:

* Note that this binding depends on the fact that no current AES call utilizes
* the addrout array

.globl _crys_if
.globl _aespb

.globl _contrl
.globl _global
.globl _intin
.globl _addrin
.globl _intout
.globl _addrout
text
_crys_if:
lea table(pc),a0 ; Table below

THE ATARI COMPENDIUM

AES Function Calling Procedure — 6.39

move.l 0(a0,d0.w),d0
lea _aespb,a0
movea.l (a0),al
movep.l d0,1(al)
move.l a0,d1
move.w #$C8,d0

trap #2

lea _intout,a0
move.w (a0),d0
rts

* Table of AES opcode/control values
* Values are: opcode, intin, intout, addrin

; Load four packed bytes into dO
; Load address of _aespb into a0
; Move address of contrl into al
; Move four bytes into WORDs at 1(contrl)
; Move address of _aespb into d1
; AES magic number
; Call GEM
; Get return value
; Put it into dO

* As stated before, addrout is left at 0 since no AES calls use it

table:
.dc.b 10,0,1,0
.dc.b 11,2,1,1
.dc.b 12,2,1,1
.dc.b 13,0,1,1
.dc.b 14,2,1,1
.dc.b 15,1,1,1
.dc.b 16,0,0,0
.dc.b 17,0,0,0
.dc.b 18,1, 3,1
.dc.b 19,0,1,0
.dc.b 20,0,1,0
.dc.b 21,3,5,0
.dc.b 22,5,5,0
.dc.b 23,0,1,1
.dc.b 24,2,1,0
.dc.b 25,16,7,1
.dc.b 26,2,1,0
.dc.b 27,0,0,0
.dc.b 28,0,0,0
.dc.b 29,0,0,0
.dc.b 30,1,1,1
.dc.b 31,2,1,1
.dc.b 32,2,1,1
.dc.b 33,2,1,1
.dc.b 34,1,1,2
.dc.b 35,1,1,1
.dc.b 36,2,1,2
.dc.b 37,2,1,2
.dc.b 38,3,1,1
.dc.b 39,1,1,1
.dc.b 40,2,1,1
.dc.b 41,1,1,1
.dc.b 42,6,1,1
.dc.b 43,4,1,1
.dc.b 44,1, 3,1
.dc.b 45,2,1,1
.dc.b 46,4,2,1
.dc.b 47,8,1,1
.dc.b 48,4, 3,0
.dc.b 49,0,0,0
.dc.b 50,1,1,1
.dc.b 51,9,1,0
.dc.b 52,1,1,1

; appl_init

; appl_read

; appl_write

; appl_find

; appl_tplay

; appl_trecord

; appl_search (v4.0)
; appl_exit

; evnt_keybd

; evnt_button

; evnt_mouse

; evnt_mesag

; evnt_timer

; evnt_multi

; evnt_dclick

; menu_bar

; menu_icheck

; menu_ienable

; menu_tnormal

; menu_text

; menu_register
menu_popup (v3.3)
menu_attach (v3.3)
menu_istart (v3.3)
menu_settings (v3.3)
; objc_add

; objc_delete

; objc_draw

; objc_find

; objc_offset

; objc_order

; objc_edit

; objc_change

; objc_sysvar (v3.4)

; form_do
; form_dial
; form_alert

THE ATARI COMPENDIUM

6.40 — AES

.dc.b
.dc.b
.dc.b
.dc.b
.dc.b
.dc.b
.dc.b
.dc.b
.dc.b
.dc.b
.dc.b
.dc.b
.dc.b
.dc.b
.dc.b
.dc.b
.dc.b
.dc.b
.dc.b
.dc.b
.dc.b
.dc.b
.dc.b
.dc.b
.dc.b
.dc.b
.dc.b
.dc.b
.dc.b
.dc.b
.dc.b
.dc.b
.dc.b
.dc.b
.dc.b
.dc.b
.dc.b
.dc.b
.dc.b
.dc.b
.dc.b
.dc.b
.dc.b
.dc.b
.dc.b
.dc.b
.dc.b
.dc.b
.dc.b
.dc.b
.dc.b
.dc.b
.dc.b
.dc.b
.dc.b
.dc.b
.dc.b
.dc.b
.dc.b

ONODURARWNPFPOOONOODTPRPRWNRPOOONNODUTPRWNRPOOONODUORARWNPFPOOONO OAMW

8@@@@@@@@@00000000000000000000\1\1\1\I\A\I\I\I\I\Immmmmmmmmmmmmmmmm

RPRRRRRRRRRE
POOO0OO0OO0O0OOO0OO
COONOTRBNRO

111,

OCO0OO0O0O0O0O000O000O00OO0O0O0O0OOOFRPROWAPPVIOMIDOAODOOOOOOOOOOOONWOR
OCO0OO0CO0O0OCOONNOOOOCOOOCORPPUIRPUIRPPPPPLOWOOOOOOOOOOOOCONWOIE
OO0OO0OO0OO0OO0OO0OOWNOOOO0OO0OO0OO0OORFRPRORPRORPRFPOOOO0OO0OO0OO0OO0O00000000OO0OO0ORrRrEL,EF,O

1

; form_error

; form_center
; form_keybd
; form_button

; graf_rubberbox
; graf_dragbox

; graf_movebox
; graf_growbox

; graf_shrinkbox
; graf_watchbox
; graf_slidebox

, 5, ; graf_handle
1, ; graf_mouse
, 5, ; graf_mkstate
1, ; scrp_read
1, ; scrp_write

, 2, ; fsel_input

, 2, ; fsel_exinput
,5,1,0 ; wind_create
,5,1,0 ; wind_open
,1,1,0 ; wind_close
,1,1,0 ; wind_delete
,2,5,0 ; wind_get
,6,1,0 ; wind_set
,2,1,0 ; wind_find
,1,1,0 ; wind_update
,6,5,0 ; wind_calc
,0,0,0 ; wind_new
0,1,1 ; rsrc_load
0,1,0 ; rsrc_free

THE ATARI

COMPENDIUM

AES Function Calling Procedure — 6.41

.dc.b 112,2,1,0 ; rsrc_gaddr
.dc.b 113,2,1,1 ; rsrc_saddr
.dc.b 114,1,1,1 ; rsrc_obfix
.dc.b 115,0,0,0 ; rsrc_rcfix (v4.0)
.dc.b 116,0,0,0 ;
.dc.b 117,0,0,0 ;
.dc.b 118,0,0,0 ;
.dc.b 119,0,0,0 ;
.dc.b 120,0,1,2 ; shel_read
.dc.b 121,3,1,2 ; shel_write
.dc.b 122,1,1,1 ; shel_get
.dc.b 123,1,1,1 ; shel_put
.dc.b 124,0,1,1 ; shel_find
.dc.b 125,0,1,2 ; shel_envrn
.dc.b 126,0,0,0 ;
.dc.b 127,0,0,0 ;
.dc.b 128,0,0,0 ;
.dc.b 129,0,0,0 ;
.dc.b 130,1,5,0 ; appl_getinfo (v4.0)
.data
_aesph: .dc.l _contrl, _global, _intin, _intout, _addrin, _addrout
_contrl: .dc.l 0,0,0,0,0
.bss

* _contrl = opcode

* _contrl+2 = num_intin

* _contrl+4 = num_addrin
* _contrl+6 = num_intout

* _contrl+8 = num_addrout

_global .ds.w 15

_intin .ds.w 16

_intout .ds.w 7

_addrin .ds.| 2

_addrout .ds.| 1
.end

THE ATARI COMPENDIUM

AES Function Reference

THE ATARI COMPENDIUM

Application Services Library

TheApplication Services Librargrovides general use functions used in locating and working with other
resident applications in addition to providiA&S initialization and termination code. The members of
theApplication Services Librargre:

appl_exit()
appl_find()
appl_getinfo()
appl_init()
appl_read()
appl_search()
appl_tplay()
appl_trecord()
appl_write()

THE ATARI COMPENDIUM

appl_exit() — 6.47

appl_exit()

WORD appl_exit(VOID)

OPCODE

AVAILABILITY

BINDING

RETURN VALUE

COMMENTS

SEE ALSO

appl_exit() should be called at the termination of any program initialized with
appl_init().

19 (0x13)

All AES versions.

return crys_if(0x13);

appl_exit() returns 0 if an error occurred or non-zero otherwise.

The proper procedure for handling an error from this function is currently
undefined.

appl_init()

appl_find()

WORD appl_find(fname)

CHAR *fname

OPCODE
AVAILABILITY

PARAMETERS

BINDING

RETURN VALUE

appl_find() searches thBES's current process list for a program narfreaime
and, if present, returns the application identifier of the process.

13 (0X0D)
All AES versions.

fnameis a pointer to a null-terminated ASCII string containing a V@RMDOS
filename (not including an extension) padded with blanks to be exactly 8
characters long (not including thiJLL).

addrin[0] = fname;

return crys_if(0x0D);

appl_find() returns the application identifier of the process if it is found or -1
otherwise.

THE ATARI COMPENDIUM

6.48 — Application Services Library - AES Function Reference

VERSION NOTES AES versions from 4.0 add several extensions to this call for the benefit of
MultiTOS as follows:

* If the upper word of th€HAR * is OxFFFF, the lower word is assumed
to be theMiNT id andappl_find() will return theAES application
identifier.

* If the upper word of th€HAR * is OxFFFE, the lower word is assumed
to be theAES application identifier and thiNT id is returned.

* If the upper word of th€EHAR * is 0x0000, the current processes’
application identifier is returned.

This functionality only exists if thAES version is 4.0 and above and
appl_getinfo() indicates that it is available.

SEE ALSO appl_write(), appl_init()

appl_getinfo()

WORD appl_getinfo(ap_gtypeap_goutl ap_gout2 ap_gout3 ap_gout4)
WORD ap_gtype
WORD *ap_goutl *ap_gout2 *ap_gout3 *ap_gout4

appl_getinfo() returns information about ti&ES.

OPCODE 130 (0x82)
AVAILABILITY Available as ofAES version 4.00.
PARAMETERS ap_gtypespecifies the type of information to be returned in the shorts pointed to

by ap_gout] ap_gout? ap_gout3 andap_goutdas follows:

Name ‘ Value | Returns
AES_LARGEFONT 0 AES Large Font Information

ap_goutl is filled in with the AES font's point size.

ap_gout?2 is filled in with the font id.

ap_gout3is a code indicating the type of font:
SYSTEM_FONT (0) is the system font
OUTLINE_FONT (1) is an outline font

ap_gout4 is unused.
AES_SMALLFONT 1 AES Large Font Information

Same as above for the current small font.

THE ATARI COMPENDIUM

appl_getinfo() — 6.49

AES_SYSTEM 2 AES System Specifics
ap_goutl is filled in with the resolution number (as would be
returned by Getrez()).
ap_gout2is filled in with the number of colors supported by
the AES object library.
ap_gout3is 0O if color icons are not supported or 1 if they
are.
ap_gout4 is 0 to indicate that the extended resource file
format is not supported or 1 ifitis.

AES_LANGUAGE 3 AES Globalization
ap_goutl is filled in with the current AES language code as
follows:
Name ap_goutl Language
AESLANG_ENGLISH 0 English
AESLANG_GERMAN 1 German
AESLANG_FRENCH 2 French
— 3 (Reserved)
AESLANG_SPANISH 4 Spanish
AESLANG_ITALIAN 5 Italian
AESLANG_SWEDISH 6 Swedish
ap_gout2, ap _gout3, and ap_gout4 are unused.

AES_PROCESS 4 AES Multiple Process Support
ap_goutlis 0 to indicate the use of non-pre-emptive
multitasking and 1 to indicate the use of pre-emptive
multitasking.
ap_gout2is 0 if appl_find() cannot convert between MiNT
and AES id’s and 1 to indicate that it can.
ap_gout3is 0 if appl_search() is notimplemented and 1 if
itis.
ap_gout4 is 0 if rsrc_rcfix() is notimplemented and 1 if it
is.

AES_PCGEM 5 AES PC-GEM Features
ap_goutlis 0 if objc_xfind() is not implemented and 1 if it
is.
ap_gout2 is currently reserved.
ap_gout3is 0 if menu_click() is not implemented and 1 if it
is.
ap_gout4 is 0 if shel_rdef() and shel_wdef() are not
implemented and 1 if they are.

THE ATARI

COMPENDIUM

6.50 — Application Services Library - AES Function Reference

AES_INQUIRE 6

AES Extended Inquiry Functions

ap_goutlis 0 if -1 is not a valid ap_id parameter to
appl_read() or1ifitis.

ap_gout2is 0 if -1 is not a valid length parameter to
shel_get() or 1ifitis.

ap_gout3is 0if -1 is not a valid mode parameter to
menu_bar() or 1ifitis.

ap_gout4is 0 if MENU_INSTL is not a valid mode
parameter to menu_bar() or 1ifitis.

Currently reserved.

AES_MOUSE

AES Mouse Support

ap_goutlis 0 to indicate that mode parameters of 258-260
are not supported by graf_mouse() and 1 if they are.

ap_gout2is 0 to indicate that the application has control
over the mouse form and 1 to indicate that the mouse form
is maintained by the AES on a per-application basis.

ap_gout3and ap_gout4 are currently unused.

AES_MENU 9

AES Menu Support

ap_goutlis 0 to indicate that sub-menus are not supported
and 1 if MultiTOS style sub-menus are.

ap_gout2is 0 to indicate that popup menus are not
supported and 1 if MultiTOS style popup menus are.

ap_gout3is 0 to indicate that scrollable menus are not
supported and 1 if MultiTOS style scrollable menus are.

ap_gout4is 0 to indicate that the MN_SELECTED
message does not contain object tree information in
msg[5-7] and 1 to indicate that it does.

THE ATARI

COMPENDIUM

appl_getinfo() — 6.51

AES_SHELL

10

AES Shell Support

ap_goutl & 0XO0FF indicates the highest legal value for the
mode parameter of shel_write() . ap_goutl & OXFF0O0
indicate which extended shel_write() mode bits are
supported.

ap_gout2is 0 if shel_write() with a mode parameter of 0
launches an application or 1 if it cancels the previous
shel_write() .

ap_gout3is 0 if shel_write() with a mode parameter of 1
launches an application immediately or 1 if it takes effect
when the current application exits.

ap_goutd is 0 if ARGV style parameter passing is not
supported or 1 if it is.

AES_WINDOW

11

AES Window Features

ap_goutl is a bitmap of extended modes supported by
wind_get() and wind_set() (if a bit is set, it is supported)
as follows:

@
=

mode

WF_TOP returns window below the top also.
wind_get(WF_NEWDESK , ...) supported.
WF_COLOR get/set.

WF_DCOLOR get/set.

WF_OWNER get/set.

WF_BEVENT get/set.

WF_BOTTOM set.

WF_ICONIFY set.

WF_UNICONIFY set.

Unused

CO\ICDU‘I-bQ)I\)b—‘Ol

©
=
o

ap_gout2is current unused.

ap_gout3is a bitmap of supported window behaviors (if a
bit is set, it is supported) as follows:

B

it Behaviour

0 Iconifier gadget present.

1 Bottomer gadget present.
2 SHIFT-click sends window to bottom.
3 “hot” close box supported.
4-15 Unused

ap_gout4 is currently unused.

THE ATARI

COMPENDIUM

6.52 — Application Services Library - AES Function Reference

AES_MESSAGE

12

AES Extended Messages

ap_goutl is a bitmap of extra messages supported (if a bit
is set, it is supported) as follows:

@
=

Message
WM_NEWTOP is meaningful.

WM_UNTOPPED is sent.

WM_ONTOP is sent.

AP_TERM is sent.

Shutdown and resolution change messages.
CH_EXIT is sent.

WM_BOTTOM is sent.

WM_ICONIFY is sent.

WM_UNICONIFY is sent.
WM_ALLICONIFY is sent.

10-15 Unused

tO(XJ\lO’)U‘Ib(.OI\Jl—‘Ol

ap_gout2 is a bitmap of extra messages supported.
Current all bits are unused.

ap_gout3is a bitmap indicating message behaviour (if a bit
is set, the behaviour exists) as follows:

Bit Message
0 WM_ICONIFY message gives coordinates.
1-15 Unused

ap_gout4 is currently unused.

AES_OBJECT

13

AES Extended Objects

ap_goutl is 0 if 3D objects are not supported or 1 if they
are.

ap_gout2is 0 if objc_sysvar() is not present, 1 if
MultiTOS v1.01 objc_sysvar() is present, or 2 if extended
objc_sysvar() is present.

ap_gout3is 0 if the system font is the only font supported or
1 if GDOS fonts are also supported.

ap_gout4 is reserved for OS extensions.

AES_FORM

14

AES Form Support

ap_goutlis 0O if flying dialogs’ are not supported or 1 if they
are.

ap_gout2is 0O if keyboard tables are not supported or 1 if
Mag!X style keyboard tables are supported.

ap_gout3is 0 if the last cursor position from objc_edit() is
not returned or 1 if it is.

ap_gout4 is currently reserved.

THE ATARI

COMPENDIUM

appl_init() — 6.53

BINDING intin[0] = ap_gtype;
crys_if(0x82);
*ap_goutl = intout[1];
*ap_gout2 = intout[2];
*ap_gout3 = intout[3];
*ap_gout4 = intout[4];

return intout[0];
RETURN VALUE appl_getinfo() returns 1 if an error occurred or 0 otherwise.
VERSION NOTES Using anap_gtypevalue of 4 and above is only supported aB0$ version 4.1.

COMMENTS Many of theap_gtypereturn values identify features ®0S not supported by
Atari but for the benefit of third-party vendors. You should contact the appropriate
third-party for documentation on these functions.

SEE ALSO appl_init()

appl_init()
WORD appl_init(VOID)

appl_init() should be the first function called in any application that intends to use

GEM calls.

OPCODE 10 (Ox0A)

AVAILABILITY All AES versions.

PARAMETERS The function as prototyped accepts no parameters, however, all ‘C’ compilers use
this call to set up internal information as well as to update the applications’ global
array.

BINDING return crys_if(OxOA);

RETURN VALUE appl_init() returns the applications’ global identifier if successful or -1 if the AES
cannot register the application. If successful, the global identifier should be stored
in a global variable for later use.

Besides the return value, tA&S fills in the application’s global array (to
reference the global array see your programming languages’ manual).

Name ‘ global[x] ‘Meaning

THE ATARI COMPENDIUM

6.54 — Application Services Library - AES Function Reference

_AESversion AES version number.

_AESnumapps Number of concurrent applications possible (normally 1).
MultiTOS will return -1.

_AESapid 2 Application identifier (same as appl_init() return value).

_AESappglobal 3-4 LONG global available for use by the application.

_AESrscfile 5-6 Pointer to the base of the resource loaded via
rsrc_load() .

— 7-12 Reserved

_AESmaxchar 13 Current maximum character used by the AES to do
vst_height() prior to writing to the screen. This entry is
only present as of AES version 0x0400.

_AESminchar 14 Current minimum character used by the AES to do
vst_height() prior to writing to the screen. This entry is
only present as of AES version 0x0400.

VERSION NOTES See above.
SEE ALSO appl_exit()

appl_read()

WORD appl_read(ap_id length, messagg
WORD ap_id length;

VOIDP messagg

appl_read() is designed to facilitate inter-process communication between
processes running under tAES. The call will halt the application until a
message of sufficient length is available (see version notes below).

OPCODE 11 (Ox0B)

AVAILABILITY All AES versions.

PARAMETERS ap_idis your application identifier as returned &gpl_init(). lengthis the length
(in bytes) of the message to redssagés a pointer to a memory buffer where
the incoming message should be copied to.

BINDING intin[0] = ap_id;
intin[1] = length;

RETURN VALUE

addrin[0] = message;

return crys_if(Ox0B);

appl_read() returns 0 if an error occurred or non-zero otherwise.

THE ATARI COMPENDIUM

appl_search() — 6.55

VERSION NOTES

COMMENTS

SEE ALSO

If the AES version is 4.0 or higher a@gppl_getinfo() indicates that this feature is
supportedap_idtakes on an additional meaningAPR_NOWAIT (-1) is

passed instead af_id, appl_read() will return immediately if no message is
currently waiting.

Normally this call is not useévnt_multi() or evnt_mesag(Js used instead for
standard message receptiappl_read() is required for reading messages that are
long and/or of variable length.

It is recommended that message lengths in multiples of 16 bytes be used.

appl_write()

appl_search()

WORD appl_search(mode fname, type ap_id)

WORD mode
CHAR *fname

WORD *type*ap_id

OPCODE

AVAILABILITY

PARAMETERS

appl_search()provides a method of identifying all of the currently running
processes.

18 (0x12)

Available only inAES versions 4.0 and above wheppl_getinfo() indicates its
presence.

modespecifies the search mode as follows:

Name mode Meaning
APP_FIRST 0 Return the filename of the first process
APP_NEXT 1 Return the filename of subsequent processes

fnameshould point to a memory location at least 9 bytes long to hold the 8
character process filename found andNkB.L byte.typeis a pointer to a
WORD into which will be placed the process type as follows:

Name type Meaning
APP_SYSTEM 0x01 System process
APP_APPLICATION 0x02 Application
APP_ACCESSORY 0x04 Accessory
APP_SHELL 0x08

THE ATARI COMPENDIUM

6.56 — Application Services Library - AES Function Reference

Thetypeparameter is actually a bit mask so it is possible that a process containing
more than one characteristic will appear. The currently running shell process
(usually the desktop) will return a valueAJPP_APPLICATION |APP_SHELL
(Ox0A).

ap_idis a pointer to a word into which will be placed the processes’ application
identifier.

addrin[0] = fname;

addrin[1] = type;

addrin[2] = ap_id;

return crys_if(0x12);

RETURN VALUE appl_search()returns 0 if no more applications exist or 1 when more processes
exist that meet the search criteria.

appl_tplay()

WORD appl_tplay(mem num, scale)
VOIDP mem
WORD num, scale

appl_tplay() plays back events originally recorded wagpp!_trecord().

OPCODE 14 (OxOE)
AVAILABILITY All AES versions.
PARAMETERS memis a pointer to an array 8VNTREC structures (seappl_trecord()). num

indicates the number 88VNTREC's to play back.

scaleindicates on a scale of 1 to 10000 how fas¥h8& will attemptto play

back your recording. A value of 100 will play it back at recorded speed. A value
of 200 will play the events back at twice the recorded speed, and 50 will play
back the events at half of the recorded speed. Other values will respond
accordingly.

BINDING |nt|n[0] = num;
intin[1] = scale;

addrin[0] = mem;

return crys_if(OXOE);

THE ATARI COMPENDIUM

appl_trecord() — 6.57

RETURN VALUE

CAVEATS

SEE ALSO

appl_tplay() always returns 1 meaning no error occurred.

This function does not work correctly &S versions less than 1.40 without a
patch program available from Atari Corp.

appl_trecord()

appl_trecord()

WORD appl_trecord(mem num)

VOIDP mem
WORD num;

OPCODE

AVAILABILITY

PARAMETERS

BINDING

appl_trecord() recordsAES events for later playback.
15 (OXOF)
All AES versions.

mempoints to an array dfumEVNTREC structures into which th8ES will
record events as indicated here:

typedef struct pEvntrec
WORD ap_event;

LONG ap_value;
} EVNTREC;

ap_eventefines the required interpretationagf_valueas follows:

Name ap_event Event ap_value
APPEVNT_TIMER 0 Timer Elapsed Time (in milliseconds)
APPEVNT_BUTTON 1 Button low word = state (1 = down)

high word = # of clicks
APPEVNT_MOUSE 2 Mouse low word = X pos

high word =Y pos
APPEVNT_KEYBOARD 3 Keyboard bits 0-7: ASCII code

bits 8-15: scan code

bits 16-31: shift key state

intin[0] = num;
addrin[0] = mem;

return crys_if(OX0F);

THE ATARI COMPENDIUM

6.58 — Application Services Library - AES Function Reference

RETURN VALUE appl_trecord() returns the number of events actually recorded.

CAVEATS This function does not work correctly &S versions less than 1.40 without a
patch program available from Atari Corp.

SEE ALSO appl_tplay()

appl_write()

WORD appl_write(ap_id length, msg)
WORD ap_id length;

VOIDP msg
appl_write() can be used to send a message to a valid message pipe.

OPCODE 12 (0x0C)

AVAILABILITY All AES versions.

PARAMETERS ap_idis the application identifier of the process to which you wish to send the
messagdengthspecifies the number of bytes present in the mesgsghis a
pointer to a memory buffer with at led@ngthbytes available.

BINDING intin[0] = ap_id;

intin[1] = length;
addrin[0] = msg;

return crys_if(Ox0C);

RETURN VALUE appl_write() returns 0 if an error occurred or greater than 0 if the message was
sent successfully.

VERSION NOTES As of AES version 1.40, desk accessories may $NdSELECTED messages
to the desktop to trigger desktop functions.

As of AES version 4.00 you can usbel_write(7,..) to ‘broadcast’ a message to
all processes running with the exception of AlisS itself, the desktop, and your
own application. Seghel_write() for details.

COMMENTS It is recommended that you always send messages in 16 byte blocks using a
WORD array of 8 elements as tA&S does.

SEE ALSO appl_read(), shel_write()

THE ATARI COMPENDIUM

Event Library

TheEvent Libraryconsists of a group of system calls which are used to monitor system messages
including mouse clicks, keyboard usage, menu bar interaction, timer calls, and mouse tracking. The
library consists of the following calls:

e evnt_button()
e evnt_dclick()
e evnt_keybd()
e evnt_mesag()
e evnt_mouse()
e evnt_multi()

e evnt_timer()

e evnt_button()

THE ATARI COMPENDIUM

evnt_button() — 6.61

evnt_button()

WORD evnt_button(clicks, mask state mx, my, button, kstate)
WORD clicks, mask state
WORD *mx, *my, *button, *kstate

OPCODE

AVAILABILITY

PARAMETERS

evnt_button() releases control to the operating system until the specified mouse
button event has occurred.

21 (0x15)
All AES versions.

clicks specifies the number of mouse-clicks that must occur before returning.
maskspecifies the mouse buttons to wait for as follows:

Name mask Meaning

LEFT_BUTTON 0x01 Left mouse button

RIGHT_BUTTON 0x02 Right mouse button

MIDDLE_BUTTON 0x04 Middle button (this button would be the first
button to the left of the rightmost button on the
device).

— 0x08 Other buttons (0x08 is the mask for the button to

the immediate left of the middle button. Masks
continue leftwards).

statespecifies the button state that must occur before returning as follows:

mask Meaning

0x00 All buttons released
0x01 Left button depressed
0x02 Right button depressed
0x04 Middle button depressed
0x08 etc...

mXis a pointer to &YORD which upon return will contain the x-position of the
mouse pointer at the time of the eveny.is a pointer to ¥/ORD which upon
return will contain the y-position of the mouse pointer at the time of the event.

buttonis a pointer to ¥/ORD which upon return will contain the mouse button
state as defined Btate

kstateis a pointer to &/ORD which upon return will contain the current status

THE ATARI COMPENDIUM

6.62 — Event Library - AES Function Reference

of the keyboard shift keys. The value is a bit-mask defined as follows:

Name \E [Key
K_RSHIFT 0x01 | Right Shift
K_LSHIFT 0x02 Left Shift
K_CTRL 0x04 Control
K_ALT 0x08 Alternate

BINDING |nt|n[0] = CliCkS;
intin[1] = mask;
intin[2] = state;

crys_if(0x15);

*mx = intout[1];
*my = intout[2];
*button = intout[3];
*kstate = intout[4];

return intout[0];

RETURN VALUE Upon exit,evnt_button() returns aVORD indicating the number of times the
mouse button state matchgidte

COMMENTS A previously undocumented feature of this call is accessed by logically OR’ing
themaskparameter with 0x100. This causes the call to return when independent
buttons are depressed. For exampl®aakvalue of 0x03 will return when both
the left and right mouse buttons are depressetagkvalue of 0x103 will cause
the call to return when either button is depressed.

SEE ALSO evnt_multi()

evnt_dclick()

WORD evnt_dclick(new, flag)
WORD new flag;

evnt_dclick() sets the mouse double-click response rate. This call is global, and
thus, affects all applications.

OPCODE 26 (0x1A)
AVAILABILITY All AES versions.
PARAMETERS If flag is EDC_INQUIRE (0), newis ignored and the current double-click rate is

returned. Iflag is EDC_SET (1), newspecifies the new double-click rate as

THE ATARI COMPENDIUM

evnt_keybd() - 6.63

BINDING

RETURN VALUE

COMMENTS

follows:

Response

Slowest

A WNELO

Fastest

intin[0] = new;
intin[1] = flag;

return crys_if(Ox1A);
evnt_dclick() returns the newly set or current double-click rate basdégn
Because this setting is global for all applications, Atari has strongly recommended

that developers use this canly where appropriate (such as in a configuration
CPX like the General Setup CPX included WiGONTROL).

evnt_keybd()

WORD evnt_keybd(VOID)

OPCODE

AVAILABILITY

PARAMETERS

BINDING

RETURN VALUE

VERSION NOTES

SEE ALSO

evnt_keybd() relinquishes program control to the operating system until a valid
keypress is available in the applications’ message pipe.

20 (0x14)
All AES versions.

None

return crys_if(0x14);

evnt_keybd()returns a 16-bit value containing the ASCII code of the key entered
in the lower eight bits and the scan code in the upper 8-bits.

TOS versions released at or above 2.06 and 3.06 disabled reception of keys 1
through 9 on the numeric keypad when used in conjunction with the alternate key.
Users may now enter the full range of ASCII values by holding déwrtyping

in the decimal ASCII code, and then releasingitfiekey. These keys, therefore,
should not be used by applications. The standard numeric keypad is still available.

evnt_multi()

THE ATARI COMPENDIUM

6.64 — Event Library - AES Function Reference

evnt_mesag()

WORD evnt_mesag(nsg)

WORD *msg

OPCODE
AVAILABILITY
PARAMETERS

BINDING

RETURN VALUE

evnt_mesag(yeleases control to the operating system until a valid system
message is available in the applications’ message pipe.

23 (0x17)
All AES versions.

msgis a pointer to an array ofMORD’ s to be used as a message buffer.

addrin[0] = msg

return crys_if(Ox17);

The return value is currently reserved by Atari and currently is defined as 1. The
arraymsgis filed in with the following values:

THE ATARI COMPENDIUM

evnt_mesag() - 6.65

Index ’ Description Possible Values #
msg[0] Message Type MN_SELECTED 10
WM_REDRAW 20
WM_TOPPED 21
WM_CLOSED 22
WM_FULLED 23
WM_ARROWED 24
WM_HSLID 25
WM_VSLID 26
WM_SIZED 27
WM_MOVED 28
WM_UNTOPPED 30
WM_ONTOP 31
WM_BOTTOM 33
WM_ICONIFY 34
WM_UNICONIFY 35
WM_ALLICONIFY 36
WM_TOOLBAR 37
AC_OPEN 40
AC_CLOSE 41
AP_TERM 50
AP_TFAIL 51
AP_RESCHG 57
SHUT_COMPLETED 60
RESCH_COMPLETED 61
AP_DRAGDROP 63
SH_WDRAW 72
CH_EXIT 90
msg[1] The application identifier of the Any valid ap_id.
sending application.
msg[2] The length of the message beyond | Currently all system messages return 0
16 bytes (use appl_read() toread | inthis slot. Only user-defined
the excess). messages utilize a higher value.

THE ATARI COMPENDIUM

6.66 — Event Library - AES Function Reference

Each system message can be interpreted as follows:

Message
MN_SELECTED

Extended Information

A menu item has been selected by the user. msg[3] contains the
object number of the menu title and msg/[4] contains the object
number of the menu item.

As of AES version 4.0 (and when indicated by appl_getinfo()),
msg[5] and msg[6] contain the high and low word, respectively, of
the object tree of the menu item. msg[7] contains the parent object
index of the menu item.

WM_REDRAW

This message alerts an application that a portion of the screen
needs to be redrawn. msg[3] contains the handle of the window to
redraw. msg[4-7] are the x, y, w, and h respectively of the ‘dirtied’
area.

When the message is received the window contents should be
drawn (or a representative icon if the window is iconified).

WM_TOPPED

This message is sent when an application window which is currently
not the top window is clicked on by the user. msg/[3] contains the
handle of the window.

You should use wind_set(handle, WF_TOP, msg/3], 0, 0, 0) to
actually cause the window to be topped.

WM_CLOSED

This message is sent when the user clicks on a windows’ close
box. msg[3] contains the handle of the window to close.

You should react to this message with wind_close() .

WM_FULLED

This message is sent when the user clicks on a windows' full box. If
the window is not at full size, the window should be resized using
wind_set(handle, WF_CURRXYWH,... to occupy the entire screen
minus the menu bar (see wind_get()).

If the window was previously ‘fulled’ and has not been resized since,
the application should return the window to its previous size.

THE ATARI COMPENDIUM

evnt_mesag() - 6.67

WM_ARROWED

This message is sent to inform an application that one of its slider
gadgets has been clicked on.

A row or column message is sent when a slider arrow is selected.
A ‘page’ message is sent when a darkened area of the scroll bar is
clicked. This usually indicates that the application should adjust the
window’s contents by a larger amount than with the row or column
messages.

msg[3] indicates which action was actually selected as follows:

Name Value Meaning
WA_UPPAGE Page Up
WA_DNPAGE 1 Page Down
WA_UPLINE 2 Row Up
WA_DNLINE 3 Row Down
WA_LFPAGE 4 Page Left
5
6

o

WA_RTPAGE Page Right
WA_LFLINE Column Left
WA_RTLINE 7 Column Right

WM_HSLID

This message indicates that the horizontal slider has been moved.
msg/[3] contains the new slider position ranging from 0 to 1000.

Note: Slider position is relative and not related to slider size.

WM_VSLID

This message indicates that the vertical slider has been moved.
msg[3] contains the new slider position ranging from 0 to 1000.

Note: Slider position is relative and not related to slider size.

WM_SIZED

This message occurs when the user drags the window sizing
gadget. msg[3] contains the window handle. msg[4-7] indicate the
X, Y, w, and h respectively of the new window location.

Use wind_set(handle, WF_CURRXYWH,... to actually size the
window.

WM_SIZED and WM_MOVED usually share common handling
code.

WM_MOVED

This message occurs when the user moves the window by dragging
the windows'’ title bar. msg[3] contains the handle of the window
being moved. msg[4-7] indicate the X, y, w, and h respectively of the
new window location.

Use wind_set(handle, WF_CURRXYWH,...) to actually move the
window.

WM_MOVED and WM_SIZED usually share common handling
code.

WM_UNTOPPED

This message is sent when the current window is sent behind one
or more windows as the result of another window being topped.
msg[3] contains the handle of the window being untopped.

The application need take no action. The message is for
informational use only.

THE ATARI COMPENDIUM

6.68 — Event Library - AES Function Reference

WM_ONTOP

This message is sent when an applications’ window is brought to
the front on a multitasking AES. msg[3] is the handle of the window
being brought to the front.

This message requires no action, it is for informational purposes
only.

WM_BOTTOM

This message is sent when the user shift-clicks on the window’s
(specified in msg[3]) mover bar to indicate that the window should
be sent to the bottom of the window stack by using wind_set() with
a parameter of WF_BOTTOM.

WM_ICONIFY

This message is sent when the user clicks on the SMALLER
window gadget. msg[3] indicates the handle of the window to be
iconified. msg[4-7] indicate the X, y, w, and h of the iconified
window.

If the iconified window represents a single window this message
should be responded to by using wind_set() with a parameter of
WF_ICONIFY.

WM_UNICONIFY

This message is sent when the user double-clicks on an iconified
window. msg[3] indicates the handle of the window to be iconified.
msg[4-7] indicate the X, y, w, and h of the original window.

This message should be responded to by using wind_set() with a
parameter of WF_UNICONIFY.

WM_ALLICONIFY

This message is sent when the user CTRL-clicks on the SMALLER
window gadget. msg[3] indicates which window’s gadget was
clicked. msg[4-7] indicates the position at which the new iconified
window should be placed.

The application should respond to this message by closing all open
windows and opening a new iconified window at the position
indicated which represents the application.

WM_TOOLBAR

This message is sent when a toolbar object is clicked. msg[3]
contains the handle of the window containing the toolbar.

msg[4] contains the object index of the object clicked. msg[5]
contains the number of clicks. msg[6] contains the state of the
keyboard shift keys at the time of the click (as in evnt_keybd()).

AC_OPEN

This message is sent when the user has selected a desk accessory
to open. msg[4] contains the application identifier (as returned by
appl_init()) of the accessory to open.

AC_CLOSE

This message is sent to a desk accessory when the accessory
should be closed. msg[3] is the application identifier (as returned
by appl_init()) of the accessory to close.

Do not close any windows your accessory had open, the system will
do this for you. Also, do not require any feedback from the user
when this is received. Treat this message as a ‘Cancel’ from the
user.

THE ATARI COMPENDIUM

evnt_mesag() - 6.69

AP_TERM This message is sent when the system requests that the application
terminate. This is usually the result of a resolution change but may
also occur if another application sends this message to gain total
control of the system.

The application should shut down immediately after closing
windows, freeing resources, etc... msg[5] indicates the reason for
the shut down as follows:

AP_TERM (50) = Just shut down.
AP_RESCHG (57) = Resolution Change.

If for some reason, your process can not shut down you must inform
the AES by sending an AP_TFAIL (51) message by using
shel_write() mode 10 (see shel_write()).

Note: Desk Accessories wil always be sent AC_CLOSE
messages, not AP_TERM.

AP_TFAIL This message should be sent to the system (see shel_write())
when an application has received an AP_TERM (50) message and
cannot shut down.

msg[0] should contain AP_TFAIL and msg/1] should contain the
application error code.

AP_RESCHG This message is actually a sub-command and is only found as a
possible value in the AP_TERM (50) message (see above).

SHUT_COMPLETED This message is sent to the application which requested a
shutdown when the shutdown is complete and was successful.

RESCH_COMPLETE This message is sent to an application when a resolution change it

D requested is completed. msg/[3] contains 1 if the resolution change
was successful and 0 if an error occurred.
AP_DRAGDROP This message indicates that another application wishes to initiate a

drap and drop session. msg[3] indicates the handle of the window
which had an object dropped on it or -1 if no specific window was
targeted.

msg[4-5] contains the X and Y position of the mouse when the
object was ‘dropped’. msg[6] indicates the keyboard shift state at
the time of the drop (as in evnt_keybd()).

msg[7] is a two-byte ASCII packed pipe identifier which gives the
file extension of the pipe to open.

For more information about the drag & drop protocal, see Chapter
2: GEMDOS.

SH_WDRAW This message is sent to the Desktop to ask it to update an open
drive window. msg[3] should contain the drive number to update (0
=A;, 1=B:)or -1 to update all windows.

CH_EXIT This message is sent when a child process that the application has
started, returns. msg/3] contains the child’s application identifier
and msg[4] contains its exit code.

VERSION NOTES ~ WM_UNTOPPED, WM_ONTOP , AP_TERM, AP_TFAIL | AP_RESCHG,
SHUT_COMPLETED, RESCH_COMPLETED, andCH_EXIT are new as of

THE ATARI COMPENDIUM

6.70 — Event Library - AES Function Reference

AES version 4.0.

WM_BOTTOM , WM_ICONIFY , WM_UNICONIFY , WM_ALLICONIFY
andWM_TOOLBAR are new as oAES version 4.1.

No lower versiorAES will send these messages.

The existence (or acceptance) of these messages should also be checked for by
usingappl_getinfo().

SEE ALSO evnt_multi()

evnt_mouse()

WORD evnt_mousef(flag, x, y, w, h, mx, my, button, kstate)
WORD flag, x, y, w, h;
WORD *mx, *mx, *button, *kstate

evnt_mouse()releases control to the operating system until the mouse enters or
leaves a specified area of the screen .

OPCODE 22 (0x16)

AVAILABILITY All AES versions.

PARAMETERS flag specifies the event to wait for as follows:
Name ‘ Value Meaning
MO_ENTER 0 Wait for mouse to enter rectangle.
MO_LEAVE 1 Wait for mouse to leave rectangle.

The rectangle to watch is specifiediry, w, h. mxandmy are WORD pointers
which will be filled in with the final position of the mouse.

buttonis aWORD pointer which will be filled in upon return with the final state
of the mouse button as definedeivnt_button().

kstateis aWORD pointer which will be filled in upon return with the final state
of the keyboard shift keys as definedirnt_button().

intin[1] = x;
intin[2] = y;
intin[3] = w;
intin[4] = h;

THE ATARI COMPENDIUM

evnt_multi() - 6.71

RETURN VALUE

COMMENTS

SEE ALSO

crys_if(0x16);

*mx = intout[1];
*my = intout[2];
*button = intout[3];
*kstate = intout[4];

return intout[0];
The return value of this function is reserved. Currently it always returns 1.

Theevnt_multi() function can be used to watch two mouse/rectangle events as
opposed to one.

evnt_multi()

evnt_multi()

WORD evnt_multi(eventsbclicks bmask bstate m1flag, m1x, mly, miw, m1lh, m2flag, m2x, m2y,
m2w, m2h, msg locount, hicount, mx, my, ks, kc, mc)
WORD events bclicks, bmask bstate m1flag, m1x, mly, m1w, m1lh, m2flag, m2x, m2y, m2w, m2h;

WORD *msg

WORD locount, hicount;
WORD *mx, *my, *ks, *kc, *mc;

OPCODE

AVAILABILITY

PARAMETERS

evnt_multi() suspends the application until a valid message that the application is
interested in occurs. This call combines the functionaligvof_button(),
evnt_keybd(), evnt_mesag()evnt_mouse() andevnt_timer() into one call.

This call is usually the cornerstone of GEM applications that must process
system events.

25 (0x19)
All AES versions.

eventss a bit mask which tells the function which events your application is
interested in. You should logically ‘OR’ any of the following values together:

Name Mask Function

MU_KEYBD 0x01 Wait for a user keypress.

MU_BUTTON 0x02 Wait for the specified mouse button state.
MU_M1 0x04 Wait for a mouse/rectangle event as specified.
MU_M2 0x08 Wait for a mouse/rectangle event as specified.

THE ATARI COMPENDIUM

6.72 — Event Library - AES Function Reference

BINDING

RETURN VALUE

VERSION NOTES

CAVEATS

MU_MESAG 0x10 Wait for a message.

MU_TIMER 0x20 Wait the specified amount of time.

For usage ofclicks bmask bstatg mx my, kc, andks, you should consult
evnt_button().

For usage ofnlflag mix mly miw mlh m2flag m2x m2y m2w andm2h
consultevnt_mouse()

For usage ofnsg seeevnt_mesag()

For usage ofocountandhicount seeevnt_timer().

intin[0] = events;
intin[1] = bclicks;
intin[2] = bmask;
intin[3] = bstate;
intin[4] = m1flag;
intin[5] = m1x;
intin[6] = m1y;
intin[7] = mlw;
intin[8] = m1h;
intin[9] = m2flag;
intin[10] = m2x;
intin[11] = m2y;
intin[12] = m2w;
intin[13] = m2h;
intin[14] = locount;
intin[15] = hicount;

addrin[0] = msg;
crys_if(0x19);

*mx = intout[1];
*my = intout[2];
*mb = intout[3];
*ks = intout[4];
*kc = intout[5];
*mc = intout[6];

return intout[0];

The function returns a bit mask of which events actually happene@egrits

This may be one or more events and your application should be prepared to handle
each.

The only facet obvnt_multi() which has changed froAES version 4.0 is that

which relates t@vnt_mesag() For further information you should consult that

section.

UnderTOS 1.0, calling this function from a desk accessory withi\ke TIMER

THE ATARI COMPENDIUM

evnt_timer() - 6.73

SEE ALSO

mask andocountandhicountbeing equal to 0 could hang the system.

evnt_button(), evnt_keybd(), evnt_mesag(), evnt_mouse(), evnt_timer()

evnt_timer()

WORD evnt_timer(locount, hicount)
WORD locount, hicount;

OPCODE

AVAILABILITY

PARAMETERS

BINDING

RETURN VALUE

CAVEATS

COMMENTS

SEE ALSO

evnt_timer() releases control to the operating system until a specified amount of
time has passed.

24 (0x18)
All AES versions.

locountis the low word of a 32-bit time value specified in milliseconds.
hicountis the high portion of that 32-bit value.

intin[0] = locount;
intin[1] = hicount;

return crys_if(0x18);
The return value is reserved and is currently always 1.

UnderTOS 1.0, calling this function from a desk accessory with a both parameters
having a value of 0 will hang the system.

This function should not be relyed on as an accurate clock. The time specified is
used as a minimum time value only and the function will return at some point after
that duration has passed.

evnt_multi()

THE ATARI COMPENDIUM

Form Library

TheForm Library contains utility functions for the use and control of dialog boxes, alert boxes, and user
input. The members of thkeorm Library are:

form_alert()
form_button()
form_center()
form_dial()
form_do()
form_error()
form_keybd()

THE ATARI COMPENDIUM

form_alert() — 6.77

form_alert()

WORD form_alert(default, alertstr)
WORD default,

CHAR *alertstr,
form_alert() displays a standardized alert box and returns the user’s selection.
OPCODE 52 (0x34)
AVAILABILITY All AES versions.
PARAMETERS defaultcontains the number of the exit button which is to be made default (1-3).

alertstr contains a formatted string as follows: “[#][Alert Text][Buttons]”.

specifies the icon to display in the alert as follows:

‘ Icon Displayed

0 No Icon

‘Alert Text'is a text string of as many as 5 lines composed of up to 30 characters
each. Each line is separated by a ‘|’ character.

‘Buttons’is a text string to define as many as 3 buttons up to 10 characters each. If

only one button is used, its text may be as long as 30 characters. Again, each button
is separated by a ‘|’ character

THE ATARI COMPENDIUM

6.78 — Form Library - AES Function Reference

BINDING intin[0] = default;
addrin[0] = alertstr;
return crys_if(0x34);

RETURN VALUE form_alert() returns AVORD indicating which button was used to exit by the
user (A possible value of 1-3).

VERSION NOTES Icons #4-5 are only available asAES version 4.1.

CAVEATS Several versions of th&ES have special quirks related to this function. By
following the quidelines below you should avoid any difficulty:

1. All AES versions below 1.06 have some difficulty formatting alert strings
padded with spaces. If you want your alerts to look right ofEH
versions, do not pad any button or line with spaces with the exception below.

2. Add one space to the end of the longest text line on an alert. This will
prevent the right edge from touching the border in sB® versions.

form_button()

WORD form_button(tree, obj, clicks, newobj)
OBJECT *tree
WORD obj, clicks, newobj

form_button() is a utility function designed to aid in the creation of a custom
form_do() handler.

OPCODE 56 (0x38)

AVAILABILITY All AES versions.

PARAMETERS treeis a pointer to a valid object tree in memory you wish to process button events
for. obj is the object index inttyee which was clicked on and which needs to be
processed.

clicksis the number of times the mouse button was clicked.

newobjreturns the next object to gain edit focus or 0 if there are no editable
objects. If the top bit ofiewobjis set, this indicates thaff& UCHEXIT object
was double-clicked.

intin[1] = clicks;

THE ATARI COMPENDIUM

form_center() - 6.79

RETURN VALUE

COMMENTS

SEE ALSO

addrin[0] = tree;
crys_if(0x38);
*newobj = intout[1];

return intout[0];

form_button() returns a 0 if it exits finding aXIT or TOUCHEXIT object
selected or 1 otherwise.

To use this function properly, the application should take the following steps:
1. Monitor mouse clicks witevnt_multi() or evnt_button(),

2. When a click occurs, usdjc_find() to determine if the click occurred
over the object.

3. If so, caliform_button() with the appropriate values.

This function was not originally documented by Atari. You may have to add
bindings for this function to some earlier ‘C’ compilers.

form_do(), form_keybd()

form_center()

WORD form_center(tree x,y,w, h)

OBJECT *treeg

WORD *x, *y, *w, *h;

OPCODE

AVAILABILITY

PARAMETERS

BINDING

form_center() is used to modify an object’s coordinates so that it will appear in
the center of the display screen.

54 (0x36)
All AES versions.

tree points to a valid®BJECT structure (see discussion of resources) which the
application wishes to have centerggdy, w, andh, return a clipping rectangle
suitable for use iobjc_draw().

addrin[0] = tree;

crys_if(0x36);

THE ATARI COMPENDIUM

6.80 — Form Library - AES Function Reference

RETURN VALUE

COMMENTS

SEE ALSO

*x = intout[1];
*y = intout[2];
*w = intout[3];
*h = intout[4];

return intout[0];
The return value is currently reserved. Currently it equals 1.

The values thdorm_center() returns in, y, w, andh, are not necessarily the

same as the object’s. These values take into account negative borders, outlining,
and shadowing. This is meant to provide a suitable clipping rectangle for
objc_draw()

objc_draw()

form_dial()

WORD form_dial(mode x1, y1, wl, hl, x2, y2, w2, h2)
WORD mode x1, y1, wl, hl, x2, y2, w2, h2;

OPCODE

AVAILABILITY

PARAMETERS

form_dial() is used to reserve and release screen space for dialog usage. In
addition, it also optionally provides grow/shrink box effects.

51 (0x33)
All AES versions.

modespecifies the action to take and the meaning of remaining parameters as
follows:

Name ‘ # Action

FMD_START 0 This mode reserves the screen space for a dialog. x2, y2, w2, and
h2, contain the coordinates of the dialog to be used (usually
obtained through form_center()).

FMD_GROW 1 This mode draws an expanding box from the coordinates specified
in x1, y1, wi, and h1 to the coordinates specified in x2, y2, w2, and
h2. This call is optional and is not required to display a dialog.

FMD_SHRINK 2 This mode draws a shrinking box from the coordinates specified in
x2, y2, w2, and h2 to the coordinates specified in x1, y1, wi, and
h1. This call is optional and is not required to display a dialog.

FMD_FINISH 3 This mode releases the screen space for a dialog (previously
reserved with mode 0). x2, y2, w2, and h2 contain the coordinates
of the space to release. One of the side-effects of this call is a
WM_REDRAW message sent to any window which the dialog was
covering.

THE ATARI COMPENDIUM

form_do() - 6.81

BINDING

RETURN VALUE

VERSION NOTES

SEE ALSO

intin[0] = mode;

intin[1] = x1;
intin[2] = y1;
intin[3] = w1;
intin[4] = h1;
intin[5] = x2;
intin[6] = y2;
intin[7] = w2;
intin[8] = h2;

return crys_if(0x33);
The function returns 0 is an error occurred or non-zero otherwise.

The AES does not currently make use of méddD_START . The call should,
however, still be executed for upward compatibility.

graf_growbox(), graf_shrinkbox()

form_do()

WORD form_do(tree, editobj)

OBJECT *treeg
WORD editobj

OPCODE
AVAILABILITY

PARAMETERS

BINDING

RETURN VALUE

form_do() provides an automated dialog handling function to the calling
application. It suspends program control, handling all radio buttons, selectable
objects, etc... until an object with thOUCHEXIT or EXIT flag is selected.

50 (0x32)
All AES versions.

treeis a pointer to a valid object tree (see the discussion on objects in this
chapter) which contains a dialog with at least BXET or TOUCHEXIT button
or object.

editobjis the object index into tree which specifies the desired initial location of
the edit cursor (the object must be flagge&RETABLE). If the form has no text
editable fields, you should use 0.

intin[0] = editobj;
addrin[0] = tree;
return crys_if(0x32);

form_do() returns the object index of theXIT or TOUCHEXIT button which

THE ATARI COMPENDIUM

6.82 — Form Library - AES Function Reference

was selected. If the object was double clicked, bit 15 will be set. This means that
to obtain the actual object number you should mask off the result with Ox7FFF.

form_error()

WORD form_error(error)

WORD error;
form_error() displays a pre-defined error alert box to the user.
OPCODE 53 (0x35)
AVAILABILITY All AES versions.
PARAMETERS error specifies d1S-DOS error code as follows:
GEMDOS
Name Error # error Message
FERR_FILENOTFOUND -33 2 File Not Found
The application can not find the folder or
file that you tried to access.
FERR_PATHNOTFOUND -34 3 Path Not Found
The application cannot find the folder or
file that you tried to access.
FERR_NOHANDLES -35 4 No More File Handles
The application does not have room to
open another document. To make
room, close any open document that
you do not need.
FERR_ACCESSDENIED -36 5 Access Denied
An item with this name already exists in
the directory, or this item is set to read-
only status.
FERR_LOWMEM -39 8 Insufficient Memory
There is not enough memory for the
application you just tried to run.
FERR_BADENVIRON -41 10 Invalid Environment
There is not enough memory for the
application you just tried to run.
FERR_BADFORMAT -42 11 Invalid Format
There is not enough memory for the
application you just tried to run.

THE ATARI COMPENDIUM

form_keybd() - 6.83

FERR_BADDRIVE

-46

15

Invalid Drive Specification

The drive you specified does not exist.

FERR_DELETEDIR

-47

16

Attempt To Delete Working
Directory

You cannot delete the folder in which
you are working.

FERR_NOFILES

-49

18

No More Files

The application can not find the folder or
file that you tried to access.

TheGEMDOS error number can be translated intdl&-DOS code by
subtracting 31 from the absolute value of the error code.

BINDING intin[0] = error;

return crys_if(0x35);

RETURN VALUE The function returns the exit button clicked aoifm_alert(). It is, however,
insignifigant as all of the error alerts have only one button.

CAVEATS Not everyGEMDOS error code has a matching alert box.

SEE ALSO form_alert()

form_keybd()

WORD form_keybd(tree, obj, nextobj kc, newobj keyout)

OBJECT *treeg
WORD obj, nextobj, kc;
WORD *newobj *keyout

form_keybd() processes keyboard input for dialog box control. It handles special
keys such as return, escape, tab, etc... It is only of real use if you are writing a
customizedorm_do() routine.

OPCODE 55 (0x37)
AVAILABILITY All AES versions.
PARAMETERS tree points to a valid®BJECT tree containing the dialog you wish to process.

is the object index of the object which currently has edit focus (0 if noesobj
is reserved and should be 1.

THE ATARI

COMPENDIUM

6.84 — Form Library - AES Function Reference

BINDING

RETURN VALUE

COMMENTS

SEE ALSO

kcis the value returned frogvnt_keybd() or evnt_multi() which represents the
keypresses’ scan code and ASCII value.

newobjis aWORD pointer which is filled in on function exit to be the new object
with edit focus unless tHRETURN key was pressed with a default object present in
which case it equals the object index of the object that was the default.

keyoutis the value ready to be passed onljs_edit() if no processing was
required or O if the key was processed and handled by the call.

intin[0] = obj;
intin[1] = nextobj;
intin[2] = kc;

addrin[0] = tree;
crys_if(0x37);

*newobj = intout[1];
*keyout = intout[2];

return intout[0];

form_keybd() returns 0 if a defauEXIT object was triggered by this call or 1 if
the dialog should continue to be processed.

This function was not originally documented by Atari. You may need to add
bindings for this function into some older ‘C’ compilers.

objc_edit(), form_do(), form_button()

THE ATARI COMPENDIUM

File Selector Library

TheFile Selector Librarycontains two functions for displaying the system file selector (or currently
installed alternate file selector) and prompting the user to select a file. The members of this library are:

o fsel_exinput()
o fsel_input()

THE ATARI COMPENDIUM

fsel_exinput() — 6.87

fsel _exinput()

WORD fsel_exinput(path, file, button, title)
CHAR * path, *file;

WORD *button;

CHAR *title;
fsel_exinput() displays the system file selector and offers the user an opportunity
to choose a complefeEMDOS path specification.

OPCODE 91 (0x5B)

AVAILABILITY Available fromAES version 1.40.

PARAMETERS pathshould be a pointer to a character buffer at least 128 bytes long (applications
wishing to access CD-ROM'’s should allocate at least 200 bytes). On input the
buffer should contain a comple&=MDOS path specification including a drive
specifier, path string, and wildcard mask as follows: ‘drive:\path\mask’. The mask
can be any valiGEMDOS wildcard (usually *.*).

On function exitpath contains final path of the selected file (you will have to strip
the mask).

file should point to a character buffer 13 bytes long (12 character filename plus
NULL). On input its contents will be placed on the filename line of the selector
(usually this value can simply be a empty string). On functionfégitcontains the
filename which the user selected.

buttonis a short pointer which upon function exit will contain

FSEL_CANCEL (0) if the user select6dANCEL or FSEL_OK (1) if OK,

title should be a pointer to a character string up to 30 characters long which
contains the title to appear in the file selector (usually indicates which action the
user is about to take).

addrin[1] = file;
addrin[2] = label,

crys_if(Ox5B);
*button = intout[1];

return intout[0];

RETURN VALUE fsel_exinput() returns O if an error occured and 1 otherwise.

THE ATARI COMPENDIUM

6.88 — File Selector Library - AES Function Reference

VERSION NOTES

COMMENTS

SEE ALSO

Some ‘C’ compilers (Lattice for example) provide a special function which
allowsfsel_exinput()to be used even on earl®BES versions.

The path parameter to this function should be validated to ensure that the path
actually exists prior to calling this function to prevent confusing the user.

This call should always be used as opposdsieioinput() when it is available.
Otherwise, the user has no reminder as to what function s/he is actually
undertaking.

fsel_input()

fsel _input()

WORD fsel_input(path, file, button)

CHAR * path, *file;

WORD *button;

OPCODE
AVAILABILITY
PARAMETERS

BINDING

RETURN VALUE

COMMENTS

SEE ALSO

fsel_input() displays the system file selector and allows the user to select a valid
GEMDOS path and file.

90 (0x5A)
All AES versions.

All parameters are consistent wigel_exinput() with the notable lack ditle.

addrin[0] = path;
addrin[1] = file;

crys_if(Ox5A);
*putton = intout[1];

return intout[O];
fsel_input() returns a 0 if an error occurred or 1 otherwise.

You should never use this function in placései_exinput() whenfsel_exinput()
is available.

fsel_exinput()

THE ATARI COMPENDIUM

Graphics Library

TheGraphics Libraryprovides applications with a variety of utility functions which serve to provide
common screen effects, mouse control, and the obtaining of basic screen attributes. The functions of the
Graphics Libraryare as follows:

graf_dragbox()
graf_growbox()
graf_handle()
graf_mkstate()
graf_mouse()
graf_movebox()
graf_rubberbox()
graf_shrinkbox()
graf_slidebox()
graf_watchbox()

THE ATARI COMPENDIUM

graf_dragbox() — 6.91

graf _dragbox()

WORD graf_dragbox(w, h, sx, sy, bx, by, bw, bh, endx endy)
WORD w, h, sx, sy, bx, by, bw, bh;
WORD *endx *endy,

OPCODE

AVAILABILITY

PARAMETERS

BINDING

RETURN VALUE

COMMENTS

SEE ALSO

graf_dragbox() allows the user to move a box frame within the constraints of a
bounding rectangle. This call is most often used to give the user a visual ‘clue’
when an object is being moved on screen.

71 (0x47)

All AES versions.

w andh specify the initial width and height of the box to drawandsy specify
the startingk andy screen coordinates.

bx, by, bw, andbh, give the coordinates of the bounding rectangle.

endxandendyareWORD pointers which, on function exit, will be filled in with
the ending x and y position of the box.

intin[0] = w;

intin[1] = h;

intin[2] = sx;
intin[3] = sy;
intin[4] = bx;
intin[5] = by;
intin[6] = bw;
intin[7] = bh;

crys_if(0x47);

*endx = intout[1];
*endy = intout[2];

return intout[O];

graf_dragbox() returns a 0 if an error occurred during execution or greater than
zero otherwise.

This call should be made only when the mouse button is depressed. The call
returns when the mouse button is released.

graf_slidebox()

THE ATARI COMPENDIUM

6.92 — Graphics Library - AES Function Reference

graf _growbox()

WORD graf_growbox(x1, y1, wl, h1, x2, y2, w2, h2)
WORD x1, y1, w2, h2, x2, y2, w2, h2;

OPCODE

AVAILABILITY

PARAMETERS

BINDING

RETURN VALUE

CAVEATS

COMMENTS

SEE ALSO

graf_growbox() is used to provide a visual ‘clue’ to a user by animating an
outline of a box from one set of coordinates to another. It is the complement
function tograf_shrinkbox().

73 (0x49)
All AES versions.

x1, y1, wl, andhl are the screen coordinates of the starting rectangle (where the
outline will grow from).

x2,y2, w2, andh2 are the screen coordinates of the ending rectangle (where the
outline will grow to).

intin[0] = x1;
intin[1] = y1;
intin[2] = w1;
intin[3] = h1,;
intin[4] = x2;
intin[5] = y2;
intin[6] = w2;
intin[7] = h2;

return crys_if(0x49);
graf_growbox() returns 0 if an error occured or non-zero otherwise.

There is currently no defined method of handling an error generated by this
function.

This function is what is called BGYEM’s form_dial(FMD_GROW ,_..

form_dial(), graf_shrinkbox()

graf_handle()

WORD graf_handle(wcell, hcell, wbox hbox);
WORD *wecell, *hcell, *wbox *hbox;

graf_handle() returns important information regarding the physical workstation

THE ATARI COMPENDIUM

graf_mkstate() - 6.93

OPCODE

AVAILABILITY

PARAMETERS

BINDING

RETURN VALUE

CAVEATS

COMMENTS

SEE ALSO

currently in use by thAES.
77 (0x4D)
All AES versions.

wcellandhcell areWORD pointers which on function exit will be filled in with
the width and height, respectively, of the current system character set.

wboxandhboxareWORD pointers which on function exit will be filled in with
the width and height, respectively, of the minimum bounding bo)B6P4CHAR
character.

crys_if(0x4D);
*charw = intout[1];
*charh = intout[2];
*boxw = intout[3];
*boxh = intout[4];

return intout[0];

This function returns th€DI handle for the current physical workstation used by
the AES,

There is currently no defined method of handling an error generated by this
function.

The return value of this function is required to open a virtual screen workstation.

v_opnvwk()

graf _mkstate()

WORD graf_mkstate(mx, my, mb, ks)
WORD *mx, *my, *mb, *ks;

OPCODE

AVAILABILITY

PARAMETERS

graf_mkstate() returns information about the current state of the mouse pointer,
buttons, and keyboard shift-key state.

79 (Ox4F)
All AES versions.

mxand my ar&VORD pointers, which, on function exit will be filled in with the
current x and y coordinates of the mouse poiniéris aWORD pointer, which,

THE ATARI COMPENDIUM

6.94 — Graphics Library - AES Function Reference

on function exit will be filled in with the current button state of the mouse as
defined inevnt_button().
BINDING crys_if(0x4F);
*mx = intout[1];
*my = intout[2];
*mb = intout[3];
*ks = intout[4];

return intout[0];
RETURN VALUE The function return is currently reserved and currently equals 1.

SEE ALSO evnt_button(), vg_mouse()

graf_mouse()

WORD graf_mouse(mode formptr)
WORD mode
VOIDP formptr;

graf_mouse()alters the appearance of the mouse form and can be used to hide and
display the mouse pointer from the screen.

OpPCODE 78 (Ox4E)
AVAILABILITY All AES versions.
PARAMETERS modeis defined as follows:
mode # Meaning Shape
ARROW 0 Change the current mouse cursor h
shape.
TEXT_CRSR 1 Change the current mouse cursor I
shape.
BUSY_BEE 2 Change the current mouse cursor ﬁ
shape.
POINT_HAND 3 Change the current mouse cursor %—-.I
shape.

THE ATARI COMPENDIUM

graf_mouse() - 6.95

FLAT_HAND 4 Change the current mouse cursor @"\
shape.

THIN_CROSS 5 Change the current mouse cursor —|—
shape.

THICK_CROSS 6 Change the current mouse cursor -+
shape.

OUTLN_CROS 7 Change the current mouse cursor -=|'}=

S shape.

USER_DEF 255 Change the current mouse cursor Form is defined
shape. below.

M_OFF 256 Remove the mouse cursor from the No shape change.
screen.

M_ON 257 Display the mouse cursor. No shape change.

M_SAVE 258 Save the current mouse form in an No shape change.
AES provided buffer. Check
appl_getinfo() for the presence of
this feature.

M_LAST 259 Restore the most recently saved Changes the shape
mouse form. Check appl_getinfo() as indicated.
for the presence of this feature.

M_RESTORE 260 Restore the mouse form to its last Changes the shape
shape. Check appl_getinfo() forthe | as indicated.
presence of this feature.

If modeis equal tdJSER_DEF, formptr must point to MFORM structure as

defined below (ifmodeis different tharJSER_DEF, formptr should beNULL):

typedef struct {
short mf_xhot;
short mf_yhot;
short mf_nplanes;
short mf_fg;
short mf_bg;
short mf_mask[16];
short mf_data[16];
} MFORM,;

mf_xhotandmf_yhotare the location of the mouse ‘hot-spot’. These values should
be in the range 0 to 15 and define what offset into the bitmap is actually the
‘point’.

mf_nplanespecifies the number of bit-planes used by the mouse pointer.
Currently, the value of 1 is the only legal value.

mf_fgandmf_bgare the mask and data colors of the mouse specified as palette

THE ATARI COMPENDIUM

6.96 — Graphics Library - AES Function Reference

BINDING

RETURN VALUE

CAVEATS

SEE ALSO

indexes. Usually these values will be 0 and 1 respectively.

mf_maskKs an array of 18VORD’ s which define the mask portion of the mouse
form. mf_datais an array of 18VORD’s which define the data portion of the
mouse form.

As of AES 4.0 and beyond, th&ES may not allow a mouse form to change to
benefit another application. If it is absolutely necessary for the application to
display its mouse form, logically OR the mode parameter MithORCE
(0x8000) and make the call.

This will force theAES to change to your mouse form. It should, however, be
done within the scope ofwind_update() sequence.

intin[0] = mode;
addrin[0] = formptr;

return crys_if(Ox4E);
graf_mouse()returns a O if an error occurred or non-zero otherwise.

There is currently no defined method of handling an error generated by this
function.

vsc_form()

graf_movebox()

WORD graf_movebox(bw, bh, sx, sy, ex, ey)
WORD bw, bh, sx, sy, ex, ey,

OPCODE

AVAILABILITY

PARAMETERS

BINDING

graf_movebox()animates a moving box between two points on the screen. It is
used to give the user a visual ‘clue’ to an action undertaken by the application.

72 (0x48)
All AES versions.
bw andbh specify the width and height, respectively, of the box to anirsstnd

Sy specify the starting coordinates of the b®xandey specify the ending
coordinates of the box.

intin[0] = bw;
intin[1] = bh;
intin[2] = sx;

THE ATARI COMPENDIUM

graf_rubberbox() - 6.97

RETURN VALUE

CAVEATS

COMMENTS

intin[3] = sy;
intin[4] = ex;
intin[5] = ey;

return crys_if(0x48);
The return value is 0 if an error occured or non-zero otherwise.
There is currently no defined method for handling an error generated by this call.

Some older ‘C’ bindings referred to this callgigf_mbox(). If your compiler
still uses this call you should update it.

graf_rubberbox()

WORD graf_rubberbox(bx, by, minw, minh, endw; endh)
WORD bx, by, minw, minh;
WORD *endw, *endh;

OPCODE

AVAILABILITY

PARAMETERS

BINDING

RETURN VALUE

graf_rubberbox() allows the user to change the size of a box outline with a fixed
starting point.

70 (0x46)
All AES versions.

bx andby define the fixed upper-left corner of the box to stretch or shrink.

minw andminhspecify the minimum width and height that the rectangle can be
shrunk to.

endwandendhareWORD pointers which will be filled in with the ending width
and height of the box when the mouse button is released.

intin[0] = bx;
intin[1] = by;
intin[2] = minw;
intin[3] = minh;
crys_if(0x46);

*endw = intout[1];
*endh = intout[2];

return intout[O];

graf_rubberbox() returns 0 if an error occurred or non-zero otherwise.

THE ATARI COMPENDIUM

6.98 — Graphics Library - AES Function Reference

CAVEATS There is currently no defined method for handling an error generated by this call.

COMMENTS This function should only be entered when the user has depressed the mouse button
as it returns when the mouse button is released.

SEE ALSO graf_dragbox(), graf_slidebox()

graf_shrinkbox()

WORD graf_shrinkbox(x1, y1, wl, hl, x2, y2, w2, h2)
WORD x1, y1, wl, hl, x2, y2, w2, h2;

graf_shrinkbox() displays an animated box shrinking from one rectangle to
another. It should be used to provide the user with a visual ‘clue’ to an action. It is
the complement function @raf_growbox().

OpPCODE 74 (0x4A)
AVAILABILITY All AES versions.
PARAMETERS x1, y1, wl, andhl are the coordinates of the rectangle to shrink to.

X2, y2, w2, andh2 are the coordinates of the rectangle to shrink from.

intin[1] = y1;
intin[2] = w1;
intin[3] = h1;
intin[4] = x2;
intin[5] = y2;
intin[6] = w2;
intin[7] = h2;

return crys_if(Ox4A);

RETURN VALUE The function returns O if an error occurred or non-zero otherwise

CAVEATS There is currently no defined method of handling an error from this call.
COMMENTS This function is essentially the samefersn_dial(FMD_SHRINK ...
SEE ALSO form_dial(), graf_growbox()

THE ATARI COMPENDIUM

graf_slidebox() - 6.99

graf_slidebox()

WORD graf_slidebox(tree, parent obj, orient)
OBJECT *tree
WORD parent, obj,orient;

graf_slidebox() allows the user to slide a child object within the bounds of its
parent. It is often used to implement slider controls.

OPCODE 76 (0x4C)
AVAILABILITY All AES versions.
PARAMETERS treeis pointer to the object tree containing the child and parent objects.

parentis the object index of an object which bounds the movement of the child.
child is the object index of the object which can be moved within the bounds of
parent

orient specifies the orientation of the allowed movement. 0 is horizontal (left-
right), 1 is vertical (up-down).

BINDING intin[0] = parent;
intin[1] = child;
intin[2] = orient;

addrin[0] = tree;

return crys_if(0x4C);

RETURN VALUE The function returns a value specifying the relative offset of the child within the
parent as a number between 0 and 1000.

COMMENTS This call can be used easily with sliders built into dialogs by making the slider bar
aTOUCHEXIT and calling this function when it is clicked. This call should only
be made when the mouse button is depressed as it returns when it is released.

SEE ALSO graf_movebox()

THE ATARI COMPENDIUM

6.100 — Graphics Library - AES Function Reference

graf_watchbox()

WORD graf_watchbox(tree, obj, instate outstate)
OBJECT *tree
WORD obj, instate outstate

graf_watchbox() modifies the given state of a specified object depending on
whether the pointer is within the bounds of the object or outside the bounds of the
object as long as the left mouse button is held down.

OPCODE 75 (0x4B)
AVAILABILITY All AES versions.
PARAMETERS treeis a pointer to thROOT object of the tree which contains the object you

wish to watchobj is the object index of the object to watch.

instateis theob_statg(seeobjc_change() to apply while the mouse is inside of
the bounds of the object.

outstateis theob_stateto apply while the mouse is outside of the bounds of the
object.

intin[1] = instate;
intin[2] = outstate;
addrin[Q] = tree;
return crys_if(0Ox4B);

RETURN VALUE graf_watchbox() returns a 0 if the mouse button was released outside of the
object or a 1 if the button was released inside of the object.

COMMENTS As this call returns when the mouse button is released, it should only be made
when the mouse button is depressed. This call is used interngdigmyybutton()
andform_do() and is usually only necessary if you are replacing one of these
handlers.

SEE ALSO form_button()

THE ATARI COMPENDIUM

Menu Library

TheMenu Libraryassists in the handling of system menu bars and popup menus. In addition, individual
control of menu items can also be handled through these functions. The membebeasfutdbraryare:

menu_attach()
menu_bar()
menu_icheck()
menu_ienable()
menu_istart
menu_popup()
menu_register()
menu_settings()
menu_text()
menu_tnormal()

THE ATARI COMPENDIUM

menu_attach() — 6.103

menu_attach()

WORD menu_attach(flag, tree, item, mdata)
WORD flag;

OBJECT *tree

WORD item,

MENU * mdatg

menu_attach()allows an application to attach, change, or remove a sub-menu. It
also allows the application to inquire information regarding a currently defined

sub-menu.

OPCODE 37 (0x25)

AVAILABILITY This function is only available froAES version 3.30 and above. AES
versions 4.0 and great@pp!_getinfo() should be used to determine its exact
functionality.

PARAMETERS flag indicates the action the application desires as follows:

‘ Define Meaning

0 ME_INQUIRE Return information on a sub-menu attached to the menu item
designated by tree and item in mdata.

1 ME_ATTACH Attach or change a sub-menu. mdata should be initialized by

the application.

tree and jitem should be the OBJECT pointer and index to the
menu which is to have the sub-menu attached. If mdata is
NULLPTR, any sub-menu attached will be removed.

2 ME_REMOVE Remove a sub-menu. tree and item should be the OBJECT
pointer and index to the menu item which a sub-menu was
attached to. mdata should be NULLPTR.

In all cases excepdE_REMOVE , mdatashould point to #ENU structure as
defined here:

typedef struct

OBJECT *mn_tree;

WORD mn_menu,
WORD mn_item;
WORD mn_scroll;
WORD mn_keystate;

} MENU;

TheMENU structure members are defined as follows:

THE ATARI COMPENDIUM

6.104 — Menu Library - AES Function Reference

BINDING

RETURN VALUE

CAVEATS

COMMENTS

Member Meaning

mn_tree Points to the OBJECT tree of the sub-menu.

mn_menu Is an index to the parent object of the menu items.

mn_item Is the starting menu item.

mn_scroll If SCROLL_NO (0), the menu will not scroll. If SCROLL_YES (1), and the

number of menu items exceed the menu scroll height, arrows will appear
which allow the user to scroll selections.
mn_keystate This member is unused and should be 0 for this call.

intin[0] = flag;
intin[1] = item;

addrin[0] = tree;
addrin[1] = mdata;

return crys_if(0x25);

menu_attach()returns O if an error occurred and the sub-menu could not be
attached or 1 if the operation was successful.

AES versions supportingnenu_attach()less than 4.1 contain a bug which causes
the AES to crash when changing or removing a sub-menu attachment.

At present, if you wish to attach a scrolling menu, the menu items must be
G_STRING's.

If a menu bar having attachments is removed with

menu_barf NULL , MENU_REMOVE) those attachments are removed by the
system and must be reattached with this call if the menu is redisplayed at a later
time.

Several recommendations regarding sub-menus should be adhered to:

1. Menu items which will have sub-menus attached to them should be
padded with blanks to the end of the menu.

2. Menu items which will have sub-menus attached to them should not have
a keyboard equivalent.

3. Sub-menus will display faster if a byte-boundary is specified.

4. Sub-menus will be shifted vertically to align the start object with the
main menu item which it is attached to.

5. Sub-menus will always be adjusted to automatically fit on the screen.

6. There can be a maximum of 64 sub-menu attachments per process
(attaching a sub-menu to more than one menu item counts as only one
attachment).

7. Do not attach a sub-menu to itself.

8. As a user-interface guideline, there should only be one level of sub-
menus, though it is possible to have up to four levels currently.

9. menu_istart() works only on sub-menus attached witanu_attach()

THE ATARI COMPENDIUM

menu_bar() - 6.105

SEE ALSO

menu_istart(), menu_settings() menu_popup()

menu_bar()

WORD menu_bar(tree, mode)

OBJECT *treg
WORD mode

OPCODE
AVAILABILITY

PARAMETERS

BINDING

RETURN VALUE

COMMENTS

menu_bar() displays a specializ€dBJECT tree on the screen as the application
menu. It can also be used to determine the owner of the currently displayed menu
bar in a multitaskind\ES.

30 (Ox1E)

All AES versions.

treeis a pointer to a@BJECT tree which has been formatted for use as a system
menu (for more information on tK@BJECT format of a menu see the discussion
on objects in this chapter).

modeis a flag indicating the action to take as follows:

Name mode Meaning

MENU_REMOVE 0 Erase the menu bar specified in tree.
MENU_INSTALL 1 Display the menu bar specified in tree.
MENU_INQUIRE -1 Return the AES application identifier of the process

which owns the currently displayed system menu. tree
can be set to NULL. The AES version must be greater
than 4.0 and appl_getinfo() must indicate that this is
feature is supported.

intin[0] = mode;

addrin[0] = tree;

return crys_if(Ox1E);

If modeis MENU_REMOVE (0) orMENU_INSTALL (1), the return value
indicates an error condition where >0 means no error and 0 means an error
occurred. In inquiry modérode= MENU_INQUIRE (-1)), menu_bar() returns

the application identified of the process which owns the currently displayed menu
bar.

The safest way to redraw an application’s menu bar is to redraw it only if you are

THE ATARI COMPENDIUM

6.106 — Menu Library - AES Function Reference

sure it is currently the active menu bar. In a non-multitaskfng, this is a
certainty, however, in a multitaskifg=S you should first inquire the menu bar’s
owner within the scope ofwind_update(BEG_UPDATE)call to prevent the
system from swapping active menu bars while in the process of redrawing.

SEE ALSO menu_ienable() menu_icheck()

menu_icheck()

WORD menu_icheck(tree, obj, check)
OBJECT *tree

WORD obj, check

menu_icheck()adds/removes a checkmark in front of a menu item.

OPCODE 31 (Ox1F)
AVAILABILITY All AES versions.
PARAMETERS tree specifies the object tree of the current mefishould be the object index of

a menu item. I€heckis UNCHECK (0), no checkmark will be displayed next to
this item whereas iftheckis CHECK (1), a checkmark will be displayed.

BINDING intin[0] = obj;
intin[1] = check;
addrin[0] = obj;

return crys_if(Ox1F);
RETURN VALUE menu_icheck()returns O if an error occurred or non-zero otherwise.

SEE ALSO objc_change()

menu_ienable()

WORD menu_ienable(tree, obj, flag)

OBJECT *tree
WORD obj, flag;

menu_ienable()enables/disables menu items.
OPCODE 32 (0x20)

THE ATARI COMPENDIUM

menu_istart() - 6.107

AVAILABILITY All AES versions.

PARAMETERS tree specifies the object tree of the menu to afibyis the object index of the
menu item to modifyflag should be set tPISABLE (0) to disable the item or
ENABLE (1) to enable it.

intin[1] = flag;
addrin[0] = tree;

return crys_if(0x20);
RETURN VALUE menu_icheck(returns 0 if an error occurred or non-zero otherwise.

SEE ALSO objc_change()

menu_istart()

WORD menu_istart(flag, tree, imenu, item))
WORD flag;

OBJECT *treeg

WORD imenu, item;

menu_istart() shifts a sub-menu that is attached to a menu item to align vertically
with the specified object in the sub-menu.

OPCODE 38 (0x26)
AVAILABILITY This function is only available witAES versions 3.30 and above.
PARAMETERS flag should be set tMIS_SETALIGN (1) to modify the alignment of a sub-menu

and its parent menu item.flag is set toMIS_GETALIGN (0), no modifications
will be made, however the sub-menu item index which is currently aligned with its
parent menu item is returned.

tree points to the object tree of the menu to alteenuspecifies the object within
the submenu which will be aligned with menu itéem

intin[1] = imenu;
intin[2] = item;
addrin[0] = tree;

return crys_if(0x26);

THE ATARI COMPENDIUM

6.108 — Menu Library - AES Function Reference

RETURN VALUE menu_istart() returns 0 if an error occurred or the positive object index of the
sub-menu item which is currently aligned with its parent menu item.

COMMENTS Generally, a sub-menu is aligned so that the currently selected sub-menu item is
aligned with its parent menu.

SEE ALSO menu_attach()

menu_popup()

WORD menu_popup(menu, Xpos ypos mdata)

MENU *menu

WORD xpos ypos

MENU *menu,
menu_popup()displays a popup menu and returns the user’s selection.

OPCODE 36 (0x24)

AVAILABILITY This function is only available witAES versions 3.30 and above.

PARAMETERS menupoints to &MENU structure (defined underenu_attach() containing the
popup menuxposandyposspecify the location at which the upper-left corner of
the starting object will be placed.

If the function returns a value of 1, tNEENU structure pointed to bydatawill

be filled in with the ending state of the menu (including the object the user
selected).

As of AES version 4.1, ilmenu.mn_scroik set toSSCROLL_LISTBOX (-1)

when this function is called, a drop-down list box will be displayed instead of a
popup menu.

Drop-down list boxes will only display a scroll bar if at least eight entries exist. If
you want to force the scroll bar to appear, pad the object with €m@yRING
objects with theiDISABLED flag set.

BINDING intin[0] = xpos;

intin[1] = ypos;

addrin[0] = menu;
addrin[1] = mdata;

return crys_if(0x24);

RETURN VALUE menu_popup()returns O if an error occurred or 1 if successful.

THE ATARI COMPENDIUM

menu_register() - 6.109

SEE ALSO

menu_attach(), menu_settings()

menu_register()

WORD menu_register(ap_id title)

WORD ap_id
char *title;

OPCODE
AVAILABILITY

PARAMETERS

BINDING

RETURN VALUE

VERSION NOTES

COMMENTS

menu_register(registers desk accessories in the ‘Desk’ menu and renames
MultiTOS applications which appear there.

35 (0x23)
All AES versions.

ap_idspecifies the application identifier of the application to regité.points
to aNULL -terminated string containing the title which is to appear in the ‘Desk’
menu for the accessory or application.

If ap_idis set toREG_NEWNAME (-1) then the process name giveitiiie will

be used as the new process name. The new process name should be exactly eight
characters terminated withtNULL . Pad the string with space characters if
necessary.

intin[0] = ap_id;
addrin[0] = title;
return crys_if(0x23);

menu_register(returns a -1 if an error occurred or the menu identifier otherwise.

Applications other than desk accessories should not call this function unless they
are running undeviultitoOS .

Desk accessories should store the return value as this is the value that will be
included with futureAC_OPEN messages to identify the accessory.

Applications running unddviultiTOS may use this function to provide a more
functional title for the ‘Desk’ menu than the program’s filename.

Callingmenu_register()with a parameter ;SREG_NEWNAME s used to
change the internal process name of the application returrgepbyind() and
appl_search() This is useful if you know another process will attempt to find your

THE ATARI COMPENDIUM

6.110 — Menu Library - AES Function Reference

application as a specific process name and the user may have renamed your
application filename (normally used as the process name).

menu_settings()

WORD menu_settings(flag, set)

WORD flag;
MN_SET *set
menu_settings()changes the global settings for popup and scrollable menus.
OPCODE 39 (0x27)
AVAILABILITY This function is only available witAES versions 3.30 and above.
PARAMETERS If flag is 0, current settings are read into Mi¥_SET structure pointed to bset
If flag is 1, current settings are set from Mi_SET structure pointed to bget
MN_SET is defined as follows:
typedef struct
/* Submenu-display delay in milliseconds */
LONG display;
/* Submenu-drag delay in milliseconds */
LONG drag;
/* Single-click scroll delay in milliseconds*/
LONG delay;
/* Continuous-scroll delay in milliseconds */
LONG speed;
/* Menu scroll height (in items) */
WORD height;
} MN_SET;
BINDING intin[0] = flag;

addrin[0] = set;
return crys_if(0x27);
RETURN VALUE menu_settings(always returns 1.
COMMENTS The defaults set bypenu_settings()are global and not local to an application.

You should therefore limit your use of this function to system applications like
CPX’s and so forth.

THE ATARI COMPENDIUM

menu_text() - 6.111

menu_text()

WORD menu_text(tree, obj, text)
OBJECT *tree

WORD obj;

char *text

menu_text() changes the text of a menu item.

OPCODE 34 (0x22)
AVAILABILITY All AES versions.
PARAMETERS tree specifies the object tree of the menu bhi.specifies the object index of the

menu item to changéeXxtpoints to dNULL -terminated character string containing
the new text.

addrin[0] = tree;
addrin[1] = text;

return crys_if(0x22);

RETURN VALUE menu_text()returns a 0 if an error occurred or non-zero otherwise.

COMMENTS The new menu item text must be no larger than the original menu item text.

menu_tnormal()

WORD menu_tnormal(tree, obj, flag)
OBJECT *tree
WORD obj, flag;

menu_tnormal() highlights/un-highlights a menu-title.

OPCODE 33 (0x21)
AVAILABILITY All AES versions.
PARAMETERS tree specifies the object tree of the medDj specifies the object index of the title

to changeflag should be set thllIGHLIGHT (0) to display the title in reverse
(highlighted) otUNHIGHLIGHT (1) to display it normally.

THE ATARI COMPENDIUM

6.112 — Menu Library - AES Function Reference

BINDING intin[0] = obj
intin[1] = flag

addrin[1] = tree

return crys_if(0x21);
RETURN VALUE menu_tnormal() returns O if an error occurred or non-zero otherwise.

COMMENTS This call is usually called by an application aftédld_SELECTED message is
received and processed to return the menu title to normal.

THE ATARI COMPENDIUM

Object Library

TheObject Libraryis responsible for the drawing and manipulatioABS objects such as boxes,
strings, icons, etc. See earlier in this chapter for a complete discus&ib® objects. Thébject
Library includes the following functions:

objc_add()
objc_change()
objc_delete()
objc_draw()
objc_edit()
objc_find()
objc_offset()
objc_order()
objc_sysvar()

THE ATARI COMPENDIUM

objc_add() — 6.115

objc_add()

WORD objc_add(tree, parent, child)
OBJECT *tree

WORD parent, child;

objc_add() establishes a child object’s relationship to its parent.

OPCODE 40 (0x28)
AVAILABILITY All AES versions.
PARAMETERS tree specifies the object tree to modifiarentandchild specify the parent and

child object to update.

BINDING intin[0] = parent;
intin[1] = child;

addrin[0] = tree;
return crys_if(0x28);

RETURN VALUE objc_add() returns a 0 if an error occurred or non-zero otherwise.

COMMENTS In order for this function to work, the object to be added must be already be a
member of théBJECT array. This function simply updates tle_next,
ob_head andob_tail structure members 6IBJECTs in the object tree. These
fields should be initialized tHIL (0) in the child to be added.

SEE ALSO objc_order(), objc_delete()

objc_change()

WORD objc_change(tree, obj, rsvd ox, oy, ow, oh, newstatedrawflag)
OBJECT *tree

WORD obj, rsvd, ox, oy, ow, oh, newstatedrawflag;

objc_change()changes the display state of an object.

OPCODE 47 (Ox2F)
AVAILABILITY All AES versions.
PARAMETERS tree specifies the object tree of the object to modij.specifies the object to

THE ATARI COMPENDIUM

6.116 — Object Library - AES Function Reference

modify.

rsvdis reserved and should be 0.

ox, 0y, ow, andoh specify the clipping rectangle if the object is to be redrawn.
newstatespecifies the new state of the object (sanebastatg.

If drawflagis NO_DRAW (0) the object is not redrawn whereadri@wflagis
REDRAW (1) the object is redrawn.

BINDING intin[0] = obj;
intin[1] = rsvd;
intin[2] = ox;
intin[3] = oy;
intin[4] = ow;
intin[5] = oh;
intin[6] = newstate;
intin[7] = drawflag;

addrin[0] = tree;

return crys_if(Ox2F);
RETURN VALUE objc_change(returns 0 if an error occurred and non-zero otherwise.

COMMENTS In general, if not redrawing the object, it is usually quicker to manipulate the
object tree directly.

SEE ALSO objc_draw()

objc_delete()

WORD objc_delete(tree, obj)

OBJECT *tree
WORD obj;
objc_delete()removes an object from an object tree.
OPCODE 41 (0x29)
AVAILABILITY All AES versions.
PARAMETERS tree specifies the object tree of the object to del@lgis the object to be deleted.
BINDING intin[0] = obyj;

addrin[0] = tree;

THE ATARI COMPENDIUM

objc_draw() — 6.117

RETURN VALUE

COMMENTS

SEE ALSO

return crys_if(0x29);

objc_delete()returns 0 if an error occurred or non-zero otherwise.

This function does not move other objects in the tree structure, it simply unlinks the
specified object from the object chain by updating the other obfggtgext

ob_heagandob_tail structure members.

objc_add()

objc_draw()

WORD objc_draw(tree, obj, depth ox, oy, ow, oh)

OBJECT *treg

WORD obj, depth ox, oy, ow, oh;

OPCODE

AVAILABILITY

PARAMETERS

BINDING

RETURN VALUE

objc_draw() renders a\ES object tree on screen.
42 (0x2A)
All AES versions.

tree specifies the object tree to dravhj specifies the object index at which
drawing is to begin.

depthspecifies the maximum object depth to draw (a value of 1 searches only first
generation objects, a value of 2 searches up to second generation objects, up to a
maximum of 7 to search all objects).

0x, oy, ow, andoh specify arAES style rectangle which defines the clip rectangle
to enforce during drawing.

intin[0] = obj;
intin[1] = depth;
intin[2] = ox;
intin[3] = oy;
intin[4] = ow;
intin[5] = oh;

addrin[0] = tree;

return crys_if(Ox2A);

objc_draw() returns 0 if an error occurred or non-zero otherwise.

THE ATARI COMPENDIUM

6.118 — Object Library - AES Function Reference

objc_edit()

WORD objc_edit(tree, obj, ke, idx, mode)

OBJECT *tree

WORD obj, kc;

WORD *idx

WORD mode
objc_edit() allows manual control of an editable text field.

OPCODE 46 (0x2E)

AVAILABILITY All AES versions.

PARAMETERS tree specifies the object tree containing the editable objeidb modify. mode
specifies the action of the call and the meaning of the other parameters as
follows:
mode Value Meaning
ED_START 0 Reserved for future use. Do not call.

ED_INIT 1 Display the edit cursor in the object specified. kc is ignored.
The WORD pointed to by idx is filled in with the current
index of the edit cursor in the field.

ED_CHAR 2 A key has been pressed that needs special processing. k¢
contains the keyboard scan code in the high byte and ASCII
code in the low byte. idx points to the current index of the
text cursor in the field. idx will be updated as a result of this
call.

ED_END 3 Turn off the text cursor.

intin[1] = Kkc;

intin[2] = *idx;

intin[3] = mode;
addrin[0] = tree;
crys_if(Ox2E);

*idx = intout[1];
return intout[O];

RETURN VALUE objc_edit() returns 0 if an error occurred or non-zero otherwise.

COMMENTS This function is usually used in conjunction wieim_keybd() in a custom
form_do() handler.

THE ATARI COMPENDIUM

objc_find() — 6.119

SEE ALSO form_keybd()

objc_find()

WORD objc_find(tree, obj, depth ox, oy)
OBJECT *tree

WORD obj, depth ox, oy,

objc_find() determines which object is found at a given coordinate.

OPCODE 43 (0x2B)
AVAILABILITY All AES versions.
PARAMETERS tree specifies the object tree containing the objects to search. The search starts

from object indexobj forward in the object tree.

depthspecifies the depth in the tree to search (a value of 1 searches only first
generation objects, a value of 2 searches up to second generation objects, up to a
maximum of 7 to search all objects).

ox andoy specify the coordinate to search at.

BINDING intin
ntin

[
[
intin[
intin[

epth

OOQ.O

addrin[0] = tree;

return crys_if(0x2B);

RETURN VALUE objc_find() returns the object index of the object found at coordinatssy) or
-1 if no object is found.

objc_offset()

WORD objc_offset(tree, obj, ox, oy)
OBJECT *tree

WORD obj;

WORD *ox, *oy,

objc_offset() calculates the true screen coordinates of an object.

OPCODE 44 (0x2C)

THE ATARI COMPENDIUM

6.120 — Object Library - AES Function Reference

AVAILABILITY

PARAMETERS

BINDING

RETURN VALUE

COMMENTS

SEE ALSO

All AES versions.

tree specifies the object tree containidlgj. TheWORDs pointed to bypx andoy
will be filled in with the true X and Y screen position of objebj.

intin[0] = obj;
addrin[0] = tree;
crys_if(0x2C);

*ox = intout[1];
*oy = intout[2];

return intout[0];
objc_offset()returns 0 if an error occurred or non-zero otherwise.

Theob_xandob_ystructure members of objects give an offset from their parent as
opposed to true screen location. This call is used to determine a true screen
coordinate.

The values returned gypjc_offset() coupled with th@b_widthandob_height
members do not take into account negative borders, shadowing, or sculpturing.
When redrawing an object you are responsible for using these values to and the
object’s state to compensate for a correct clipping rectangle.

objc_draw()

objc_order()

WORD objc_order(tree, obj, pos)

OBJECT *tree
WORD obj, pos

OPCODE
AVAILABILITY

PARAMETERS

objc_order() changes the position of an object relative to other child objects of
the same parent.

45 (0x2D)
All AES versions.

tree specifies the object tree of obj@dtj which is to be moved0Sspecifies the
new position of the object as follows:

THE ATARI COMPENDIUM

objc_sysvar() — 6.121

BINDING

RETURN VALUE

COMMENTS

Name pos Meaning
OO_LAST -1 Make object the last child.
OO_FIRST 0 Make object the first child.
— 1 Make object the second child.
— 2— etc...
intin[0] = obj;
intin[1] = pos;

addrin[0] = tree;

return crys_if(0x2D);

objc_order() returns 0 if an error occurred or non-zero otherwise.

objc_order() does not actually move structure elements in memory. It works by

updating th€OBJECT tree’sob_headob_tail, andob_nexfields to ‘move’ the
OBJECT in the tree hierarchy.

objc_sysvar()

WORD objc_sysvar(mode which, inl, in2, outl, out2)
WORD mode which, in1, in2;
WORD *outl, *out2;

OPCODE

AVAILABILITY

PARAMETERS

objc_sysvar()returns/modifies information about the color and placement of 3D
object effects.

48 (0x30)
Available as ofAES version 3.40.

modedetermines whether attributes should be read or modified. A value of
SV_INQUIRE (0) will read the current values whereas a valuB\ofSET (1)

will modify the current valuesvhichdetermines what attribute you wish to read
or modify.

When reading valueB)1 andin2 are unused. The two return values are placed in
theWORDs pointed to byutl andout2 When modifying valuegutl andout2
are unusednl andin2 specify the new values for the attribute.

The meanings of the two input/output values referred to as vall and val2 are as
follows:

THE ATARI COMPENDIUM

6.122 — Object Library - AES Function Reference

BINDING

RETURN VALUE

COMMENTS

Name which Values

LK3DIND 1 If vall is 1, the text of indicator objects does move when selected,
otherwise, if O, it does not.

If val2 is 1, the color of indicator objects does change when
selected, otherwise, if 0, it does not.

LK3DACT 2 Same as LK3DIND for activator objects.

INDBUTCOL vall specifies the default color for indicator objects. val2 is
unused.

ACTBUTCOL 4 vall specifies the default color for activator objects. val2 is
unused.

BACKGRCO 5 vall specifies the default color for background objects. val2 is

L unused.

AD3DVAL 6 vall specifies the number of extra pixels on each horizontal side of
an indicator or activator object needed to accomodate 3D effects.
val2 specifies the number of extra pixels on each vertical side of
an indicator or activator object needed to accomodate 3D effects.
This setting may only be read, not modified.

intin[0] = mode;
intin[1] = which;
intin[2] = in1;
intin[3] = in2;

crys_if(0x30);

*outl = intout[1];
*out2 = intout[2];

return intout[0];

objc_sysvar()returns 0 if unsuccessful or non-zero otherwise.

Applications should not uggbjc_sysvar()to change these settings since all
changes are global. On§PXs or Desk Accessories designed to modify these
parameters should.

THE ATARI

COMPENDIUM

Resource Library

TheResource Librarys responsibe for the loading/unloading of resource files and the manipulation of
resource objects in memory. The members oRgource Libranare:

rsrc_free()
rsrc_gaddr()
rsrc_load()
rsrc_obfix()
rsrc_rcfix()
rsrc_saddr()

THE ATARI COMPENDIUM

rsrc_free() — 6.125

rsrc_free()

WORD rsrc_free(VOID)

OPCODE

AVAILABILITY

BINDING

RETURN VALUE

COMMENTS

SEE ALSO

rsrc_free() releases memory allocated tsyc_load() for an application’s
resource.

111 (Ox6F)

All AES versions.

return crys_if(Ox6F);

rsrc_free() returns O if an error occurred or non-zero otherwise.

rsrc_free() should be called before an application which loaded a resource using
rsrc_load() exits.

rsrc_load()

rsrc_gaddr()

WORD rsrc_gaddr(type index, addr)

WORD type index;

VOIDPP addr,

OPCODE

AVAILABILITY

PARAMETERS

rsrc_gaddr() returns the address of an object loaded vgith_load().
112 (0x70)
All AES versions.

The pointer pointed to bgddr will be filled in with the address of thedex"
resource object of typ&pe Valid values foitypeare as follows:

Name type ‘ Resource Object
R_TREE 0 Object tree
R_OBJECT 1 Individual object
R_TEDINFO 2 TEDINFO structure
R_ICONBLK 3 ICONBLK structure
R_BITBLK 4 BITBLK structure
R_STRING 5 Free String data

THE ATARI COMPENDIUM

6.126 — Resource Library - AES Function Reference

R_IMAGEDATA 6 Free Image data
R_OBSPEC 7 ob_spec field within OBJECT s
R_TEPTEXT 8 te_ptextwithin TEDINFOs
R_TEPTMPLT 9 te_ptmplt within TEDINFOs
R_TEPVALID 10 te_pvalid within TEDINFOs
R_IBPMASK 11 ib_pmask within ICONBLK s
R_IBPDATA 12 ib_pdata within ICONBLK s
R_IBPTEXT 13 ib_ptext within ICONBLK s
R_BIPDATA 14 bi_pdata within BITBLK s
R_FRSTR 15 Free string
R_FRIMG 16 Free image

BINDING intin[0] = type;

intin[1] = index;
crys_if(0x70);
*addr = addrout[0];
return intout[0];

RETURN VALUE rsrc_gaddr() returns a 0 if the addressaddr is valid or non-zero if the object
did not exist.

COMMENTS This function is most often used to obtain the addre©BJECT trees, ‘free’
strings, and ‘free’ images after loading a resource file.

SEE ALSO rsrc_saddr()

rsrc_load()

WORD rsrc_load(fname)
char *fname

rsrc_load() loads and allocates memory for the named resource file.

OPCODE 110 (Ox6E)
AVAILABILITY All AES versions.
PARAMETERS fnameis a character pointer tdNUJLL -terminatedGEMDOS file specification

of the resource to load.

BINDING addrin[0] = fname;

THE ATARI COMPENDIUM

rsrc_obfix() — 6.127

RETURN VALUE

COMMENTS

SEE ALSO

return crys_if(OX6E);
rsrc_load() returns 0O if successful or non-zero if an error occurred.

In addition to loading the resource, @BJECT coordinates are converted from
character based coordinates to screen coordinates.

rsrc_free()

rsrc_obfix()

WORD rsrc_obfix(tree, obj)

OBJECT *treeg
WORD obj;

OPCODE
AVAILABILITY
PARAMETERS

BINDING

RETURN VALUE

COMMENTS

SEE ALSO

rsrc_obfix() converts an object’s coordinates from character-based to pixel-
based.

114 (0x72)
All AES versions.

tree specifies thé©BJECT tree containing the objeabj to convert.
intin[0] = obj;

addrin[0] = tree;

return crys_if(0x72);

rsrc_obfix() returns a 0 if successful or non-zero otherwise.

All objects in *.RSC’ files have their coordinates based on character positions
rather than screen coordinates to allow an object tree to be shown in any
resolution. This function converts those character coordinates to pixel coordinates
based on the current screen resolution.

rsrc_load(), rsrc_rcfix()

THE ATARI COMPENDIUM

6.128 — Resource Library - AES Function Reference

rsrc_rcfix()

WORD rsrc_rcfix(rc_header)
VOID *rc_header

rsrc_rcfix() fixes up coordinates and memory pointers of raw resource data in

memory.
OPCODE 115 (0x73)
AVAILABILITY Available only inAES versions 4.0 and greater. The presence of this call should

also be checked for usiagpl_getinfo().

PARAMETERS rc_headeris a pointer to an Atari Resource Construction Set (or compatible)
resource file header in memory.

BINDING addrin[0] = rc_header;
return crys_if(0x73);

RETURN VALUE rsrc_rcfix() returns a 0 if successful or non-zero otherwise.

COMMENTS If a resource has already been loaded wgith_load() it must be freed by
rsrc_free() prior to this call. In addition, resources identified with this call must

likewise be freed before program termination or another resource file is needed.

SEE ALSO rsrc_obfix()

rsrc_saddr()

WORD rsrc_saddr(type index, addr)
WORD type index;

VOID * addr,
rsrc_saddr() sets the address of a resource element.
OPCODE 113 (0x71)
AVAILABILITY All AES versions.
PARAMETERS typespecifies the type of resource element to set as defined reneglegaddr().

indexspecifies the index of the element to modify (0 bas#tiir specifies the
actual address that will be placed in the appropriate data structure.

THE ATARI COMPENDIUM

rsrc_saddr() — 6.129

BINDING intin[0] = type;
intin[1] = index;

addrin[0] = addr;

return crys_if(0x71);
RETURN VALUE rsrc_saddr() returns 0 if an error occurred or non-zero otherwise.

COMMENTS In most cases, direct manipulation of the structures involved is quicker and easier
than using this call.

SEE ALSO rsrc_gaddr(), rsrc_load()

THE ATARI COMPENDIUM

Scrap Library

TheScrap Libraryis used to maintain the location of the clipboard directory used for interprocess data
exchange. The members of therap Libraryare:

e scrp_read()
e scrp_write()

THE ATARI COMPENDIUM

scrp_read() — 6.133

scrp_read()

WORD scrp_read(cpath)

char *cpath

OPCODE
AVAILABILITY

PARAMETERS

BINDING

RETURN VALUE

CAVEATS

COMMENTS

scrp_read()returns the location of the current clipboard directory.
80 (0x50)
All AES versions.

cpathis a pointer to a character buffer of at least 128 bytes into which the
clipboard path will be placed.

addrin[0] = cpath;

return crys_if(0x50);

scrp_read()returns 0 if the clipboard path had not been set or non-zepaiif
was properly updated.

The system scrap directory is a global resource. Some programs incorrectly call
scrp_write() with a pathandfilename when only a pathname should be used. The
following is an example of a correctly formatigphthargument:

C:\CLIPBRD\

Unfortunately, not all programs adhere exactly to this standard. For this reason,
programs reading this information fragarp_read() should be especially careful
that the information returned is parsed correctly. In addition, don’t count on a
trailing backslash or the existence of a drive specification.

If a value of O is returned and the application wishes to write a scrap to the
clipboard you should follow these steps:

* Create a folder \CLIPBRD\' on the root directory of the user’s boot
drive (‘C:" or ‘A%).

* Write your scrap to the directory as ‘SCRAP.???’ where ‘??7?’ signifies
the type of information contained in the file.

* Allow other applications to access this information by calling
scrp_write() with the new clipboard path. For example
“C:\CLIPBRD\".

A detailed discussion of the proper clipboard data exchange protocol, including
information about a scrap directory semaphore usefulMWhTOS | is given
earlier in this chapter.

THE ATARI COMPENDIUM

6.134 — Scrap Library - AES Function Reference

SEE ALSO

scrp_write()

scrp_write()

WORD scrp_write(cpath)

char *cpath

OPCODE
AVAILABILITY

PARAMETERS

BINDING

RETURN VALUE

COMMENTS

SEE ALSO

scrp_write() sets the location of the clipboard directory.
81 (0x51)
All AES versions.

cpathpoints to aNULL -terminated path string containing a valid drive and path
specification with a closing backslash. The following is an example of a correctly
formattedcpathargument:

C:\CLIPBRD\
addrin[0] = cpath;
return crys_if(0x51);

scrp_write() returns O if an error occurred or non-zero otherwise.

The scrap directory is a global resource. This call should only be used in two
circumstances as follows:

* when used to set the default location of the scrap directory using a CPX
or accessory at bootup or by the user’s request.

* whenscrp_read()returns an error value and you need to create the
clipboard to write information to it.

The clipboard data exchange protocol is discussed in greater detail earlier in this
chapter.

scrp_read()

THE ATARI COMPENDIUM

Shell Library

TheShell Librarycontains several miscellaneous functions most often used GjfeDesktop and
other ‘Desktop-like’ applications. Other applications may, however, need specific functionSbethe
Library for various tasks. The members of $teell Libraryare:

shel_envrn()
shel_find()
shel_get()
shel_put()
shel_read()
shel_write()

THE ATARI COMPENDIUM

shel_envrn() — 6.137

shel_envrn()

WORD shel_envrn(valug, name)

char **valug
char *name

OPCODE
AVAILABILITY

PARAMETERS

BINDING

RETURN VALUE

VERSION NOTES

COMMENTS

shel_envrn()searches the current environment string for a specific variable.
125 (0x7D)
All AES versions.

valuepoints to a character pointer which will be filled in with the address of the
first character in the environment string following the string givendsge If the
string given bynameis not foundyaluewill be filled in with NULL . For

instance, suppose the current environment looked like this:

PATH=C:\;D:\;E:\

A call made teshel_envrn()with namepointing to the string ‘PATH="would set
the pointer pointed to byalueto the string ‘C:\;D:\;E:\' above.

addrin[0] = value;
addrin[1] = name;

return crys_if(Ox7D);
shel_envrn()currently always returns 1.

AES versions prior to 1.4 only accepted semi-colons as separators between
multiple ‘PATH="arguments. Newer versions accept commas as well.

The character string pointed to by name should include the name of the variable
andthe equals sign.

shel_find()

WORD shel_find(buf)

char *buf;

OPCODE

shel_find() searches for a file along tA&S's current path, any paths specified by
the ‘PATH’ environmental variable, and the calling application’s path.

124 (0x7C)

THE ATARI COMPENDIUM

6.138 — Shell Library - AES Function Reference

AVAILABILITY All AES versions.

PARAMETERS bufshould point to a character buffer of at least 128 characters and contain the
filename of the file to search for on entry. If the function was able to find the file,
the buffer pointed to bpuf will be filled in with the full pathname of the file upon
return.

return crys_if(0Ox7C);
RETURN VALUE shel_find() returns 0 if the file was not found or non-zero otherwise.

SEE ALSO shel_write()

shel _get()

WORD shel_get(buf, length)

char *buf;

WORD length;
shel_get()copies the contents of tA&ES’s shell buffer (normally the
‘DESKTOP.INF' or ‘NEWDESK.INF’ file) into the specified buffer.

OPCODE 122 (0x7A)

AVAILABILITY All AES versions.

PARAMETERS buf points to a buffer at lealstngthbytes long into which th8ES should copy
the shell buffer into.

addrin[0] = buf;

return crys_if(Ox7A);
RETURN VALUE shel_get()returns 0 if an error occurred or non-zero otherwise.

VERSION NOTES AES versions prior to version 1.4 had a shell buffer size of 1024 bytes. Versions
1.4 to 3.0 had a shell buffer size of 4192 bytes.

In AES versions 4.0 or greater the shell buffer is no longer of a fixed size. When
appl_getinfo() indicates that this feature is supporietigthcan be specified as
SHEL_BUFSIZE (-1) to return the size of the current shell buffer.

THE ATARI COMPENDIUM

shel_put() — 6.139

SEE ALSO shel_put()

shel put()

WORD shel_put(buf, length)

char *buf;

WORD length;
shel_put() copies information into thBES's shell buffer.

OPCODE 123 (0x7B)

AVAILABILITY All AES versions.

PARAMETERS buf points to a user memory buffer from whieingthbytes are to be copied into
the shell buffer.

addrin[0] = buf;
return crys_if(Ox7B);

RETURN VALUE shel_put() returns 0 if an error occurred or non-zero otherwise.

VERSION NOTES Prior toAES version 4.0 this function would only copy as many bytes as would fit
into the current buffer. As of version 4.0, theS will dynamically allocate more

memory as needed (up to 32767 bytes) for the shell buffer.

COMMENTS TheDesktopuses the information in the shell buffer for several purposes.
Applications should not use the shell buffer for their own purposes.

SEE ALSO shel_get()

shel read()

WORD shel_read(name tail)
char *name *tail;

shel_read()is used to determine the current application’s parent and the command
tail used to call it.

OPCODE 120 (0x78)

THE ATARI COMPENDIUM

6.140 — Shell Library - AES Function Reference

AVAILABILITY All AES versions.

PARAMETERS namepoints to a buffer which upon exit will be filled in with the complete file
specification of the application which launched the current process.

tail will likewise be filled in with the initial command line. The first BYTE of the
command line indicates the length of the string which actually begin&#jld..

BINDING addrin[0] = name;
addrin[1] = tail;

return crys_if(0x78);

RETURN VALUE shel_read()returns 0 if an error occurred or non-zero otherwise.

CAVEATS shel_read()actually returns the arguments to the $istl_write() so if a process
wasPexec()ed, the information returned will be incorrect.

shel write()

WORD shel_write(mode wisgr, wiscr, cmd, tail)
WORD mode wisgr, wiscr,
char *cmd, *tail;

shel_write() is a multi-purpose function which handles the manipulation and
launching of processes.

OpPCODE 121 (0x79)

AVAILABILITY All AES versions. IFPAES versions 4.0 and abovappl_getinfo() can be used to
determine the highest legal value foodeas well as the functionality of extended
modebits.

PARAMETERS modespecifies the meaning of the rest of the parameters as follows:

Name mode | Meaning
SWM_LAUNCH 0 Launch a GEM or TOS application or GEM desk

accessory depending on the extension of the file. This
mode is only available as of AES version 4.0. wisgris not
used in mode SWM_LAUNCH (0). When the lower eight
bits of mode are SWM_LAUNCH (0),
SWM_LAUNCHNOW (1), or SWM_LAUNCHACC (3),
appropriate bits in the upper byte may be set to enter
‘extended’ mode. The bits in the upper byte are assigned
as follows:

THE ATARI COMPENDIUM

shel_write() — 6.141

Name Mask Meaning
SW_PSETLIMIT 0x100 Initial Psetlimit()
SW_PRENICE 0x200 Initial Prenice()
SW_DEFDIR 0x400 Default Directory
SW_ENVIRON 0x800 Environment

If the upper byte is empty, extended mode is not entered
and cmd specifies the filename (to search for the file with
shel_find()) or the complete file specification. Otherwise,
if any extended bits are set, cmd points to a structure as
shown below.

typedef struct _shelw

char *newcmd;
LONG psetlimit;
LONG prenice;
char *defdir;
char *env;

} SHELW;

_shelw.newemd points to the filename formatted in the
manner indicated above.

If bit 8 (SW_PSETLIMIT) of mode is set, _shelw.psetlimit
contains the maximum memory size available to the
process.

If bit 9 of mode is (SW_PRENICE) set, _shelw.prenice
contains the process priority of the process to launch.

If bit 10 of mode (SW_DEFDIR) is set, _shelw.defdir
points to a character string containing the default directory
for the application begin launched.

If bit 11 of mode (SW_ENVIRON) is set, _shelw.env
points to a valid environment string for the process.

tail points to a buffer containing the command tail to pass
to the process. If wiscris set to CL_NORMAL (0), tail is
passed normally, otherwise, if wiscris set to CL_PARSE
(1), the AES will parse tail and set up an ARGV
environment string.

modes SWM_LAUNCH (0), SWM_LAUNCHNOW (1),
and SWM_LAUNCHACC (3) return the AES id of the
started process. If a O is returned, then the process was
not launched.

Under MultiTOS , processes are launched concurrently
with their parent. An exit code is returned in a CH_EXIT
message when the child terminates. See evnt_mesag() .

In AES versions 4.0 and above, appl_getinfo() should be
used to determine the exact result of this call.

THE ATARI COMPENDIUM

6.142 — Shell Library - AES Function Reference

SWM_LAUNCHNOW 1

Launch a GEM or TOS application based on the value of
wisgr. If wisgris TOSAPP (0), the application will be
launched as a TOS application, otherwise if wisgris
GEMAPP (1), the application will be launched as a GEM
application. For the meaning of other parameters, see
mode SWM_LAUNCH (0). The extended bits in mode
are only supported by AES versions of at least 4.0.

Parent applications which launch children using this mode
are suspended under MultiTOS .

In AES versions 4.0 and above, appl_getinfo() should be
used to determine the exact result of this call.

SWM_LAUNCHACC 3

Launch a GEM desk accessory. For the meaning of other
parameters, see mode SWM_LAUNCH (0). This mode is
only supported by AES versions of at least 4.0.

SWM_SHUTDOWN 4

Manipulate ‘Shutdown’ mode. Shutdown mode is usually
used prior to a resolution change to cause system
processes to terminate. wisgr, cmd, and tail are ignored
by this call. The value of wiscr determines the action this
call takes as follows:

Name wiscr.
SD_ABORT 0
SD_PARTIAL 1
SD_COMPLETE 2

Meaning
Abort shutdown mode

Partial shutdown mode
Complete shutdown mode

During a shutdown, processes which have registered
themselves as accepting AP_TERM messages will be
sent them and all accessories will be sent AC_CLOSE
messages. In addition, in complete shutdown mode,
AP_TERM messages will also be sent to accessories.

Shutdown mode may be aborted but only by the original
caller.

The status of the shutdown is sent to the calling processes
by AES messages. See evnt_mesag() .

This mode is only supported by AES versions greater than
or equal to 4.0.

SWM_REZCHANGE 5

Change screen resolution. wisgr is the work station ID
(same as in AES global[13]) of the new resolution. No
other parameters are utilized.

This mode is only recognized as of AES version 4.0.

SWM_BROADCAST 7

Broadcast an AES message to all processes. cmd should
point to an 8 WORD message buffer containing the
message to send. All other parameters are ignored.

This mode is only recognized as of AES version 4.0.

THE ATARI

COMPENDIUM

shel_write() — 6.143

SWM_ENVIRON 8 Manipulate the AES environment. If wisgris
ENVIRON_SIZE (0), the current size of the environment
string is returned.

If wisgris ENVIRON_CHANGE (1), cmd should point to a
environment variable to modify. If cmd points to
“TOSEXT=TOS,TTP”, that string will be added. Likewise,
“TOSEXT=" will remove that environment variable.

If wisgris ENVIRON_COPY (2), the AES will copy as
many as wiscr bytes of the current environment string into
a buffer pointer to by cmd. The function will return the
number of bytes not copied.

This mode is only recognized as of AES version 4.0.
SWM_NEWMSG 9 Inform the AES of a new message the current application
understands. wisgris a bit mask which specifies which
new messages the application understands. Currently only
bit 0 (B_UNTOPPABLE) has a meaning. Setting this bit
when calling this function will inform the AES that the
application understands AP_TERM messages. No other
parameters are used.

This mode is only recognized as of AES version 4.0.
SWM_AESMSG 10 Send a message to the AES. cmd points to an 8 WORD
message buffer containing the message to send. No other
parameters are needed.

This mode is only recognized as of AES version 4.0.

BINDING intin[0] = mode;
intin[1] = wisgr;
intin[2] = wiscr;

addrin[0] = cmd;
addrin[1] = tail;

return crys_if(0x79);

RETURN VALUE The valueshel_write() differs depending on the mode which was invoked. See
above for details.

VERSION NOTES Many new features were added a®\&fS version 4.0. For details of each, see
above.

THE ATARI COMPENDIUM

Window Library

TheWindow Libraryis responsible for the displaying and maintenand&$ windows. The members
of theWindow Libraryare:

wind_calc()
wind_close()
wind_create()
wind_delete()
wind_find()
wind_get()
wind_new()
wind_open()
wind_set()
wind_update()

THE ATARI COMPENDIUM

wind_calc() — 6.147

wind_calc()

WORD wind_calc(requestkind, x1, y1, wl, hl, x2, y2, w2, h2)
WORD requestkind, x1, y1, wi, h1;
WORD *x2, *y2, *w2, *h2;

OPCODE

AVAILABILITY

PARAMETERS

BINDING

RETURN VALUE

COMMENTS

SEE ALSO

wind_calc() returns size information for a specific window.

108 (0x6C)

All AES versions.

requestspecifies the mode of this call.

If requestis WC_BORDER (0), X1, y1, w1, andhl specify the work area of a
window of typekind. The call then fills in th8®/ORDs pointed to b2, y2, w2,
andh2 with the full extent of the window.

If request isWC_WORK (1), x1, y1, w1, andhl specify the full extent of a
window of typekind. The call fills in theVORDs pointed to b2, y2, w2, and

h2 with the work area of the window.

kind is a bit mask of window ‘widgets’ present with the window. For a detailed
listing of these elements se#nd_create().

intin[0] = request;

intin[1] = kind,;
intin[2] = x1,;
intin[3] = y1;
intin[4] = w1;
intin[5] = h1,;

crys_if(Ox6C);

*x2 = intout[1];

*y2 = intout[2];
*w2 = intout[3];
*h2 = intout[4];

return intout[O];
wind_calc() returns 0 if an error occurred or non-zero otherwise.

wind_calc()is unable to calculate correct values when a toolbar is attached to a
window. This can be corrected, though, by adjusting the values output by this
function with the height of the toolbar.

wind_create()

THE ATARI COMPENDIUM

6.148 — Window Library - AES Function Reference

wind_close()

WORD wind_close(handle)

WORD handle

OPCODE
AVAILABILITY
PARAMETERS

BINDING

RETURN VALUE

COMMENTS

SEE ALSO

wind_close()removes a window from the display screen.
102 (0x66)
All AES versions.

handlespecifies the window handle of the window to close.

intin[0] = handle;

return crys_if(0x66);
wind_close()returns 0 if an error occurred or non-zero otherwise.

Upon callingwind_close()a redraw message for the portion of the screen changed
will be sent to all applications.

Callingwind_close()does not release the memory allocated to the window
structurewind_delete()must be called to permanently destroy the window and
free any memory allocated by th&S for the window. Untiwind_delete()is
called, the window may be re-opened at any time wittel_open().

wind_create(), wind_open(), wind_delete()

wind_create()

WORD wind_create(kind, x, y, w, h)
WORD kind, x, y, w, h;

OPCODE

AVAILABILITY

PARAMETERS

wind_create() initializes a new window structure and allocates any necessary
memory.

100 (0x64)
All AES versions.

kindis a bit array whose elements determine the presence of any ‘widgets’ on the

THE ATARI COMPENDIUM

wind_create() — 6.149

BINDING

RETURN VALUE

VERSION NOTES

COMMENTS

window as follows:

Name Mask Meaning

NAME 0x01 Window has a title bar.
CLOSER 0x02 Window has a close box.
FULLER 0x04 Window has a fuller box.
MOVER 0x08 Window may be moved by the user.
INFO 0x10 Window has an information line.
SIZER 0x20 Window has a sizer box.
UPARROW 0x40 Window has an up arrow.
DNARROW 0x80 Window has a down arrow.
VSLIDE 0x100 Window has a vertical slider.
LFARROW 0x200 Window has a left arrow.
RTARROW 0x400 Window has a right arrow.
HSLIDE 0x800 Window has a horizontal slider.
SMALLER 0x4000 Window has an iconifier.

The parameter kind is created by OR’ing together any desired elements.

X, ¥, w, andh, specify the maximum extents of the window. Normally this is the
entire screen area minus the menu bar (to find this aresingeget() with a
parameter ofVF_WORKXYWH). The area may be smaller to bound the
window to a particular size and location.

intin[0] = Kkind,;
intin[1] = x;
intin[2] = y;
intin[3] = w;
intin[4] = h;

return crys_if(0x64);

wind_create()returns a window handle if successful or a negative number if it
was unable to create the window.

TheSMALLER gadget is only available as 8ES version 4.1.

A window is not actually displayed on screen with this call, you need to call
wind_open()to do that.

TOS version 1.00 and 1.02 limited applications to four windowd.®$ version
1.04 that limit was raised to seven. AMItiTOS the number of open windows
is limited only by memory and the capabilities of an application.

You should ensure that your application caNgizd_delete()for each
wind_create(), otherwise memory may not be deallocated when your application

THE ATARI COMPENDIUM

6.150 — Window Library - AES Function Reference

exits.

SEE ALSO wind_open(), wind_close(), wind_delete()

wind_delete()

WORD wind_delete(handle)

WORD handle
wind_delete()destroys the specified window and releases any memory allocated
for it.

OPCODE 103 (0x67)

AVAILABILITY All AES versions.

PARAMETERS handlespecifies the window handle of the window to destroy.

BINDING intin[0] = handle;

return crys_if(Ox67);
RETURN VALUE wind_delete()returns 0 if an error occurred or non-zero otherwise.
COMMENTS A window should by closed witivind_close()before deleting it.

SEE ALSO wind_create(), wind_open(), wind_close(), wind_new()

wind_find()

WORD wind_find(x, y)

WORD x, y;
wind_find() returns the handle of the window found at the given coordinates.
OPCODE 106 (0x6A)
AVAILABILITY All AES versions.
PARAMETERS X andy specify the coordinates to search for a window at.
BINDING intin[0] = x;

intin[1] = y;

THE ATARI COMPENDIUM

wind_get() — 6.151

return crys_if(Ox6A);

RETURN VALUE wind_find() returns the handle of the uppermost window found at locatiyarf
no window is found, the function returns 0 meaningRektop window.

COMMENTS This function is useful for tracking the mouse pointer and changing its shape
depending upon what window it falls over.

wind_get()

WORD wind_get(handle mode parml, parm2, parm3 parm4)
WORD handle mode

WORD *parml, *parm2 *parm3 *parm4;

wind_get() returns various information about a window.

OPCODE 104 (0x68)
AVAILABILITY All AES versions.
PARAMETERS handlespecifies the handle of the window to return information about (0 is the

desktop window)modespecifies the information to return and the values placed
into theWORDs pointed to byparm1 parm2 parm3 andparm4as follows:

Name mode Meaning

WF_WORKXYWH 4 parml1, parm2, parm3, and parm4 are filled in with the x, y,
w, and h of the current coordinates of the window's work
area.

WF_CURRXYWH 5 parm1, parm2, parm3, and parm4 are filled in with the x, y,
w, and h of the current coordinates of the full extent of the
window.

WF_PREVXYWH 6 parml1, parm2, parm3, and parm4 are filled in with the x, y,

w, and h of the previous coordinates of the full extent of the
window prior to the last wind_set() call.

WF_FULLXYWH 7 parml1, parm2, parm3, and parm4 are filled in with the x, y,
w, and h values specified in the wind_create() call.
WF_HSLIDE 8 parm1 is filled in with the current position of the horizontal

slider between 1 and 1000. A value of one indicates that
the slider is in its leftmost position.

WF_VSLIDE 9 parm1 is filled in with the current position of the vertical
slider between 1 and 1000. A value of one indicates that
the slider is in its uppermost position.

WF_TOP 10 parm1 is filled in with the window handle of the window
currently on top. As of AES version 4.0 (and when
appl_getinfo() indicates), parm2 is filled in with the owners
AES id, and parma3iis filled in with the handle of the window
directly below it.

THE ATARI COMPENDIUM

6.152 — Window Library - AES Function Reference

WF_FIRSTXYWH

11

parml1, parm2, parm3, and parm4 are filled in with the x, y,
w, and h of the first AES rectangle in the window’s rectangle
list. If parm3 and parm4 are both 0, the window is
completely covered.

WF_NEXTXYWH

12

parm1, parm2, parm3, and parm4 are filled in with
subsequent AES rectangles for each time this function is
called until parm3 and parm4 are 0 to signify the end of the
list.

WF_NEWDESK

14

As of AES versions 4.0 (and when appl_getinfo()
indicates), this mode returns a pointer to the current
desktop background OBJECT tree. parm1 contains the
high WORD of the address and parm2 contains the low
WORD.

WF_HSLSIZE

15

parm1 contains the size of the current slider relative to the
size of the scroll bar as a value from 1 to 1000. A value of
1000 indicates that the slider is at its maximum size.

WF_VSLSIZE

16

parm1 contains the size of the current slider relative to the
size of the scroll bar as a value from 1 to 1000. A value of
1000 indicates that the slider is at its maximum size.

WF_SCREEN

17

This mode returns a pointer to the current AES menu/alert
buffer and its size. The pointer's high WORD is returned in
parm1 and the pointer’s low WORD is returned in parm2.
The length of the buffer is returned as a LONG with the
upper WORD being in parm3 and the lower WORD being
in parm4. Note that TOS 1.02 returns 0 in wand h by
mistake.

The menu/alert buffer is used by the AES to save the
screen area hidden by menus and alert boxes. It is not
recommended that applications use this area as its usage
is not guaranteed in future versions of the OS.

THE ATARI

COMPENDIUM

wind_get() — 6.153

WF_COLOR 18 This mode gets the current color of the window widget
specified on entry to the function in the WORD pointed to by
parm1. Valid window widget indexes are as follows
(W_SMALLER is only valid as of AES 4.1):

armi Value ob_type
W_BOX 0 IBOX
W_TITLE 1 BOX
W_CLOSER 2 BOXCHAR
W_NAME 3 BOXTEXT
W_FULLER 4 BOXCHAR
W_INFO 5 BOXTEXT
W_DATA 6 IBOX
W_WORK 7 IBOX
W_SIZER 8 BOXCHAR
W_VBAR 9 BOX
W_UPARROW 10 BOXCHAR
W_DNARROW 11 BOXCHAR
W_VSLIDE 12 BOX
W_VELEV 13 BOX
W_HBAR 14 BOX
W_LFARROW 15 BOXCHAR
W_RTARROW 16 BOXCHAR
W_HSLIDE 17 BOX
W_HELEV 18 BOX
W_SMALLER 19 BOXCHAR
The ob_spec field (containing the color information) used
for the object when not selected is returned in the WORD
pointed to by parm2. The ob_spec field used for the object
when selected is returned in parm3.
This mode under wind_get() is only valid as of AES
version 3.30. From AES versions 4.0 and above,
appl_getinfo() should be used to determine if this mode is
supported.

WF_DCOLOR 19 This mode gets the default color of newly created windows
as with WF_COLOR above. As above, this mode under
wind_get() only works as of AES version 3.30.

As of AES version 4.1, WF_DCOLOR changes the color of
open windows unless they have had their colors explicitly
set with WF_COLOR.

WF_OWNER 20 parm1 is filled in with the AES id of the owner of the
specified window. parm2 is filled in with its open status (0 =
closed, 1 = open). parm3is filled in with the handle of the
window directly above it (in the window order list) and
parm4 is filled in with the handle of the window below it
(likewise, in the window order list).

This mode is only available as of AES version 4.0 (and
when indicated by appl_getinfo()).

THE ATARI

COMPENDIUM

6.154 — Window Library - AES Function Reference

BINDING

WF_BEVENT

24

parml1, parm2, parm3, parm4 are each interpreted as bit
arrays whose bits indicate supported window features.
Currently only one bit is supported. If bit O of the value
returned in parm1 is 1, that window has been set to be ‘un-
toppable’ and it will never receive WM_TOPPED
messages, only button clicks.

This mode is only available as of AES version 4.0 (and
when indicated by appl_getinfo()).

WF_BOTTOM

25

parmZ will be filled in with the handle of the window currently
on the bottom of the window list (it may actually be on top if
there is only one window). Note also that this does not
include the desktop window.

This mode is only available as of AES version 4.0 (and
when indicated by appl_getinfo()).

WF_ICONIFY

26

parm1 will be filled in with O if the window is not iconified or
non-zero if itis. parm2 and parm3 contain the width and
height of the icon. parm4 is unused.

This mode is only available as of AES version 4.1 (and
when indicated by appl_getinfo()).

WF_UNICONIFY

27

parml, parm2, parm3, and parm4, are filled in with the x, y,
w, and h of the original coordinates of the iconified window.

This mode is only available as of AES version 4.1 (and
when indicated by appl_getinfo()).

WF_TOOLBAR

30

parm1 and parm2 contain the high and low WORD
respectively of the pointer to the current toolbar object tree
(or NULL if none).

This mode is only available as of AES version 4.1.

WF_FTOOLBAR

31

parml, parm2, parm3, are parm4, are filled in with the x, y,
w, and h, respectively of the first uncovered rectangle of the
toolbar region of the window. If parm3 and parm4 are 0, the
toolbar is completely covered.

This mode is only available as of AES version 4.1.

WF_NTOOLBAR

32

parml, parm2, parm3, and parm4, are filled in with the x, y,
w, and h, respectively of subsequent uncovered rectangles
of the toolbar region. This mode should be repeated to
reveal subsequent rectangles until parm3 and parm4 are
found to be 0.

This mode is only available as of AES version 4.1.

/* This binding must be different to */
/* accomodate reading WF_COLOR and */

/* WF_DCOLOR

contrl[0] = Ox68;

contrl[1] = 2;
contrl[2] = 1,
contrl[3] = O;
contrl[4] = 0;

THE ATARI

*

COMPENDIUM

wind_new() — 6.155

RETURN VALUE

SEE ALSO

intin[0] = handle;
intin[1] = mode;

if(mode == WF_DCOLOR || mode == WF_COLOR)
{

intin[2] = *x;
contrl[1] = 3;

}

aes();

*x = intout[1];

*y = intout[2];

*w = intout[3];

*h = intout[4];

return intout[O];
wind_get() returns a 0 if an error occurred or non-zero otherwise.

wind_set()

wind_new()

WORD wind_new(VOID)

OPCODE

AVAILABILITY

BINDING

RETURN VALUE

COMMENTS

SEE ALSO

wind_new() closes and deletes all of the application’s windows. In addition, the
state owind_update(), and the mouse pointer hide count is reset.

109 (0x6D)

Available as ofAES version 0x0140.

return crys_if(Ox6D);

The return value is reserved and currently unused

This function should not be relied upon to clean up after an application. It was
designed for parent processes that wish to ensure that a poorly written child

process has properly cleaned up after itself.

wind_delete(), graf_mouse(), wind_update()

THE ATARI COMPENDIUM

6.156 — Window Library - AES Function Reference

wind_open()

WORD wind_open(handle x,y, w, h)

WORD handle
WORD X, y, w, h;

OPCODE
AVAILABILITY

PARAMETERS

BINDING

RETURN VALUE

wind_open() opens the window specified.
101 (0x65)
All AES versions.

handlespecifies the handle of the window to open as returnadrigy_create()
X, Y, w, andh specify the rectangle into which the rectangle should be displayed.

intin[0] = handle;

return crys_if(Ox65);

wind_open()returns a O if an error occurred or non-zero otherwise.

COMMENTS This call will also trigger &VM_REDRAW message which encompasses the
work area of the window so applications should not initially render the work area,
rather, wait for the message.

SEE ALSO wind_close(), wind_create(), wind_delete()

wind_set()

WORD wind_set(handle mode parml, parm2, parm3, parm4)
WORD handle, mode parmi, parm2, parm3 parm4;

OPCODE

AVAILABILITY

PARAMETERS

wind_set() sets various window attributes.
105 (0x69)
All AES versions.

handlespecifies the window handle of the window to modifadespecifies the
attribute to change and the meaninggainl, parm2 parm3 andparm4as
follows:

THE ATARI COMPENDIUM

wind_set() — 6.157

Name
WF_NAME

mode
2

Meaning

This mode passes a pointer to a character string
containing the new title of the window. parm1 contains
the high WORD of the pointer and parm2 contains the
low WORD.

WF_INFO

This mode passes a pointer to a character string
containing the new information line of the window.
parm1 contains the high WORD of the pointer, parm2
contains the low WORD.

WF_CURRXYWH

parml1, parm2, parm3, and parm4 specify the x, y, w,
and h of the new coordinates of the full extent of the
window.

WF_HSLIDE

parm1 specifies the new position of the horizontal slider
between 1 and 1000. A value of 1 indicates that the
slider is in its leftmost position.

WF_VSLIDE

parm1 specifies the new position of the vertical slider
between 1 and 1000. A value of 1 indicates that the
slider is in its uppermost position.

WF_TOP

10

parm1 specifies the window handle of the window to
top. Note that if multiple calls of wind_set(WF_TOP , ...
) are made without releasing control to the AES (which
allows the window to actually be topped), only the most
recent window specified will actually change position.

WF_NEWDESK

14

This mode specifies a pointer to an OBJECT tree
which is redrawn automatically by the desktop as the
background. parm1 contains the high WORD of the
pointer and parm2 contains the low WORD. To reset
the desktop background to the default, specify parm1
and parm2 as 0.

WF_HSLSIZE

15

parm1 defines the size of the current slider relative to
the size of the scroll bar as a value from 1 to 1000. A
value of 1000 indicates that the slider is at its maximum
size.

WF_VSLSIZE

16

parm1 defines the size of the current slider relative to
the size of the scroll bar as a value from 1 to 1000. A
value of 1000 indicates that the slider is at its maximum
size.

THE ATARI

COMPENDIUM

6.158 — Window Library - AES Function Reference

WF_COLOR 18 This mode sets the current color of the window widget
specified on entry in parm1. Valid window widget
indexes are as follows (W_SMALLER is only valid as

of AES 4.1):
arml Value ob_type
W_BOX 0 IBOX
W_TITLE 1 BOX
W_CLOSER 2 BOXCHAR
W_NAME 3 BOXTEXT
W_FULLER 4 BOXCHAR
W_INFO 5 BOXTEXT
W_DATA 6 IBOX
W_WORK 7 IBOX
W_SIZER 8 BOXCHAR
W_VBAR 9 BOX
W_UPARROW 10 BOXCHAR
W_DNARROW 11 BOXCHAR
W_VSLIDE 12 BOX
W_VELEV 13 BOX
W_HBAR 14 BOX
W_LFARROW 15 BOXCHAR
W_RTARROW 16 BOXCHAR
W_HSLIDE 17 BOX
W_HELEV 18 BOX
W_SMALLER 19 BOXCHAR

The ob_spec field of the object (containing the color
information) while the window is on top is defined in
parm2. The ob_spec field for the object while the
window is not on top is defined in parm3.

This mode is only valid as of AES version 0x0300.

WF_DCOLOR 19 This mode sets the default color of newly created
windows as with WF_COLOR above. This mode only
works as of AES version 0x0300. As of AES version
4.1, this mode causes all currently displayed windows
which have not had their color explicitly set with
WF_COLOR to be changed.

WF_BEVENT 24 parml1, parm2, parm3, and parm4 are each interpreted
as hit arrays whose bits indicate supported window
features. Currently only one bit is supported. If bit O
(B_UNTOPPABLE) of parm1 is set, the window will be
set to be ‘un-toppable’ and it will never receive
WM_TOPPED messages, only button clicks.

This mode is only available as of AES versions 4.0.

WF_BOTTOM 25 This mode will place the specified window at the
bottom of the window list (if there is more than one
window) and top the new window on the top of the list.

This mode is only available as of AES version 4.0.

THE ATARI COMPENDIUM

wind_update() — 6.159

BINDING

RETURN VALUE

SEE ALSO

WF_ICONIFY

26

This mode iconifies the specified window to the X, Y,
width, and height coordinates given in parm1, parm2,
parm3, and parm4 respectively. Normally, this happens
as the result of receiving a WM_ICONIFY message.

This mode is only available as of AES version 4.1.

WF_UNICONIFY

27

This mode uniconifies the window specified, returning it
to its original X, Y, width, and height as specified in
parm1, parm2, parm3, and parm4 respectively.
Normally, this happens as the result of receiving a
WM_UNICONIFY message.

This mode is only available as of AES version 4.1.

WF_UNICONIFYXYWH

28

This mode sets the X, Y, width, and height that will be
transmitted to the window with the next
WM_UNICONIFY message that targets it. This call is
used when a window is opened in an iconified state to
give the OS a method of positioning it when it is
uniconified.

This mode is only available as of AES version 4.1.

WF_TOOLBAR

30

This mode attaches a toolbar to the specified window.
parm1 and parm2 contain the high and low WORD of
the address of the toolbar OBJECT tree respectively.
parm3 and parm4 are unused.

Set parm1 and parm2 to 0 to remove a toolbar.

intin[0] = handle;
intin[1] = mode;
intin[2] = x;
intin[3] = y;
intin[4] = w;
intin[5] = h;

return crys_if(0x69);

wind_set()returns 0 if an error occurred or non-zero otherwise.

wind_get()

wind_update()

WORD wind_update(mode)

WORD mode

OPCODE

wind_update() manages the screen drawing semaphore.

107 (0x6B)

THE ATARI

COMPENDIUM

6.160 — Window Library - AES Function Reference

AVAILABILITY

PARAMETERS

BINDING

RETURN VALUE

VERSION NOTES

COMMENTS

All AES versions.
modespecifies an action as follows:

Name ‘ mode Meaning

END_UPDATE 0 This mode resets the flag set by BEG_UPDATE and should
be called as soon as redrawing is complete. This will allow
windows to be moved and menus to be dropped down again.

BEG_UPDATE 1 Calling this mode will suspend the process until no drop-down
menus are showing and no other process is updating the
screen. This will then set a flag which guarantees that the
screen will not be updated and windows will not be moved until
you reset it with END_UPDATE.

Generally this call is made whenever a WM_REDRAW
message is received to lock the screen semaphore while

redrawing.

END_MCTRL 2 This mode releases control of the mouse to the AES and
resumes mouse click message services.

BEG_MCTRL 3 This mode prevents mouse button messages from being sent

to applications other than your own.

form_do() makes this call to lock out screen functions. Desk

accessories which display a dialog outside of a window must
use this function to prevent button clicks from falling through to
the desktop.

intin[0] = mode;

return crys_if(Ox6B);
wind_update() returns O if an error occurred or non-zero otherwise.

As of AES version 4.0, you may logically OR a maskN§p_BLOCK (0x0100)

to eitherBEG_UPDATE or BEG_MCTRL . This mask will prevent the

application from blocking if another application currently has control of the screen
semaphore. Instead, if another application has control, the function will
immediately return with an error value of 0.

This method should only be used by timing-sensitive applications such as terminal
programs in which a long redraw by another application could cause a timeout.

All wind_update() modes nest. For instance, to release the screen semaphore, the
same number dEIND_UPDATE calls must be received as wé&ieG_UPDATE

calls. It it recommended that you design your application in a manner that avoids
nesting these calls.

Both theBEG_UPDATE andBEG_MCTRL modes should be used prior to
displaying a form or popup to prevent them from being overwritten or clicks to
them being sent to other applications.

THE ATARI COMPENDIUM

wind_update() — 6.161

SEE ALSO

Always wait untilafter theBEG_UPDATE call to turn off the mouse cursor when
updating the screen to be sure you have gained control of the screen.

Applications such as slide-show viewers which require the whole screen area
(and may need to change screen modes) mawigall update() with parameters

of bothBEG_UPDATE andBEG_MCTRL to completely lock out the screen

from other applications. The application would still be responsible for saving the
screen area, manipulating video modes as necessary, restoring the screen when

done, and returning control of the screen to other applications with
END_UPDATE andEND_MCTRL .

wind_new()

THE ATARI COMPENDIUM

— CHAPTER 7 —

VDI

THE ATARI COMPENDIUM

Overview — 7.3

Overview

The Virtual Device InterfaceVDl) is a collection of drivers designed to provide applications
with a device-independent method of accessing graphically based devices such as monitors,
printers, and plotters. Applications which are written to us&/@lerather than directly

accessing hardware will be compatible with all currently available devices including those
which have not yet been developed.

All Atari systems withTOS in ROM include &/Dl screen driver adaptable to each display
resolution the system can support. Soft-loaded screen drivers and drivers for other devices are
loaded through DI sub-system called the Graphics Device Operating Sy$tHb).

TheGDOS system is disk-loaded as a TSR utility at bootup. It loads device drivers based upon
the contents of its configuration file(s).

Applications wishing to use tHeDOS extensions must verify its presence using the method

described later in this chapter. If an application’s output will be limited to the screen and no font
other than the system font is needed, then the prese@d2@® is not mandatory.

VDI Workstations

Every system call made to tN®| must include a workstation handle. This handle is a unique
integer which identifies the device and current attribute array. Workstation handles are returned
by theVDI callsv_opnwk() or v_opnvwk().

Workstations provide a lookup array of attributes such as line width, text color, clipping state,
etc. that are unique to it.

Physical Workstations
Each device must be initialized by opening its physical workstation. Opening a physical
workstation causes all drawing and clipping attributes to be reset and the current page (display)
to be reset to the default background color. Only one physical workstation may be opened to a
single device at any given time.

The screen device's physical workstation is automatically initialized biE&Reupon bootup.
Its physical workstation handle may be obtained fronR8 call graf_handle().

Devices such as printers and plotters must have their physical workstation opened by the
application wishing to utilize them. When opening a physical workstation the application must
specify a device ID which identifies the device to open. Device identification codes are
assigned as follows:

THE ATARI COMPENDIUM

7.4 —-VDI

VDI Device
Identification Numbers

Screen 1-10
Plotters 11-20
Printers 21-30
Metafiles 31-40
Cameras 41-50
Tablets 51-60
Memory 61-70
Other 71—

These values correspond to the value listed in the leftmost column of the user’'s ‘ASSIGN.SYS’
file. The following code segment demonstrates opening a physical workstation to the printer
device with ID #21. It is important to note that the function assumes that the presehteSf

has been tested for and was verified.

work_in[0] is set to the desired device ID amdrk_in[1-9] are filled in with common defaults
for workstation attributesvork_in[10] is set to 2 to indicate raster coordinates as explained
later in this chapter. The function returns a non-zero value if an error occurred.

WORD work_in[11],work_out[57];
WORD handle;

WORD
printer_open(VOID)
{

WORD i;

work_in[0] = 21;
for(i = 1;i < 10; work_in[i++] = 1);
work_in[10] = 2;

v_opnwk(work_in,&handle,work_out);

return (handle == 0);

Virtual Workstations
Each physical workstation may have multiple virtual workstations opened which allow
individual applications to maintain separate workstation attributes. In fact, a single application
may open multiple virtual workstations to the same device to manage workstation attributes
more efficiently. Opening a virtual workstation does not affect the current contents of the
display.

Most GEM applications will open a virtual workstation to the current screen device upon
initialization. The following code segment illustrates opening a virtual workstation to the display
device.

The device identification code for the display device must be specifiéétagz() + 2 for all

VDI features to work correctly. All other parameters are passed the same as the example for

THE ATARI COMPENDIUM

Workstation Specifics — 7.5

opening a physical workstation except thandlemust contain the physical workstation handle
of the device for which you wish to obtain a virtual workstation handle.

A more programmer-friendly method of opening workstations involves the use of the
VDI_Workstation structure which is discussed in the reference entry f6pnvwk()

WORD work_in[11],work_out[57];
WORD handle;
WORD wecell, hcell, wbox, hbox;

WORD
screen_open(VOID)

WORD i;

handle = graf_handle(&wcell, &hcell, &wbox, &hbox);
work_in[0] = Getrez() + 2;

for(i = 1;i < 10;work_in[i++] = 1);

work_in[10] = 2;

v_opnvwk(work_in, &handle, work_out);

return (handle == 0);

}

Workstation Specifics

Coordinate Systems
The VDI defaults to the usage of Raster Coordinates (RC) which places the origin at the upper-
left of the page or display. As an example, the coordinate range for the 1040ST’s monochrome

graphics mode is shown here:

(0,0)

(639, 399)

RC coordinate ranges vary with the device. It is up to the application to interpret and scale the
size and position of its output appropriately.

With the addition of5DOS, theVDI gains the ability to utilize Normalized Device Coordinates
(NDC). When using NDG:DOS translates and scales all coordinates to the device as

THE ATARI COMPENDIUM

7.6 — VDI

appropriate. All devices using NDC will have their origin at the lower-left hand corner of the
display or page as follows:

(32767, 32767)

(0,0)

Using NDC provides an excellent manner of reducing the overhead of having to internally scale
every coordinate, however, applications which depend on the proper aspect ratio for their output
should consider managing coordinates internally.

Rendering Graphics
EachVDI output function uses attributes set by other reldfedfunctions to determine
characteristics such as line width, text face, and color. The following tabléMktattribute
calls and the functions they affect.

To output &Dl object, set each attribute as desired and then make the appropriate call. For
example, to output a line of text in the System font at 9 point colored red, make the following
sequence of calls.

vst_font(handle, 1); /* Select the System Font */
vst_point(handle, 9);

vst_color(handle, 2);

v_ftext(handle, 10, 10, “The Atari Compendium”);

Generalized Device Primitives
GDP’s (Generalized Device Primitives) are basic drawing components available through the
VDI All current device drivers support all GDP’s though specialized drivers may not be able
to. intout[14-24] may be used to determine the presence of GDP’s. Currently there are 10
supported GDP’s as follows:

THE ATARI COMPENDIUM

Workstation Specifics — 7.7

VDI Rectangles

‘

| GbpP
Bar (Rectangle)

Arc

Pie Slice

Circle

Ellipse

Elliptical Arc

Elliptical Pie

Rounded Rectangle

OO |INoO |~ |WN|-

Filled Rounded
Rectangle

=
o

Justified Graphics Text

SeveralVDI functions require that a rectangleMP! format be passed to thel! rectangles
are different fromAES rectangles in the manner in which they are specified.

To correctly define DI rectangle you must specify two coordinate pairs one representing the
upper-left point of the rectangle and the other specifying the lower-right as follows:

(x1,y1)

(x2,y2)

The following two functions provide simple conversion betwdg® GRECTs andvDlI

rectangles in an array.

VOID

Grect2xy(GRECT *g, short *pxy)

}

VOID

pxy[0] =
pxy[1] =
pxy[2] =
pxy[3] =

9.9_Xx;
g9.9_Y;
g.g x+g.gw-1
g9y+ggh-1

Xy2Grect(short *pxy, GRECT *g)
{

STs< %

9.9_.
9.9_
9.9
g.9_

THE ATARI

pxy([0];
pxy[1];
pxy[2] - pxy[0] + 1;
pxy([3] - pxy[1] + 1;

COMPENDIUM

7.8 - VDI

Device Types vs. Required Functions
Not all VDI functions are supported by all drivers. The presence of GDP functions may be
checked using the information returned inititeut array after &_opnwk() call. Other calls
may be checked for by entering a test call and comparing returned information with what would
be expected.

In addition, each type of driver has a certain number of required functions which must be
supported by the device. Each entry in\tid Function Referencspecifies the support
required for a function.

Write Modes
All VDI graphics primitives are subject to one of four writing modes sesWy_mode() with
the exception ofro_cpyfm() which is passed one of sixteen writing modes.

The following logic tables illustrate the effects of each of the four primary modes. Graphic
examples can be found under the reference entigfor_mode()

Mode Logic

Replace Destination = Source

Transparent Destination = Source OR Destination

XOR Destination = Source XOR Destination
Reverse Transparent Destination = (NOT Source) AND Destination

Using Color

The color capabilities dfDI devices can be placed into three categories as follows.
Determining which category a device falls into is accomplished by examining the return values
from v_opnvwk(), v_opnwk(), andva_extnd().

v_opn/v/wk() va_extnd()

work_out[13] work_out[5]
Categories { colors } {lut}
Monochrome Devicel 2 0
Palette-Based Device >=2 1
True Color Device > 2 0

1Sometimes monochrome devices appear as palette-based devices with two available colors.

THE ATARI COMPENDIUM

VDI Raster Forms — 7.9

Monochrome Devices
Monochrome devices are only capable of displaying one color. Often, monochrome devices are
instead represented by palette-based devices with two fixed colors.

Palette-Based Devices
Palette-based devices have a fixed number of colors that may be rendered on screen
simultaneously. Each pixel value is used to index into the palette to decide what color to
display. For instance, if you chang®! color #2 to green, draw a box with that color index,
and then changéD! color #2 to red, the box will appear first in green and then turn red.

The first 16VDI color registers are used by the operating system and should be avoided. If your
application must change them, they should be restored when no longer needed.

True Color Devices
True-color devices allow each pixel to have a unique color value. Rather than palette entries,
colors (work_out[13)) corresponds to the number of available virtual pens. Drawing is
accomplished by using these pens, however, unlike using a palette, changing the color of a pen
does not change any pixel’s color drawn with that pen on the screen.

Whatever color is stored in virtual pen #0 is considered the background color for the purpose of
computing write modes.

It is possible for external devices, printers, plotters, etc. to behave as if they were a true-color
device.

Color Mapping
Color values are defined in tN®! by specifying a red, green, and blue value from 0-1000.
The VDI will scale the value to the closest color possi#iie.color() can be used to determine
the actual color that was set.

VDI Raster Forms

TheVDI handles raster forms using three commayigés,cpyfm(), vrt_cpyfm(), and

vr_trnfm() , vro_cpyfm() andvrt_cpyfm() are responsible for ‘blitting’ raster images between
memory and a workstation. These functions may also be used to copy images from one location
on a workstation to another. ‘Blitting’ is the process of copying memory from one location to
another. Atari computers use the BLITTER chip (when one is installed) or a software bit blit
algorithm to quickly move memory. While these calls are designed to transfer screen memory, if
carefully used, they may also be used to transfer other types of memory as well.

vr_trnfm() is responsible for the transformation of images between device-speciland
standard format, the two raster image formats recognized MpthéDevice-specific format is
limited to images in the format of the source device whereas the second is a generic format
recommended for transporting images to non-standard displays.

THE ATARI COMPENDIUM

7.10 - VDI

VDI Device-Specific Format
Device-specific format simply mimics the layout of pixels and planes on the source device.
When using/ro_cpyfm() andvrt_cpyfm() the source form will be transferred to the destination
form in device-specific format

If you intend to save images to disk you should first utilizérnfm() to transform the image
into aVDI standard format so that the image can be successfully ported to any display.

VDI Standard Format
VDI standard format is designed to provide a portable method of specifying raster images which
may be displayed on any device. Images stor&®instandard format must be transformed with
vr_trnfm() before copying them to a workstation.

Images invDI standard format appear in memory in a plane-by-plane fashion. All of the bits for
plane #0 appear first followed by the bits for plane #1, and so on for as many planes as exist in
the image.

Images may be easily transferred to devices with a higher number of planes by simply inserting
empty bytes to account for planes not present in the source image. This method will only work,
however, with palette based devices.

Vector Handling

TheVDI screen driver is also responsible for managing some hardware vectors responsible for
keyboard and mouse input. The functions available for altering these vecté@X amotv(),

vex_timv(), vex_curv(), andvex_butv(). For further explanation of these calls please see the
VDI Function Reference

Use of these functions is not recommended WittiTOS as these vectors are global and affect
all applications. In addition, results are undefined if two or more non-resident applications
utilized these calls at once.

Existing applications which use these calls must have their program flags set to either supervisor
or global memory protection. See tBEMDOS Overviewfor a discussion of the program flags.

2The definitions ofrro_cpyfm() andvrt_cpyfm() allow for the specification of the format of the source and destination form, however, this
feature is not currently supported by any version of the operating system. Any call which specifies either the source or destination form to
be in device-independent format will fail.

THE ATARI COMPENDIUM

GDOS -7.11

GDOS

The Graphics Device Operating SystéaDOS) is a disk-based component of the operating
system which allows disk-loadable device drivers and additional fonts to be accessible through
standardvDl calls.

Several versions of AtaffDOS have been released in addition to several third-g§alS
‘clones’. All of these forms have stayed backward-compatible @RS 1.0, however it is
recommended that programs be written to support neé&»S calls when it can be determined
that a more recent release@POS is present.

EachVDI call documented in théDI Function Referencspecifies ifGDOS is required, and
if so, what type.

Determining the Version of GDOS Present
A non-standar®/DI call is available to check for the presenc&8&fOS. The following
machine-code subroutine will return a longword result in dO which can be used to determine the
variety ofGDOS present. Beware of older bindings which looked only for the ori§fDS
and returned a 1 or O as a result.

text

_vg_gdos:
move.l #-2,d0
trap #2
rts
.end

The longword return value in dO can be interpreted as follows:

Name Value Meaning
GDOS_NONE -2 No GDOS is installed.
— Any other value. | Original GDOS 1.x is installed.
GDOS_FNT O0x5F464E54 FONTGDOS is installed.
' ENT’
GDOS_FSM 0x5F46534D FSM GDOS or SpeedoGDOS is installed. For
‘ FSM’ information on determining the specific variety of
outline GDOS available, see the description of the
‘FSMC’ cookie in Chapter 3: BIOS

THE ATARI COMPENDIUM

7.12 - VDI

FSM GDOS vs. SpeedoGDOS
SinceFSMGDOS (a QMS/Imagen outline font-bas€dPOS) was never officially released
from Atari (though shipped in limited quantity with third-party products), some changes have
been made to calls BpeedoGDOShat were never exploited by developers. For that reason,
these calls will only be documented in the Speedo-compatible way\Piheunction
ReferenceThis does mean, however, that use of these calls will cause your application to fail
under the origindFSMGDOS,

The calls which were affected aregetoutline(), v_getbitmap_info(), v_killoutline(), and
vqt_get_table() In addition, use of the nefapeedoGDOSallsvst_charmap(),
vqt_trackkern() , vat_pairkern() , vat_fontheader(), vst_kern(), or any of the older calls
when used with théx31 data type will fail with the olddrSM,

To determine the type of outline-fdaDOS installed, look for theFSMC’ cookie. The cookie
value is a pointer to a longword which contains the character stfi§V' for Imagen-based
FSMGDOS or *_SPD for Speedo-basedSMGDOS,

GDOS 1.x

GDOS 1.0 and the other 1.x versions which followed it was the ori§gDS developed by
Digital Research for Atari. It handled only bitmap fonts and was slow compared to the newer
FONTGDOS which now replaces it.

When av_opnwk() call is made witl5DOS installed, a check is done to see if a driver was
assigned to the device ID specified in the ‘ASSIGN.SYS'’ file, and if so, loaded.

All VDI calls which specify the returned handle will subsequently be redirected to the driver.

Not all VDI functions are available with every driver. Check the ‘Availability’ heading for each
specific function in th&yDI Function Referencfor specific availability.

Bitmap Fonts
Bitmap fonts have the ability to be quickly rendered and highly accurate. They do generally
require more disk space and a font file must be available for each point size and aspect ratio
required. Bitmap fonts follow a special naming convention as follows:

ATSS12LS.FNT

Vendor Code —] | | L— Device Type
Font Code Paint Size

The vendor code is a unique two-letter identifier which specifies the creator of the font. The font
code is a two-letter code which abbreviates the font's name. The point size field specifies the
point size of the font. The device type is a two-letter abbreviation which should match the aspect
ratio of the device as follows:

THE ATARI COMPENDIUM

FONTGDOS - 7.13

Device Type [Destination Ratio

None or Hli 91x91 (Screen Devices)
CG 91x45 (Screen Devices)
LS 300x300 (Laser Printers, Inkjets)
EP 120x144 (Lo-Res Dot-Matrix Printers)
LB 160x72 (Lo-Res Dot-Matrix Printers)
SP 180x180 (Med-Res Dot-Matrix Printers)
QD 240x216 (Med-Res Dot-Matrix Printers)
NP 360x360 (High-Res Dot-Matrix Printers)

For a driver to recognize a bitmap font it must be listed in the user’'s ‘ASSIGN.SYS' file and be
of the correct aspect ratio. No extra fonts are made available to applications until a
vst_load_fonts()call is made.

FONTGDOS

FONTGDOS is the successor f8DOS 1.x. As with the originalsDOS, FONTGDOS
supports only bitmap fonts. Its differences are improved driver support, support for bezier
curves, improved error handling, and a much quicker response time.

Bezier Curves
FONTGDOS conforms to th& C-GEM/3 file standard with the inclusion of bezier curve
rendering capability with the_bez()andv_bez_fill() calls.v_bez_on()must be used to allow
FONTGDOS to allocate the memory necessary for bezier rendering. Likewizgz_off()
should be used before an application exits to free any memory used for bezier calls.

Error Support
WhenGDOS 1.x encountered an error condition, it simply wrote an error message at the top of
the display overwriting a portion of the menu bar and display sdré¥dTGDOS allows an
application to disengage this behavior and instead return error codes in a global variable. It is
then the applications responsibility to check this variable after calls which may cause an error
condition. See th¥DI Function Referenceall vst_error() for more information.

FSMGDOS

FSMGDOS was developed by Atari in conjunction with QMS/Imagen Corp. to provide Imagen
outline fonts which could be displayed at any point size, aspect ratio, or device. It provided all
of the improved features BONTGDOS with outline fonts and caching capability. This version
of GDOS was, however, never officially released. Third-party manufacturers did ship many
copies of thi$sSDOS to the public. In addition, many developers did update their products to
utilize the special features BEMGDOS,

Most VDI function calls added with this version@POS have remained compatible with
SpeedoGDOS$however, some calls which were never used by developers were changed. This

THE ATARI COMPENDIUM

7.14 - VDI

means that applications written to sup@peedoGDOSnay not be backwardly compatible.
For specific compatibility information, consult tM@®! Function Reference

SpeedoGDOS

SpeedoGDOSs a new variety of SM which employs outline font technology from Bitstream
using Speedo-format outline fonts. In addition, several new calls were added to gain access to
internal font information and provide true WYSIWYG (What-You-See-Is-What-You-Get)

output.

The fix31 Data Type
SpeedoGDOSptionally allows the use of thix31 data type in some calls for parameters and
return values. Old bindings designed for the Imagen-taSktiwill still function properly.
Newer bindings may be written to take advantage of this data type.

Thefix31 data type allows for the internal representation and manipulation of floating-point
values without the use of a floating-point library. It is a 32-bit value with a 1-bit sign and a 31-
bit magnitude. Each value specifies a number in 1/65536 pixels. Examples of this data type
follow:

fix31 Floating Point

0x00010000 1.0
OxFFFF0000 -1.0
0x00018000 1.5

Character advances can be simply be added or subtracted to each other using integer arithmetic.
To convert dix31 unit to an integer (rounding to 0) use the following code:

x_integer = (WORD)(x_fix31 >> 16);
To convert dix31 to an integer and round it to the closest integer use the following code:
x_integer = (WORD)((x_fix31 + 32768) >> 16);

Use offix31 values provides higher character placement accuracy and access to non-integer
point sizes. For specific implementation notes, se¥BeFunction Referencentries for
vqt_advance32()v_getbitmap_info(), vst_arbpt32(), andvst_setsize32()

Kerning
SpeedoGDOSutline fonts have the ability to be kerned using two methods. Track kerning is
global for an entire font and has three settings, normal, tight, and extra tight. Pair kerning works
for individual pair groups of characters. In addition, new pairs may be defined as necessary to
produce the desired output.

Kerning is taken into account with ftext() andvqt_advance()only when enabled. Use the
callsvst_kern(), vat_pairkern() , andvqt_trackkern() to access kerning features.

THE ATARI COMPENDIUM

SpeedoGDOS - 7.15

Caching
All SpeedoGDOSextent and outline rendering calls are cached for improved performance.
Cache files may be loaded or saved to disk as desired to preserve the current state of the cach
In addition, an application might want to flush the cache before doing an output job to a device
such as a printer to improve performance with new fonts.

The callvgt_cachesize(kan be used to estimate the ability of the cache to store data for an
unusually large character and prevent memory overflow errors.

Special Effects
The callvst_scratch()determines the method used when calculating the size of the special
effects buffer. In general an application should not allow the user to use algorithmically
generated effects on Speedo fonts. In most cases, special effects are available by simply
choosing another font.

The problem is that Speedo fonts may be scaled to any siZgpgadoGDOSas no way of
predicting the upper-limit on the size of a character to allocate special effects memory.
Currently,SpeedoGDOSallocates a buffer large enough to hold the largest character possible
from the point sizes in the ‘ASSIGN.SYS' file and those listed in the ‘EXTEND.SYS' file. If
your application limits special effects to these sizes then no problems will occur.

If you intend to restrict users to using special effects only with bitmap fonts you may call
vst_scratch()with amodeparameter of 1, memory allocation will be relaxed to only take
bitmap fonts into account. You may also specifgetieparameter of 2 if you plan to allow no
special effects at all. Thest_scratch()call must be made prior to callivgt_load_fonts()

Speedo Character Indexes
Speedo fonts contain more characters than the Atari ASCII set can define. Fonts may be
re-mapped with a CPX using tkgt_get_table()call (this method is not recommended on an
application basis as this call affects all applications in the system).

Another method involves the use of a new all, charmap(). Calling this function with a
modeparameter of 0 causes all functions which take character indexes (liRat(),
vat_width(), etc.) to interpret characters\W9RDs rather thaBYTEs and utilize Speedo
International Character Encoding rather than ASCII.

TheFunction Referenceprovides two alternate bindings forftext() andv_ftext_offset()
calledv_ftext16() andv_ftext_offset16()which correctly output 16-bit Speedo character text
rather than 8-bit ASCII text.

A complete listing of the Bitstream International Character Set is listdgpandix GSpeedo
Fonts,

Speedo Font IDs

THE ATARI COMPENDIUM

7.16 — VDI

The functiorvgt_name()is used with all versions §¢DOS to return a unique integer identifier

for each font. Because some bitmap font ID’s conflicted with Bitstream outline font ID’s,
SpeedoGDOSyersions 4.20 and higher add 5000 to each of the outline font ID’s to differentiate
them from bitmap fonts.

Device Drivers

Printer and Plotter Drivers
Printer drivers are the most common forn§x8¥OS driver available, though some plotter
drivers do exist. Th¥DI Function Referencean be used to determine if a particular function
call is required to be available on a particular device. This does not, however, prohibit the
addition of supplementary functions.

Some special printer driver features are available with drivers designed to support them as
follows:

Dot-Matrix Printers

Dot-matrix printers with wide carriages can have their print region expanded by passing a
custom X and Y resolution for the drivergtsin[0] andptsin[1] respectively prior to the
v_opnwk() call. In additiongcontrl[1] should be set to 1 to indicate the presence of the
parameters.

SLM804

After av_opnwk() call to an SLM804 drivegontrl[0] will contain the MSB andontrl[1] will
contain the LSB of the allocated printer buffer address.

After av_updwk() call, intout[0] will contain a printer status code as follows:

Name Error Code Meaning

SLM_OK 0x00 No Error
SLM_ERROR 0x02 General Printer Error
SLM_NOTONER 0x03 Toner Empty
SLM_NOPAPER 0x05 Paper Empty

THE ATARI COMPENDIUM

Device Drivers — 7.17

All Printer Drivers

A user-defined printer buffer may be passed torthgpdwk() call by specifying the address of
the buffer inintin[0] andintin[1]. In addition,contrl[3] must be set to 2 to indicate the new
parameters anebntrl[1] must be set to 1 to instruct tM®I to not clear the buffer first.

Camera and Tablet Drivers
As of this writing, no camera or tablet drivers existed for At#rM. Several functions are
reserved to support them which were developed uA@eGEM, however, many remain
undocumented. Where documentation was available, those calls are included for completeness
in theVDI Function Reference

The Metafile Driver
‘META.SYS' drivers are specially designed drivers which create *.GEM’ disk files rather than
produce output on a device. When a metafile device is opened, the file ‘GEMFILE.GEM’ is
created in the curre@EMDOS path. The functionm_filename() may be used to change the
filename to which the metafile is written to, however, the file ‘GEMFILE.GEM’ must be deleted
by the application.

When a metafile is opened, several defaults relating to the coordinate space and pixel size are
set. Each pixel is assigned a default width and height of 85 microns (1 micron = 1/25400 inch).
This equates to a default resolution of 300dpi.

The device size is specified where Normalized Device Coordinates (NDC) = Raster
Coordinates (RC). The coordinate space of the metafile has (0, 0) in the lower-left corner and
32767, 32767) in the upper-right. This coordinate system may be modifiednvittoords()

The size of the actual object space being written to the metafile should also be specified with
vm_pagesize(ko that an application may correctly clip the objects when reading.

After changing coordinate space, values returnedipgxtnd() related to pixel width, height

and page size witlotchange. Also, font metrics returned by functions sustagontinfo()
andvqt_advance()will remain based on the default metafile size information. In most cases,
text metric information should be embedded based on the workstation metrics of the destination
device (such as a screen or printer) anyway.

The metafile is closed whervaclswk() call is issued. Other applications which read metafiles

will play back the file by issuing commands in the same order as recorded by the driver. For
more information on the metafile format #ggpendix CNative File Formats

THE ATARI COMPENDIUM

7.18 — VDI

The Memory Driver
‘MEMORY.SYS’ includes all of the standakdd! calls yet works only in memory and is not
designed to be output to a device. Normally, the memory driver should be assigned in the user’s
‘ASSIGN.SYS' file as device number 61. Upon callihng@pnwk() to the memory driver,
contrl[1] should be set to 1 amdsin[0] andptsin[1] should contain the X and Y extent of the
memory area. Upon return from the caiintrl[0] andcontrl[1] will contain the high and low
WORD respectively of the address of the memory device rastepdwk() clears the raster.

VDI Function Calling Procedure

TheGEM VDI is accessed through a 68x00 TRAP #2 statement. Prior to the TRAP, register d0
should contain the magic number 0x73 and register d1 should contain a poifiéémtarameter
block. An example binding is as follows:

text

_vdi:
move.l #_VDlpb,d1
move.| #$73,d0
trap #2

rts

TheVDI parameter block is an array of 5 pointers which each point to a specialized array of
WORD values which contain input parameters and function return values. Different versions of
theVDI support different size arrays. The following code contains the ‘worst case’ sizes for
these arrays. Many newer versions of YB¥ support larger array sizes. You can inquire what

the maximum array size théDPl supports by examining threork_outarray after &_opnvwk()

or v_opnwk(). Larger array sizes allow more points to be passed at a time for drawing functions
and longer strings to be passed for text functions. The definition ¥2thparameter block

follows:

.data

_contrl: ds.w 12

_intin: ds.w 128

_ptsin: ds.w 256

_intout: ds.w 128

_ptsout: ds.w 256

_VDlpb: dc.l _contrl, _intin, _ptsin
dc.l _intout, _ptsout
.end

Thecontrl array contains the opcode and number of parameters being passed the function as
follows:

contrifx] Contents

0 Function Opcode
1 Number of Input Vertices in ptsin
2 Number of Output Vertices in ptsout

THE ATARI COMPENDIUM

VDI Function Calling Procedure — 7.19

3 Number of Parameters in intin
4 Number of Output Values in intout
5 Function Sub-Opcode
6 Workstation Handle
7-11 Function Specific

contrl[0], contrl[1], contrl[3], contrl[5] (when necessary), ag@ntri[6] must be filled in by
the applicationcontrl[2] andcontrl[4] are filled in by theVDIl on exit.contrl[7-11] are rarely
used, however some functions do rely on them for function-specific parameters.

For specific information on bindings, see ¥l Function Reference

THE ATARI COMPENDIUM

VDI/GDOS Function Reference

THE ATARI COMPENDIUM

v_alpha_text() — 7.23

v_alpha_text()

VOID v_alpha_text(handle, str)

WORD handle
char *str;
v_alpha_text() outputs a line of alpha text.
OPCODE 5
SuB-OPCODE 25
AVAILABILITY Supported by all printer and metafile drivers.
PARAMETERS handleis a valid workstation handistr is a pointer to a null-terminated text

string which will be printed. Two speciBYTE codes may be embedded in the
text. ASCII 12 will cause a printer form-feed. ASCII 18 ‘DC2’ will initiate an
escape sequence followed by a command descBMbE (in ASCII) indicating
which action to take as follows.

Command
BYTE Meaning
‘0’ Enable bold print.
‘r Disable bold print.
‘2 Enable italic print.
‘3 Disable italic print.
‘4 Enable underlining.
‘5’ Disable underlining.
‘6’ Enable superscript.
‘7 Disable superscript.
‘8’ Enable subscript.
‘9’ Disable subscript.
‘A Enable NLQ mode.
‘B’ Disable NLQ mode.
‘C’ Enable wide printing.
‘D’ Disable wide printing.
‘E’ Enable light printing.
‘F Disable light printing.
‘W’ Switch to 10-cpi printing.
X’ Switch to 12-cpi printing.
Y’ Toggle compressed printing.
‘'z’ Toggle proportional printing.

THE ATARI COMPENDIUM

7.24 — VDI/GDOS Function Reference

BINDING WORD i = 0;

while(intin[i++] = (WORD)*str++);

contrl[0] = 5;
contrl[1] = 0;
contrl[3] = --i;
contrl[5] = 25;
contrl[6] = handle;
vdi();
CAVEATS The line of text must not exceed the maximum allowable length dftinearray

as returned byd_extnd() or the maximum length of your compilers’ array.

COMMENTS Only commands ‘0’, ‘1’, ‘2’, '3’, ‘4’, and ‘5’ are available with most printer
drivers.

SEE ALSO v_gtext(), v_ftext()

v_arc()

VOID v_arc(handle x, y, radius, startangle endangle)
WORD handle, x, y, radius, startangle endangle

v_arc() outputs an arc to the specified workstation.

OPCODE 11
SuB-OPCODE 2
AVAILABILITY Supported by all drivers. This function composes one of thd10GDP’s

(Generalized Drawing Primitives). Although all current drivers support all
GDP’s, their availability is not guaranteed and may vary. To check for a particular
GDP refer to the table returned Yyopnvwk() or v_opnwk().

THE ATARI COMPENDIUM

v_bar() - 7.25

PARAMETERS

BINDING

SEE ALSO

handleis a valid workstation handl®.andy specify the center of an arc with a
radius ofradiusand starting and ending anglesstsfrtangleandendangle
specified in tenths of degrees as follows:

900

1800 0

2700

contrl[0] = 11;

contrl[1] = 4;

contrl[3] = contrl[5] = 2;
contrl[6] = handle;

intin[0] = startangle;
intin[1] = endangle;

ptsin[0] = x;

ptsin[1] =y;

ptsin[2] = ptsin[3] = ptsin[4] = ptsin[5] = 0O;
ptsin[6] = radius;

ptsin[7] = O;

vdi();

vsl_color()

v_bar()

VOID v_bar(handle pxy)

WORD handle
WORD *pxy;,

OPCODE
SuB-OPCODE

AVAILABILITY

v_bar() outputs a filled rectangle to the specified workstation.

11

Supported by all drivers. This function composes one of thMI1GGDP’s
(Generalized Drawing Primitives). Although all current drivers support all

GDP's, their availability is not guaranteed and may vary. To check for a particular
GDP refer to the table returned ¥yopnvwk() or v_opnwk().

THE ATARI COMPENDIUM

7.26 — VDI/GDOS Function Reference

PARAMETERS

BINDING

COMMENTS

SEE ALSO

handleis a valid workstation handlpxy points to an array of fod"ORDs
specifying aVDI format rectangle to output.

contrl[0] = 11;
contrl[1] = 2;
contrl[3] = 0;
contrl[5] = 1,

contrl[6] = handle;

ptsin[0] = pxy[0];
ptsin[1] = pxy[1];
ptsin[2] = pxy[2];
ptsin[3] = pxyl[3];
vdi();

This function, as opposed ¥ _recfl(), doestake the setting ofsf_perimeter()
into consideration.

vsf_interior(), vsf_style(), vsf_color(), vsf_perimeter(), vsf_udpat()

v_bez()

VOID v_bez(handle count, pxy, bezarr, extent totpts totmoves)
WORD handle, count,
WORD *pxy, *extent

char *bezarr,

WORD *totpts *totmoves

OPCODE

SuB-OPCODE

AVAILABILITY

PARAMETERS

v_bez()outputs a bezier curve path.

6

13

Available only withFONTGDOS, FSMGDOS or SpeedoGDOS

handleis a valid workstation handleountspecifies the number of vertices in the
path.pXyis a pointer to &YORD array ¢ount* 2) WORDs long containing the
vertices wher@xy[0] is the X coordinate of the first poiitxy[1] is the Y
coordinate of the first point and so &&zarris a pointer to a character array
countBYTESs long where each byte is a bit mask with two flags that dictate the
interpretation of each vertice as follows:

THE ATARI COMPENDIUM

v_bez_fill() — 7.27

Name Bit Meaning
BEZ_BEZIER 0 If set, begin a 4-point bezier segment (two anchor
(0x01) points followed by two control points), otherwise,
BEZ_POLYLINE begin a polyline segment.
(0x00)
BEZ_NODRAW 1 If set, jump to this point without drawing.
(0x02)
— 2-7 Currently unused (set to 0).

Upon exit, a ANVORD array pointed to bgxtentis filled in with aVDI format
rectangle defining a bounding box of the path drawn WW@¥RD pointed to by
totptsis filled in with the number of points in the resulting path whereas the total
number of moves is stored in WORD pointed to bytotmoves

BINDING WORD i;

contrl[0] = 6;

contrl[1] = count;
contrl[3] = (count + 1)/2;
contrl[5] = 13;

contrl[6] = handle;

for(i = 0;i < count; i++)

{
intin[i] = (WORD)bezarr[i];
ptsin[i*2] = pxy[i*2];
ptsin[(i*2) + 1] = pxy[(i2) + 1];
}
vdi();

*totpts = intin[0];
*totmoves = intin[1];

for(i=0; i< 4;i++)
extent[i] = ptsout[i];

SEE ALSO v_bez_fill(), v_bez_on(), v_bez_off(), v_bez_qual(), v_set_app_buff()

v_bez_fill()

VOID v_bez_fill(handle count, pxy, bezarr, extent totpts totmoves)
WORD handle, count;

WORD *pxy, *extent

char *bezarr,

WORD *totpts *totmoves

v_bez_{fill() outputs a filled bezier path.

OPCODE 9

THE ATARI COMPENDIUM

7.28 — VDI/GDOS Function Reference

SuB-OPCODE 13
AVAILABILITY Available only withFONTGDOS, FSMGDOS or SpeedoGDOS
PARAMETERS Same ay_bez()
BINDING WORD i;
contrl[0] = 9;

contrl[1] = count;
contrl[3] = (count + 1)/2;
contrl[5] = 13;

contrl[6] = handle;

for(i = 0;i < count * 2; i++)

ptsin[i] = pxy(i];
for(i = 0;i < count; i++)

intin[i] = (WORD)bezarr[i];
vdi();

*totpts = intin[0];
*totmoves = intin[1];

for(i=0; i < 4;i++)
extent[i] = ptsout][i];

SEE ALSO v_bez(), v_bez_on(), v_bez_off(), v_bez_qual(), v_set_app_buff()

v_bez_ off()

VOID v_bez_off(handle)

WORD handle
v_bez_off()disables bezier capabilities and frees associated memory.
OPCODE 11
SuB-OPCODE 13
AVAILABILITY Available only withFONTGDOS, FSM, or SpeedoGDOS
PARAMETERS handlejs a valid workstation handle.
B|ND|NG COntrl[O] =11;
contrl[1] = O;
contrl[3] = 0;
contrl[5] = 13;

THE ATARI COMPENDIUM

v_bez_on() - 7.29

contrl[6] = handle;

vdi();

COMMENTS This function should be called to free any memory reserved by the bezier
functions.

SEE ALSO v_bez_on()

v_bez on()

WORD v_bez_on(handle)

WORD handle
v_bez_on()enables bezier capabilities.

OPCODE 11

SuB-OPCODE 13

AVAILABILITY

PARAMETERS

BINDING

RETURN VALUE

SEE ALSO

Available only withFONTGDOS, FSM, or SpeedoGDOS

handleis a valid workstation handle.

contrl[0] = 11;
contrl[1] = 1;
contrl[3] = 0;
contrl[5] = 13;

contrl[6] = handle;

vdi();

return intout[O];

v_bez_on()returns AVORD value indicating the number of line segments each

curve is composed of (smoothness). The value returned (0-7) is a power of 2
meaning that a return value of 7 indicates 128 line segments per curve.

v_bez_off()

THE ATARI COMPENDIUM

7.30 — VDI/GDOS Function Reference

v_bez_qual()

VOID v_bez_qual(handle percent actual)
WORD handle, percent

WORD *actual;

OPCODE
SuB-OPCODE
AVAILABILITY

PARAMETERS

BINDING

COMMENTS

SEE ALSO

v_bez_qual()sets the speed/quality ratio of the bezier curve rendering engine.
5

99

Available only withFONTGDOS, FSM, or SpeedoGDOS$

handlespecifies a valid workstation handfercentis a value (0-100) specifying

the tradeoff between bezier quality and speed. A value of O renders a bezier fastest
with the lowest quality while a value of 100 renders a bezier slowest with the
highest possible quality. On return, #Ww&RD pointed to byactualwill contain

the actual value used.

contrl[0] = 5;
contrl[1] = 0;
contrl[3] = 3;
contrl[5] = 99;
contrl[6] = handle;
intin[0] = 32;
intin[1] = 1;

intin[2] = percent;
vdi();

*actual = intout[0];

actualmay not be an exact percentage as the rendering engine may not actually
support every value possible between 1-99.

v_bez(), v_bez_fill(), v_bez_on()

THE ATARI COMPENDIUM

v_hit_image() — 7.31

v_bit_image()

VOID v_bit_image(handle fname, ratio, xscale yscale halign, valign, pxy)
WORD handle

char *fname

WORD aspectxscale yscale halign, valign;

WORD *pxy;,
v_bit_image() outputs a disk-basdgEM ‘.IMG'’ file.

OPCODE 5

SuB-OPCODE 23

AVAILABILITY Supported by all printer, metafile, and memory drivers.

PARAMETERS handleis a valid workstation handl&amespecifies thésSEMDOS file
specification for théEM bit-image file to printratio should be 0 to ignore the
aspect ratio of the image and 1 to adhere to it.
xscaleandyscalespecify the method of scaling to apply to the image. Fractional
scaling is specified by a value of 0 whereas a value of 1 represents integer
scaling.

If fractional scaling is used, the image will be displayed at the coordinates given
by theVDI format rectangle pointed to Ipxy. If integer scaling is applied, the
image will be displayed as large as possible within the given coordinates using
halign andvalign to specify the image justification as follows:
Value halign valign
0 Left Top
IMAGE_LEFT IMAGE_TOP
1 Center Center
IMAGE_CENTER IMAGE_CENTER
2 Right Bottom
IMAGE_RIGHT IMAGE_BOTTOM

intin[0] = ratio;

intin[1] = xscale;

intin[2] = yscale;

intin[3] = halign;

intin[4] = valign;

while(intin[tmp++] = (WORD)*fname++);

contrl[0] = 5;

THE ATARI COMPENDIUM

7.32 — VDI/GDOS Function Reference

contrl[1] = 2;
contrl[3] = --tmp;
contrl[5] = 23;

contrl[6] = handle;

ptsin[0] = pxy([0];
ptsin[1] = pxy[1];
ptsin[2] = pxy[2];
ptsin[3] = pxy[3];

vdi();

COMMENTS A flag indicating whether the device supports scaling can be four@ gxtnd().
This call used with the memory driver can provide image scaling for transfer to
the screen withrt_cpyfm().

SEE ALSO vg_scan()

v_cellarray()

VOID v_cellarray(handlg pxy, rowlen, elementsnum_rows wrmode colarray)
WORD handle

WORD *pxy;,

WORD rowlen, elementsnum_rows wrmode

WORD *colarray;,
v_cellarray() outputs an array of colored cells.

OPCODE 10

AVAILABILITY Not supported by any current drivers.

PARAMETERS handlespecifies a valid workstation handfy points to aVORD array with 4
entries specifying 8Dl format rectangle giving the extent of the array to output.
rowlenspecifies the length of each color array relementspecifies the total
number of color array element8Im_rowsspecifies the number of rows in the
color arraywrmodespecifies a valid writing mode (1-4) agelarray points to
an array oMWWORDs (num_rows* elementglong.

BINDING WORD i;
contrl[0] = 10;
contrl[1] = 2;

contrl[3] = num_rows * elements;
contrl[6] = handle;

contrl[7] = rowlen;

contrl[8] = elements;

contrl[9] = num_rows;

THE ATARI COMPENDIUM

v_circle() — 7.33

contrl[10] = wrt_mode;

for(i = 0;i < (num_rows * elements);i++)
intin[i] = colarray;

ptsin[0] = pxyl[0];
ptsin[1] = pxy[1];
ptsin[2] = pxy[2];
ptsin[3] = pxy[3];

vdi();

CAVEATS This function is not guaranteed available in any driver and should therefore be
avoided unless you are sure the driver you are utilizing understands it.

SEE ALSO vg_cellarray()

v_circle()

VOID v_circle(handle, x, y, radius)
WORD handle, x, y, radius;

OPCODE

SuB-OPCODE

AVAILABILITY

PARAMETERS

BINDING

SEE ALSO

v_circle() outputs a filled circle.
11
4

Supported by all drivers. This function composes one of thLGGDP’s
(Generalized Drawing Primitives). Although all current drivers support all

GDP’s, their availability is not guaranteed and may vary. To check for a particular
GDP refer to the table returnedayopnvwk() or v_opnwk().

handlespecifies a valid workstatiod.andy specify the center of a circle with a
radius ofradius,

contrl[0] = 11;
contrl[1] = 3;
contrl[3] = O;
contrl[5] = 4;
contrl[6] = handle;

ptsin[0] = x;
ptsin[1] = y;
ptsin[2] = ptsin[3] = 0;

vdi();
vsf_color(), vsf_interior(), vsf_style(), vsf_udpat()

THE ATARI COMPENDIUM

7.34 — VDI/GDOS Function Reference

v_clear_disp_list()

VOID v_clear_disp_list(handle)

WORD handle

OPCODE

SuB-OPCODE

v_clear_disp_list()clears the display list of a workstation.
5

22

AVAILABILITY Supported by printer, plotter, metafile, and camera drivers.
PARAMETERS handlespecifies a valid workstation handle.
BINDING Contrl[O] =b5;
contrl[1] = contrl[3] = 0;
contrl[5] = 22;
contrl[6] = handle;
vdi();
COMMENTS v_clear_disp_list()is essentially the same wasclrwk() except that no form feed
is issued.
SEE ALsSO v_clrwk()
v_clrwk()
VOID v_clrwk(handle)
WORD handle
v_clrwk() clears a physical workstation.
OPCODE 3
AVAILABILITY Supported by all drivers.
PARAMETERS handlespecifies a valid workstation.
BINDING ContrI[O] = 3,

contrl[1] = contrl[3] = 0;
contrl[6] = handle;

THE ATARI COMPENDIUM

v_clsvwk() — 7.35

vdi();
COMMENTS Physical workstations are cleared automatically when they are opened.
This call will generate a form feed on page-oriented devices.
Using this command on a virtual workstation will clear the underlying physical
workstation. This is generally not recommended because it will effect all virtual

workstations not simply your own.

SEE ALSO v_clear_disp_list(), v_updwk()

V_clsvwk()

VOID v_clsvwk(handle)
WORD handle

v_clsvwk() closes a virtual workstation.

OPCODE 101

AVAILABILITY Supported by all drivers.

PARAMETERS handlespecifies a valid virtual workstation to close.
BINDING contrl[0] = 101;

contrl[1] = contrl[3] = 0;
contrl[6] = handle;

vdi();
SEE ALSO v_opnvwk()
v_clswk()
VOID v_clswk(handle)
WORD handle
v_clswk() closes a physical workstation.
OPCODE 2
AVAILABILITY Available only with some form d6DOS.

THE ATARI COMPENDIUM

7.36 — VDI/GDOS Function Reference

PARAMETERS

BINDING

SEE ALSO

handlespecifies a valid physical workstation to close.

contrl[0] = 2;
contrl[1] = contrl[3] = 0;
contrl[6] = handle;

vdi();

v_opnvwk()

v_contourfill()

VOID v_contourfill(handle x, y, color)
WORD handle, x, y, color;

OPCODE

AVAILABILITY

PARAMETERS

BINDING

COMMENTS

SEE ALSO

v_countourfill() outputs a ‘seed’ fill.

103

Supported by alturrentscreen, printer and metafile drivers. The availability of
this call can be checked for usivig_extnd().

handlespecifies a valid workstation handle. x and y specify the starting point for
the fill. If color is OTHER_COLOR (-1) then the fill continues in all directions
until a color other than that foundXrandy is found. Ifcolor is positive then the

fill continues in all directions until colarolor is found.

contrl[0] = 103;
contrl[1] = contrl[3] = 0;
contrl[6] = handle;

intin[0] = color;

ptsin[0] = x;
ptsin[1] =y;
vdi();

In true-color mode if a positive value foelor is used, the fill spreads until a
pixel is found with the same color as ‘virtual penlor.

vsf_color(), vsf_interior(), vsf_style(), vsf_udpat()

THE ATARI COMPENDIUM

v_curdown() — 7.37

v_curdown()

VOID v_curdown(handle)
WORD handle

v_curdown() moves the text cursor down one line.

OPCODE 5
SuB-OPCODE 5
AVAILABILITY Supported by all screen drivers.
PARAMETERS handlespecifies a valid workstation handle.
BINDING contrl[0] = 5;

contrl[1] = contrl[3] = O;

contrl[5] = 5;

contrl[6] = handle;

vdi();
COMMENTS This call is equivalent to thesGB VT-52 code.
SEE ALSO v_curup()

v_curhome()

VOID v_curdown(handle)

WORD handle
v_curhome() moves the text cursor to the upper-left of the screen.
OPCODE 5
SuB-OPCODE 8
AVAILABILITY Supported by all screen drivers.
PARAMETERS handlespecifies a valid workstation handle.
BINDING contil1] = cont3] = 0
contrl[5] = 8;

THE ATARI COMPENDIUM

7.38 — VDI/GDOS Function Reference

contrl[6] = handle;

vdi();
COMMENTS This call is equivalent to tHesGH VT-52 code.
v_curleft()
VOID v_curleft(handle)
WORD handle

v_curleft() moves the text cursor left one character position.
OPCODE 5
SuB-OPCODE 7
AVAILABILITY Supported by all screen drivers.
PARAMETERS handleis a valid workstation handle.
BINDING contrl[0] = 5;

contrl[1] = contrl[3] = O;

contrl[5] = 7;

contrl[6] = handle;

vdi();
COMMENTS This call is equivalent to tHesGD VT-52 code.
SEE ALSO v_curright()

v_curright()

VOID v_curright(handle)

WORD handle
v_curright() moves the text cursor one position to the right.
OPCODE 5
SuB-OPCODE 6
AVAILABILITY Supported by all screen drivers.

THE ATARI COMPENDIUM

v_curtext() — 7.39

PARAMETERS handlespecifies a valid workstation handle.
BINDING ContrI[O] =5;

contrl[1] = contrl[3] = 0;

contrl[5] = 6;

contrl[6] = handle;

vdi();
COMMENTS This call is equivalent to thHesGC VT-52 code.
SEE ALSO v_curleft()

v_curtext()

VOID v_curtext(handle, str)

WORD handle
char *str;
v_curtext() outputs a line of text to the screen in text mode.
OPCODE 5
SuB-OPCODE 12
AVAILABILITY Supported by all screen drivers.
PARAMETERS handleis a valid workstation handlstr is a character pointer to a string no more
than 127 characters long.
BINDING WORD i =0;
while(intin[i++] = (WORD)*str++);
intin[i] = 0;
contrl[0] = 5;
contrl[1] = O;
contrl[3] = --i;
contrl[5] = 12;
contrl[6] = handle;
vdi();
COMMENTS The line of text must not exceed the maximum length of the intin array as returned
by vg_extnd() or the maximum length of your compilers’ array.
SEE ALSO vs_curaddress(), v_rvon(), v_rvoff()

THE ATARI COMPENDIUM

7.40 — VDI/GDOS Function Reference

v_curup()

VOID v_curup(handle)
WORD handle

v_curup() moves the text cursor up one line.

OPCODE 5
SuB-OPCODE 4
AVAILABILITY Supported by all screen drivers.
PARAMETERS handlespecifies a valid workstation handle.
BINDING Contrl[O] = 5,

contrl[1] = contrl[3] = 0;

contrl[5] = 4;

contrl[6] = handle;

vdi();
COMMENTS This call is equivalent to tHesGA VT-52 code.
SEE ALSO v_curdown()

v_dspcur()

VOID v_dspcur(handle x, y)
WORD handle, x, y;

v_dspcur() displays the mouse pointer on screen at the specified position.

OPCODE 5

SuB-OPCODE 18

AVAILABILITY Supported by all screen drivers.

PARAMETERS handlespecifies a valid workstation handteandy specify the screen

coordinates of where to display the mouse pointer.

THE ATARI COMPENDIUM

v_eeol() - 7.41

BINDING Contrl[O] =5;
contrl[1] = 1
contrl[3] = 0;
contrl[5] = 18;
contrl[6] = handle;
ptsin[0] = x;
ptsin[1] = y;

vdi();

COMMENTS This call will render a mouse cursor on screen regardless of its current ‘show
status. Normally a function will use eithgniaf_mouse()if using theAES or
v_show_c()if using theVDI.

SEE ALSO v_rmcur(), graf_mouse(), v_show_c()

v_eeol()

VOID v_eeol(handle)

WORD handle
v_eeol()erases the text line from the current cursor position rightwards.

OPCODE 5

SuB-OPCODE 10

AVAILABILITY Supported by all screen drivers.

PARAMETERS handlespecifies a valid workstation handle.

BINDING ContrI[O] =5;
contrl[1] = contrl[3] = 0;
contrl[5] = 10;
contrl[6] = handle;

vdi();
COMMENTS This call is equivalent to tHe5GK VT-52 code.
SEE ALSO v_eeos()

THE ATARI COMPENDIUM

7.42 — VDI/GDOS Function Reference

v_eeos()

WORD v_eeos(andle)

WORD handlg

OPCODE

SuB-OPCODE

v_eeos(Jerases the current screen of text from the cursor position.
5

9

AVAILABILITY Supported by all screen drivers.
PARAMETERS handlespecifies a valid workstation handle.
BINDING contrl[0] = 5;

contrl[1] = contrl[3] = O;

contrl[5] = 9;

contrl[6] = handle;

vdi();
COMMENTS This call is equivalent to tHesG-JVT-52 code.
SEE ALsSO v_eeol()
v_ellarc()

VOID v_ellarc(handle x, y, xradius, yradius startangle endanglg
WORD handle, x, y, xradius, yradius, startangle endangle

OPCODE

SuB-OPCODE

AVAILABILITY

PARAMETERS

v_ellarc() outputs an elliptical arc segment.
11
6

Supported by all drivers. This function composes one of thd1GGDP’s
(Generalized Drawing Primitives). Although all current drivers support all

GDP’s, their availability is not guaranteed and may vary. To check for a particular
GDP refer to the table returned Yyopnvwk() or v_opnwk().

handlespecifies a valid workstation handkeandy specify the coordinates of the

THE ATARI COMPENDIUM

v_ellipse() — 7.43

center of an arc with an X radiusxfdiusand a Y radius ofradius Only the
portion of the arc which falls between the angles specifisthiiangleand
endanglewill be drawn. Angles are specified in tenths of degrees as follows:

900

1800

2700

BINDING ContrI[O] =11;
contrl[1] = contrl[3] = 2;
contrl[5] = 6;
contrl[6] = handle;

intin[0] = startangle;
intin[1] = endangle;
ptsin[0] = x;

ptsin[1] =y;

ptsin[2] = xradius;
ptsin[3] = yradius;

vdi();

SEE ALSO v_ellipse(), v_ellpie(), vsl_color(), vsI_type(), vsl_width(), vsl_udsty()

v_ellipse()

VOID v_ellipse(handlg x, y, xradius, yradius)
WORD handle, x, y, xradius, yradius,

v_ellipse()outputs a filled ellipse.

OPCODE 11
SuB-OPCODE 5
AVAILABILITY Supported by all drivers. This function composes one of thd1GGDP’s

(Generalized Drawing Primitives). Although all current drivers support all
GDP’s, their availability is not guaranteed and may vary. To check for a particular
GDP refer to the table returned Yayopnvwk() or v_opnwk().

PARAMETERS handlespecifies a valid workstation handkeandy specify the center point of an
arc with an X radius ofradiusand a Y radius ofradius

THE ATARI COMPENDIUM

7.44 — VVDI/GDOS Function Reference

BINDING

SEE ALSO

contrl[0] = 11;
contrl[1] = 2;
contrl[3] = 0;
contrl[5] = 5;

contrl[6] = handle;

ptsin[0] = x;
ptsin[1] =y;
ptsin[2] = xradius;
ptsin[3] = yradius;

vdi();

v_ellpie(), v_ellarc(), vsf_color(), vsf_interior(), vsf_style(), vsf_udpat(),
vs_perimeter()

v_ellpie()

VOID v_ellpie(handle X, y, xradius, yradius, startangle endanglg
WORD handle, x, y, xradius, yradius, startangle endangle

OPCODE

SuB-OPCODE

AVAILABILITY

PARAMETERS

v_ellpie() outputs a filled elliptical pie segment.
11
7

Supported by all drivers. This function composes one of tMI1GGDP’s
(Generalized Drawing Primitives). Although all current drivers support all

GDP’s, their availability is not guaranteed and may vary. To check for a particular
GDP refer to the table returned yopnvwk() or v_opnwk().

handlespecifies a valid workstation handkeandy specify the center coordinates
of an elliptical pie segment to draw with an X radiugréidiusand a Y radius of
yradius Only the portion of the arc will be drawn falling between the angles
specified instartangleandendanglgas shown below). The ends of this arc is
connected to the center point with lines forming the pie segment.

900

1800

2700

THE ATARI COMPENDIUM

v_enter_cur() — 7.45

BINDING Contrl[O] =11,
contrl[1] = contrl[3] = 2;
contrl[5] = 7;
contrl[6] = handle;

intin[0] = startangle;
intin[1] = endangle;

ptsin[0] = x;
ptsin[1] = y;
ptsin[2] = xradius;
ptsin[3] = yradius;

vdi();

SEE ALSO v_ellarc(), v_ellipse(), vsf_color(), vsf_style(), vsf_interior(), vsf_udpat(),
vs_perimeter()

v_enter_cur()

VOID v_enter_cur(handle)

WORD handle
v_enter_cur() clears the screen to color 0, removes the mouse cursor and enters
text mode.
OPCODE 5
SuB-OPCODE 3
AVAILABILITY Supported by all screen drivers.
PARAMETERS handlespecifies a valid workstation handle.
BINDING Contrl[O] =5;
contrl[1] = contrl[3] = O;
contrl[5] = 3;
contrl[6] = handle;
vdi();
CAVEATS You should check that the left mouse button has been releasedjwitdouse()
prior to calling this function. If the button is depressed when you call this function
the VDI will lock waiting for it to be released aftgr exit_cur().
COMMENTS This call is used by &EM application to prepare for executing @S

application when not running unddultiTOS .

THE ATARI COMPENDIUM

7.46 — VDI/GDOS Function Reference

SEE ALsSO v_exit_cur()

v_exit_cur()

VOID v_exit_cur(handle)
WORD handle

v_exit_cur() exits text mode and restores the mouse pointer.

OPCODE 5
SuB-OPCODE 2
AVAILABILITY Supported by all screen drivers.
PARAMETERS handlespecifies a valid workstation handle.
BINDING Contrl[O] =b5;

contrl[1] = contrl[3] = 0;

contrl[5] = 2;

contrl[6] = handle;

vdi();
CAVEATS Seev_enter_cur().
COMMENTS To completely restore the screen you shouldfeett_dial(FMD_FINISH | sx sy,

sw, sh) wheresx sy, swW, andshare the coordinates of the screen.

SEE ALSO v_enter_cur()

v_fillarea()

VOID v_fillarea(handlg count, pxy)
WORD handle count;

WORD * pxy;,

v_fillarea() outputs a filled polygon.
OPcCODE 9
AVAILABILITY Supported by all drivers.

THE ATARI COMPENDIUM

v_flushcache() — 7.47

PARAMETERS handlespecifies a valid workstation handi@untspecifies the number of
vertices in the polygon to outp@ixy should point to an array of coordinate pairs
with the firstWORD being the first X point, the secoMdORD being the first Y
point and so on.

BINDING WORD i;

contrl[0] = 9;
contrl[1] = count;
contrl[3] = 0;
contrl[6] = handle;

for(i = 0;i < count*2;i++)
ptsin(i] = pxyl[il;

vdi();
COMMENTS This function will automatically connect the first point with the last point.
SEE ALSO v_pline(), v_contourfill()

v_flushcache()

VOID v_flushcache(handle)

WORD handle
v_flushcache()flushes the character bitmap portion of the cache.
OPCODE 251
AVAILABILITY Available only withFSMGDOS andSpeedoGDOS
PARAMETERS handlespecifies a valid workstation handle.
BINDING contrl[0] = 251;
contrl[1] = contrl[3] = 0;
contrl[6] = handle;
vdi();
SEE ALSO v_loadcache(), v_savecache()

THE ATARI COMPENDIUM

7.48 — VDI/GDOS Function Reference

v_fontinit()

VOID v_fontinit(fptr_high, fptr_low)
WORD fptr_high, fptr_low;

v_fontinit() allows replacement of the built-in system font.

OPCODE 5

SuB-OPCODE 102

AVAILABILITY All TOS versions.

PARAMETERS fptr_highandfptr_low are the high and loWWORDs of a pointer to a Line-A

compatible font header structure in Motorola (Big-Endian) format which contains
information about the font to be used as a replacement for the system font.

BINDING contrl[0] = 5;
contrl[1] = O;
contrl[3] = 2;
contrl[5] = 102;

contrl[6] = handle;

intin[0] = fptr_high;
intin[1] = fptr_low;

vdi();

COMMENTS This function has never been officially documented though it exists in all current
versions ofTOS.,

v_form_adv()

VOID v_form_adv(handle)

WORD handle
v_form_adv() outputs the current page without clearing the display list.
OPCODE 5
SuB-OPCODE 20
AVAILABILITY Supported by all drivers.
PARAMETERS handlespecifies a valid workstation handle.

THE ATARI COMPENDIUM

v_ftext() — 7.49

BINDING COntrl[o] =5;
contrl[1] = contrl[3] = 0;

contrl[5] = 20;
contrl[6] = handle;
vdi();

COMMENTS This function is useful if you wish to print a new page containing the same objects
as on the previous page.

SEE ALSO V_updwk()

v_ftext()

VOID v_ftext(handleg X, y, str)
WORD handle, x, y;
char *str;

v_ftext() outputs outline text taking spacing remainders into consideration.
OPCODE 241
AVAILABILITY Available only withFSMGDOS or SpeedoGDOS

PARAMETERS handlespecifies a valid workstation handkeandy specify the starting
coordinate of th&ULL -terminated text string (setst_alignment()) pointed to
by str to print.

BINDING WORD i = 0;
while(intin[i++] = (WORD)*str++);
contrl[0] = 241;
contrl[1] = 1;

contrl[3] = --i;
contrl[6] = handle;

ptsin[0] = x;
ptsin[1] = y;

vdi();

COMMENTS The text contained istr (including itsNULL byte) should not exceed the
maximum allowable size of thetin array (as indicated in ttvéork_outarray) or
the size of théntin array allocated by your compiler.

To output 16-bit Speedo character indexes vusiext16().

THE ATARI COMPENDIUM

7.50 — VDI/GDOS Function Reference

This function produces output more properly spaced tharMwiitext() because
it takes the remainder amounts freai_f_extent() into consideration.

SEE ALsSO v_ftext(), v_ftext_offset(), v_ftext_offsetl6(), v_gtext(), vst_alignment(),
vst_color(), vst_effects(), vst_arbpt(), vst_height(), vst_font(), vqt_f_extent(),
vst_point()

v_ftext16()

VOID v_ftext16(handle X, y, wstr, wstrlen)
WORD handle, x, y;

WORD *wstr;

WORD wstrlen;
v_ftext16() is a variant binding of_ftext() that outputs 16-bit Speedo character
text rather than 8-bit ASCII text.

OPCODE 241

AVAILABILITY Available only withSpeedoGDOS

PARAMETERS handlespecifies a valid workstation handieandy specify the starting
coordinate of the location to output tewstr points to dNULL -terminated text
string composed dVORD-sized Speedo charactewstrlenspecifies the length
of the text string.

BINDING WORD i;
for(i=0; i< wstrlen; i++)

intin[i] = wstr[i];

contrl[0] = 241;
contrl[1] = 1,
contrl[3] = wstrlen;
contrl[6] = handle;
ptsin[0] = x;
ptsin[1] = y;
vdi();

COMMENTS This function should only be used whegi_charmap() has been used to indicate
thatWORD-sized Speedo character indexes should be recognized rather than 8-
bit ASCII.

The text contained iwstr (including itsNULL byte) should not exceed the
maximum allowable size of thatin array (as indicated in theork_outarray) or

THE ATARI COMPENDIUM

v_ftext offset() — 7.51

the size of théntin array allocated by your compiler.

CAVEATS Current versions dbpeedoGDOSecome confused when the space character
(index 0) is encountered in the string. It is suggested that one of the three space
characters (of varying widths) at indexes 560-562 be used instead.

SEE ALSO v_ftext(), v_ftext_offset(), v_ftext_offset16(), v_gtext(), vst_alignment(),
vst_color(), vst_effects(), vst_arbpt(), vst_height(), vst_font(), vqt_f_extent(),
vst_point()

v_ftext offset()

VOID v_ftext_offset(handle x, y, str, offset)
WORD handle x, y;

char *str;
WORD *offset,
v_ftext_offset()is a variant binding of_ftext() available undegpeedoGDOS
which allows an offset vector for each character to be specified.
OPCODE 241
AVAILABILITY Available only withSpeedoGDOS
PARAMETERS handlespecifies a valid workstation handleandy give the point where the
string will be renderedffsetpoints to an array 3WORDs which contains one x
and y offset value for each charactegin
BINDING WORD i = 0;
W_hile(intin[i++] = (WORD)*str++);
-.l;
ptsin[0] = x;
ptsin[1] = y;
for(j=0;j<i*2;j++)
ptsin[j + 2] = offset[j];
contrl[0] = 241;
contrl[1] =i + 1;
contrl[3] = i;
contrl[6] = handle;
vdi();
COMMENTS The text contained istr (including itsNULL byte) should not exceed the

maximum allowable size of thetin array (as indicated in theork_outarray) or

THE ATARI COMPENDIUM

7.52 — VDI/GDOS Function Reference

the size of théntin array allocated by your compiler.
To output 16-bit Speedo character indexesyuext_offset16()

SEE ALSO v_ftext_offsetl6(), v_ftext(), v_gtext()

v_ftext_offsetl6()

VOID v_ftext_offset(handle x, y, wstr, wstrlen, offset)
WORD handle x, y;

WORD *wstr;

WORD wstrlen;

WORD *offsef;

v_ftext_offsetl16()is a variant binding of_ftext_offset() which allows 16-bit
Speedo character strings to be output rather than 8-bit ASCII codes.

OPCODE 241
AVAILABILITY Available only withSpeedoGDOS

PARAMETERS handlespecifies a valid workstation handieandy give the point where the
string will be renderedffsetpoints to an array 8V ORDs which contains one x
and y offset value for each charactewsir.

BINDING WORD i;

for(i = 0;i < wstrlen; i++)
intin[i] = wstr[i];

ptsin[0] = x;
ptsin[1] = y;

for(j=0;j <i*2;j++)

ptsin[j + 2] = offset][j];
contrl[0] = 241;
contrl[1] = wstrlen + 1;
contrl[3] = wstrlen;
contrl[6] = handle;

vdi();

COMMENTS This function should only be used whegt_charmap() has been used to indicate
thatWORD sized Speedo character indexes should be recognized rather than 8-bit
ASCILI.

The text contained iwstr (including itsNULL byte) should not exceed the

THE ATARI COMPENDIUM

v_getbitmap_info() — 7.53

maximum allowable size of thetin array (as indicated in theork_outarray) or
the size of théntin array allocated by your compiler.

CAVEATS Current versions dbpeedoGDOSecome confused when the space character
(index 0) is encountered in the string. It is suggested that one of the three space
characters (of varying widths) at indexes 560-562 be used instead.

SEE ALSO v_ftext16(), v_ftext_offset()

v_getbitmap_info()

VOID v_getbitmap_info(handle ch, advx advy, xoff, yoff, width, height, bitmap)
WORD handle, ch;

fix31 *advx, *advy, *xoff, *yoff;

WORD *width, *height;

VOID *bitmap;
v_getbitmap_info() returns placement information for the bitmap of a character
based on the current character font, size, and alignment.

OPCODE 239

AVAILABILITY Available only withSpeedoGDOS,

PARAMETERS handlespecifies a valid workstation hand@d is the character to return
information about.
Thefix31 variables pointed to bydvx advy, xoff, andyoff will be filled in with
the x and y advance and offset vectors respectivelyWIGRDs pointed to by
width andheightwill be filled in with the width and height of the bitmap pointed
to by the value returned bitmap
contrl[1] = O;
contrl[3] = 1;
contrl[6] = handle;
intin[0] = ch;
vdi();

*width = intout[0];
*height = intout[1];
*advx = *(fix31 *)&intout[2];

IThis call did exist iFSMGDOS, however the call had a completely different calling format. Atari changed the existing call as no
FSMGDOS program had yet been written to utilize it.

THE ATARI COMPENDIUM

7.54 — VDI/GDOS Function Reference

COMMENTS

*advy = *(fix31 *)&intout[4];
*xoff = *(fix31 *)&intout[6];
*yoff = *(fix31 *)&intout[8];
*bitmap = *(void *)&intout[10];

The advance vector represents the amount to add to the current point to properly
place the character. The offset vector, when added to the current point, give the
location of the upper-left corner of the bitmap.

v_getoutline()

VOID v_getoutline(handle ch, xyarray, bezarray, maxverts, numvents

WORD handleg, ch;
WORD *xyarray;
char *bezarray;
WORD maxverts;
WORD *numverts;

OPCODE
AVAILABILITY

PARAMETERS

BINDING

v_getoutline() returns information about aspeedoGDOSharacter required to
generate the character with bezier curves.

243

Available only withSpeedoGDO$,

handlespecifies a valid workstation handé# specifies the character to return
information about. The arrays pointed toXy@rray andbezarrayare filled in
with the bezier information for the character. The definitiony@frray and
bezarrayis given in the binding fov_bez()

maxvertshould indicate the maximum number of vertices the buffer can hold. The
WORD pointed to bynumvertswill be filled in with the actual number of vertices
for the character.

contrl[0] = 243;
contrl[1] = 0;
contrl[3] = 6;
contrl[6] = handle;

intin[0] = ch;

intin[1] = maxverts;

*(WORD *)&intin[2] = xyarray;
*(WORD *)&intin[4] = bezarray;

vdi();

2This call was present undeSMGDOS, however it's binding has dramatically changed. Applications using this binding will not operate
under the oldeFSMGDOS.

THE ATARI COMPENDIUM

v_get_pixel() — 7.55

*numverts = intout[0];

v_get_pixel()

VOID v_get_pixel(handle x, y, pindex vindex)

WORD handle, x, y;

WORD *pindex *vindex

OPCODE

AVAILABILITY

PARAMETERS

BINDING

v_get_pixel()returns the color value for a specified coordinate on the screen.
105
Supported by all screen drivers.

handlespecifies a valid workstation handkanyy specify the coordinate to
return color information for.

In a palette-based mode &RD pointed to byindexwill contain the
hardware register index of the color and\WM@RD pointer to byvindexwill
contain theVDl index of the color.

In 16-bit true-color modegindexwill be 0 andvindexwill return the 16-bit
RGB pixel value in the format {RRRR RGGG GGGB BBBB}.

In 32-bit color modes, the lower byteifidexwill contain the 8 bits of red data,
the upper byte gdindexwill contain the 8 bits of green data, and the lower byte of
pindexwill contain the 8 bits of blue data. The upper bytginflexis reserved

for non-color data.

contrl[0] = 105;
contrl[1] = 1;
contrl[3] = 0;

contrl[6] = handle;

ptsin[0] = x;
ptsin[1] = y;
vdi();

*pindex = intout[0];
*vindex = intout[1];

THE ATARI COMPENDIUM

7.56 — VDI/GDOS Function Reference

v_gtext()

VOID v_gtext(handle, x, y, str)
WORD handle, x, y;
char *str;

v_gtext() outputs graphic text.
OPCODE 8
AVAILABILITY Supported by all drivers.

PARAMETERS handlespecifies a valid workstation handieandy specify the starting
coordinates of the text (s>_alignment()). str is a pointer to &ULL -
terminated character string to print.

BINDING WORD i =0;
while(intin[i++] = (WORD)*str++);

contrl[0] = 8;
contrl[1] = 1;
contrl[3] = --i;
contrl[6] = handle;

ptsin[0] = x;
ptsin[1] = ;

vdi();

COMMENTS The text contained istr (including itsNULL byte) should not exceed the
maximum allowable size of thetin array (as indicated in thveork_outarray) or
the size of théntin array allocated by your compiler.

Using this function to output outline text wBsMGDOS is possible to remain
backward-compatible but not recommended as it will introduce small errors as
spacing remainders are lost.

SEE ALSO v_ftext(), v_ftext_offset(), vst_color(), vst_effects(), vst_alignment(),
vst_height(), vst_point()

THE ATARI COMPENDIUM

v_hardcopy() — 7.57

v_hardcopy()

VOID v_hardcopy(handle)

WORD handle
v_hardcopy() invokes theALT-HELP screen dump.
OPCODE 5
SuB-OPCODE 17
AVAILABILITY Supported by screen drivers running under ST compatible resolutions.
PARAMETERS handlespecifies a valid workstation handle.
BlND|NG contrI[O] =5;
contrl[1] = contrl[3] = O;
contrl[5] = 17;
contrl[6] = handle;
vdi();
CAVEATS This function works in only ST compatible screen modes and should thus be
avoided.
SEE ALSO Scrdmp()

v_hide c()

VOID v_hide_c(handle)

WORD handle

v_hide_c()hides the mouse cursor.
OPCODE 123
AVAILABILITY Supported by all screen drivers.
PARAMETERS handlespecifies a valid workstation handle.
BINDING contrl[0] = 123;

contrl[1] = contrl[3] = O;
contrl[6] = handle;

vdi();

THE ATARI COMPENDIUM

7.58 — VDI/GDOS Function Reference

COMMENTS This call is nested. For each time you call this function you must_cstilow_c()
an equal number of times to show the mouse.

SEE ALSO v_show_c(), graf_mouse()

v_justified()

VOID v_justified(handle x, y, str, length, wflag, cflag)
WORD handle, x, y;

char *str;

WORD length, wflag, cflag;

v_justified() outputs justified graphics text.

OPCODE 11
SuB-OPCODE 10
AVAILABILITY Supported by all drivers. This function composes one of thdJ1GGDP’s

(Generalized Drawing Primitives). Although all current drivers support all
GDP’s, their availability is not guaranteed and may vary. To check for a particular
GDP refer to the table returned Yayopnvwk() or v_opnwk().

PARAMETERS handlespecifies a valid workstation handteandy specify the starting
coordinates at which to draw th&JLL -terminated text string (see
vst_alignment()) pointed to bystr. lengthspecifies the pixel length of the area to
justify on.

wflag andcflag specify the type of justification to perform between words and
characters respectively. A valueN®JUSTIFY (0) indicates no justification
whereas a value JSTIFY (1) indicates to perform justification.

BINDING WORD i = 0;

while(intin[i++] = (WORD)*str++);

contrl[0] = 11;
contrl[1] = 2;

contrl[3] = --i;
contrl[5] = 10;

contrl[6] = handle;

intin[0] = wflag;
intin[1] = cflag;

ptsin[0] = x;

THE ATARI COMPENDIUM

v_killoutline() — 7.59

COMMENTS

SEE ALSO

ptsin[1] = y;
ptsin[2] = length;
ptsin[3] = 0;
vdi();

This call does not take into account remainder information from outline fonts.

v_gtext(), v_ftext(), vst_color(), vst_font(), vst_effects(), vst_alignment(),
vst_point(), vst_height()

v_Kkilloutline()

VOID v_killoutline(handle, outline)

WORD handle

FSMOUTLINE outline;

OPCODE

AVAILABILITY

COMMENTS

SEE ALSO

v_Killoutline() releases an outline from memory.

242

Available only withFSMGDOS or SpeedoGDOS

UnderFSMGDOS this call was required to release memory allocated for an
outline returned frorv_getoutline(). With SpeedoGDOSthis call is no longer

required and is thus not documented further.

v_getoutline()

v_loadcache()

WORD v_loadcache(andle fname mode

WORD handlg

char *fname
WORD mode

OPCODE
AVAILABILITY

PARAMETERS

v_loadcache()loads a previously saved cache file from disk.
250
Supported only by SMGDOS andSpeedoGDOS

handlespecifies a valid workstation handieamespecifies théSEMDOS file

THE ATARI COMPENDIUM

7.60 — VDI/GDOS Function Reference

BINDING

RETURN VALUE

COMMENTS

SEE ALSO

specification of the cache file to loatiodespecifies whether current data will be
flushed first. A value of 0 will append the loaded cache to the current cache
whereas a value of 1 will flush the cache prior to loading.

WORD i = 1;

intin[0] = mode;
while(intin[i++] = (WORD)*fname++);

contrl[0] = 250;
contrl[1] = 0;
contrl[3] = --i;

contrl[6] = handle;
vdi();

return intout[0];
v_loadcache(returns 0 if successful or -1 if an error occurred.

This command only affects the cache responsible for storing bitmaps created from
outline characters.

v_savecache(), v_flushcache()

V_meta_extents()

VOID v_meta_extents(handle xmin, ymin, xmax, ymax
WORD handle, xmin, ymin, xmax, ymax

OPCODE

SuB-OPCODE

AVAILABILITY

PARAMETERS

BINDING

v_meta_extents(embeds placement information for a metafile.
5

98

Supported by all metafile drivers.

handlespecifies a valid workstation handigninandymin specify the upper left
corner of the bounding box of the metafi®axandymaxspecify the lower left
corner.

contrl[0] = 5;
contrl[1] = 2;
contrl[3] = O;
contrl[5] = 98;

contrl[6] = handle;
ptsin[0] = xmin;

THE ATARI COMPENDIUM

v_opnvwk() — 7.61

ptsin[1] = ymin;
ptsin[2] = xmax;
ptsin[3] = ymax;
vdi();

COMMENTS Parameters sent to this call should be specified in whatever coordinate system the
metafile is currently using.

SEE ALSO vm_pagesize()

V_opnvwk()

VOID v_opnvwk(work_in, handle, work_out)
WORD *work_in, *handle, *work_out

v_opnvwk() opens a virtua¥DI workstation.

OPCODE 100
AVAILABILITY Supported by all drivers.
PARAMETERS work_inis a pointer to an array of WWORDs which define the inital defaults for

the workstation as follows:

work in[x| Meaning

0 Device identification number. This indicates the
physical device ID of the device (the line number
of the driver in ASSIGN.SYS when using GDOS).
For screen devices you should normally use the
value Getrez() + 2, however, a value of 1 is
acceptable if not using any loaded fonts.

Default line type (same as vsl_type()).

Default line color (same as vsl_color()).

Default marker type (same as vsm_type()).

Default marker color (same as vsm_color()).

Default font (same as vst_font()).

Default text color (same as vst_color()).

Default fill interior.
Default fill style.
Default fill color.

Q| O[N] 0| | W[N]

THE ATARI COMPENDIUM

7.62 — VDI/GDOS Function Reference

10

Coordinate type flag. A value of 0 specifies NDC
‘Normalized Device Coordinates’ coordinates
whereas a value of 2 specifies RC ‘Raster
Coordinates’. All other values are reserved. NDC
coordinates are only available when using external
drivers with GDOS.

handleshould be set to the current handle (not the device ID) of the physical
workstation for this device. For screen devices this is the value returned by
graf_handle(). On exithandlewill be filled in theVDI workstation handle
allocated, if successful, or 0 if the workstation could not be opened.

work_outpoints to an array of SWORDs which on exit will be filled in by the

VDI with information regarding the allocated workstation as follows (a structure

name is listed beside its array member for those using the ‘C’ style
VDI_Workstation structure instead of the array):

VDI Structure

__work_outfx] Member Meaning

0 xres Width of device in pixels - 1.

1 yres Height of device in pixels - 1.

2 noscale Device coordinate units flag:
0= Device capable of producing a precisely scaled

image (screen, printer, etc...)
1= Device not capable of producing a precisely scaled
image (film recorder, etc...)

3 wpixel WIdth of pixel in microns (1/25400 inch).

4 hpixel Height of pixel in microns (1/25400 inch).

5 cheights Number of character heights (0 = continuous scaling).

6 linetypes Number of line types.

7 linewidths Number of line widths (0 = continous scaling).

8 markertypes | Number of marker types.

9 markersizes Number of marker sizes (0 = continuous scaling).

10 faces Number of faces supported by the device.

11 patterns Number of available patterns.

12 hatches Number of available hatches.

13 colors Number of predefined colors/pens (ST High = 2, ST
Medium =4, TT Low = 256, True Color = 256).

14 ngdps Number of supported GDP’s

THE ATARI

COMPENDIUM

v_opnvwk() — 7.63

15-24 cangdps[10] | cangdps[0 — (ngdps - 1)] contains a list of the GDP’s the
device supports as follows:
1= Bar
2= Arc
3= Pie Slice
4= Circle
5= Ellipse
6= Elliptical Arc
7= Elliptical Pie
8= Rounded Rectangle
9= Filled Rounded Rectangle
10 = Justified Graphics Text
25-34 gdpattr[10] For each GDP as listed above, gdpatt 0 — (ngdps - 1)]
indicates the attributes which are applied to that GDP as
follows:
1= Polyline (vsl_...)
2= Polymarker (vsm_...)
3= Text(vst_..)
4= Fill Area (vsf_...)
5= None
35 cancolor Color capability flag.
0= No
1= Yes
36 cantextrot Text rotation flag.
0= No
1= Yes
37 canfillarea Fill area capability flag.
0= No
1= Yes
38 cancellarray | Cell array capability flag.
0= No
1= Yes
39 palette Number of available colors in palette.
0= >32767 colors
2= Monochrome
>2 = Color
40 locators Number of locator devices.
1= Keyboard only.
2 = Keyboard and other.
41 valuators Number of valuator devices.
1= Keyboard only.
2 = Keyboard and other.
42 choicedevs Number of choice devices.
1= Function keys.
2 = Function keys + keypad.
43 stringdevs Number of string devices.
1= Keyboard.
44 wstype Workstation type.
0= Output only
1= Inputonly
2 = Input/Output
3= Metafile
45 minwchar Minimum character width in pixels.
46 minhchar Minimum character height in pixels.
a7 maxwchar Maximum character width in pixels.

THE ATARI

COMPENDIUM

7.64 — VDI/GDOS Function Reference

48 maxhchar Maximum character height in pixels.
49 minwline Minimum line width.
50 zero5 Reserved (0).
51 maxwline Maximum line width.
52 zero7 Reserved (0).
53 minwmark Minimum marker width.
54 minhmark Minimum marker height.
55 maxwmark Maximum marker width.
56 maxhmark Maximum marker height.
BINDING WORD i;

contrl[0] = 100;

contrl[1] = O;

contrl[3] = 11;

contrl[6] = *handle;

for(i = 0;i < 11;i++)
intin[i] = work_in[i];

vdi();
*handle = contrl[6];

for(i = 0;i < 45;i++)
work_out[i] = intout[i];

for(i = 0;i < 13;i++)
work_out[45+i] = intout][i];

CAVEATS The VDI included withTOS versions less than 2.06 sometimes returned the same
handle for consecutive calls using the same physical handle.

COMMENTS Using multiple virtual workstations provides the benefit of being able to define
multiple sets of default line types, text faces, etc... without having to constantly set
them.

TheVDI_Workstation structure method is the recommended method of using this
function. See th¥'DI entry forV_Opnwk() andV_Opnvwk().

Desk accessories running undé?S versions below 1.4 should not leave a
workstation open across any call which might surrender contéfEtd

(evnt_button(), evnt_multi(), etc...). This could giv&EM time to change

screen resolutions addS versions below 1.4 did not release memory allocated
by a desk accessory (including workstations) when a resolution change occurred.

SEE ALSO v_opnwk(), vg_extend(), v_clsvwk(), V_Opnvwk()

THE ATARI COMPENDIUM

V_Opnvwk() — 7.65

V_Opnvwk()

WORD V_Opnvwk(dev)
VDI_Workstation dey

V_Opnvwk() is not a component of théDl, rather an interface binding designed
to simplify working with virtual screen workstations. It will open a virtual screen
workstation with 8DI_Workstation structure as a parameter rather than
work_inandwork_outarrays.

OpPCODE N/A
AVAILABILITY User-defined.
PARAMETERS wsis a pointer to & DI_Workstation structure defined as follows (for the

meaning of each structure member, refet topnvwk()):

typedef struct

WORD handle, dev_id;

WORD wchar, hchar, wbox, hbox;
WORD xres, yres;

WORD noscale;

WORD wpixel, hpixel,

WORD cheights;

WORD linetypes, linewidths;
WORD markertypes, markersizes;
WORD faces, patterns, hatches, colors;
WORD ngdps;

WORD cangdps[10];

WORD gdpattr[10];

WORD cancolor, cantextrot;
WORD canfillarea, cancellarray;
WORD palette;

WORD locators, valuators;
WORD choicedevs, stringdevs;
WORD wstype;

WORD minwchar, minhchar;
WORD maxwchar, maxwchar;
WORD minwline;

WORD zero5;

WORD maxwline;

WORD zero7;

WORD minwmark, minhmark;
WORD maxwmark, maxhmark;
WORD screentype;

WORD bgcolors, textfx;

WORD canscale;

WORD planes, lut;

WORD rops;

WORD cancontourfill, textrot;
WORD writemodes;

WORD inputmodes;

THE ATARI COMPENDIUM

7.66 — VDI/GDOS Function Reference

WORD textalign, inking, rubberbanding;
WORD maxvertices, maxintin;
WORD mousebuttons;
WORD widestyles, widemodes;
WORD reserved[38];
} VDI_Workstation;

BINDING WORD
V_Opnvwk(dev)

VDI_Workstation dev;

{
WORD i, in[11];
in[0] = Getrez() + 2;
dev->dev_id = in[0];
for(i = 1;i < 10; in[i++] = 1);
in[10] = 2;
i = graf_handle(&dev->wchar,
&dev->hchar, &dev->wbox,
&dev->hbox);
v_opnvwk(in, &i, &dev->xres);
dev->handle = i;
if(i)
vg_extnd(i, 1, &dev->screentype);
return (i);
}

RETURN VALUE V_Opnvwk() returns 0 if non-successful or the workstation handle otherwise.

COMMENTS This function definition is adapted from an article which appeared in the ‘Atari
.RSC’ developers newsletter (Nov ‘90 - Jan ‘91).

SEE ALsSO v_opnvwk(), V_Opnwk(), vg_extnd()

v_opnwk()

VOID v_opnwk(work_in, handle, work_out)
WORD *work_in, *handle, *work_out,

v_opnwk() opens a physical workstation.

OPCODE 1
AVAILABILITY Available only with some form dEDOS,
PARAMETERS All parmeters for this function are consistent wittopnvwk() except as follows:

On entry handledoesnotneed to contain any specific value. On return, however,

THE ATARI COMPENDIUM

V_Opnwk() — 7.67

BINDING

COMMENTS

SEE ALSO

it will contain a workstation handle if successful or O if the call failed.

WORD j;
contrl[0] = 1;
contrl[1] = O;
contrl[3] = 11;

for(i = 0;i < 11;i++)
intin[i] = work_in[i];

vdi();
*handle = contrl[6];

for(i = 0;i < 45;i++)
work_out[i] = intout[i];

for(i = 0;i < 13;1++)
work_out[45+i] = ptsout][i];

Physical workstations should be opened when needed and closed immediately
afterwards. For example, a word processor shootdpen the printer

workstation when the application starts and close it when it ends. If this is done,
the user will be unable to change printers with the Printer Setup CPX(s).

V_Opnwk(), v_opnvwk(), vq_extnd()

V_Opnwk()

WORD V_Opnwk(devnq dev)

WORD devng

VDI_Workstation dey,

OPCODE

AVAILABILITY

PARAMETERS

V_Opnwk() is not a component of théD!, rather an interface binding designed to
simplify working withVDI workstations. It will open a physical workstation using
aVDI_Workstation structure rather thamork_inandwork_out

N/A

User-defined.

devnospecifies the device ID of the device to open. Valid valuegeieno
follow:

1-10 = Screen (loaded device drivers only)
11-20 = Plotters

21-30 = Printers

31-40 = Metafile Drivers

THE ATARI COMPENDIUM

7.68 — VDI/GDOS Function Reference

BINDING

RETURN VALUE

COMMENTS

SEE ALSO

41-50 = Camera Drivers
51-60 = Tablet Drivers
61-70 = Memory Drivers

wsis aVDI_Workstation structure as defined M_Opnvwk().

WORD

V_Opnvwk(devno, dev)
WORD devno;
VDI_Workstation dev;

{
WORD i, in[11];

in[0] = dev->dev_id = devno;
for(i = 1;i < 10; in[i++] = 1);
in[10] = 2;

i = devno;

v_opnvwk(in, &i, &dev->xres);
dev->handle = i;

if(i)

vg_extnd(i, 1, &dev->screentype);

return (i);

}
V_Opnwk() returns a workstation handle if successful or 0 if the call failed.

This function definition is adapted from an article which appeared in the ‘Atari
.RSC’ developers newsletter (Nov ‘90 - Jan ‘91).

v_opnwk(), vg_extnd(), v_opnvwk(), V_Opnvwk()

v_output_window()

VOID v_output_window(handle, pxy)

WORD handle
WORD *pxy,

OPCODE
SuB-OPCODE
AVAILABILITY

PARAMETERS

v_output_window() outputs a specified portion of the current page.
5

22

Supported by all printer and metafile drivers under any ty§&gpS.

handlespecifies a valid workstation handfxyis a pointer to an array of four

THE ATARI COMPENDIUM

v_pgcount() — 7.69

BINDING

CAVEATS

COMMENTS

SEE ALSO

WORDs in VDI rectangle format which specifies the bounding extents of the
current page to output.

contrl[0] = 5;
contrl[1] = 2;
contrl[3] = 0;
contrl[5] = 21;
contrl[6] = handle;

ptsin[0] = pxy[O];
ptsin[1] = pxy[1];

ptsin[2] = pxy[2];
ptsin[3] = pxy[3];

vdi();

Some printer drivers ignore the sides of the bounding box specified and print the
entire width of the page.

This call is similar to/_updwk() except that only a portion of the page is output.

V_updwk()

V_pgcount()

VOID v_pgcount(handle humcopie$
WORD handle, numcopies

OPCODE

SuB-OPCODE

AVAILABILITY

PARAMETERS

BINDING

v_pgcount()is used to cause the laser printer to output multiple copies of the
current page.

5
2000

Supported only with some laser printer drivers (for instance the Atari laser printer
driver) under some form ¢$DOS,

handlespecifies a valid workstation handfgimcopiespecifies the number of
copies to print minus one. A value of 0 means print one copy, a value of 1, two
copies, and so on.

contrl[0] = 5;
contrl[1] = O;
contrl[3] = 1;
contrl[5] = 2000;
contrl[6] = handle;

intin[0] = numcopies;

THE ATARI COMPENDIUM

7.70 — VDI/GDOS Function Reference

COMMENTS

vdi();

This call is preferred over repeatedly callingipdwk() andv_form_adv() as
this method forces the printer data to be resent for each page.

v_pieslice()

VOID v_pieslice(handlg X, y, radius, startangle endangle)
WORD handle, x, y, radius, startangle endangle

OPCODE

SuB-OPCODE

AVAILABILITY

PARAMETERS

BINDING

v_pieslice()outputs a filled pie segment.
11
3

Supported by all drivers. This function composes one of tMD1GGDP’s
(Generalized Drawing Primitives). Although all current drivers support all

GDP’s, their availability is not guaranteed and may vary. To check for a particular
GDP refer to the table returned Yayopnvwk() or v_opnwk().

handlespecifies a valid workstation handteandy specify the center of a
circlular segment of radiugdiuswhich is drawn between the angles of
startangleandendangle(specified in tenths of degrees - legal values illustrated
below) and connected to the center point.

900

1800 0

2700

contrl[0] = 11;
contrl[1] = 4;
contrl[3] = 2;
contrl[5] = 3;

contrl[6] = handle;

ptsin[0] = x;

ptsin[1] = ;

ptsin[2] = ptsin[3] = ptsin[4] = ptsin[5] = 0
ptsin[6] = radius;

intin[0] = startangle;

THE ATARI COMPENDIUM

v_pline() - 7.71

SEE ALSO

intin[1] = endangle;

vdi();

v_ellpie(), vsf_color(), vsf_style(), vsf_interior(), vsf_udpat(), vsf_perimeter()

v_pline()

VOID v_pline(handle, count, pxy)
WORD handle, count;

WORD *pxy,

OPCODE
AVAILABILITY

PARAMETERS

BINDING

COMMENTS

SEE ALSO

v_pline() outputs a polyline (group of one or more lines).
6
Supported by all drivers.

handlespecifies a valid workstation handi®untspecifies the number of
vertices in the line path (2 to plot a single lify points to aVORD array with
count* 2 elements containing the vertices to plot as in (X1, Y1), (X2, Y2), etc...

WORD i;

contrl[0] = 6;
contrl[1] = count;
contrl[3] = O;
contrl[6] = handle;

for(i = 0;i < (count*2);i++)
ptsin[i] = count][i];

vdi();

To draw a single point with this functiopxy[2] should equapxy[0], pxy[3]
should equapxy[1], andcountshould be 2.

v_fillarea(), vsl_color(), vsl_type(), vsl_udsty(), vsl_ends()

THE ATARI COMPENDIUM

7.72 — VDI/GDOS Function Reference

v_pmarker()

VOID v_pmarker(handle, count, pxy)
WORD handle, count

WORD * pxy,
v_pmarker() outputs one or several markers.

OPCODE 7

AVAILABILITY Supported by all drivers.

PARAMETERS handlespecifies a valid workstatioapuntspecifies the number of markers to
plot. pxy points to aVORD array with ¢ount* 2) elements containing the
vertices of the markers to plot as in (X1, Y1), (X2, Y2), etc...

BINDING WORD i;
contrl[0] = 7;
contrl[1] = count;
contrl[3] = 0;
contrl[6] = handle;
for(i = 0;i < (count * 2); i++)

ptsin[i] = pxy[i;
vdi();

COMMENTS Single points may be plotted quickly with this function when the proper marker
type is selected witlism_type()

SEE ALSO vsm_type(), vsm_height(), vsm_color()

v_rbox()

VOID v_rbox(handle, pxy)

WORD handle

WORD *pxy;,
v_rbox() outputs a rounded box (not filled).

OPCODE 11

SuB-OPCODE 8

THE ATARI COMPENDIUM

v_rfbox() — 7.73

AVAILABILITY

PARAMETERS

BINDING

CAVEATS

SEE ALSO

Supported by all drivers. This function composes one of thLGGDP’s
(Generalized Drawing Primitives). Although all current drivers support all

GDP’s, their availability is not guaranteed and may vary. To check for a particular
GDP refer to the table returned Yayopnvwk() or v_opnwk().

handlespecifies a valid workstation handfxy points to an array of WORDs
containing the/DI format rectangle of the rounded box to output.

contrl[0] = 11;
contrl[1] = 2;
contrl[3] = 0;
contrl[5] = 8;

contrl[6] = handle;

ptsin[0] = pxy[0];
ptsin[1] = pxy[1];
ptsin[2] = pxy[2];
ptsin[3] = pxy[3];
vdi();

There is no way to define to size of the ‘roundness’ of the corners.

v_rfbox(), v_bar(), vsl_type(), vsl_color(), vsl_udsty(), vsl_ends()

v_rfbox()

VOID v_rfbox(handle pxy)

WORD handle

WORD *pxy,

OPCODE

SuB-OPCODE

AVAILABILITY

PARAMETERS

BINDING

v_rfbox() outputs a filled rounded-rectangle.
11

9

Supported by all drivers. This function composes one of th1GGDP’s
(Generalized Drawing Primitives). Although all current drivers support all

GDP’s, their availability is not guaranteed and may vary. To check for a particular
GDP refer to the table returned Yayopnvwk() or v_opnwk().

handlespecifies a valid workstation handi¥y points to an array of four
WORDs which specify th&/DI format rectangle of the rounded-rectangle to
output.

contrl[0] = 11;

THE ATARI COMPENDIUM

7.74 — VDI/GDOS Function Reference

contrl[1] = 2;
contrl[3] = 0;
contrl[5] = 9;

contrl[6] = handle;

ptsin[0] = pxy[0];
ptsin[1] = pxy[1];
ptsin[2] = pxy[2];
ptsin[3] = pxy[3];

vdi();

CAVEATS There is no way to specify the ‘roundness’ of the rectangle.

SEE ALSO v_rbox(), v_bar(), vsf_color(), vsf_style(), vsf_interior(), vsf_udpat()

v_rmcur()

VOID v_rmcur(handle)

WORD handle
v_rmcur() removes the last mouse cursor displayed.

OPCODE 5

SuB-OPCODE 19

AVAILABILITY Supported by all screen drivers.

PARAMETERS handlespecifies a valid workstation handle.

BINDING contrl[0] = 5;
contrl[1] = contrl[3] = O;
contrl[5] = 19;
contrl[6] = handle;

vdi();

COMMENTS v_rmcur() should only be used in conjunction withdspcur() when the mouse is
moved manuallygraf_mouse()or v_hide_c()should be used unless this is your
intention.

SEE ALSO v_hide_c(), graf_mouse()

THE ATARI COMPENDIUM

v_rvoff()

VOID v_rvoff(handle)

WORD handle

OPCODE

SuB-OPCODE

v_rvoff() causes alpha screen text to be displayed in normal video (as opposed to

inverse).
5

14

AVAILABILITY Supported by all screen drivers.
PARAMETERS handlespecifies a valid workstation handle.
B|ND|NG COntrI[o] =5;

contrl[1] = contrl[3] = O;

contrl[5] = 14;

contrl[6] = handle;

vdi();
COMMENTS This call is equivalent to tHesG-Q VT-52 code.
SEE ALSO v_rvon(), v_curtext()
v_rvon()
VOID v_rvon(handle)
WORD handle

v_rvon() causes alpha screen text to be displayed in inverse mode.
OPCODE 5
SuB-OPCODE 13

AVAILABILITY

PARAMETERS

BINDING

Supported by all screen devices.

handlespecifies a valid workstation handle.

contrl[0] = 5;
contrl[1] = contrl[3] = 0;

THE ATARI COMPENDIUM

v_rvoff() = 7.75

7.76 — VDI/GDOS Function Reference

contrl[5] = 13;

contrl[6] = handle;

vdi();
COMMENTS This call is equivalent to thHesGP VT-52 code.
SEE ALSO v_rvoff(), v_curtext()

v_savecache()

WORD v_savecachebandle fname)
WORD handle
char *fname

v_savecache(}aves the current outline cache.

OPcCODE 249
AVAILABILITY Available only withFSMGDOS or SpeedoGDOS
PARAMETERS handlespecifies a valid workstation handisamespecifies th6sEMDOS file

specification of the cache file to save.

BINDING WORD i = 0;

while(intin[i++] = (WORD)*fname++);

contrl[0] = 249;
contrl[1] = 0;
contrl[3] = --i;

contrl[6] = handle;
vdi();

return intout[0];
RETURN VALUE v_savecache(jeturns 0 if successful or -1 if an error occurred.

COMMENTS This call only saves the portion of the cache responsible for storing bitmaps
created from outlines.

SEE ALSO v_loadcache(), v_flushcache()

THE ATARI COMPENDIUM

v_set_app_buff() - 7.77

v_set _app_buff()

VOID v_set_app_buff(but, nparagraphs)

VOID * buf;

WORD nparagraphs

OPCODE

SuB-OPCODE

v_set_app_buff()designates memory for use by the bezier generation routines.
-1

6

AVAILABILITY Available only withFONTGDOS, FSMGDOS or SpeedoGDOS
PARAMETERS buf specifies the address of a buffer which the bezier generator routines may
safely usenparagraphsspecifies the size of the buffer in ‘paragraphs’ (16 bytes).
BINDING contrl[0] = -1;
contrl[1] = 0;
contrl[3] = 2;
contrl[5] = 6;
*(VOID *)&intin[0] = buf;
intin[2] = nparagraphs;
vdi();
COMMENTS Before the application exits, it should caliset_app_buff(NULL, O)to
‘unmark’ memory. The application is then responsible for deallocating the
memory.
In the absence of this call the fivstbez() or v_bezfill() call will allocate its own
buffer of 8K. Atari documentation recommends a size of about 9K depending on
the extents of the bezier you wish to generate.
SEE ALSO v_bez()
v_show c()

VOID v_show_c(handle reset)
WORD handle reset

OPCODE

v_show_c()unhides’ the mouse cursor.

122

THE ATARI COMPENDIUM

7.78 — VDI/GDOS Function Reference

AVAILABILITY Supported by all screen drivers.

PARAMETERS handlespecifies a valid workstation handlergsetis 0 the mouse will be
displayed regardless of the number of times it was ‘hidden’. Otherwise, the call
will only display the cursor if the function has been called an equal number of
times compared te_hide_c()

contrl[1] = 0;
contrl[3] = 1;

contrl[6] = handle;
intin[0] = reset;
vdi();
CAVEATS While it may be tempting to always useegetvalue of 0, it is not recommended.

Doing so may confuse the system so that when the critical error handler is called,
the mouse is not displayed.

SEE ALSO v_hide_c(), graf_mouse()

v_updwk()

VOID v_updwk(handle)

WORD handle
v_updwk() outputs the current page to the specified device.

OPCODE 4

AVAILABILITY Supported by all printer, metafile, plotter, and camera devices when using any
form of GDOS,

PARAMETERS handlespecifies a valid workstation handle.

B|ND|NG COntrl[O] =4;
contrl[1] = contrl[3] = O;
contrl[6] = handle;
vdi();

COMMENTS This call does not cause the ‘page’ to be ejected. You must useveithwrk() or
v_form_adv() to accomplish that.

SEE ALSO v_clrwk(), v_form_adv()

THE ATARI COMPENDIUM

v_write_meta() — 7.79

V_write_meta()

VOID v_write_meta(handle, intin_len, intin, ptsin_len ptsin)
WORD handle, intin_len;

WORD *intin;
WORD ptsin_len
WORD *ptsin;

OPCODE

SuB-OPCODE

AVAILABILITY

PARAMETERS

BINDING

v_write_meta() writes a customized metafile sub-opcode.
5

99

Supported by all metafile drivers.

handlespecifies a valid workstation handigtin points to an array WORDs

with intin_len (0-127) element$itsin points to an array WORDs with
ptsin_len(0-127) element$tsinis not required to be of any length, however,

intin should be at least one word long to specify the sub-opcaagnfo] . Sub-
opcodes 0-100 are reserved for use by Atari. Several pre-defined sub-opcodes in
this range already exist as follows:

Sub-Opcode: ’
intin[0] Meaning

10 Start group.

11 End group.

49 Set no line style.

50 Set attribute shadow on.

51 Set attribute shadow off.

80 Start draw area type primitive.

81 End draw area type primitive.
WORD j;
contrl[0] = 5;

contrl[1] = ptsin_len;
contrl[3] = intin_len;
contrl[5] = 99;
contrl[6] = handle;

for(i = 0;i < intin_len; i++)
intin[i] = m_intin[i];

for(i = 0;i < ptsin_len; i++)
ptsin[i] = m_ptsin[i];

THE ATARI COMPENDIUM

7.80 — VDI/GDOS Function Reference

vdi();

COMMENTS Metafile readers should ignore and safely skip any opcodes not understood.

vex_butv()

VOID vex_butv(handle buty, old_butv)
WORD handle

WORD (*butv)((WORD) bstate);
WORD (** old_buty((WORD) bstate);

vex_butv() installs a routine which is called by tH®! every time a mouse
button is pressed.

OPCODE 125
AVAILABILITY Supported by all screen drivers.
PARAMETERS handlespecifies a valid physical workstation handeétv points to a user-defined

button-click handler routine. The address pointed toldybutvwill be filled in
with the address of the old button-click handler.

BINDING COntrI[O] = 125;
contrl[1] = contrl[3] = O;
contrl[6] = handle;
contrl[7] = (WORD)((LONG)butv >> 16);
contrl[8] = (WORD)((LONG)butv);

vdi();

*(LONG *)old_butv = (LONG)(((LONG)contrl[9] << 16) |
(LONG)contrl[10]);

COMMENTS Upon entry tduty, the mouse status is contained in 68x00 register DO (in the same
format as the button return valuevith_mouse()). A ‘C’ handler should, therefore,
be sure to specify register calling parameters for this function. Any registers which
will be modifed should be saved and restored upon function exit. The routine may
call theBIOS and/orXBIOS sparingly but should not call t#é&S, VDI, or
GEMDOS.

SEE ALSO vex_curv(), vex_motv()

THE ATARI COMPENDIUM

vex_curv() — 7.81

vex_curv()

VOID vex_curv(handle curv, old_curv)

WORD handle

WORD (*curv)((WORD) mx, (WORD) my);
WORD (** old_cury)((WORD) mx, (WORD) my);

vex_curv() installs a routine which is called every time the mouse cursor is drawn
allowing a customized mouse rendering routine to replace that of the system.

OPCODE 126
AVAILABILITY Supported by all screen devices.
PARAMETERS handlespecifies a valid physical workstation han@l.V points to a user defined

function which will be called every time the mouse is to be refrestédcurvis
the address of a pointer to the old rendering routine which will be filled in by the
function on exit.

contrl[1] = contrl[3] = 0;

contrl[6] = handle;

contrl[7] = (WORD)((LONG)curv >> 16);
contrl[8] = (WORD)((LONG)curv);

vdi();

*(LONG *)old_curv = (LONG)(((LONG)contrl[9] << 16) |
(LONG)contrl[10]);

COMMENTS Upon entry tecury, the mouse’s X and Y location on screen is contained in 68x00
registers DO and D1 respectively. A ‘C’ handler should, therefore, be sure to
specify register calling parameters for this function. Any registers which will be
modifed should be saved and restored upon function exit. The routine may call the
BIOS and/orXBIOS sparingly but should not call thé&S, VDI, or GEMDOS.

SEE ALSO vex_butv(), vex_motv()

THE ATARI COMPENDIUM

7.82 — VDI/GDOS Function Reference

vex_motv()

VOID vex_motv(handle moty, old_motv)

WORD handlg

WORD (*moty)((WORD) mx, (WORD) my);
WORD (** old_moty((WORD) mx, (WORD) my);

OPCODE

AVAILABILITY

PARAMETERS

BINDING

COMMENTS

SEE ALSO

vex_motv()installs a user routine which is called every time the mouse pointer is
moved.

126
Supported by all screen drivers.

handlespecifies a valid physical workstation hand@tvpoints to a user-
defined routine which is called every time the mouse is m@ddmotvis an
address to a pointer which will be filled in containing the address of the old
function.

contrl[0] = 126;

contrl[1] = contrl[3] = O;

contrl[6] = handle;

contrl[7] = (WORD)((LONG)motv >> 16);
contrl[8] = (WORD)((LONG)motv);

vdi();

*(LONG *)old_motv = (LONG)(((LONG)contrl[9] << 16) |
(LONG)contrl[10]);

Upon entry tanoty, the mouse’s new X and Y location is contained in 68x00
registers DO and D1 respectively. A ‘C’" handler should, therefore, be sure to
specify register calling parameters for this function. Any registers which will be
modifed should be saved and restored upon function exit. The routine may call the
BIOS and/orXBIOS sparingly but should not call thé&S, VDI, or GEMDOS,

The routine may modify the contents of DO and D1 as necessary to affect the
movement of the mouse (one way of implementing a mouse accelerator).

vex_curv(), vex_butv()

THE ATARI COMPENDIUM

vex_timv() — 7.83

vex_timv()

VOID vex_timv(handle timv, old_timy, mpt)
WORD handle

VOID (* timv)(VOID);

VOID (** old_timvy)(VOID);

WORD *mpt;

vex_timv() installs a user-defined routine that will be called at each timer tick
(currently once every 50 milliseconds).

OPCODE 118
AVAILABILITY Supported by all screen drivers.

PARAMETERS handlespecifies a valid physical workstation handiy should point to a user-
defined timer tick routinenld_timvis an address to a pointer which will be filled
in with the old timer tick routinenptis a pointer to &%YORD which will be filled
in with the value representing the current number of milliseconds per timer tick.

contrl[1] = contrl[3] = 0;

contrl[6] = handle;

contrl[7] = (WORD)((LONG)timv >> 16);
contrl[8] = (WORD)((LONG)timv);

vdi();

*(LONG *)old_timv = (LONG)(((LONG)contrl[9] << 16) |
(LONG)contrl[10]);

COMMENTS Any registers which will be modifed should be saved and restored upon function
exit. The routine may call tH8IOS and/orXBIOS sparingly but should not call
the AES, VDI, or GEMDOS. The routine should fall through to the old routine.
As this vector is jumped through quite often, the routine should be very simple to
avoid system performance slowdowns.

vm_coords()

VOID vm_coords(handle xmin, ymin, xmax, ymax)
WORD handle, xmin, ymin, xmax, ymax

vm_coords()allows the use of variable coordinate systems with metafiles.

OPCODE 5

THE ATARI COMPENDIUM

7.84 — VDI/GDOS Function Reference

SuB-OPCODES

AVAILABILITY

PARAMETERS

BINDING

COMMENTS

SEE ALSO

99,1
Supported by all metafile drivers.

handlespecifies a valid workstation hand¥nin andymin specify the coordinate
pair which provides an anchor for the upper-left point of the coordinate system.
xmaxandymaxspecify the coordinate pair which provides an anchor for the
lower-right point of the coordinate system.

contrl[0] = 5;
contrl[1] = 0;
contrl[3] = 5;
contrl[5] = 99;

contrl[6] = handle;
intin[0] = 1;
intin[1] = xmin;
intin[2] = ymin;
intin[3] = xmax;
intin[4] = ymax;
vdi();

Use of this function allows the use of practically any coordinate system with a
limit of (-32768, -32768), (32767, 32767).

Metafiles default to a coordinate space of (0, 32767), (32767, 0).

vm_pagesize(), v_meta_extents()

vm_filename()

VOID vm_filename(handle, fname)

WORD handle
char *fname

OPCODE
SuB-OPCODE
AVAILABILITY

PARAMETERS

vm_filename() allows specfying a user-defined filename for metafile output.
5

100

Supported by all metafile drivers.

handlespecifys a valid workstation handfeamepoints to &NULL -terminated
GEMDOS filename which all metafile output should be redirected to.

THE ATARI COMPENDIUM

vm_pagesize() — 7.85

BINDING WORD i = 0;
while(intin[i++] = (WORD)*fname++);

contrl[0] = 5;
contrl[1] = 0;
contrl[3] = --i;
contrl[5] = 100;
contrl[6] = handle;

vdi();
CAVEATS When a metafile is opened, the default file ‘GEMFILE.GEM' is created in the

currentGEMDOS path on the current drive and is not deleted as a result of this
call. You will need to manually delete it yourself.

COMMENTS This call should be made immediately aftar apnwk() to a metafile handle if
you wish to use an alternate filename to prevent data from being lost.

vm_pagesize()

VOID vm_pagesize(handle pwidth, pheight)
WORD handle, pwidth, pheight

vm_pagesize(ppecifys a metafile’s source page size.
OPCODE 5
SuB-OPCODES 99,0
AVAILABILITY Supported by all metafile drivers.

PARAMETERS handlespecifies a valid workstation handpvidth specifies the width of the
page which the metafile was originally placed on in tenths of a millinfgheight
specifies the height of the page which the metafile was originally placed on in
tenths of a millimeter.

BINDING ContrI[O] =5;
contrl[1] = O;

contrl[3] = 2;
contrl[5] = 99;
contrl[6] = handle;

intin[0] = O;
intin[1] = pwidth;
intin[2] = pheight;

vdi();

THE ATARI COMPENDIUM

7.86 — VDI/GDOS Function Reference

COMMENTS A metafile originally designed on an 8.5” x 11” page would hagwidthvalue
of 2159 and @heightvalue of 2794.

SEE ALsSO V_meta_extents()

vg_cellarray()

VOID vg_cellarray(handle pxy, rowlen, num_rows elementsrows_usedstatus colarray)
WORD handle

WORD *pxy,

WORD rowlen, num_rows

WORD *elements*rows_usegd*status *colarray;

va_cellarray() returns the cell array definitions of specified pixels.

OPCODE 27
AVAILABILITY Not supported by any known drivers.
PARAMETERS handlespecifies a valid workstation handiiy points to an array of WORDs

which specify /DI format rectanglglow_lengthspecifies the length of each

row in the color arraynum_rowsspecifies the number of total rows in the color

array.

Upon return, th&VORD pointed to byelementswill indicate the number of array
elements used per row. In additioPws_usedwill be filled in with actual
number of rows used by the color array and{eRD pointed to bystatuswill

be filled in with O if the operation was successful or 1 if at least one element could

not be determined. Finally, tM¥ORD array (with ium_rows+ row_length)

elements) pointed to Igolarray will be filled in with the color index array stored

one row at a time. On retugolarray will actually contain
(elements rows_useylvalid elements.

BINDING WORD i;
contrl[0] = 27;
contrl[1] = 2;
contrl[3] = 0;

contrl[6] = handle;
contrl[7] = row_length;
contrl[8] = num_rows;

ptsin[0] = pxy([0];
ptsin[1] = pxy[1];
ptsin[2] = pxy[2];
ptsin(3] = pxy[3];

THE ATARI COMPENDIUM

vq_chcells() — 7.87

vdi();

*el_used = contrl[9];

*rows_used = contrl[10];

*status = contrl[11];

for(i = 0;i < contrl[4];i++)
colarray[i] = intout][i];

CAVEATS No driver types are required to utilize this function. It is therefore recommended
that it be avoided unless your application is aware of the capabilities of the driver.

SEE ALSO v_cellarray()

vg_chcells()

VOID vg_chcells(handlg rows, columns)
WORD handle
WORD *rows, *columns

vg_chcells()returns the current number of columns and rows on the alpha text
mode of the device.

OPCODE 5

SuB-OPCODE 1

AVAILABILITY Supported by all screen and printer drivers.

PARAMETERS handlespecifies a valid workstation handfews andcolumnseach point to a

WORD which will be filled in with the current number of rows and columns of
the device (in text mode).

BINDING ContrI[O] =5;
contrl[1] = contrl[3] = 0;

contrl[5] = 1;
contrl[6] = handle;
vdi();

*rows = intout[0];
*columns = intout[1];

SEE ALSO v_curtext()

THE ATARI COMPENDIUM

7.88 — VDI/GDOS Function Reference

vg_color()

WORD vqg_color(handle index, flag, rgb)
WORD handle, index, flag;

WORD *rgb;
vg_color() returns RGB information for a particuldP! color index.

OPCODE 26

AVAILABILITY Supported by all drivers.

PARAMETERS handlespecifies a valid workstation handiedexspecifies th&/DI color index
of which you wish to inquirg'gb points to an array of @ORDs which will be
filled in with the red, green, and blue values (0-1000) of the color index. The
values returned in the RGB array are affected by the vall@&gads follows:
Name flag Values returned in rgb
COLOR_REQUESTE 0 Return the values as last requested by the user (ie: not
D mapped to the actual color value displayed).
COLOR_ACTUAL 1 Return the values as the actual color being displayed.

B|ND|NG COntrI[O] = 26;
contrl[1] = O;
contrl[3] = 2;

contrl[6] = handle;

intin[0] = index;
intin[1] = flag;

vdi();

rgb[0] = intout[1];
rgb[1] = intout[2];
rgb[2] = intout[3];

return intout[0];
RETURN VALUE vg_color() returns -1 if the specified index is out of range for the device.

COMMENTS Some drivers for color printers do not allow you to modify the color of each
register. A simple test will allow you to determine if the driver will allow you to
change index colors as follows:

* Callvg_color() with aflag value of 0 and save the return.

* Callvs_color()to modify that color index by a signifigant value.

* Callvg_color() with aflag value of 0 and compare with what you set.
* Restore the old value.

THE ATARI COMPENDIUM

vg_curaddress() — 7.89

* If equivalent values are returned, you may modify each color index.

SEE ALSO vs_color()

v(_curaddress()

VOID vg_curaddress(handle row, column)
WORD handle
WORD *row, *column;

vg_curaddress()returns the current position of the alpha text cursor.

OPCODE 5

SuB-OPCODE 15

AVAILABILITY Supported by all screen drivers.

PARAMETERS handlespecifies a valid workstation handle. TW&RDs pointed to byow and

columnwill be filled in with the current row and column respectively of the text
cursor in alpha mode.

BINDING contrl[0] = 5;
contrl[1] = contrl[3] = O;
contrl[5] = 15;

contrl[6] = handle;
vdi();

*row = intout[0];
*column = intout[1];

SEE ALSO v_curtext(), va_chcells()

vg_extnd()

VOID vg_extnd(handle, mode work_out)
WORD handle, mode
WORD *work_ouf
vo_extnd() returns extra information about a particular workstation.

OPCODE 102

THE ATARI COMPENDIUM

7.90 — VDI/GDOS Function Reference

AVAILABILITY

PARAMETERS

Supported by all drivers.

handlespecifies a valid workstation handlempdeis set to 0 then this call fills
in the array pointed to byork_outwith the same 5WORDs which are returned
by eitherv_opnwk() or v_opnvwk(). If modeis 1 then the 5SWORDs of
work_outare filled in with other information as follows:

- work_out{x]

0

VDI Structure
Member

screentype

‘ Meaning

Type of display screen:
0= Not screen.
1= Separate alpha/ graphic controllers and displays.
2 = Separate alpha/ graphic controllers with common
screen.
3= Common alpha/ graphic controllers with separate
image memory.
4 = Common alpha/ graphic controllers and image
memory.
(All known devices either return 0 or 4.)

bgcolors

Number of background colors available.

textfx

Text effects supported. (Same bitmask as with
vst_effects()).

canscale

Scaling of rasters:
0= Can'tscale.
1= Can scale.

planes

Number of planes.

lut

Lookup table supported:

0 = Table not supported.

1 = Table supported.
(True color modes return a value of O for /ut and >2 for
colors in v_opnvwk()).

See the caveat listed below.

rops

Performance factor. Number of 16x16 raster operations per
second.

cancontourfill

v_contourfill() availability:
0= Not available.
1= Available.

textrot

Character rotation capability:
0= None.
1= 90 degree increments.
2 =_Any angle of rotation.

writemodes

Number of writing modes available.

10

inputmodes

Highest level of input modes available:
0= None.
1= Request.
2= Sample.

11

textalign

Text alignment capability flag:
0= Not available.
1= Auvailable.

12

inking

Inking capability flag.
0= Device can'tink.
1= Device canink.

THE ATARI

COMPENDIUM

vg_extnd() — 7.91

BINDING

COMMENTS

CAVEATS

SEE ALSO

13 rubberbanding | Rubberbanding capability flag:
0= No rubberbanding.
1= Rubberbanded lines.
2 = Rubberbanded lines and rectangles.
14 maxvertices Maximum vertices for polyline, polymarker, or filled area (-1
= no maximum).
15 maxintin Maximum length of intin array (-1 = no maximum).
16 mousebuttons | Number of mouse buttons.
17 widestyles Styles available for wide lines?
0= No
1= Yes
18 widemodes Writing modes available for wide lines?
0= No
1= Yes
19-56 reservedl Reserved for future use.
WORD i;
contrl[0] = 102;
contrl[1] = 0;
contrl[3] = 1;

contrl[6] = handle;

intin[0] = mode;

vdi();

for(i = 0;i < 45;i++)

work_out[i] = intout][i];

for(i = 0;i < 13;i++)

work_out[45+i] = ptsout][i];

See the entry fov_Opnwk() andV_Opnvwk() to see how thed_extnd()
information and/_opn/v/wk() calls are integrated into a ‘C’ style structure.

Thelut member of th/DIWORK structure was originally misdocumented by

Atari with the values reversed. The Falcon030 as well as some third-party true-

color boards return the correct values. Some older boards may not, however.

One alternative method of determining if the current screen is not using a software

color lookup table (i.e. true color) is to compare the value fopl2meswith the
number of colors in the palette foundciplors, If this number is different, théDI
is not using a software color lookup table.

v_opnwk(), v_opnvwk(), V_Opnwk(), V_Opnvwk()

THE ATARI

COMPENDIUM

7.92 — VDI/GDOS Function Reference

vg_gdos()

ULONG vg_gdos(VOID)

OPCODE

AVAILABILITY

BINDING

RETURN VALUE

vg_gdos()determines the availability and type@POS present.
N/A

Supported in ROM by all Atari computers.

; Correct binding for vq_gdos. Some compilers
; use the name vq_vgdos for the new version
; and vg_gdos for the old version which

; looked like:

; move.w #-2,d0
; trap #2

; cmp.w #-2,d0
; sne do

; ext.w do
_vg_gdos:

move.w #-2,d0

trap #2

rts

Currently one of the following values are returned:

Name Value GDOS Type
GDOS_NONE -2 GDOS not installed.

— Any other value. GDOS 1.0, 1.1, or 1.2 installed.
GDOS_FNT O0x5F464E54 ('_FNT’) FONTGDOS installed.
GDOS_FSM 0x5F46534D (*_FSM’) FSMGDOS installed.

COMMENTS

Calling aGDOS function withoutGDOS loaded is fatal and will cause a system
crash.

To determine whethdtfSMGDOS or SpeedoGDOSs loaded look for the
‘FSMC’ cookie in the cookie jar. The cookie value points to a longword which
will contain either ‘ FSM' or ‘*_SPD.

THE ATARI COMPENDIUM

vg_key s() — 7.93

vg_key_s()

VOID vg_key_s(handle, status)

WORD handle

WORD *status
vg_key_s()returns the current shift-key status.

OPCODE 128

AVAILABILITY Supported by all Atari computers.

PARAMETERS handlespecifies a valid workstation hand&atuspoints to &VORD which is
filled in on function exit with a bit mask containing the current shift key status as
follows:

Name Bit ‘ Meaning

K_RSHIFT 0 Right shift key depressed
K_LSHIFT 1 Left shift key depressed
K_CTRL 2 Control key depressed
K_ALT 3 Alternate key depressed

BINDING contrl[0] = 128;
contrl[1] = contrl[3] = O;
contrl[6] = handle;

vdi();
*status = intout[0];

SEE ALSO graf_mkstate()

vg_mouse()

VOID vg_mouse(handle, mb, mx, my)
WORD handle
WORD *mb, *mx, *my;
vg_mouse()returns information regarding the current state of the mouse.
OPCODE 124

AVAILABILITY Supported by all screen drivers.

THE ATARI COMPENDIUM

7.94 — VDI/GDOS Function Reference

PARAMETERS handlespecifies a valid workstation handfeb points to aVORD which will be
filled in upon function exit with a bit mask indicating the current status of the
mouse buttons as follows:

Name Mask [Meaning

LEFT_BUTTON 0x01 Left mouse button

RIGHT_BUTTON 0x02 Right mouse button

MIDDLE_BUTTON 0x04 Middle button (this button would be the first
button to the left of the rightmost button on the
device).

— 0x08 Other buttons (0x08 is the mask for the button to

the immediate left of the middle button. Masks
continue leftwards).

mxandmy both point tdVORDs which will be filled in upon function exit with
the current position of the mouse pointer.

BINDING contrl[0] = 124;
contrl[1] = contrl[3] = 0;
contrl[6] = handle;

vdi();
*mb = intout[0];

*mx = ptsout[0];
*my = ptsout[1];

SEE ALSO graf_mkstate(), v_key_s()

v(_scan()

VOID vg_scan(handle, grh, passesalh, apage div)
WORD handle
WORD *grh, *passes*alh, *apage, fdiv;,

vg_scan()returns information regarding printer banding.

OPCODE 5

SuB-OPCODE 24

AVAILABILITY Supported by all printer drivers.

PARAMETERS handlespecifies a valid workstation handfgssespecifies the number of

graphic passes per printer page.

THE ATARI COMPENDIUM

vq_tabstatus() — 7.95

The value obtained through the formgré/div specifies the number of graphics
scan lines per pass. The value obtained by the forahuldiv specifies the
number of graphic scan lines per alpha text ip@gespecifies the number of
alpha lines per page.

B|ND|NG COntrI[o] =5;
contrl[1] = contrl[3] = O;

contrl[5] = 24;
contrl[6] = handle;

vdi();

*grh = intout[0];
*passes = intout[1];
*alh = intout[2];
*apage = intout[3];
*div = intout[4];

COMMENTS This call has been previously mis-documented.

v(_tabstatus()

WORD vqg_tabstatus(handle)

WORD handle
vg_tabstatus()determines the availability of a tablet device.
OPCODE 5
SuB-OPCODE 16
AVAILABILITY Supported by all screen drivers.
PARAMETERS handlespecifies a valid workstation handle.
BINDING ggm;:m z gé)ntrl[S] =0;
contrl[5] = 16;

contrl[6] = handle;
vdi();

return intout[O];
RETURN VALUE vo_tabstatus()returns 0 if no tablet is available or 1 if a tablet device is present.

SEE ALSO vq_tdimensions(), vt_origin(), vt_axis(), vt_resolution(), vt_alignment()

THE ATARI COMPENDIUM

7.96 — VDI/GDOS Function Reference

vg_tdimensions()

VOID vg_tdimensions(handle xdim, ydim)
WORD handle
WORD *xdim, *ydim;

vg_tdimensions()returns the scanning dimensions of the attached graphics tablet.

OPCODE 5

SuB-OPCODE 84

AVAILABILITY Supported by all tablet drivers.

PARAMETERS handlespecifies a valid workstation handkelim andydim point toWORDs

which upon function exit will contain the X and Y dimensions of the tablet
scanning area specified in tenths of an inch.

BINDING contrl[0] = 5;
contrl[1] = contrl[3] = O;
contrl[5] = 84;

contrl[6] = handle;
vdi();

*xdim = intout[0O];
*ydim = intout[1];

SEE ALSO vq_tabstatus()

vgf_attributes()

VOID vqf_attributes(handle attr)

WORD handle
WORD *attr,
vaf_attributes() returns information regarding the current fill attributes.
OPCODE 37
AVAILABILITY Supported by all devices.
PARAMETERS handlespecifies a valid workstation handétr points to an array of five

WORDs which upon exit will be filled in as follows:

THE ATARI COMPENDIUM

vgin_mode() — 7.97

attr[x] Meaning

0 Current fill area interior type (see vsf_interior()).
1 Current fill area color (see vsf_color()).

2 Current fill area style (see vsf_style()).

3 Current writing mode (see vswr_mode()).

4 Current perimeter status (see vsf_perimeter()).

BINDING contrl[0] = 37;
contrl[1] = contrl[3] = 0;
contrl[6] = handle;

vdi();

attr[0] = intout[O];
attr[1] = intout[1];
attr[2] = intout[2];
attr[3] = intout[3];
attr[4] = intout[4];

SEE ALSO vqt_attributes(), vgl_attributes(), vgm_attributes()

vgin_mode()

VOID vgin_mode(handle dey mode)
WORD handle, dey,

WORD *mode
vagin_mode()returns the input status of the specifiddl device.

OPCODE 115

AVAILABILITY Supported by all Atari computers.

PARAMETERS handlespecifies a valid workstation handfgpdepoints to &aVORD which upon
exit will be filled in with 1 if the specified device is in request mode or 2 if in
sample modelevspecifies the device to inquire as follows:

Name ’ dev Device

LOCATOR 1 Locator (Mouse, Mouse Buttons, and Keyboard)
VALUATOR 2 Valuator (not currently defined)

CHOICE 3 Choice (not currently defined)

STRING 4 String (Keyboard)

THE ATARI COMPENDIUM

7.98 — VDI/GDOS Function Reference

contrl[1] =0
contrl[3] = 1;
contrl[6] = handle;
intin[0] = dev;
vdi();

*mode = intout[0];

SEE ALSO vsin_mode()

vgl_attributes()

VOID vgl_attributes(handle attr)

WORD handle
WORD *attr;
vgl_attributes() returns information regarding current settings which affects line
drawing functions.
OPCODE 36
AVAILABILITY Supported by all drivers.
PARAMETERS handlespecifies a valid workstation hand#lr is an array of 8VORDs which
describe the current parameters for line drawing as follows:
0 Line type (see vsl_type()).
1 Line color (see vsl_color()).
2 Writing mode (see vswr_mode()).
3 End style for start of lines (see vsl_ends()).
4 End style for end of lines (see vsl_ends()).
5 Current line width (see vsI_width()).
BINDING ContrI[O] = 36;

contrl[1] = contrl[3] = 0;
contrl[6] = handle;

vdi();

attr[0] = intout[O];
attr[1] = intout[1];
attr[2] = intout[2];
attr[3] = intout[3];
attr[4] = intout[4];

THE ATARI COMPENDIUM

vgm_attributes() — 7.99

SEE ALSO

attr[5] = intout[5];

vgm_attributes(), vat_attributes(), vaf_attributes()

vgm_attributes()

VOID vgm_attributes(handle attr)

WORD handlg

WORD *attr;

OPCODE
AVAILABILITY

PARAMETERS

BINDING

SEE ALSO

vgm_attributes() returns information regarding current settings which apply to
polymarker output.

36
Supported by all drivers.

handlespecifies a valid workstation handétr points to an array of ORDs
which specify the current polymarker attributes as follows:

attr{x] Meaning

0 Marker type (see vsm_type()).
1 Marker color (see vsm_color()).
2 Writing mode (see vswr_mode()).

w

Polymarker width (see vsm_height()).
Polymarker height (see vsm_height()).

N

contrl[0] = 36;
contrl[1] = contrl[3] = O;
contrl[6] = handle;

vdi();

attr[0] = intout[0];
attr[1] = intout[1];
attr[2] = intout[2];
attr[3] = intout[3];
attr[4] = intout[4];

vql_attributes(), vat_attributes(), vaf_attributes()

THE ATARI COMPENDIUM

7.100 — VDI/GDOS Function Reference

vgp_error()

WORD vqp_error(handle)

WORD handle
vgp_error() returns error information for the camera driver.
OPCODE 5
SuB-OPCODE 96
AVAILABILITY Supported by all camera drivers.
PARAMETERS handlespecifies a valid workstation handle.
BINDING ggm::ﬁ} i (Sx;)ntrl[3] =0;
contrl[5] = 96;

contrl[6] = handle;
vdi();

return intout[0];

RETURN VALUE vgp_error() returns the current error state as follows:

Return Value ‘ Error State

No error.

Open dark slide for print film.

No port at location specified by driver.

Palette not found at specified port.

Video cable disconnected.

Memory allocation error.

Inadequate memory for buffer.

Memory not freed.

Driver file not found.

| O[N]l B~ W[N] | O

Driver file is not correct type.

=
o

Prompt user to process print film.

COMMENTS Use of this function does not stop the generation of on-screen messages. You must
usevsp_messageb accomplish that.

SEE ALsSO vsp_message()

THE ATARI COMPENDIUM

vgp_films() — 7.101

vgp_films()

VOID vqp_films(handle films)

WORD handle

char *films;
vgp_films() returns strings which represent up to five possible film types for the
camera driver to utilize.

OPCODE 5

SuB-OPCODE 91

AVAILABILITY Supported by all camera drivers.

PARAMETERS handlespecifies a valid workstation handf#éms is a character pointer to a
buffer at least 125 characters in length. Upon réilms will be filled in with 5
character strings. Bytes 0-24 will contain a string for the first type of film, bytes
25-49 will contain a string for the second type, and so on. These strings are not
NULL -terminated but are padded with spaces.

BINDING WORD §;
contrl[0] = 5;
contrl[1] = contrl[3] = 0;
contrl[5] = 91;
contrl[6] = handle;

vdi();
for(i = 0;i < 125;i++)
films[i] = (char)intout[i];
SEE ALSO vgp_state()

vgp_state()

VOID vgp_state(handle port, film, lightness interlace planes indices)
WORD handle
WORD *port, *film, *lightness *interlace, *planes *indices
vgp_state()returns information regarding the current state of the palette driver.

OPCODE 5

THE ATARI COMPENDIUM

7.102 — VDI/GDOS Function Reference

SuB-OPCODE 92
AVAILABILITY Supported by all camera drivers.
PARAMETERS handlespecifies a valid workstation handle. The rest of the parameters are all

WORDs which are filled in as follows:

Parameter Meaning

port Communication port number.
film Film type (0 —4).
lightness Lightness (-3 — 3). A value of 0 specifies the current f-stop setting. A value of

three results in an exposure half as long as normal while a value of 3 results
in an exposure twice as long as normal.

interlace Interlace mode. A value of 0 is non-interlaced, 1 is interlaced.
planes Number of planes (1 —4)
indices This is actually a WORD array with at least 16 members. (2~ planes)

members will be filled in with color codes for the driver. indices[0] and
indices[1] will specify the first color, indices[2] and indices[2] the second,

and so on.
BINDING WORD i;
contrl[0] = 5;
contrl[1] = contrl[3] = 0;
contrl[5] = 92;

contrl[6] = handle;
vdi();

*port = intout[0];
*film = intout[1];
*lightness = intout[2];
*interlace = intout[3];
*planes = intout[4];

for(i = 0;i < 21;i++)
indices[i] = intout[5 + iJ;

SEE ALSO vsp_state()

vgt_advance()

VOID vgt_advance(handle wch, advx advy xrem, yrem)
WORD handle wch;
WORD *advx *advy, *xrem, *yrent

vgt_advance() returns the advance vector and remainder for a character.

THE ATARI COMPENDIUM

vgt_advance32() — 7.103

OPCODE 247
AVAILABILITY Available only withFSMGDOS or SpeedoGDOS
PARAMETERS handlespecifies a valid workstation hand¢h contains the character which you

desire information for. Upon return tfiéORDs pointed to bydvx advy, xrem
andyremwill be filled in with the correct advance vector and remainders.

BINDING contrl[0] = 247;
contrl[1] = 0;
contrl[3] = 1,

contrl[6] = handle;
intin[0] = wch;
vdi();

*advx = ptsout[0];
*advy = ptsout[1];
*xrem = ptsout[2];
*yrem = ptsout[3];

COMMENTS advxandadvy, when added to the position where the character was rendered will
indicate the position to draw the next character. This advance vector works in all
directions with all character rotationgemandyremgive the remainder value as
a modulus of 16384. These remainders should be summed by an application an
managed to nudge the advance vector by a pixel when necessary.

SEE ALSO vat_width(), vat_extent(), vat_f_extent()

vgt_advance32()

VOID vqgt_advance32(handle wch, advx, advy)
WORD handle wch;
fix31 *advx *adwvy,

vat_advance32()is a variation of the binding forqt_advance()which returns
the advance vector and remainder for a character aéx@&lovalues..

OPCODE 247
AVAILABILITY Available only withSpeedoGDOS
PARAMETERS handlespecifies a valid workstation handch contains the character which you

desire information for. Upon return tfig31s pointed to bydvxandadvywill be
filled in with the correct advance vector.

THE ATARI COMPENDIUM

7.104 — VDI/GDOS Function Reference

BINDING contrl[0] = 247;
contrl[1] = O;
contrl[3] = 1;
contrl[6] = handle;
Intln[O] = wch;
vdi();

*advx = (fix31)((ptsout[4] << 16) | ptsout[5]);
*advy = (fix31)((ptsout[6] << 16) | ptsout[7]);

COMMENTS advxandadvy, when added to the position where the character was rendered will
indicate the position to draw the next character. This advance vector works in all
directions with all character rotations.

SEE ALSO vat_width(), vgt_extent(), vat_f_extent()

vgt_attributes()

VOID vqt_attributes(handle attr)

WORD handle

WORD *attr;
vat_attributes() returns information regarding the current attributes which affect
text output.

OPCODE 38

AVAILABILITY Supported by all drivers.

PARAMETERS handlespecifies a valid workstation handétr points to an array containing 10

WORDs which are filled in upon function exit as follows:

attr{x] Meaning

0

Text face (see vst_font()).

Text color (see vst_color()).

Text rotation (see vst_rotation()).

Horizontal alignment (see vst_alignment()).

Vertical alignment (see vst_alignment()).

Writing mode (see vswr_mode()).

Character width (see vst_height()).

Character height (see vst_height()).

OO N| OO | W[N]

Character cell width (see vst_height()).

Character cell height (see vst_height()).

THE ATARI COMPENDIUM

vqt_cachesize() — 7.105

BINDING

COMMENTS

SEE ALSO

contrl[0] = 38;
contrl[1] = contrl[3] = 0;
contrl[6] = handle;

vdi();

attr[0] = intout[0];
attr[1] = intout[1];
attr[2] = intout[2];
attr[3] = intout[3];
attr[4] = intout[4];
attr[5] = intout[5];
attr[6] = intout[6];
attr[7] = intout[7];
attr[8] = intout[8];
attr[9] = intout[9];

The values pertaining to character and cell width and have limited usefulness as
they are only constant with non-proportional fonts.

vql_attributes(), vam_attributes(), vgf_attributes()

vqgt_cachesize()

WORD vqt_cachesizehandle which, size)
WORD handle, which;

LONG *size

OPCODE
AVAILABILITY

PARAMETERS

BINDING

vat_cachesize(yeturns the size of the largest allocatable block of memory in one
of two caches.

255
Available only withFSMGDOS or SpeedoGDOS

handlespecifies a valid workstation handwhichspecifies which cache. A
value of CACHE_CHAR (0) selects the character bitmap cache. A value of
CACHE_MISC (1) selects the miscellaneous cache. TB&IG pointed to by
sizewill be filled in upon function exit with the size of the largest allocatable
block of memory in the selected cache.

contrl[0] = 255;
contrl[1] = O;
contrl[3] = 1;
contrl[6] = handle;
intin[0] = which;
vdi();

THE ATARI COMPENDIUM

7.106 — VDI/GDOS Function Reference

*size = (LONG)(((LONG)intin[0] << 16) | (LONG)intin[1]);

COMMENTS An application can estimate the amount of memory required to generate a character
and print a warning message if the user attempts to exc&€&MGDOS will
simply print a message on screen (you can intercept thigsiiterror()) and ask
the user to reboot. You can estimate the amount of memory required for a
particular character in the character bitmap cache with the formula:

(width in pixels + 7)/8 * height in pixels

Likewise, you can estimate the amount of memory needed for the miscellaneous
cache as:

84 * (width + height)

SEE ALSO vst_error(), v_flushcache()

vgt_devinfo()

VOID vqt_devinfo(handle, devid exists devstr)
WORD handle, devid

WORD *exists

char *devstr

vgt_devinfo() determines if a particular device ID is available, and if so, the
name of the device driver.

OPCODE 248
AVAILABILITY Available only withFONTGDOS, FSM, or SpeedoGDOS
PARAMETERS handlespecifies a valid workstation handitevidspecifies the device ID as

listed in the ‘ASSIGN.SYS' filegxistsis a pointer to ¥/ORD which will be

filled in with DEV_INSTALLED (1) if a device is installed with the specified ID
number oDEV_MISSING (0) if not. If the device does exist, the character buffer
pointer to bydevstrwill be filled in with the filename of the device padded with
spaces to the standdedEMDOS 8 + 3 format.

BINDING WORD i;
contrl[0] = 248;
contrl[1] = 0;
contrl[3] = 1;

contrl[6] = handle;
intin[0] = devid;

THE ATARI COMPENDIUM

vqt_extent() — 7.107

vdi();
*exists = ptsout[0];

for(i = 0;i < contrl[4];i++)
devstr[i] = (char)intout][i];

vgt_extent()

VOID vqt_extent(handle str, pts)

WORD handle

char *str;
WORD *pts,

OPCODE

AVAILABILITY

PARAMETERS

BINDING

vat_extent() returns the pixel extent of a string of text.
116
Supported by all drivers.

handlespecifies a valid workstation hand#ét points to a text string to return
extent information forpts points to an array of @ORDs which will be filled in
as follows:

4 3
The Atari Compendium
1 2

pts[x] Meaning

0 X coordinate of point 1.

Y coordinate of point 1.

X coordinate of point 2.

Y coordinate of point 2.

X coordinate of point 3.

Y coordinate of point 3.

X coordinate of point 4.

N|fo|o| W] N

Y coordinate of point 4.

WORD i = 0;

while(intin[i++] = (WORD)*str++);
contrl[0] = 116;

contrl[1] = O;

contrl[3] = --i;

THE ATARI COMPENDIUM

7.108 — VDI/GDOS Function Reference

contrl[6] = handle;
vdi();

pts[0] = ptsout[0];
pts[1] = ptsout[1];
pts[2] = ptsout[2];
pts[3] = ptsout[3];
pts[4] = ptsout[4];
pts[5] = ptsout[5];
pts[6] = ptsout[6];
pts[7] = ptsout[7];

COMMENTS This function will also output correct bounding information for rotated text. It is
recommended that_f_extent() be used for outline fonts as it takes special
factors into consideration which makes its output more accurate.

SEE ALSO vqt_f_extent(), vat_advance(), vqt_width()

vgt_f extent()

VOID vqt_f_extent(handle str, pts)

WORD handle

char *str;

WORD *pts,
vat_f_extent() returns the bounding box required to enclose the specified string of
text.

OPCODE 240

AVAILABILITY Available only withFSMGDOS or SpeedoGDOS$

PARAMETERS Same agqt_extent().

BINDING WORD i = 0;

while(intin[i++] = (WORD)*str++);

contrl[0] = 240;
contrl[1] = O;
contrl[3] = --i;
contrl[6] = handle;

vdi();

pts[0] = ptsout[0];
pts[1] = ptsout[1];
pts[2] = ptsout[2];
pts[3] = ptsout[3];
pts[4] = ptsout[4];

THE ATARI COMPENDIUM

vqt_f_extent16() — 7.109

COMMENTS

SEE ALSO

pts[5] = ptsout[5];
pts[6] = ptsout[6];
pts[7] = ptsout[7];

As opposed tyqt_extent(), vat_f_extent() calculates the remainders generated
by outline fonts therefore providing more accurate results.

vat_extent(), vat_width(), vat_advance()

vgt f extent16()

VOID vqt_f_extent(handle wstr, wstrlen, pts)

WORD handle
WORD *wstr;
WORD wstrlen;
WORD *pts,

OPCODE
AVAILABILITY

PARAMETERS

BINDING

vgt_f_extent16()is a variant binding ofqt_f_extent() that returns the bounding
box required to enclose the specified string of 16-bit Speedo character indexed
text.

240
Available only withFSMGDOS or SpeedoGDOS

handlespecifies a valid workstation handwestr points to a 16-bit text string
composed of Speedo character indewsdtlenindicates the length a¥str. The
array pointed to bptsis filled in with the same values ggt_extent().

WORD i;

for(i=0; i< wstrlen; i++)
intin[i] = wstr[i];

contrl[0] = 240;
contrl[1] = O;
contrl[3] = wstrlen;
contrl[6] = handle;

vdi();

pts[0] = ptsout[O0];
pts[1] = ptsout[1];
pts[2] = ptsout[2];
pts[3] = ptsout[3];
pts[4] = ptsout[4];
pts[5] = ptsout[5];
pts[6] = ptsout[6];
pts[7] = ptsout[7];

THE ATARI COMPENDIUM

7.110 — VDI/GDOS Function Reference

COMMENTS This variation of theyqt_f_extent() binding should only be used when
SpeedoGDO%as been properly configured witst_charmap()

SEE ALSO vgt_extent(), vgt_width(), vgt_advance()

vt _fontheader()

VOID vqt_fontheader(handle, buffer, pathname)
WORD *handle
char *buffer, *pathname

vat_fontheader() returns font-specific information for the currently selected
Speedo font.

OPCODE 234
AVAILABILITY Available only withSpeedoGDOS
PARAMETERS handlespecifies a valid workstation handiffer should point to a buffer of at

least 421 bytes into which the font header will be cogiathnameshould point
to a buffer of at least 128 bytes into which the full pathname of the font’s
corresponding ‘. TDF’ file will be copied.

BINDING WORD i;
contrl[0] = 234;
contrl[1] = O;
contrl[3] = 2;

contrl[6] = handle;
vdi();

for(i = 0; i < contrl[4]; i++)
pathnamel[i] = (char)intout[i];

COMMENTS The font header format and ‘. TDF file contents are containégpendix G:
Speedo Fonts

SEE ALSO vat_fontinfo()

THE ATARI COMPENDIUM

vat_fontinfo() — 7.111

vgt_fontinfo()

VOID vqt_fontinfo(handle first, last, dist, width, effects)

WORD handle

WORD *first, *last, *dist, *width, *effects

OPCODE

AVAILABILITY

PARAMETERS

vat_fontinfo() returns information regarding the current text font.
131
Supported by all drivers.

handlespecifies a valid workstation handl&st andlast each point to &VORD
which will be filled in with the first and last character in the font respectidésy.
points to an array of ®#ORDs which indicate the distances between the baseline
and the point indicated as follows:

dist[4]
dist[3]
- distf2]

. Baseline
dist[1]
dist[0]

width specifies the width of the largest cell in the font in pixels not including
effects.effectspoints to an array of @ORDs which contain information relating
to the offsets of the font when printed with the current effects.

effects[0]
—

—
effects[1]
effects[2] = effects[0] + effects[1]

effects[O]specifies the number of X pixels of the left slaftects[1]specifies
the number of X pixels of the right slaaffects[2]specifies the extra number of X

THE ATARI COMPENDIUM

7.112 — VDI/GDOS Function Reference

pixels to add to compensate for the special effects.

contrl[1] = contrl[3] = O;
contrl[6] = handle;

vdi();

*first = intout[0];
*last = intout[1];
*width = ptsout[0];
dist[0] = ptsout[1];
dist[1] = ptsout[3];
dist[2] = ptsout[5];
dist[3] = ptsout[7];
effects[0] = ptsout[2];
effects[1] = ptsout[4];
effects[2] = ptsout[6];

CAVEATS SpeedoGDOSs not capable of generating valuesdist[1] or dist[2] sodist[1]
is set to equalist[0] anddist[2] is set to equalist[3].

SEE ALSO vqt_width()

vgt_get table()

VOID vqt_get_table(handle map)

WORD handle

VOID ** map,
vat_get_table()returns pointers to seven tables which map the Atari character set
to the Bitstream character indexes.

OPCODE 254

AVAILABILITY Available only withSpeedoGDOS

PARAMETERS handlespecifies a valid workstation handle. The location pointed to by map will

be filled in with a pointer to seven internal tables, eachW@2RD size entries
long mapping ASCII characters 32—255 to Bitstream character indexes.

The tables are defined as follows:

Position Table

1st Master mapping.
2nd Bitstream International Character Set
3rd Bitstream International Symbol Set

THE ATARI COMPENDIUM

vgt_name() — 7.113

4th Bitstream Dingbats Set
5th PostScript Text Set
6th PostScript Symbol Set
7th PostScript Dingbats Set
contrl[1] = contrl[3] = O;
contrl[6] = handle;
vdi();
*(VOID *)map = ((LONG)(intout[0] << 16) | (LONG)intout[1]);
COMMENTS Use of this call allows access to characters outside of the ASCII range but care
must be taken to as this call affects all applications.
vgt_name()
WORD vqgt_name(handle index, fonthame)
WORD handle
WORD index;

char *fontname

OPCODE

AVAILABILITY

PARAMETERS

BINDING

vgt_name() returns the name of the specified font.
130
Supported by all drivers.

handlespecifies a valid workstation handfentnamepoints to a character buffer
of at least 33 characters which will be filled in with the name ofiftf@xand a
flag which distinguishes bitmap and outline fofesitname[0-31will contain the
name of the font (not necessafMyLL -terminated).

If FSMGDOS or SpeedoGDOSs installed fontname[32)will contain a flag
equallingOUTLINE_FONT (1) if the specified font is an outline font or
BITMAP_FONT (0) if it is a bitmap font.

WORD i;

contrl[0] = 130;
contrl[1] = 0;
contrl[3] = 1;
contrl[6] = handle;

intin[0] = index;

vdi();

THE ATARI COMPENDIUM

7.114 — VDI/GDOS Function Reference

for(i = 0;i < 33;i++)
fontname[i] = intout[i + 1];

return intout[0];

RETURN VALUE vgt_name() returns the unique code value which identifies this font (and is passed
to vst_font()).

SEE ALSO vst_load_fonts(), vst_font()

vgt_pairkern()

VOID vqat_pairkern(handle, charl, char2, x,y)
WORD charl, charz;

fix31 *x, *y;
vat_pairkern() returns adjustment vector information for the kerning of a
character pair.
OPCODE 235
AVAILABILITY Available only withSpeedoGDOS
PARAMETERS handlespecifies a valid workstation handiéarl andchar2 specify the left and
right members of the character pair to inquirandy will be filled with the
adjustment vector for the specified character pair.
contrl[1] = 0;
contrl[3] = 2;
contrl[6] = handle;
intin[0] = charl;
intin[1] = char2;
vdi();
*X = ((LONG)ptsout[0] << 16) | ptsout[1];
*y = ((LONG)ptsout[2] << 16) | ptsout[3];
SEE ALSO vat_trackkern(), vst_kern()

THE ATARI COMPENDIUM

vqt_trackkern() — 7.115

vgt_trackkern()

VOID vqt_trackkern(handle x,y)
fix31 *x, *y;

vat_trackkern() returns the horizontal and vertical adjustment vector for track
kerning.

OPCODE 234
AVAILABILITY Available only withSpeedoGDOS

PARAMETERS handlespecifies a valid workstation handkeandy are the horizontal and vertical
adjustment vectors currently used to modify character spacing in track kerning.

contrl[1] = 0;
contrl[3] = O;
contrl[6] = handle;

vdi();

*x = ((LONG)ptsout[0] << 16) | ptsout[1];
*y = ((LONG)ptsout[2] << 16) | ptsout[2];

SEE ALSO vqt_pairkern(), vst_kern()

vgt_width()

WORD vqt_width(handle, wch, cellw, left, right)
WORD handle, wch;
WORD *cellw, *left, *right;

vat_width() returns information regarding the width of a character cell.

OPCODE 117
AVAILABILITY Supported by all drivers.
PARAMETERS handlespecifies a valid workstation handle. The lower eight bitsabfspecify

the ASCII character to return width information about. The following three values
are each WORDs which are filled in by the function upon return with information
about the width of the specified character in pixels as illustrated here.

THE ATARI COMPENDIUM

7.116 — VDI/GDOS Function Reference

left right
— —
' cellw '
BINDING contrl[0] = 117;

contrl[1] = 0;

contrl[3] = 1,

contrl[6] = handle;

intin[0] = wch;

vdi();

*cellw = ptsout[0];
*left = ptsout[2];
*right = ptsout[4];

return intout[0];

RETURN VALUE vat_width() returnswchor -1 if an error occurred.

CAVEATS vgt_width() does not take into account remainders when dealing with outline
fonts. It is therefore recommended thigt_advance()be used instead when

inquiring about outline fonts.

SEE ALSO vqt_advance()

THE ATARI COMPENDIUM

vr_recfl() — 7.117

vr_recfl()
VOID vr_recfl(handle pxy)
WORD handle
WORD *pxy;,
vr_recfl() outputs a filled rectangle.
OPCODE 114
AVAILABILITY Supported by all drivers.
PARAMETERS handlespecifies a valid workstation handfxy points to an array of WORDs
which give avDI format rectangle of the object to draw.
BINDING COntrl[O] =114,
contrl[1] = 2;
contrl[3] = 0;
contrl[6] = handle;
ptsin[0] = pxy[O];
ptsin[1] = pxy[1];
ptsin[2] = pxy[2];
ptsin[3] = pxyl[3];
vdi();
COMMENTS vr_recfl(), as opposed t¢_bar(), never draws an outline regardless of the
settings of/sf_perimeter().
SEE ALSO v_bar()
vr_trnfm()

VOID vr_trnfm(handle, src, dest)

WORD handle
MFDB * src, *dest

OPCODE

AVAILABILITY

vr_trnfm() transforms a memory block from device-independent to device-
dependent and vice-versa.

110

Supported by all drivers.

THE ATARI COMPENDIUM

7.118 — VDI/GDOS Function Reference

PARAMETERS

BINDING

CAVEATS

COMMENTS

SEE ALSO

handlespecifies a valid workstation handc specifies thédVFDB (as defined
in vro_cpyfm()) wheragdestspecifies thdMFDB of the destination.

contrl[0] = 110;

contrl[1] =contrl[3] = 0;

contrl[6] = handle;

contrl[7] = (WORD)((LONG)src >> 16);
contrl[8] = (WORD)src;

contrl[9] = (WORD)((LONG)dest >> 16);
contrl[10] = (WORD)dest;

vdi();

While vr_trnfm() will work for in-place transformations, this process can be
time-consuming for large forms.

This call will not translate between forms with multiple planes. For instance, you
can not translate a 2 plane device-independent image to an 8-plane device-specific
image.

To stay compatible with future hardware developments it is recommended that all
images be initially either stored or manually translated to device-independent
format and subsequently converted with this function to match the planar
configuration of the device.

When this call is used to transform forms with either 2 or 4 bit planes, color
translation is performed on each pixel as follows:

Four-Plane Transformations Two Plane
Device VDI Device VDI Device | VDI
0000 0 1000 9 00 0
0001 2 1001 10 01 2
0010 3 1010 11 10 3
0011 6 1011 14 11 1
0100 4 1100 12
0101 7 1101 15
0110 5 1110 13
0111 8 1111 1

vro_cpyfm()

THE ATARI COMPENDIUM

vro_cpyfm() — 7.119

vro_cpyfm()

VOID vro_cpyfm(handle mode pxy, src, dest)
WORD handle, mode

WORD *pxy;,
MFDB * src, *dest

OPCODE
AVAILABILITY

PARAMETERS

vro_cpyfm() ‘blits’ a screen or memory block from one location to another.

109

Supported by all screen drivers.

handlespecifies valid workstation handiodespecifies the writing mode as

follows:
Name Mode Result
ALL_WHITE 0 All zeros.
S_AND_D 1 source AND destination
S_AND_NOTD 2 source AND (NOT destination)
S_ONLY 3 source
(Replace mode)

NOTS_AND_D 4 (NOT source) AND destination

(Erase mode)
D_ONLY 5 destination
S_XOR_D 6 source XOR destination

(XOR Mode)
S OR_D 7 source OR destination
NOT_SORD 8 NOT (source OR destination)
NOT_SXORD 9 NOT (source XOR destination)
NOT_D 10 NOT destination
S_OR_NOTD 11 source OR (NOT destination)
NOT_S 12 NOT source
NOTS_OR_D 13 (NOT source) OR destination
NOT_SANDD 14 NOT (source AND destination)
ALL_BLACK 15 All ones.

PXy points to an array of eigffORDs. pxy[0—3] contains the bounding rectangle
of the source blockixy[4—7] contains the bounding rectangle of the destination
block. src anddesteach point to aiMFDB structure which describes the source

and destination memory fortlFDB is defined as follows:

typedef struct

THE ATARI

COMPENDIUM

7.120 — VDI/GDOS Function Reference

BINDING

COMMENTS

SEE ALSO

/* Memory address (NULL = current screen). If you specify
a value of NULL, the rest of the structure will be filled

out for you. */

VOID *fd_addr;

/* Form width in pixels */
WORD fd_width;

/* Form height in pixels */
WORD fd_height;

/* Form width in WORDs (fd_width + 15)/16 */
WORD fd_wdwidth;

/* Format (0 = device-specific, 1 = VDI format) */
WORD fd_stand;

/* Number of memory planes */
WORD fd_planes;

/* Reserved (set to 0) */
WORD reservedl;
WORD reserved?;
WORD reserved3;

} MFDB;
contrl[0] = 109;
contrl[1] = 4;
contrl[3] = 1;

contrl[6] = handle;

contrl[7] = (WORD)((LONG)src >> 16);
contrl[8] = (WORD)src;

contrl[9] = (WORD)((LONG)dest >> 16);
contrl[10] = (WORD)dest;

intin[0] = mode;

ptsin[0] = pxy([0];
ptsin[1] = pxy[1];
ptsin[2] = pxy[2];
ptsin[3] = pxy[3];
ptsin[4] = pxy[4];
ptsin[5] = pxy[5];
ptsin[6] = pxyl[6];
ptsin[7] = pxy[7];

vdi();

To ‘blit’ a single-plane form to a multi-plane destination, wecpyfm().

vr_trnfm(), vrt_cpyfm()

THE ATARI COMPENDIUM

vrg_choice() — 7.121

vrg_choice()

VOID vrg_choice(handle start, final)
WORD handle, start;

WORD *final;
vrg_choice() accepts input from the ‘choice’ device in request mode.

OPCODE 30

AVAILABILITY This call is not guaranteed to be available with any driver and its use should
therefore be restricted.

PARAMETERS handlespecifies a valid workstation hand#artindicates the starting value for
the choice device (1-??%inal points to AVORD which will be filled in upon
exit with the results of the request.

BINDING ContrI[O] = 30;
contrl[1] = 0;
contrl[3] = 1;
contrl[6] = handle;
intin[0] = start;

vdi();

*final = intout[0];
COMMENTS Input is sampled until a key is pressed.
SEE ALSO vsm_choice(), vsin_mode()

vrg_locator()

VOID vrq_locator(handle mx, my, xout, yout, term)
WORD handle, mx, my;,
WORD *xout, *yout, *term,;
vrg_locator() inputs information from the ‘locator’ device in request mode.

OPCODE 28

AVAILABILITY This call is not guaranteed to be available with any driver and its use should
therefore be restricted.

THE ATARI COMPENDIUM

7.122 — VDI/GDOS Function Reference

PARAMETERS handlespecifies a valid workstation handle. To start, the mouse cursor is
displayed at the location given byxandmy. When a key or mouse button is
pressed, the call returns. The final location of the mouse pointer is filled into the
2 WORDs pointed to byoutandyout TheWORD pointed to bytermis filled
in with the ASCII key of the character that terminated input, 32 (0x20) if the left
mouse button was struck, or 33 (0x21) if the right mouse button was struck.

B|ND|NG COntrI[O] = 28;
contrl[1] = 1;
contrl[3] = 0;

contrl[6] = handle;

ptsin[0] = mx;
ptsin[1] = my;

vdi();
*term = intout[0];

*xout = ptsout[0];
*yout = ptsout[1];

COMMENTS Using this function will confuse th8ES's mouse input functions.

SEE ALSO vsm_locator(), vsin_mode()

vrg_string()

VOID vrg_string(handle, maxlen echq outxy, str)
WORD handle maxlen, echg

WORD *outxy;

char *str;
vrg_string() waits for input from the ‘string’ device in request mode.

OPCODE 31

AVAILABILITY This call is not guaranteed to be available with any driver and its use should
therefore be restricted.

PARAMETERS handlespecifies a valid workstation handle. This call inputs characters from the
keyboard into the buffer pointed to bif up tomaxlen+ 1 characters. Echois
set to 1, characters are echoed to the screen at the location given by the two
WORDs pointed to byputxy. If echo is set to 0, no echoing is performed.

BINDING WORD i;

contrl[0] = 31;

THE ATARI COMPENDIUM

vrg_valuator() — 7.123

contrl[1] = 1;
contrl[3] = 2;
contrl[6] = handle;

intin[0] = maxlen;
intin[1] = echo;

ptsin[0] = outxy[0];
ptsin[1] = outxy[1];

vdi();
for(i = 0;i < contrl[4];i++)

str[i] = (char)intout[i];

CAVEATS Theechoparameter is not functional. Character output is never echoed. However,
outxymust point to valid memory space or a crash occur.

COMMENTS Though this binding does not allow for itnifaxlenis specified as negative, then
as many agrjaxlen + 1 characters will be read as keycodes rather than ASCI|
codes. The values intoutwill occupy the ful WORD rather than just the lower
eight bits. A custom binding could be used to take advantage of this.

SEE ALSO vsin_mode(), vsm_string()

vrg_valuator()

VOID vrg_valuator(handle start, *final, *term)
WORD handle start,
WORD *final, *term,

vrg_valuator() accepts for input from the valuator device until a terminating
character is entered in request mode.

OPCODE 29

AVAILABILITY This call is not guaranteed to be available with any driver and its use should
therefore be restricted.

PARAMETERS handlespecifies a valid workstation hand##art specifies the initial value of the
valuator device (1-100). When a terminating character has been struck, the
WORD pointed to byfinal will be filled in with the final value of the valuator and
the WORD pointed to bytermwill be filled in with whatever ASCII character
caused termination.

BINDING contrl[0] = 29;
contrl[1] = O;
contrl[3] = 1;

contrl[6] = handle;

THE ATARI COMPENDIUM

7.124 — VVDI/GDOS Function Reference

COMMENTS

SEE ALSO

intin[0] = start;
vdi();

*final = intout[0];
*term = intout[1];

The ‘valuator’ is typically the up and down arrow keys. Each key increments or
decrements the value by 10 unless the shift key is held in which case it is
incremented or decremented by 1.

vsm_valuator(), vsin_mode()

vrt_cpyfm()

VOID vrt_cpyfm(handle, mode pxy, src, dest colors)
WORD handle, mode

WORD * pxy;,
MFDB * src, *dest
WORD *colors,

OPCODE

AVAILABILITY

PARAMETERS

BINDING

vrt_cpyfm() ‘blits’ a single-plane source form to a multiple-plane destination.
121
Supported by all screen drivers.

handlespecifies a valid workstation handieodespecifies the writing mode (1—
4, seevswr_mode()). pxy, src, anddestare defined the same asviig_cpyfm().
colors points to a 2VORD array which specifies the colors to apply to the
‘blitted’ image.colors[0] is applied to all set bits in the source image and
colors[1] is applied to all of the cleared bits.

contrl[0] = 121;

contrl[1] = 4;

contrl[3] = 3;

contrl[6] = handle;

contrl[7] = (WORD)((LONG)src >> 16);
contrl[8] = (WORD)src;

contrl[9] = (WORD)((LONG)dest >> 16);
contrl[10] = (WORD)dest;

intin[0] = mode;
intin[1] = colors[0];
intin[2] = colors[1];

ptsin[0] = pxy([O];
ptsin[1] = pxy[1];

THE ATARI COMPENDIUM

vs_clip() — 7.125

COMMENTS

SEE ALSO

ptsin[2] = pxy[2];
ptsin[3] = pxy[3];
ptsin[4] = pxy[4];
ptsin[5] = pxy([5];
ptsin[6] = pxy[6];
ptsin[7] = pxy[7];

vdi();

The source form must be a monoplane form.

vro_cpyfm()

vs_clip()

VOID vs_clip(handle, flag, pxy)

WORD handle, flag;

WORD *pxy,

OPCODE
AVAILABILITY

PARAMETERS

BINDING

COMMENTS

vs_clip() defines the global clipping rectangle and state for the specified
workstation.

129
Supported by all drivers.

handlespecifies a valid workstation handiag is set taCLIP_OFF (0) to turn
off clipping orCLIP_ON (1) to enable clipping. flag is CLIP_ON (1) thenpxy
should point to a ¥%VORD array containing &DI format rectangle which will
serve as the clipping rectangle, otherwis®,can beNULL .

contrl[0] = 129;
contrl[1] = 2;
contrl[3] = 1;
contrl[6] = handle;

if(intin[0] = flag) {
ptsin[0] = pxy[O];
ptsin[1] = pxy[1];
ptsin[2] = pxy[2];
ptsin[3] = pxy[3];
}

vdi();

All VDI calls are clipped to that workstations current clipping rectangle.

THE ATARI COMPENDIUM

7.126 — VDI/GDOS Function Reference

vs_color()

VOID vs_color(handle color, rgb)
WORD handle, color,
WORD *rgb;

vs_color() sets the color of a palette index.
OPCODE 14
AVAILABILITY Supported by all devices.

PARAMETERS handlespecifies a valid workstation handé@lor specifies the color register of
the color to modifyrgb points to an array of thré&ORDs which contain the red,
green, and blue values respectively (0—1000) which will be used to map the color
index to the closest color value possible.

BINDING contrl[0] = 14;
contrl[1] = 0;
contrl[3] = 4;
contrl[6] = handle;
Intln[O] = color;
Intln[l] = rgb[o]’
|nt|n[2] = rgb[l]’
|nt|n[3] = rgb[z]’

vdi();

SEE ALSO Esetcolor(), Setcolor()

vS_curaddress()

VOID vs_curaddress(handle row, column)
WORD handle, row, column;

vs_curaddress()sets the position of the alpha screen text cursor.

OPCODE 5

SuB-OPCODE 11

AVAILABILITY Supported by all screen drivers.

PARAMETERS handle specifies a valid workstation haneisy andcolumnspecify the new

THE ATARI COMPENDIUM

vs_palette() — 7.127

BINDING

COMMENTS

SEE ALSO

coordinates of the text cursor.

contrl[0] = 5;
contrl[1] = O;
contrl[3] = 2;
contrl[5] = 11;
contrl[6] = handle;

intin[0] = row;
intin[1] = column;

vdi();

This call is equivalent to tHesGY VT-52 code.

vq_curaddress()

vs_palette()

VOID vs_palette(handle, mode)
WORD handle mode

OPCODE

SuB-OPCODE

AVAILABILITY

PARAMETERS

BINDING

vs_palette()selects a CGA palette.
5

60

This call was originally designed for use on IBM CGA-based computers. Its
usefulness and availability are not guaranteed under any driver so it should thus be

avoided.

handlespecifies a valid workstation handlenodevalue of 0 selects a palette
of red, green, and blue.modevalue of 1 selects a palette of cyan, magenta, and

white.

contrl[0] = 5;
contrl[1] = O;
contrl[3] = 1;
contrl[5] = 60;
contrl[6] = handle;

intin[0] = mode;

vdi();

THE ATARI COMPENDIUM

7.128 — VDI/GDOS Function Reference

vsc_form()

VOID vsc_form(handle, newform)
MFORM * newform;

vsc_form() alters the appearance of the mouse pointer.

OPCODE 111
AVAILABILITY Supported by all screen drivers.
PARAMETERS handlespecifies a valid workstation handf&wformpoints to &MFORM

structure defined as follows:

typedef struct

WORD mf_xhot; /* X *hot spot’ */

WORD mf_yhot; /*Y ‘hot spot’ */

WORD mf_nplanes; /* Number of planes (must be 1) */
WORD mf_fg; /* Foreground color (should be 0) */
WORD mf_bg; /* Background color (should be 1) */

WORD mf_mask[16]; /* 16 WORDs of mask*/
WORD mf_data[16]; /* 16 WORDs of data */

} MFORM;
BINDING WORD i;
contrl[0] = 111;
contrl[1] = 0;
contrl[3] = 37;

contrl[6] = handle;

for(i = 0;i < 37;i++)
intin[i] = ((WORD *)newform)([i];

vdi();

SEE ALSO graf_mouse()

vsf_color()

WORD vsf_color(handle color)
WORD handle, color;

vsf_color() changes the current fill color.

THE ATARI COMPENDIUM

vsf_interior() — 7.129

OPCODE 25

AVAILABILITY Supported by all drivers.

PARAMETERS handlespecifies a valid workstation hand@@lor specifies the new fill color
index.

BINDING contrl[0] = handle;
contrl[1] = O;
contrl[3] = 1;

contrl[6] = handle;
intin[0] = color;

vdi();
RETURN VALUE vsf_color() returns the actual color set (within bounds).

SEE ALSO vst_color(), vsm_color(), vsl_color(), vsf_attributes()

vsf_interior()

WORD vsf_interior(handle interior)
WORD handlg interior;

vsf_interior() sets the interior type for filled objects.

OPCODE 23

AVAILABILITY Supported by all drivers.

PARAMETERS handlespecifies a valid workstation handiaterior specifies the interior type as
follows:
Name interior Meaning
FIS_HOLLOW 0 Hollow interior (color index 0).
FIS_SOLID 1 Solid interior (as set by vsf_color()).
FIS_PATTERN 2 Patterned fill. (style set by vsf_style()).
FIS_HATCH 3 Hatched fill. (style set by vsf_style()).
FIS_USER 4 User-defined fill (as set by vsf_udpat()).

B|ND|NG COntrI[o] =23;
contrl[1] = O;

contrl[3] = interior;
contrl[6] = handle;

THE ATARI COMPENDIUM

7.130 — VDI/GDOS Function Reference

RETURN VALUE

SEE ALSO

intin[0] = interior;

vdi();
This call returns the color value actually set (within bounds).

vsf_style()

vsf _perimeter()

WORD vsf_perimeter(handle, flag)
WORD handle, flag;

OPCODE

AVAILABILITY

PARAMETERS

BINDING

RETURN VALUE

vsf_perimeter() sets whether a border will be drawn around iv@¥t objects.
104
Supported by all drivers.

handlespecifies a valid workstation handf&g is set toPERIMETER_OFF (0)
to turn off perimeter drawing arRERIMETER_ON (1) to enable it.

contrl[0] = 104;
contrl[1] = O;
contrl[3] = 1,

contrl[6] = handle;

vdi();

This function returns the new value of the perimeter visibility flag.

vsf style()

WORD vsf_style(handle style)
WORD handle, style

OPCODE

AVAILABILITY

PARAMETERS

vsf_style()defines the style of fill pattern applied to filled objects.
24
Supported by all drivers.

handlespecifies a valid workstation hand#ylespecifies the pattern or hatch
index depending upon the last settingysff interior(). Valid pattern indexes are

THE ATARI COMPENDIUM

vsf_style() — 7.131

as follows:

8

16

%

17 18 19 20 24

Valid hatch indexes are as follows:

7.0 81| =
ﬂV?QI |

12

BINDING contrI[O] =
contrl[1] =

contrl[3] = 1;
contrl[6] = handle;

intin[0] = style;

vdi();
RETURN VALUE This call returns the actual style set by the call.
COMMENTS The interior type should be set first witsf_interior().

SEE ALSO vsf_interior()

THE ATARI COMPENDIUM

7.132 — VDI/GDOS Function Reference

vsf _udpat()

VOID vsf_udpat(handle pattern planes)

WORD handle

WORD *planes

WORD planes
vsf_udpat() creates the user-defined fill pattern.

OPCODE 112

AVAILABILITY Supported by all drivers.

PARAMETERS handlespecifies a valid workstation handle. In palette-based mpdtssn
points to an array of (16planeg WORDs which provide the bit pattern for the
fill.

In true-color modesatternpoints to a 16x16 array 6ONG's (256 in total)

which each contain 32-bit color informatignanesspecifies the number of color
planes for the fill. Use 1 for a monochrome fill on any display, a value equal to the
number of planes on the current device for a palette-based color fill or 32 for a
true-color display.

BINDING WORD i;
contrl[0] = 112;
contrl[1] = 0;
contrl[3] = (16 * planes);
contrl[6] = handle;
for(i = 0;i < (16 * planes);i++)

intin[i] = pattern[i];
vdi();

SEE ALSO vsf_interior()

vsin_mode()

WORD vsin_mode(handle, device mode)
WORD handle device mode

vsin_mode()chooses between request or sample mode for the specified
device.

THE ATARI COMPENDIUM

vsl_color() — 7.133

OPCODE

AVAILABILITY

PARAMETERS

BINDING

RETURN VALUE

33
Supported in ROM by all Atari computers.

handlespecifies a valid workstation handle modevalue of

REQUEST_MODE (1) sets the device to operate in request mode whereas a
value of SAMPLE_MODE (2) operates the device in sample mode. Valid
devices are:

Name device Device
LOCATOR 1 Locator
VALUATOR 2 Valuator
CHOICE 3 Choice
STRING 4 String

contrl[0] = 33;

contrl[1] = 0;

contrl[3] = 2;

contrl[6] = handle;

intin[0] = device;
intin[1] = mode;

vdi();

return intout[0];

vsin_mode()returnsmode

COMMENTS Using this function will cause tH&ES to function improperly.

SEE ALSO vrg_valuator(), vrg_string(), vrq_choice(), vrq_locator(), vsm_valuator(),
vsm_string(), vsm_choice(), vsm_locator()

vsl_color()

WORD vsl_color(handle color)
WORD handle, color;

OPCODE

AVAILABILITY

vsl_color() sets the color for line-drawing functions and objects with perimeters.
17

Supported by all drivers.

THE ATARI COMPENDIUM

7.134 — VDI/GDOS Function Reference

PARAMETERS

BINDING

RETURN VALUE

SEE ALSO

handlespecifies a valid workstation hand@@lor specifies the new color to
define for line-drawing.

contrl[0] = 17;
contrl[1] = O;
contrl[3] = 1;

contrl[6] = handle;
intin[0] = color;
vdi();

return intout[0];
This function returns the new color set (within bounds).

vst_color(), vsm_color(), vsf_color()

vsl_ends()

VOID vsl_ends(handle, start, end)
WORD handle, start, enc

OPCODE

AVAILABILITY

PARAMETERS

BINDING

vsl_ends()sets the style of end point for the starting and ending points of lines
drawn by thé/Dl in line-drawing functions and perimeter drawing.

108
Supported by all drivers.

handlespecifies a valid workstation hand#art andendspecify the type of end
cap to use at the start and end of lines respectively as follows:

Name ‘ start/end Shape
SQUARE 0
|
ARROWED 1 ‘ .
ROUND 2
D
contrl[0] = 108;
contrl[1] = 0;
contrl[3] = 2;

contrl[6] = handle;

THE ATARI COMPENDIUM

vsl_type() — 7.135

intin[0] = start;
intin[1] = end;

vdi();

SEE ALSO vsl_type()

vsl_type()

WORD vsl_type(handle type)
WORD handle, type

vsl_type() defines the style of line used in line-drawing functions and perimeter

drawing.
OPCODE 15
AVAILABILITY Supported by all drivers.
PARAMETERS handlespecifies a valid workstation handigpedefines the style of line as
follows:
Name ‘ type ‘ Style
SOLID 0
|
LDASHED 1
I N .
DOTTED 2
I B B .
DASHDOT 3
I B
DASH 4
|
DASHDOTDOT 5
I N B .
USERLINE 6
User-defined with vsl_udsty() .
BINDING ContrI[O] = 15;
contrl[1] = O;
contrl[3] = 1;

contrl[6] = handle;

THE ATARI COMPENDIUM

7.136 — VDI/GDOS Function Reference

RETURN VALUE

SEE ALSO

intin[0] = type;
vdi();

return intout[0];
vsl_style()returns the newly set line type.

vsl_udsty()

vsl_udsty()

VOID vsl_udsty(handle pattern)
WORD handle, patterrt

OPCODE

AVAILABILITY

PARAMETERS

BINDING

COMMENTS

SEE ALSO

vs|_udsty() sets the user-defined line type.

113

Supported by all drivers.

handlespecifies a valid workstation handjgtternis aWORD which defines

the USERLINE style. It is essentially a bit mask which is applied to a solid line

and repeated along the length of the line. A value of OXFFFF would create a solid
line. A value of OXAAAA would produce a line where every other pixel was set.

contrl[0] = 113;
contrl[1] = 0;
contrl[3] = 1;

contrl[6] = handle;
intin[0] = pattern;

vdi();
You must calvsl_style(handlg 6) to actually utilize this style.

vsl_style()

THE ATARI COMPENDIUM

vsl_width() — 7.137

vsl_ width()

VOID vsl_width(handle, width)
WORD handle width;

vsl_width() determines the width of lines drawn with line-drawing functions and
as perimeters to other objects.

OPCODE 16
AVAILABILITY Supported by all drivers.
PARAMETERS handlespecifies a valid workstation handwidth specifes the width future lines

drawn will be.

BINDING ContrI[O] = 16;
contrl[1] = O;
contrl[3] = 1;

contrl[6] = handle;

intin[0] = width;
vdi();
COMMENTS TheVDI is only capable of drawing lines an odd number of pixels thick. Values

will be rounded down to the first odd number.

Setting a line width higher than 1 may nullify line styles other than solid. Check
vg_extnd() for details.

SEE ALSO vg_extnd()

vsm_ choice()

WORD vsm_choice(handle xout)

WORD handle
WORD *xout;
vsm_choice(returns the current value of the ‘choice’ device.
OPCODE 30
AVAILABILITY This call is not guaranteed to be available with any driver and its use should

therefore be restricted.

THE ATARI COMPENDIUM

7.138 — VDI/GDOS Function Reference

PARAMETERS

BINDING

RETURN VALUE

SEE ALSO

handlespecifies a valid workstation handi@ut points to aVORD which is
filled in on function exit with the current value of the choice device.

contrl[0] = 30;

contrl[1] = contrl[3] = O;
contrl[6] = handle;
vdi();

*xout = intout[0];

return contrl[4];

vsm_choice(yeturns 1 if an input from the ‘choice’ device was made or 0
otherwise.

vsin_mode(), vrq_choice()

vsm__color()

WORD vsm_color(handle, color)
WORD handle, color;

OPCODE

AVAILABILITY

PARAMETERS

BINDING

RETURN VALUE

SEE ALSO

vsm_color() defines the color used to render markers.
20
Supported by all drivers.

handlespecifies a valid workstation handélor specifies the new color to
define for markers.

contrl[0] = 20;
contrl[1] = 0;
contrl[3] = 1;

contrl[6] = handle;
vdi();

return intout[0];
vsm_color()returns the new marker color actually set (within bounds).

v_pmarker(), vsl_color(), vst_color(), vsf_color()

THE ATARI COMPENDIUM

vsm_height() — 7.139

vsm_height()

WORD vsm_height(handle, size)

WORD handlg, size

OPCODE

AVAILABILITY

PARAMETERS

BINDING

RETURN VALUE

COMMENTS

SEE ALSO

vsm_height()sets the height of markers.
19
Supported by all drivers.

handlespecifies a valid workstation hand#zespecifies the height (and width)
of markers to draw in pixels.

contrl[0] = 19;
contrl[1] = 0;
contrl[3] = 1;

contrl[6] = handle;
intin[0] = size;
vdi();

return intout[0];
vsm_height()returns the marker height actually set.
TheDOT marker is not affected by this call. It is always one pixel high and wide.

v_pmarker()

vsm_locator()

WORD vsm_locator(handle, mx, my, xout, yout, term)
WORD handle, mx, my;,
WORD *xout, *yout, *term;

OPCODE

AVAILABILITY

PARAMETERS

vsm_locator() receives data from the ‘locator’ device in sample mode.
28

This call is not guaranteed to be available with any driver and its use should
therefore be restricted.

handlespecifies a valid workstation handle. The mouse pointer is initially drawn

THE ATARI COMPENDIUM

7.140 — VDI/GDOS Function Reference

BINDING

RETURN VALUE

CAVEATS

SEE ALSO

at location (mx my). The call returns with the final position of the mouse in the
WORDs pointed to byxoutandyout

TheWORD pointed to bytermwill be filled in with a value which specifies the
ASCII value of the key presse@rmwill be set to 0x20 if the left mouse button
was pressed or 0x21 if the right mouse button was pressed.

contrl[0] = 28;
contrl[1] = 1;
contrl[3] = 0;

contrl[6] = handle;

ptsin[0] = mx;
ptsin[1] = my;

vdi();

*xout = ptsout[0];
*yout = ptsout[1];

*term = intout[0];

return ((contrl[4] << 1) | contrl[2]);
vsm_locator() returns one of the following based on its result:

Return Value [Meaning
Mouse has not moved nor was any key pressed.

Mouse has been moved (xout and yout are valid).

Key or mouse button has been struck (term is valid).

W[N] O

Mouse has moved and a key or mouse button has been struck (xout, yout,
and term are valid).

Using this call will confuse thAES.

vrg_locator(), vsin_mode()

vsm_string()

WORD vsm_string(handle, maxlen, echq echoxy str)
WORD handle, maxlen, echa

WORD *echoxy

char *str;

OPCODE

vsm_string() retrieves input from the ‘string’ device.
31

THE ATARI COMPENDIUM

vsm_type() — 7.141

AVAILABILITY

PARAMETERS

BINDING

RETURN VALUE

CAVEATS

COMMENTS

SEE ALSO

This call is not guaranteed to be available with any driver and its use should
therefore be restricted.

handlespecifies a valid workstation handle. This call inputs characters from the
keyboard into the buffer pointed to bir up to (naxlen+ 1) characters. Echois

set to 1, characters are echoed to the screen at the location given by the two
WORDs pointed to byputxy. If echo is set to 0, no echoing is performed.

WORD i;
contrl[0] = 31;
contrl[1] = 1;
contrl[3] = 2;

contrl[6] = handle;

intin[0] = maxlen;
intin[1] = echo;

ptsin[0] = echoxy[0];
ptsin[1] = echoxy[1];

vdi();

for(i = 0;i < contrl[4];i++)
str[i] = (char)intout[i];

return contrl[4];

vsm_string() returns the number of characters actually read.

Using this function will confuse th&ES.

Though this binding does not allow for itnifaxlenis specified as negative, then
as many as (rjaxlen + 1) characters will be read as keycodes rather than ASCI|
codes. The values intoutwill occupy the ful WORD rather than just the lower

eight bits. A custom binding could be used to take advantage of this.

vsin_mode()

vsm_type()

WORD vsm_type(handle, type)

WORD handle, type

OPCODE

vsm_type()sets the current type of marker.

18

THE ATARI COMPENDIUM

7.142 — VVDI/GDOS Function Reference

AVAILABILITY Supported by all drivers.

PARAMETERS handlespecifies a valid workstation handigpechanges the marker type as follows:
INETn L) type Shape
MRKR_DOT 1 Single Pixel

MRKR_PLUS 2 |
MRKR_ASTERISK 3 >|<

MRKR_BOX 4

MRKR_CROSS 5 ><
MRKR_DIAMOND 6 <>

— 7.. Device Dependent

BlNDlNG Contrl[O] = 18,
contrl[1] = 0;
contrl[3] = type;
contrl[6] = handle;
intin[0] = type;

vdi();

RETURN VALUE vsm_type()returns the type of marker actually set.

THE ATARI COMPENDIUM

vsm_valuator() — 7.143

SEE ALSO

v_pmarker()

vsm_ valuator()

VOID vsm_valuator(handle, x, xout, term, status)

WORD handle, x;

WORD *xout, *term, *status

OPCODE

AVAILABILITY

PARAMETERS

BINDING

SEE ALSO

vsm_valuator() retrieves input from the ‘valuator’ device in sample mode.
29

This call is not guaranteed to be available with any driver and its use should
therefore be restricted.

handlespecifies a valid workstation handlesets the intial value of the
‘valuator’. TheWORD pointed to byoutis filled in with the final value of the
device. If a key was pressed its ASCII code is returned iWEBRD pointed to
by term TheWORD pointed to bystatuscontains a value as follows:

status ‘ Meaning

0 No input was taken.
1 Valuator changed.
2 Key press occurred.

contrl[0] = 29;

contrl[1] = O;

contrl[3] = 1;

contrl[6] = handle;

intin[0] = x;

vdi();

*xout = intout[0];
*term = intout[1];

*status = contrl[4];

vsin_mode(), vrg_valuator()

THE ATARI COMPENDIUM

7.144 — VVDI/GDOS Function Reference

vsp_message()

VOID vsp_messagebandle)

WORD handle

vsp_message(@auses the suppression of palette driver messages from the screen.
OPCODE 5
SuB-OPCODE 95
AVAILABILITY Supported by all camera drivers.
PARAMETERS handlespecifies a valid workstation handle.
BINDING contrl[0] = 5;

contrl[1] = contrl[3] = O;

contrl[5] = 95;

contrl[6] = handle;

vdi();
SEE ALSO vgp_error()
vsp_save()
VOID vsp_save(handle)
WORD handle

vsp_save(saves the current state of the driver to disk.
OPCODE 5
SuB-OPCODE 94
AVAILABILITY Supported by all camera drivers.
PARAMETERS handlespecifies a valid workstation handle.
BINDING ContrI[O] = 5,

contrl[1] = contrl[3] = O;

contrl[5] = 94;

contrl[6] = handle;

vdi();

THE ATARI COMPENDIUM

vsp_state() — 7.145

vsp_state()

VOID vsp_state(handle port, film, lightness interlace planes indexes)
WORD handle port, film, lightness interlace, planes
WORD *indexes

vsp_state()sets the palette driver state.

OPCODE 5

SuB-OPCODE 93

AVAILABILITY Supported by all camera drivers.

PARAMETERS handlespecifies a valid workstation handpsrt specifies the communication
port number of the camera devibién specifies the index of the desired type of
film (0-4).

lightnessspecifies the modification to apply to the camera’s default f-stop setting
(-3-3). A value of 0 uses the default setting. A value of -3 results in an exposure of
half of the default length whereas a value of 3 doubles the exposur@tiznéece

is set to O for non-interlaced or 1 for interlaced output.

planesspecifies the number of planes to output (1klexespoints to an array of
16 WORDs which define the color codes for the palette.

BINDING WORD i;

contrl[0] = 5;
contrl[1] = 0;
contrl[3] = 20;
contrl[5] = 93;
contrl[6] = handle;

intin[0] = port;
intin[1] = film;
intin[2] = lightness;
intin[3] = interlace;
intin[4] = planes;
for(i = 0;i < 16;i++)
intin[i + 5] = indexesi];

vdi();

SEE ALSO vqp_state()

THE ATARI COMPENDIUM

7.146 — VVDI/GDOS Function Reference

vst_alignment()

VOID vst_alignment(handle halign, valign, *hout, *vout)
WORD handle, halign, valign;
WORD *hout, *vout

vst_alignment() affects the vertical and horizontal alignment of normal and
justified text.

OPCODE 39
AVAILABILITY Supported by all drivers.
PARAMETERS handlespecifies a valid workstation handle. halign and valign affects where the

coordinate specified by_gtext() or v_justified() actually applies to as follows:

valign:

L o)
........................ i Ascent Line (2)

Compendlurrt:::r.ﬁstz)
~~~~~~~~~~~~~~~~~~~~~~~ ‘- Descent (4)
Tttt s e .~ Bottom (3)

hallgn:
Left Justified (0) Center Justified (1) Right Justified(2)

On return, th&VORDs pointed to bjioutandvoutare filled in with the values
actually set.

BlNDlNG Contrl[O] =
contrl[1] =0

contrl[3] =
contrl[6] = handle;

intin[0] = halign;
intin[1] = valign;

vdi();

*hout = intout[0];
*vout = intout[1];

SEE ALSO v_gtext(), v_justified()

THE ATARI COMPENDIUM



vst_arbpt() — 7.147

vst_arbpt()

WORD vst_arbpt( handle, point, wchar, hchar, wcell, hcell )

WORD handle
WORD point;

WORD *wchar, *hchar, *wcell, *hcell;

OPCODE

AVAILABILITY

PARAMETERS

BINDING

RETURN VALUE

COMMENTS

SEE ALSO

vst_arbpt() selects any point size for an outline font.
246
Available only withFSMGDOS or SpeedoGDOS

handlespecifies a valid workstation handf®int specifies the point size at
which to render outline text.

Upon return, th&VORDs pointed to byvchar, hchar, weell, andhcell will be
filled in with the width and height of the character and the width and height of the
character cell respectively.

contrl[0] = 246;
contrl[1] = O;
contrl[3] = 1;
contrl[6] = handle;
intin[0] = point;
vdi();

*wchar = ptsout[0];
*hchar = ptsout[1];
*wcell = ptsout[2];
*hcell = ptsout[3];

return intout[O];
vst_arbpt() returns the point size actually selected.

This call only works with outline fonts, however, it is not restricted by the point
sizes listed in the ‘ASSIGN.SYS' file.

To specify a fractional point size, uggf_arbpt32().

vst_arbpt32(), vst_point(), vst_height()

THE ATARI COMPENDIUM



7.148 — VVDI/GDOS Function Reference

vst_arbpt32()

fix31 vst_arbpt( handle point, wchar, hchar, wcell, hcell )

WORD handle
fix31 point;

WORD *wchar, *hchar, *wecell, *hcell;

OPCODE

AVAILABILITY

PARAMETERS

BINDING

RETURN VALUE

COMMENTS

SEE ALSO

vst_arbpt32() selects a fractional point size for an outline font.
246
Available only withFSMGDOS or SpeedoGDOS

handlespecifies a valid workstation handi®int specifies the point size at
which to render outline text adi31 value.

Upon return, th&VORDs pointed to byvchar, hchar, weell, andhcell will be
filled in with the width and height of the character and the width and height of the
character cell respectively.

contrl[0] = 246;
contrl[1] = 0;
contrl[3] = 2;
contrl[6] = handle;

intin[0] = (WORD)(point >> 16);
intin[1] = (WORD)(point & OXFFFF);

vdi();

*wchar = ptsout[0];
*hchar = ptsout[1];
*wcell = ptsout[2];

*hcell = ptsout[3];

return (((fix31)intout[0] << 16) | (fix31)intout[1]);
vst_arbpt32() returns the point size actually selected.

This call only works with outline fonts, however, it is not restricted by the point
sizes listed in the ‘ASSIGN.SYS’ file.

vst_arbpt(), vst_point(), vst_height()

THE ATARI COMPENDIUM



vst_charmap() — 7.149

vst_charmap()

VOID vst_charmap( handle, mode)
WORD handle, mode

OPCODE

AVAILABILITY

PARAMETERS

BINDING

COMMENTS

vst_charmap() chooses between the standard Atari ASCII interpretation of text
strings or translation of Bitstream character indexes.

236
Available only withSpeedoGDOS

handlespecifies a valid workstation handeodeshould beMAP_ATARI (1) to
specify Atari ASCII characters MAP_BITSTREAM (0) for Bitstream
mappings.

contrl[0] = 236;
contrl[1] = O;
contrl[3] = 1;
contrl[6] = handle;

intin[0] = mode;
vdi();

Bitstream character indexes #RD sized rather thaBYTE sized. A list of
Bitstream character mappings can be found in Appendix G.

vst_color()

WORD vst_color(handle color)
WORD handle, color;

OPCODE

AVAILABILITY

PARAMETERS

BINDING

vst_color() sets the current text color.
22
Supported by all drivers.

handlespecifies a valid workstation hand@@lor specifies the new color to
apply to text.

contrl[0] = 22;
contrl[1] = 0;
contrl[3] = 1;

contrl[6] = handle;

THE ATARI COMPENDIUM



7.150 — VDI/GDOS Function Reference

intin[0] = color;
vdi();

return intout[0];
RETURN VALUE vst_color() returns the text color actually set (within bounds).

SEE ALSO vsl_color(), vsm_color(), vsf_color()

vst_effects()

WORD vst_effects(handle, effects)
WORD handle, effects

vst_effects()defines which special effects are to be applied to text.

OPCODE 106
AVAILABILITY Supported by all drivers.
PARAMETERS handlespecifies a valid workstation hand&ffectsis a bit mask which specifies

one or more special effects to apply to text as follows:

Name Bit Meaning
THICKENED 0 Thickened
LIGHT 1 Lightened
SKEWED 2 Skewed
UNDERLINED 3 Underlined
OUTLINED 4 Outlined
SHADOWED 5 Shadowed (not currently supported)
BINDING contrl[0] = 106;
contrl[1] = O;
contrl[3] = 1;

contrl[6] = handle;
intin[0] = effects;
vdi();

return intout[O];
RETURN VALUE vst_effects()returns the actual effects set by the call.

COMMENTS Special effects do not, in general, work well with outline text (besides

THE ATARI COMPENDIUM



vst_error() — 7.151

underlining). To compensate, most type families have bold and italic faces in
addition to thevst_skew()call.

SEE ALSO vst_skew()

vst_error()

VOID vst_error( handle mode error)
WORD handle mode

WORD *error;
vst_error() provides a method to obtain errors frei@OS and suppress text
messages on screen.

OPCODE 245

AVAILABILITY Available only withFONTGDOS, FSM, or SpeedoGDOS

PARAMETERS handlespecifies a valid workstation handieodespecifies the error reporting
mode. A value o5CREEN_ERROR(1) (default) causes error messages to be
outputted to the screen as text.
A value ofAPP_ERROR (0) suppresses these messages and instead places an
error code in th&VORD pointed to byerror whenever an error occurs leaving it
up to the application to process errors correctly. Prior to making this call and after
each reported error, the application is responsible for resetting the value pointed
to byerror to 0.The following is a list of possible error codes:
Name error Meaning
NO_ERROR 0 No error.
CHAR_NOT_FOUND 1 Character not found in font.
FILE_READERR 8 Error reading file.
FILE_OPENERR 9 Error opening file.
BAD_FORMAT 10 Bad file format.
CACHE_FULL 11 Out of memory/cache full.
MISC_ERROR -1 Miscellaneous error.
contrl[1] = O;
contrl[3] = 3;

contrl[6] = handle;

intin[0] = mode;
*(LONG *)&intin[1] = (LONG)error;

THE ATARI COMPENDIUM



7.152 — VDI/GDOS Function Reference

vdi();

COMMENTS Once setting the error mode to 0, an application should check the error variable
after each of the following calls:

v_gtext() v_justified()  vst_point()
vst_height() vst_font() vst_arbpt()
vqt_advance() vst_setsize() vqt_fontinfo()
vat_name() vagt_width()  vqgt_extent()
v_opnwk() v_opnvwk()  vst_load_fonts()
vst_unload_fonts() v_ftext() vqt_f_extent()

vst_font()

WORD vst_font( handle, index)
WORD handle index;

vst_font() sets the current text font.

OPCODE 21
AVAILABILITY Supported by all drivers.
PARAMETERS handlespecifies a valid workstation handiedexspecifies the index (as returned

by vat_name()) of the font to enable.

BINDING Contrl[O] = 21,
contrl[1] = 0;
contrl[3] = 1;

contrl[6] = handle;
intin[0] = index;
vdi();

return intout[O];

RETURN VALUE vst_font() returns the index of the font actually set.

SEE ALSO vgt_name()

THE ATARI COMPENDIUM



vst_height() — 7.153

vst_height()

VOID vst_height( handle height, wchar, hchar, wcell, hcell )
WORD handle, height,
WORD *wchar, *hchar, *wcell, *hcell;

vst_heigh{) sets the height of the current text face (in pixels).

OPCODE 12
AVAILABILITY Supported by all drivers.
PARAMETERS handlespecifies a valid workstation handk&ightspecifies the height (in pixels)
at which to render text. Upon return, W& RDs pointed to byvchar, hchar,
wecell, andhcell will be filled in with the width and height of the character and the
width and height of the character cell respectively.
BINDING Contl‘l[O] =12;
contrl[1] = 1;
contrl[3] = 0;
contrl[6] = handle;
ptsin[0] = 0;
ptsin[1] = height; /* Passed in ptsin[1] because of VDI bug.
*/
vdi();
*wchar = ptsout[0];
*hchar = ptsout[1];
*wcell = ptsout[2];
*hcell = ptsout[3];
COMMENTS vst_height()works on both bitmap and outline fonts. The font will be scaled to fit
within the height given. This doesn't always give good results with bitmap text.
SEE ALSO vst_point(), vst_arbpt()
vst_kern()

VOID vst_kern( handle tmode pmode tracks pairs)
WORD handle, tmode pmode
WORD *tracks, *pairs;

vst_kern() sets the track and pair kerning values.

THE ATARI COMPENDIUM



7.154 — VDI/GDOS Function Reference

OPCODE

AVAILABILITY

PARAMETERS

BINDING

SEE ALSO

237

Available only withSpeedoGDOS

handlespecifies a valid workstation handismodespecifies the track kerning
mode as follows:

Name tmode Meaning
TRACK_NONE 0 No track kerning
TRACK_NORMAL 1 Normal track kerning
TRACK_TIGHT 2 Tight track kerning
TRACK_VERYTIGHT 3 Very tight track kerning

Settingpmodeto PAIR_ON (1) turns pair kerning on. Setting itf&\IR_OFF (0)
turns pair kerning off.

TheWORD pointed to bytracksis filled in with the track kerning mode actually
set.pairs points to aVORD which is filled in with the number of defined
character kerning pairs.

contrl[0] = 237;
contrl[1] = 0;
contrl[3] = 2;

contrl[6] = handle;

intin[0] = tmode;
intin[1] = pmode;

vdi();

*tracks = intout[0];
*pairs = intout[1];

vqt_trackkern(), vat_pairkern()

vst _load_fonts()

WORD vst_load_fonts(handle, rsrvd)
WORD handle, rsrvd,

OPCODE

AVAILABILITY

vst_load_fonts()loads disk-based font information into memory.
119

Available with any form of5DOS,

THE ATARI COMPENDIUM



vst_point() — 7.155

PARAMETERS handlespecifies a valid workstation handtervdis currently unused and must be
0.

BINDING contrl[0] = 119;
contrl[1] = 0;
contrl[3] = 1;

contrl[6] = handle;
intin[0] = rsrvd;

vdi();

RETURN VALUE vst_load_fonts()returns the number of extra fonts loaded.

COMMENTS Calling this function more than once before callsg_unload_fonts()will return
0.
SEE ALSO vst_unload_fonts(), vat_name()

vst_point()

WORD vst_point( handle point, wchar, hchar, wcell, hcell )
WORD handle, height;
WORD *wchar, *hchar, *wcell, *hcell;

vst_point() sets the height of the current text face in points (1/72 inch).

OPCODE 107
AVAILABILITY Supported by all drivers.
PARAMETERS handlespecifies a valid workstation handfgint specifies a valid point size to

set the current text face to. This means an appropriate bitmap font or a point size
enumerated in the ‘EXTEND.SYS' file.

Upon return, th&VORDs pointed to byvchar, hchar, weell, andhcell will be
filled in with the width and height of the character and the width and height of the
character cell respectively.

BINDING contrl[0] = 107;
contrl[1] = 0;
contrl[3] = 1,

contrl[6] = handle;
intin[0] = point;

vdi();

THE ATARI COMPENDIUM



7.156 — VDI/GDOS Function Reference

RETURN VALUE

COMMENTS

SEE ALSO

*wchar = ptsout[0];
*hchar = ptsout[1];
*wcell = ptsout[2];
*hcell = ptsout[3];

return intout[0];
vst_point() returns the point size actually set.

If a point size which doesn’t exist for the current face is selected, the next valid
size down is selected.

vst_arbpt(), vst_height()

vst_rotation()

WORD vst_rotation( handle, angle)
WORD handle angle

OPCODE

AVAILABILITY

PARAMETERS

BINDING

vst_rotation() sets the angle at which graphic text is drawn.
13

Supported by all drivers. For specific character rotation abilities, check the values
returned irvg_extndy().

handlespecifies a valid workstation handéglespecifies the angle at which to
rotate text in tenths of degrees as follows:

900

1800 0

2700

contrl[0] = 13;
contrl[1] = 0;
contrl[3] = 1;

contrl[6] = handle;
intin[0] = angle;
vdi();

return intout[0];

THE ATARI COMPENDIUM



vst_scratch() — 7.157

RETURN VALUE

COMMENTS

vst_rotation() returns the value of rotation actually set.

Bitmap fonts may only be rotated at 0, 90, and 270 degrees. Outline fonts may be
rotated at any angle witiSM.

vst_scratch()

VOID vst_scratch( handle, mode)
WORD handle, mode

OPCODE

AVAILABILITY

PARAMETERS

BINDING

COMMENTS

vst_scratch()allows FSMGDOS or SpeedoGDOSo change its method of
allocating a scratch buffer for better efficiency.

244
Available only withFSMGDOS or SpeedoGDOS

handlespecifies a valid workstation handfsodespecifies the scratch buffer
allocation mode as follows:

Name ‘ mode Meaning

SCRATCH_BOTH 0 Scratch buffers should be allocated which are large
enough for FSM/Speedo and bitmap fonts with any
combination of special effects.

SCRATCH_BITMAP 1 Scratch buffers should be allocated which are large
enough for FSM/Speedo fonts with no effects and
bitmap fonts with effects.

SCRATCH_NONE 2 Scratch buffers should be allocated which are large
enough for FSM/Speedo fonts and bitmap fonts with no
special effects.

contrl[0] = 244;
contrl[1] = 0;
contrl[3] = 1;
contrl[6] = handle;

intin[0] = mode;
vdi();

Atari recommends that at least mode 1 be set priowst doad_fonts()call to
prevent scratch buffer overruns.

The size of the scratch buffer is based on the size of the largest point size specified |
the ‘EXTEND.SYS' file. Attempting to add effects to a character higher in point size
than this will cause a buffer overrun.

THE ATARI COMPENDIUM



7.158 — VDI/GDOS Function Reference

vst_setsize()

WORD vst_setsizefhandle, point, wchar, hchar, wceell, hcell)

WORD handle
WORD point;

WORD *wchar, *hchar, *wecell, *hcell;

OPCODE

AVAILABILITY

PARAMETERS

BINDING

RETURN VALUE

COMMENTS

vst_setsize(kets the width of outline characters.
252
Available only withFSMGDOS or SpeedoGDOS

handlespecifies a vaid workstation handle.

point specifies the width of the character in points (1/72 inch). A valugofioit
equivalent to the same point size specifiedsih arbpt() will result in a correctly
proportioned character.

Upon return, th&VORDs pointed to byvchar, hchar, weell, andhcell will be
filled in with the width and height of the character and the width and height of the
character cell respectively.

contrl[0] = 252;
contrl[1] = 0;
contrl[3] = 1;

contrl[6] = handle;
intin[0] = point;
vdi();

*wchar = ptsout[0];
*hchar = ptsout[1];
*wcell = ptsout[2];
*hcell = ptsout[3];

return intout[0];

vst_setsize(Yeturns the size actually set.

This call only works with outline fonts. At the nesgt_point(), vst_height(), or
vst_arbpt() the size will be reset to the correct proportions (width in points =

height in points).

To set a fractional size, ugst_setsize32()

THE ATARI COMPENDIUM



vst_setsize32() — 7.159

SEE ALSO

vst_arbpt(), vst_setsize32()

vst_setsize32()

fix31 vst_setsizepandle point, wchar, hchar, weell, hcell)

WORD handle
fix31 point;

WORD *wchar, *hchar, *wcell, *hcell;

OPCODE

AVAILABILITY

PARAMETERS

BINDING

RETURN VALUE

COMMENTS

vst_setsize(kets the width of outline characters &3l fractional value.
252
Available only withSpeedoGDOS

handlespecifies a vaid workstation handle.

point specifies the width of the character in points (1/72 inch). A valueoiipit
equivalent to the same point size specifiedsih arbpt() will result in a correctly
proportioned character.

Upon return, th&VORDs pointed to byvchar, hchar, weell, andhcell will be
filled in with the width and height of the character and the width and height of the
character cell respectively.

contrl[0] = 252;
contrl[1] = 0;
contrl[3] = 2;
contrl[6] = handle;

intin[0] = (WORD)(point >> 8);
intin[1] = (WORD)point;

vdi();

*wchar = ptsout[0];
*hchar = ptsout[1];
*wcell = ptsout[2];

*hcell = ptsout[3];

return ((fix31)intout[0] << 16) | (fix31)intout[1];
vst_setsize32(jeturns the size actually set.
This call only works with outline fonts. At the nesgt_point(), vst_height(), or

vst_arbpt() the size will be reset to the correct proportions (width in points =
height in points).

THE ATARI COMPENDIUM



7.160 — VDI/GDOS Function Reference

SEE ALSO

vst_setsize(), vst_arbpt()

vst_skew()

WORD vst_skew(handle, skew)
WORD handle, skew

OPCODE

AVAILABILITY

PARAMETERS

BINDING

RETURN VALUE

COMMENTS

SEE ALSO

vst_skew()sets the skew amount for fonts.
253
Available only withFSMGDOS or SpeedoGDOS

handlespecifies a valid workstation hands&ewspecifies the amount to skew in
tenths of degrees from -900 to 900. Negative values skew to the left and positive
values skew to the riglgtkewvalues of -900 or 900 will result in a flat line.

contrl[0] = 253;
contrl[1] = O;
contrl[3] = 1,

contrl[6] = handle;

intin[0] = skew;

vdi();

return intout[O];

vst_skew()returns the skew value actually set.

This call should only be used with outline fonts. Note that this call generates a true
‘skew’ effect independent of that generated/by_effects()which is an

algorithmic ‘skew’. The algorithmic ‘skew’ may be used on bitmap fonts but is
rather unpleasant applied to outline fonts.

vst_effects()

vst_unload_fonts()

VOID vst_unload_fonts(handle select)
WORD handle, select;

OPCODE

vst_unload_fonts()frees memory associated with disk-loaded fonts.

120

THE ATARI COMPENDIUM



vswr_mode() — 7.161

AVAILABILITY Available under any form d6DOS,

PARAMETERS handlespecifies a valid workstation hand#glectis reserved and should be 0.
contrl[1] = O;
contrl[3] = 1;

contrl[6] = handle;
intin[0] = select;

vdi();

SEE ALSO vst_load_fonts()

vswr_mode()

WORD vswr_mode(handle, mode)
WORD handle mode

vswr_mode()defines the writing mode for renderiN§! objects.

OPCODE 32
AVAILABILITY Supported by all drivers.
PARAMETERS handlespecifies a valid workstation handfeodespecifies a writing mode as
follows:
Name mode Example
MD_REPLACE 1
+ =
MD_TRANS 2
+ =

THE ATARI COMPENDIUM



7.162 — VDI/GDOS Function Reference

MD_XOR 3
+ =
MD_ERASE 4
|
+ =
|
BlNDlNG Contrl[O] = 32,
contrl[1] = 0;
contrl[3] = 1;

contrl[6] = handle;
intin[0] = mode;
vdi();

return intout[0];
RETURN VALUE vswr_mode()returns the writing mode set.

COMMENTS In true-color modesyID_ERASE andMD_TRANS work a little differently, they
write (or avoid writing on) whatever color is currently held in VDI color 0 (as
opposed to the actual register reference of 0).

vt_alignment()

VOID vt_alignment( handle dx, dy)
WORD handle, dx, dy,

vt_alignment() allows an offset to be specifies that will be applied to all
coordinates output from the graphics tablet.

OPCODE 5

SuB-OPCODE 85

AVAILABILITY Supported by all tablet drivers.

PARAMETERS handlespecifies a valid workstation handié anddy are the delta offsets from

THE ATARI COMPENDIUM



vt_axis() — 7.163

BINDING

COMMENTS

SEE ALSO

(0, 0) to apply to values from the graphics tablet.

contrl[0] = 5;
contrl[1] = O;
contrl[3] = 2;
contrl[5] = 85;
contrl[6] = handle;

intin[0] = dx;

intin[1] = dy;

vdi();

This call is used to ‘fine-tune’ the true starting point of the tablet.

vt_origin()

vt_axis()

VOID vt_axis( handle xres, yres *xout, *yout)
WORD handle, xres, yres
WORD *xout, *yout,

OPCODE

SuB-OPCODE

AVAILABILITY

PARAMETERS

BINDING

vt_axis() sets the horizontal and vertical resolution for the graphics tablet (in
lines).

5
82
Supported by all tablet drivers.

handlespecifies a valid workstation handksesandyresspecify the new
horizontal and vertical resoultion of the tablet respectively. Upon return, the
WORDSs pointer to byxoutandyoutare filled in with the resolution actually set.

contrl[0]= 5;
contrl[1] = 0;
contrl[3] = 2;
contrl[5] = 82;
contrl[6] = handle;

intin[0] = xres;
intin[1] = yres;

vdi();

*xout = intout[0];
*yout = intout[1];

THE ATARI COMPENDIUM



7.164 — VDI/GDOS Function Reference

SEE ALSO vt_alignment(), vt_origin()

vt_origin()

VOID vt_origin( handle xorigin, yorigin )
WORD handle, xorigin, yorigin;

vt_origin() sets the origin point for the tablets’ upper-left point.

OPCODE 5

SuB-OPCODE 83

AVAILABILITY Supported by all tablet drivers.

PARAMETERS handlespecifies a valid workstation handkerigin andyorigin specify the new

upper-left point recognized by the tablet.

BlNDlNG Contrl[O] =b5;
contrl[1] = 0;
contrl[3] = 2;
contrl[5] = 83;

contrl[6] = handle;

intin[0] = xorigin;
intin[1] = yorigin;

vdi();

SEE ALSO vt_axis(), vt_alignment()

vt_resolution()

VOID vt_resolution( handle xres yres *xout, *yout)
WORD xres, yres
WORD *xout, *yout;

vt_resolution() sets the horizontal and vertical resolution of the graphics tablet (in
lines per inch).

OPCODE 5

SuB-OPCODE 81

THE ATARI COMPENDIUM



vt_resolution() — 7.165

AVAILABILITY Supported by all tablet drivers.

PARAMETERS handlespecifies a valid workstation handksesandyresspecify the new
horizontal and vertical resolution values for the tablet respectively. Upon return,
theWORDs pointed to byoutandyoutare filled in with the values actually set.

BINDING COntrl[o] =5;
contrl[1] = 0;
contrl[3] = 2;
contrl[5] = 81;
contrl[6] = handle;

intin[0] = xres;
intin[1] = yres;

vdi();

*xout = intout[O];
*yout = intout[1];

SEE ALSO vt_axis()

THE ATARI COMPENDIUM



— CHAPTER 8 —

LINE-A

THE ATARI COMPENDIUM



Overview — 8.3

Overview

TheLine-A portion of the operating system is so named because it uses a special exception
vector of 680x0 processors triggered when the first nibble of the a command word is $A. On
Atari systems this vector is routed to the operating system ROMs and provides a low-level yet
high-speed graphics interface.

TheLine-A system is included in this document for completeness only. It is recommended that
its use be avoided and that the countergBit calls be used instead. Atari has not guaranteed
that it will maintainLine-A compatibility in future systems. Its functionality has already been
limited as video capabilities have advanced beyond its design.

The Line-A Variable Table

Theline-A opcode $A000 will return a pointer to an internal variable table in DO and AO. This
table is used by thgne-A functions as a parameter passing mechanism as opposed to using the
stack or internal registers.

Members of théine-A variable table are accessed via offsets from the base address. The
function, location, and size of documented variables are as follows:

Name ’ Offse Size ’ Contents
t
RESERVED -910 LONG Reserved for future use.
CUR_FONT -906 LONG Poainter to the current font header.
RESERVED -902 92 BYTEs | Reserved for future use.
M_POS HX -856 WORD X Offset into the mouse form of the ‘hot spot'.
M_POS HY -854 WORD Y Offset into the mouse form of the ‘hot spot'.
M_PLANES -852 WORD Writing mode for the mouse pointer (1 = VDI Mode, -1
= XOR Mode). Defaults to VDI mode.
M_CDB_BG -850 WORD Mouse pointer background color.
M_CDB_FG -848 WORD Mouse pointer foreground color.
MASK_FORM -846 32 WORDs | Image and Mask for the mouse pointer. Data is stored
in the following format:
Line 0 Mask
Line 0 Image
Line 1 Mask
Line 1 Image
etc.
INQ_TAB -782 46 WORDs | This area contains 45 WORDs of information returned

from a vg_extnd() of the physical screen workstation
plus one extra reserved WORD.

DEV_TAB -692 46 WORDs | This area contains the first 45 WORDs of information
returned from a v_opnwk() of the physical screen
workstation plus one extra reserved WORD.
GCURX -602 WORD Current mouse pointer X position.

GCURY -600 WORD Current mouse pointer Y position.

THE ATARI COMPENDIUM



8.4 - Line-A

M_HID_CT -598 WORD Current mouse ‘hide’ count (number of times mouse
has been hidden, 0 = visible).
MOUSE_BT -596 WORD Bitmap of the current mouse button status.
REQ_COL -594 48 WORDs | Contains 48 WORDs of RGB data for the first 16 VDI
color registers as would be returned by vg_color() .
SIZ_TAB -498 15 WORDs | This table contains the final 12 WORDs of information
returned from a v_opnwk() of the physical screen
workstation plus 3 reserved WORDs.
RESERVED -468 WORD Reserved for future use.
RESERVED -466 WORD Reserved for future use.
CUR_WORK -464 LONG Pointer to the current VDI workstation attribute table.
DEF_FONT -460 LONG Pointer to the default font header.
FONT_RING -456 4 LONGs This area contains three pointers and a NULL . The first
two pointers point to linked lists of system font headers.
The third pointer points to the linked list of GDOS
based fonts.
FONT_COUNT -440 WORD Total number of fonts pointed to by the FONT_RING
pointers.
RESERVED -438 90 BYTEs | Reserved for future use.
CUR_MS_STAT -348 BYTE Bitmap of mouse status since the last interrupt as
follows:
Bit Meaning
0 Left mouse status (O=up)
1 Right mouse status (0=up)
2 Reserved
3 Reserved
4 Reserved
5 Mouse move flag (1=moved)
6 Right mouse status flag
(O=hasn’t changed)
7 Left mouse status flag
(O=hasn’t changed)
RESERVED -347 BYTE Reserved for future use.
V_HID_CNT -346 WORD Number of times the text cursor has been hidden (0 =
visible).
CUR_X -344 WORD X position where mouse pointer will be drawn.
CUR_Y -342 WORD Y position where mouse pointer will be drawn.
CUR_FLAG -340 BYTE Mouse redraw flag (if non-zero, mouse pointer will be
redrawn at the next vertical blank interrupt).
MOUSE_FLAG -339 BYTE Mouse interrupt flag (O=disable interrupts)
RESERVED -338 LONG Reserved for future use.
V_SAV_XY -334 2 WORDs | Xand Y position of the text cursor as saved by the VT-
52 emulator.
SAVE _LEN -330 WORD Height of the form saved in SAVE_AREA in pixels.
SAVE_ADDR -328 LONG Address of the first WORD of screen data contained in
SAVE _AREA.
SAVE_STAT -324 LONG Save status flag as follows:
Bit Meaning
0 Save buffer valid? (0=no)
1 Width of save
(0=16 bits, 1=32 bits)
SAVE AREA -322 256 BYTEs | Save buffer for the mouse pointer,

THE ATARI

COMPENDIUM




The Line-A Variable Table — 8.5

USER_TIM -66 LONG Pointer to a routine which occurs at each timer tick.
(use vex_timv() instead). Routine ends by jumping to
function pointed to by NEXT _TIM.

NEXT_TIM -62 LONG See above.

USER_BUT -58 LONG Pointer to a routine called each time a mouse button is
pressed (use vex_butv() instead).

USER_CUR -54 LONG Pointer to a routine called each time the mouse needs
to be rendered (use vex_curv() instead).

USER_MOT -50 LONG Pointer to routine called each time the mouse is moved
(use vex_motv() instead).

V_CEL HT -46 WORD Current text cell height.

V_CEL_MX -44 WORD Number of text columns — 1.

V_CEL_MY -42 WORD Number of text rows — 1.

V_CEL WR -40 WORD Number of bytes between character cells.

V_CEL BG -38 WORD Text background color.

V_COL FG -36 WORD Text foreground color.

V_CUR_AD -34 LONG Text cursor physical address.

V_CUR_OF -30 WORD Offset (in bytes) from physical screen address to the top
of the first text character.

V_CUR XY -28 2 WORDs | Xand Y character position of the text cursor.

V_PERIOD -24 BYTE Current cursor blink rate.

V_CUR_CT -23 BYTE Countdown timer to next blink.

V_ENT _AD -22 LONG Pointer to system font data (monospaced).

V_FNT_ND -18 WORD Last ASCII character in font.

V_FNT_ST -16 WORD First ASCII character in font.

V_FNT WD -14 WORD Width of the system font form in bytes.

V REZ HZ -12 WORD Horizontal pixel resolution.

V_OFF_AD -10 LONG Pointer to font offset table.

RESERVED -6 WORD Reserved for future use.

V REZ VT -4 WORD Vertical pixel resolution.

BYTES LIN -2 WORD Bytes per screen line.

PLANES 0 WORD Number of planes in the current resolution.

WIDTH 2 WORD Width of the destination form in bytes.

CONTRL 4 LONG Pointer to the CONTRL array.

INTIN 8 LONG Painter to the INTIN array.

PTSIN 12 LONG Pointer to the PTSIN array.

INTOUT 16 LONG Pointer to the INTOUT array.

PTSOUT 20 LONG Pointer to the PTSOUT array.

COLBITO 24 WORD Color bit value used for plane 0.

COLBIT1 26 WORD Color bit value used for plane 1.

COLBIT2 28 WORD Color bit value used for plane 2.

COLBIT3 30 WORD Color bit value used for plane 3.

LSTLIN 32 WORD Last pixel draw flag (0=draw, 1=don’t draw). Used to
prevent the last pixel in a polyline segment drawn in
XOR mode from overwriting the first pixel in the next
line.

LNMASK 34 WORD Line draw pattern mask.

WMODE 36 WORD VDI writing mode.

X1 38 WORD X coordinate for point 1.

Y1 40 WORD Y coordinate for point 1.

X2 42 WORD X coordinate for point 2.

Y2 44 WORD Y coordinate for point 2.

PATPTR 46 LONG Fill-pattern pointer.

THE ATARI COMPENDIUM



8.6 - Line-A

PATMSK 50 WORD This value is AND’ed with the value in Y1 to give an
index into the current fill pattern for the current line.
MFILL 52 WORD Multiplane fill pattern flag (0=Mono).
CLIP 54 WORD Clipping flag (O=disabled).
XINCL 56 WORD Left edge of clipping rectangle.
XMAXCL 58 WORD Right edge of clipping rectangle.
YMINCL 60 WORD Top edge of clipping rectangle.
YMAXCL 62 WORD Bottom edge of clipping rectangle.
XDDA 64 WORD Text scaling accumulator (set to $8000 prior to blitting
text).
DDAINC 66 WORD Scaling increment. If SIZE1 is the actual point size and
SIZEZ is the desired point size then to scale up use:
DDAINC =256* (SIZE2- SIZEL)
SIZE1
To scale down use:
DDAINC = 256* SIZE2
SIZE1
SCALDIR 68 WORD Text scaling direction (O=down, 1=up).
MONO 70 WORD Monospaced font flag.
SOURCEX 72 WORD X coordinate of character in font form.
SOURCEY 74 WORD Y coordinate of character in font form.
DESTX 76 WORD X position on screen to output character at.
DESTY 78 WORD Y position on screen to output character at.
DELX 80 WORD Width of the character to output.
DELY 82 WORD Height of the character to output.
FBASE 84 LONG Pointer to the font character image block.
FWIDTH 88 WORD Width of the font form in bytes.
STYLE 90 WORD Special effects flag bitmap as follows:
Bit Meaning
0 Thickening
1 Lightening
2 Skewing
3 Underlining
(not supported by Line-A)
4 Outlining
LITEMASK 92 WORD Mask to lighten text (usually $5555).
SKEWMASK 94 WORD Mask to skew text (usually $5555).
WEIGHT 96 WORD Width to thicken characters by.
ROFF 98 WORD Offset above baseline used for italicizing.
LOFF 100 WORD Offset below baseline used for italicizing.
SCALE 102 WORD Text scaling flag (O=no scale).
CHUP 104 WORD Character rotation angle in tenths of degrees
(supported only in 90 degree increments).
TEXTFG 106 WORD Text foreground color.
SCRTCHP 108 LONG Pointer to two contiguous scratch buffers used in
creating text special effects.
SCRPT2 112 WORD Offset from first buffer to second (in bytes).
TEXTBG 114 WORD Text background color.
COPYTRAN 116 WORD Copy raster mode (0=Opaque, 1=Transparent).

THE ATARI

COMPENDIUM




Line-A Font Headers — 8.7

SEEDABORT 118 LONG Pointer to a routine called by the seedfill routine at each
line. If not needed during a seed fill you should point it to
a routine like the following:

seedabort:

sub.l do,do
rts

Line-A Font Headers

Raster system affdDOS fonts are linked to form a list of font headers which contain the
information needed to render text. Outline text generatédhyis inaccessible in this manner.

Each monospaced font contains a font header, character and horizontal offset table, and font
form. All data types are in “Little Endian” (Intel format) and as such must be byte-swapped
before use.

The font form is a raster form with each character laid side-by-side on the horizontal plane. The
first character i$VORD aligned but padding within the form only occurs at the end of a scanline
to force the next scanline to WéORD aligned.

Each font header contains a pointer to the next font in the list. The list is terminatdtUbl; a
pointer. The font header format is as follows:

NEE Offset Type \ Contents

font_id 0 WORD Font ID number (must be unigue).

point 2 WORD Point size of font.

name 4 32 BYTEs | ASCII Name of font.

first_ade 36 UWORD First ASCII character in font.

last_ade 38 UWORD Last ASCII character in font.

top 40 UWORD Distance from the top line of the font to the baseline.

ascent 42 UWORD Distance from the ascent line of the font to the baseline.

half 44 UWORD Distance from the half line of the font to the baseline.

descent 46 UWORD Distance from the descent line of the font to the baseline.

bottom 48 UWORD Distance from the bottom line of the font to the baseline.

max_char_width 50 UWORD Width of the widest character in the font.

max_cell_width 52 UWORD Width of the widest character cell in the font.

left_offset 54 UWORD Amount character slants left when skewed.

right_offset 56 UWORD Amount character slants right when skewed.

thicken 58 UWORD Number of pixels to smear for thickening.

ul_size 60 UWORD Size of an appropriate underline for the font.

lighten 62 UWORD Mask for character lightening.

skew 64 UWORD Mask for character skewing.

flags 66 UWORD Font type flags.

hor_table 68 LONG Pointer to the horizontal offset table. The horizontal offset
table is an array of bytes with one entry per character
denoting the pixel offset to the character.

THE ATARI COMPENDIUM



8.8 - Line-A

off_table 72 LONG Pointer to the character offset table. The character offset
table is an array of WORDSs with one entry per character
denoting the byte offset into the font form of the
character.

dat _table 76 LONG Pointer to the character data.

form_width 80 UWORD Width of the font form in bytes.

form_height 82 UWORD Height of the font form in pixels.

next_font 84 LONG Pointer to the next font in the list (0=no more fonts).

reserved 88 UWORD Reserved for future use.

Line-A Function Calling Procedure

Line-A functions are called by simply inserting the opcode into the instruction stream. For
example, the ‘Hide Mouse’ function is called with the following assembly language instruction:

dc.w $A00A

Generally, thd-ine-A initialization function is called ($A000) and the address of the variable
and/or font header tables are stored. Prior to bi#tehA call variables are set as explained in
theLine-A Function Referencend the function is then called. There is no method of error
reporting available.

THE ATARI COMPENDIUM



LINE-A Function Reference

THE ATARI COMPENDIUM



$A000 - Initialize — 8.11

$A000 - Initialize

EXAMPLE
BINDING

RETURN VALUE

COMMENTS

SEE ALSO

Return pointers to thieine-A variable structures.

; Retrieve Line-A variable table address
; and store in A5 for other bindings

.dc.w $A000
.move.| a0,a5 ; Line-A variables
.move.l al,a6 ; System font headers

The initialize function returns the following information:

Register Contents

DO Pointer to Line-A variable table.

A0 Pointer to Line-A variable table.

Al Pointer to a NULL terminated array of pointers to system font headers.

A2 Pointer to a longword array containing sixteen pointers which are addresses of

the actual Line-A functions in memory. For example, JSR'ing through the
pointer in the first array element has the same result as calling the Initialize
instruction by an exception except that the function must be called from
supervisor mode.

This call is required to return the address oflLtine-A variable structure needed
for all otherLine-A calls. All processes (including thPl) share this structure

so don't expect variables to remain constant between calls.

v_opnvwk()

$A001 - Plot Pixel

PARAMETERS

EXAMPLE
BINDING

Plot a single pixel at the specified coordinates.

INTIN points to &aVORD containing the color register of the pixel to plot at the

specified coordinate®TSINpoints to twdNORDs which are the X and Y
coordinates respectively.

; Plot a pixel at ( 10, 10 ) using color 1

move.l #intin,8(ab)
move.l #ptsin,12(a5)
.dc.w $A001
.data

intin:
.dec.w 1

ptsin:

THE ATARI COMPENDIUM




8.12 — Line-A Function Reference

SEE ALSO

.dc.w 10, 10

v_pmarker()

$A002 - Get Pixel

PARAMETERS

EXAMPLE
BINDING

RETURN VALUE

SEE ALSO

Get the color register of the pixel at the specified coordinates.

PTSINpoints to two words which are the X and Y coordinates of the pixel to
read.

; Read the color index of point ( 10, 10)

move.l #ptsin,12(a5)
.dc.w $A002
.data
ptsin:
.dc.w 10, 10

The color register of the pixel is returned in DO.

v_getpixel()

$A003 - Arbitrary Line

PARAMETERS

EXAMPLE
BINDING

Draw a line between any two coordinates.

COLBITO-4are set appropriately to determine the line cdl8 LINis a flag in
which a value of 0 specifies to draw the last point in each line or a value of 1
which specifies not td.NMASKspecifies the pattern mask to apply to the line.
WRMODEspecifies the write mode of the function (0-3X1( Y1), and (X2, Y2)
give the starting and ending coordinates of the line.

;Draw a solid line from ( 0, 0) to ( 100, 100)

move.w #1,24(ab) ; COLBIT O
move.w #1,26(ab) ; COLBIT 1
move.w #1,28(ab) ; COLBIT 2
move.w #1,30(ab) ; COLBIT 3
move.w #0,32(ab) ; LSTLIN
move.w #$FFFF,34(a5) ; LNMASK
move.w #0,36(ab) ; WRMODE
move.w #0,38(a5) ; X1
move.w #0,40(ab) ;Y1
move.w #100,42(a5) ; X2
move.w #100,42(a5) ;Y2

.dc.w $A003

THE ATARI COMPENDIUM



$A004 - Horizontal Line — 8.13

CAVEATS

SEE ALSO

LNMASKIis modified as a result of this call.

$A004, v_pline()

$A004 - Horizontal Line

PARAMETERS

EXAMPLE
BINDING

SEE ALSO

Draw a horizontal line between the specified coordinates.

COLBITO-3defines the color of the line aldRMODEdetermines the write mode
(0-3). (X1, Y1) and (X2, Y1) determine the starting and ending points of the line.
PATMSKis AND’ed with Y1to determine a line index into the pattern pointed to
by PATPTRPATMSKis normally the number of lines in the pattern (should be an
even power of 2) minus one.MFILL is non-zeroWMODEis disregarded and

the fill is colored from the values BOLBITO-3

;Draw a horizontal dashed line from ( 0, 10 ) to ( 100, 10)

move.w #1,24(ab) ; COLBIT 0
move.w #1,26(ab5) ; COLBIT 1
move.w #1,28(ab) ; COLBIT 2
move.w #1,30(a5) ; COLBIT 3
move.w #0,36(ab) ; WRMODE
move.w #0,38(ab5) ; X1
move.w #0,40(a5) ;Y1
move.w #100,42(a5) ; X2

move.l #pat,46(ab) ; PATPTR
move.w #0,50(a5) ; PATMSK
move.w #0,52(ab) ; MFILL
.dc.w $A004

v_pline()

$A005 - Filled Rectangle

PARAMETERS

EXAMPLE
BINDING

Draw a filled rectangle at the specified coordinates.

CLIP is a flag which when set to 1 enables clipping and when set to 0 disables it.
All output of this function is confined to the region bounded by
( XMINCL, YMINCL) and (XMAXCL, YMAXCL). Other parameters are

consistent with the definitions given und#004

; Draw a filled rectangle with its upper
; left corner at (0, 0) and its lower

; right corner at ( 100, 100 ). Clip the

; rectangle to within ( 10, 10 ) and
;(90,90)

move.w #1,24(ab) ; COLBITO

THE ATARI COMPENDIUM



8.14 — Line-A Function Reference

SEE ALSO

move.w #1,26(a5) ; COLBIT1
move.w #1,28(ab) ; COLBIT2
move.w #1,30(a5) ; COLBIT3
move.w #0,36(ab) ; WRMODE
move.w #0,38(a5) ; X1
move.w #0,40(ab) ;Y1
move.w #100,42(a5) ; X2
move.w #100,44(a5) ;Y2
move.| #stipple,46(a5) ; PATPTR
move.w #1,50(ab) ; PATMSK
move.w #0,52(a5) ; MFILL
move.w #1,54(ab) ; CLIP
move.w #10,56(ab) ; XMINCL
move.w #10,58(ab) ; YMINCL
move.w #90,60(a5) ; XMAXCL
move.w #90,62(ab) ; YMAXCL
.dc.w $A005
.data

stipple:
.dc.w $SAAAA
.dc.w $5555

v_bar(), vr_recfl()

$A006 - Filled Polygon

PARAMETERS

EXAMPLE
BINDING

Draw a filled polygon line-by-line.

PTSINcontains the X/Y coordinate pairs of the vertices of the polygon with the
last point being equal to the firSEONTRL[1] specifies the number of vertices.
The rest of the variables are consistent with previous usages.

; Draw a filled polygon with vertices at
;(0,0),(319,120), and ( 25, 199).

move.l #ptsin,12(a5) ; PTSIN
move.| #contrl,4(ab5) ; CONTRL
move.w #1,24(ab) ; COLBITO
move.w #1,26(ab) ; COLBIT1
move.w #1,28(ab) ; COLBIT2
move.w #1,30(ab) ; COLBIT3
move.w #0,36(ab) ; WRMODE
move.w #stipple,46(a5) ; PATPTR
move.w #1,50(ab) ; PATLEN
move.w #0,52(ab) ; MFILL
move.w #0,54(ab) ; CLIP
; loop to draw the polygon
move.w #0,40(ab5) ;upper Y line
move.w #199,d4 ; lowest Y line
; - upper Y line

loop:

.dc.w $A006
addg.w #1,40(ab)

THE ATARI COMPENDIUM



$A007 - BitBIt — 8.15

dbra d4,loop
.data
ptsin:
.de.w 0,0, 319, 120, 25, 199, 0, 0
contrl:
.dc.w 0,3
stipple:
.dc.w $AAAA
.dc.w $5555
CAVEATS Register AOX1, andX2 are destroyed as a result of this call.
SEE ALSO v_fillarea()
$A007 - BitBIt
Perform a bit-block transfer.
PARAMETERS The address of BitBlt parameter block is passed in register A6. That structure is

defined with the following members:

Member ‘ Offset/Type Meaning

B_WD +0 (WORD) | Width of block to blit (in pixels)

B_HT +2 (WORD) | Height of block to blit (in pixels)

PLANE_CTT +4 (WORD) | Number of bit planes to blit.

FG_CoOLt +6 (WORD) | Bitarray used to create index into OP_TAB. FG_COL
contributes its bit #'n’ (where ‘n’ is the plane number) to bit
#1 of the index used to select the operation code from
OP_TAB.

BG_COL*t +8 (WORD) | Bitarray used to create index into OP_TAB. BG_COL
contributes its bit #'n’ (where ‘n’ is the plane number) to bit
#0 of the index used to select the operation code from
OP_TAB.

OP_TAB +10 (LONG) | OP_TAB is a 4 byte array containing four logic operation
codes (0 to 16) to be applied to the image. The table is
indexed by using the bitin FG_COL and BG_COL
corresponding to the current plane as bit #1 and bit #0
respectively yielding an offset into OP_TAB of 0-3.

S_XMIN +14 (WORD) | X pixel offset to source upper left.

S_YMIN +16 (WORD) | Y pixel offset to source upper left.

S_FORM +18 (WORD) | Address of the source form.

S _NXWD +22 (LONG) | Number of bits per pixel.

S_NXLN +24 (WORD) | Byte width of form.

S_NXPL +26 (WORD) | Byte offset between planes (always 2).

D_XMIN +28 (WORD) | X pixel offset to destination upper left.

D_YMIN +30 (WORD) | Y pixel offset to destination upper left.

THE ATARI

COMPENDIUM




8.16 — Line-A Function Reference

EXAMPLE
BINDING

SEE ALSO

D_FORM +32 (LONG) | Address of the destination form.

D_NXWD +36 (WORD) | Number of bits per pixel.

D_NXLN +38 (WORD) | Byte width of form.

D_NXPL +40 (WORD) | Byte offset between planes (always 2).

P_ADDR +42 (LONG) | Address of pattern buffer (O = no pattern).

P_NXLN +46 (WORD) | Bytes of pattern per line (should be even).

P_NXPL +48 (WORD) | Bytes of pattern per plane (if using a single plane fill with a
multi-plane destination, this should be 0).

P_MASK +50 (WORD) | P_MASK is found by the expression:
IfP_NXLN =2 nthen

P_MASK = (length in words - 1) <<n

SPACE +52 (WORD) | 24 bytes of blank space which must be reserved as work

area for the function.

TThese members may be altered by this function.

; Perform a blit using the information located

; at bprmblk

vro_cpyfm(), vrt_cpyfm()

lea
.dc.w

bprmblk,a6
$A007

$A008 - TextBIt

PARAMETERS

Blit a single character to the screen.

When performing this call, the followirlgne-A variables are evaluated:

Variable Meaning

WMODE Writing mode (see comments below).
CLIP, Standard clipping flags and extents.
XMINCL,
YMINCL,
XMAXCL,
YMAXCL
XDDA Scaling accumulator (should be initialized to $8000 prior to each TextBlt call
when scaling).
DDAINC This amount specifies the fractional amount to scale the character outputted
by. If scaling down, this value may by found by the formula:
0x100 * scaled size / actual size
If scaling up, this value may be found with the formula:
0x100 * (scaled size - actual size) / actual size
This variable is only evaluated if scaling is active.
SCALDIR Scaling direction (1 = up, 0 = down).

THE ATARI

COMPENDIUM



$A008 - TextBIt — 8.17

EXAMPLE
BINDING

MONO If 1 set to monospacing mode, if O set to proportional spacing mode.
SOURCEX, SOURCEX is the pixel offset into the font form of the character you wish to
SOURCEY render. SOURCEY is usually 0 indicating that you wish to render the character
from the top.

DESTX, DESTX and DESTY specify the destination screen coordinates of the
DESTY character.
DELX, DELY | DELX and DELY specify the width and height of the character to print.
FBASE Painter to start of font data.
FWIDTH Width of font form.
STYLE STYLE is a mask of the following bits indicating special effects:

0x01 = Bold

0x02 = Light

0x04 = ltalic

0x08 = Underlined

0x10 = Outlined
LITEMASK Mask used to lighten text (usually $5555).
SKEWMAS Mask used to italicize text (usually $5555).
K
WEIGHT Width by which to thicken boldface text (should be set from font header).
ROFF Offset above character baseline when skewing (set from font header).
LOFF Offset below character baseline when skewing (from font header).
SCALE Scaling flag (0 = no scaling, 1 = scale text).
CHUP Character rotation vector (may be 0, 900, 1800, or 2700).
TEXTFG Text foreground color.
SCRTCHP Pointer to start of text special effects buffer (should be twice as large as the

largest distorted character and is only required when using a special effect).

SCRPT2 Offset of scaling buffer in SCRTCHP (midpoint).
TEXTBG Text background color.

; Print a NULL-terminated string with
; no effects or clipping

; Find the 8x8 font

; Print the string

move.w #0,36(ab) ; WMODE
move.w #0,54(ab) ; CLIP
move.w #1,106(a5) ; TEXTFG
move.w #0,114(a5) ; TEXTBG
move.w #100,76(a5) ; DESTX
move.w #100,78(ab) ; DESTY
move.w #4,90(a5) ; STYLE
move.w #0,102(a5) ; SCALE
move.w #1,70(ab) ; MONO
move.w 4(ab),a6 ; Address of 8x8
; font
move.w 76(a6),84(ab) ; FBASE
move.w 80(a6),88(ab) ; FWIDTH
move.w 82(ab6),82(ab) ; DELY
lea string,a2
move.l 72(a6),a3 ; offset table

THE ATARI COMPENDIUM




8.18 — Line-A Function Reference

COMMENTS

SEE ALSO

moveq.| #0,d0

print:
move.b (a2)+,d0 ; Get next char
ble end
sub.w 36(a6),d0 ; Fix offset
Isl.w #1,d0 ; Double for

; WORD offset

move.w 0(a3,d0),72(a5) ; SOURCEX
move.w 2(a3,d0),do ; X of next char
sub.w 72(a5),d0 ; get true width
move.w d0,80(a5) ; DELX
moveq.! #0,74(ab) ; SOURCEY
movem.| a0-a2,-(sp) ; Save a0-a2
.dc.w $A008
movem.| (a7)+,a0-a2 ; Restore regs
bra print

end:
rts
.data

string:
.dc.b “The Atari Compendium”,0

The value foWMODE s a special case witfextBlt, Values from 0-3 translate
to the standar®Dl modes. Values from 4-19 translate to Bii@lt modes 0-15.

v_gtext()

$A009 - Show Mouse

PARAMETERS

EXAMPLE
BINDING

COMMENTS

SEE ALSO

Show the mouse cursor.

No parameters required. OptionallTIN can be made to point td/dORD

value of 0 to force the mouse cursor to be displayed regardless of the number of

times it was hidden.

; Show the mouse regardless of the number
; of times it was hidden

move.| #intin,8(ab) i INTIN
.dc.w $A009
.data
intin:
.dc.w 0

‘Show’ and ‘Hide’ mouse calls are nested, that is, in order to return the mouse
cursor to its original state, it must be ‘shown’ the same number of times it was
‘hidden’.

v_show_c(), graf_mouse()

THE ATARI COMPENDIUM



$A00A - Hide Mouse — 8.19

$A00A - Hide Mouse

EXAMPLE
BINDING

COMMENTS

SEE ALSO

Hide the mouse cursor.

; Remove the mouse from the screen

.dc.w $A00A
See Show Mouse,

v_hide_c(), graf_mouse()

$A00B -

PARAMETERS

EXAMPLE
BINDING

COMMENTS

SEE ALSO

Transform Mouse

Change the mouse’s form.

On entryINTIN should point to a structure containing the new mouse form data.
The format of the structure is defined under the entrygor form().

; Change the mouse form to the data held in
; the newmouse structure.

move.b -339(ab),d0 ; Save old value
move.b #0,-339(ab) ; Disable mouse

; interrupts
move.l #newmouse,8(a5) ; INTIN
.dc.w $A00B
move.b d0,-339(ab) ; Restore

; MOUSE_FLAG

The old data can be saved from the information stored ininieeA variable table
at offset -356. To avoid ‘mouse droppings’ you should disable mouse interrupts by
settingMOUSE_FLAGoffset -339) to 0 and restoring it when done.

vsc_form(), graf_mouse()

$A00C - Undraw Sprite

PARAMETERS

EXAMPLE

Undraw a previously drawn sprite.

Prior to calling this function, A2 should be loaded with a pointer to the ‘sprite
save block’ defined when drawing the sprite. For the format of this data, see
‘Draw Sprite’

; ‘Undraw’ sprite previously drawn from data

THE ATARI COMPENDIUM



8.20 — Line-A Function Reference

BINDING ; stored in savesprite.
lea savesprite,a2
.dc.w $A00C
CAVEATS Register A6 is destroyed as a result of this call.
COMMENTS When ‘undrawing’ sprites, they should be removed in reverse order of drawing to

avoid the possibility of creating garbage on screen.

$A00D - Draw Sprite

Draw a 16x16 sprite on the screen.

PARAMETERS Prior to calling this function, four 68x00 registers must be initialized. DO and D1
should contain the horizontal and vertical position respectively of the coordinates
of the sprite to draw. This is relative to the ‘hot spot’ of the sprite as defined in the
sprite definition block.

A0 should contain a pointer to a sprite definition block defined as follows:

Offset/Type Meaning

0x0000 X offset of ‘hot spot’. This value is subtracted from the value given in DO to

(WORD) yield the actual screen position of the upper-left pixel.

0x0002 Y offset of ‘hot spot’. This value is subtracted from the value given in D1 to

(WORD) yield the actual screen position of the upper-right pixel.

0x0004 Format flag. This value specifies the mode in which the mouse pointer will be

(WORD) drawn. A value of 1 specifies ‘VDI mode’ whereas -1 specifies X-OR mode.
The default is 1.

0x0006 Background color of sprite.

(WORD)

0x0008 Foreground color of sprite.

(WORD)

0x000A Sprite form data. The bitmap data consists of two 16x16 rasters, one each

(32 WORDs) | for the mask and data portion of the form. The data is presented in

interleaved format. The first WORD of the mask portion is first, followed by
the first WORD of the data portion, and so on.

Register A2 is a pointer to a buffer which will be used to save the screen area
where the sprite is drawn. The size of the buffer can be determined by the
following formula:

(10 + (VPLANES* 64 ))

EXAMPLE ; Draw a sprite at ( 100, 100 ) whose data
; is stored at spritedef with a valid save
BINDING ; buffer at savebuf.
move.w #100,d0 ; X position

THE ATARI COMPENDIUM



$AOOE - Copy Raster — 8.21

CAVEATS

COMMENTS

move.w #100,d1 ; 'Y position
move.l #spritedef,a0 ; Sprite form
move.l #savebuf,a2 ; Save buffer
.dc.w $A00D

Register A6 is destroyed as a result of this call.

In order to avoid the mouse form running into any sprites you draw, the mouse
should be hidden before drawing and restored afterwards. It may also be
advisable to calVsync() prior to each call to avoid screen flicker.

$A00E - Copy Raster

PARAMETERS

EXAMPLE
BINDING

Copy a raster form using opaque or transparent mode.

INTIN should point to &/ORD array whose first entry specifies the write mode
of the operation. In transparent mode, this\$4 standard mode (0-3), however
in opaque mode the full rangeBitBIt modes (0-15) are available. In transparent
mode, the second and third array entriedNdfiN contain the foreground and
background color of the destination copy respectively.

CONTRLshould point to a memory buffer which is filled in with the source and
destinatioMFDB’s (Memory Form Definition Block’s) at offsets 14 and 18
respectively. The structure of MDB is discussed und&ro_cpyfm().

PTSINshould point to an array oMJORD’s containing the pixel offsets for the
blit in the ordersx1, SY1, SX2, SY2, DX1, DY1, DX2, DY2.

COPYTRANspecifies the write mode. A value of 0 indicates an opaque copy
while a value of 1 indicates a transparent copy.

The settings foELIP, XMINCL, YMINCL, XMAXCL, andYMAXCLare utilitized
by this call.

; Copy a 32x32 raster form ‘myrast’ from a
; buffer in memory to the ST medium resolution
; screen at (100, 100 ) using transparent mode.

move.l #contrl,4(a5) ; CONTRL
move.l #srcmfdb,contrl+14

move.l #destmfdb,contrl+18

move.l #intin,4(ab) ; INTIN

move.l #ptsin,4(ab) ; PTSIN
move.w #1,116(a5) ; COPYTRAN
move.w #0,54(ab) ; CLIP

; Fill in some info for MFDB'’s

THE ATARI COMPENDIUM



8.22 — Line-A Function Reference

move.| #myrast,srcmfdb  ; Source raster
move.w #$02,-(sp) ; Physbase()
trap #14
addq.! #2,sp
move.| d0,destmfdb
.dc.w $A00E
.data
contrl:
.dc.w 0,0,0000000,0
intin:
.dc.w 0,1,0
ptsin:
.dc.w 0, 0, 15, 15, 100, 100, 115, 115
srcmfdb:
.dc.w 0,0, 16,16,1,0,0,0,0,0
destmfdb:
.dc.w 0, 0, 320, 200, 16,0,2,0,0,0
myrast:
.dc.w SAAAA SAAAA SAAAA SAAAA
.dc.w $5555,$5555,$5555,$5555
.dc.w SAAAA SAAAA SAAAA SAAAA
.dc.w $5555,$5555,$5555,$5555
.dc.w SAAAA SAAAA SAAAA SAAAA
.dc.w $5555,$5555,$5555,$5555
.dc.w SAAAA SAAAA SAAAA SAAAA
.dc.w $5555,$5555,$5555,$5555
COMMENTS For a more indepth explanation, refer to¥id calls parallel to these,

vro_cpyfm() andvrt_cpyfm().

SEE ALSO vro_cpyfm(), vrt_cpyfm()

$A00F - Seed Fill

Seed fill an irregularly shaped region.

PARAMETERS INTIN points to a word value which specifies the mode of this function. If the
value is negative, color mode is used. In color mode, the fill spreads from the
initial point until it hits a color other than that of the initial point. If the value is
positive, outline mode is used. It then is interpreted a¥Hecolor index value
at which to stop the fill.

PTSINpoints to an array of twd/ORDs which specify the X and Y coordinates
respectively of the inital fill point.

CUR_WORKshould point to &VORD array of 16 words with the sixteenth
WORD being the fill color specified as\@! color index.

WMODEspecified thé/DI writing mode of the fill (63). PATPTRandPATMSK

THE ATARI COMPENDIUM



$AOOF - Seed Fill — 8.23

define the fill pattern (as defined iblorizontal Line’).

SEEDABORoints to a user routine which can abort the fill, if desired, when
called. This routine is called once for each line of the fill. It should zero register
DO to continue or place a non-zero value in it to abort.

EXAMPLE ; Seed fill an area starting at ( 100, 100)
; in color mode with a clip region defined
BINDING . as the VDI rectangle ( 50, 50 ), ( 200, 200 ).
move.| #intin,8(ab) ; INTIN
move.l #ptsin,12(a5) ; PTSIN
move.l #cur_work,-464(a5) ; CUR_WORK
move.l #seedabort,118(a5) ; SEEDABORT
move.w #0,36(ab) ; WMODE
move.l #stipple,46(a5) ; PATPTR
move.w #0,50(a5) ; PATMASK
move.w #0,52(ab) ; MFILL
move.w #50,56(a5) ; XMINCL
move.w #50,58(ab) ; YMINCL
move.w #200,60(a5) ; XMAXCL
move.w #200,62(a5) ; YMAXCL
.dc.w $A00F
seedabort:
moveq.! #0, dO ; Clear DO
rts
.data
intin:
.dec.w -1
ptsin:
.dc.w 100, 100
cur_work:
.dc.w 0,0,0,0,0,0,0,0
.dc.w 0,0,0,0,0,0,0,1
stipple:
.dc.w $AAAA
.dc.w $5555
COMMENTS The clipping variableXMINCL, YMINCL, XMAXCL, andYMAXCLmust always
be set as they are interpreted regardless of the clipping flag.
SEE ALSO v_contourfill()

THE ATARI COMPENDIUM



— CHAPTER 9 —

DESKTOP

THE ATARI COMPENDIUM



Overview — 9.3

Overview

The ‘Desktop’ is &SEM application that is started after the operating system is initialized and
all \AUTO’ folder programs and desk accessories are loaded. The desktop is responsible for
providing basic file management and program launching abilities to the user.

Normally, the desktop is contained in ROM, however uMigtiTOS | the desktop may be soft-
loaded by placing the following command line inside the ‘GEM.CNF file:

shell [new shell filename]

If the ‘shell’ command fails, the normal desktop is started.

If an installed shell program exits undéultiTOS , the OS will display a single menu from
which programs may be launched.

MultiTOS Considerations

Messages
The desktop may be sent messages usingHiss shel_write() command. The desktop
currently recognizes two special messages as follows:

Message Number \ Meaning

SH_WDRAW 72 This message tells the desktop that files on a particular
drive have been modified so it can update the
information in any open windows.

msg[3] should contain the drive number (0= A:;, 1 =B;,
etc.). A value of -1 will force the desktop to update all of
its open windows.

AP_DRAGDROP 63 The desktop included with AES 4.1 now accepts all
drag & drop messages and places the dropped object
on the desktop.

Extendibility
TheMultiTOS desktop allows the replacement of file copy, rename, and delete, and disk copy
and format commands. To replace the file commands, place the filename of an application
designed to replace them in the environment variable DESKCOPY. Likewise, a disk command
replacement application can be placed in the environment variable DESKFMT.

The file command replacement will be called with one of three command line formats as
follows:

1. Copy a file(s): -c [-options...] [filename(s)] [destination path]

2. Delete a file(s):-d [-options...] [filename(s)]

THE ATARI COMPENDIUM



9.4 — Desktop

3. Move a file(s): -m [-options...] [filename(s)] [destination path]

The following are valid options to appear on the command line:

-A Confirm file copies.

Do not confirm file copies.

Confirm file deletes.

Do not confirm file deletes.

Confirm file overwrites.

Do not confirm file overwrites.
Prompt to rename destination file(s).

T [1|m|O |6 |w

An application which is installed to replace disk operations will receive one of two command
lines as follows:

1. Format a drive (ex: Az): -fA:
2. Copy a disk (ex: A: to B:):c A: B:

TOS Application Launching

When the user uses the desktop to launch a .TOS or .TTP applicatioMuliEDS , the
desktop looks for an environment variable called TOSRUN. If it finds one, it attempts to launch
whatever application is specified in that variable with the TOS filename as its parameters.

If the environment variable does not exist, it opens a pipe called ‘U:\PIPE\TOSRUN’ and writes
to it the filename and any parameters separated by spaces terminatédldy hyte.

Desktop Files

DESKTOP.INF
The desktop i OS versions less than 2.00 place configuration defaults such as window size
and position, drive icons, etc. in the DESKTOP.INF file. In addition, some control panel settings
(from CONTROL.ACC, not XCONTROL.ACC) are stored in the file as well.

The DESKTOP.INF file is in standard ASCII text format. This file was not designed to be edited
by the user or programmer, but, rather from the desktop itself and will not be discussed in detail.

NEWDESK.INF

As of TOS 2.00, the desktop now looks for a file called NEWDESK.INF rather than
DESKTOP.INF. This file contains the same information as its predecessor with some additions.
Icons which appear on the desktop or in windows may now be linked to icons in the
DESKICON.RSC file (as described below). Other entries are still reserved and should be left
unmodified.

The Atari Compendium



Desktop Files — 9.5

A creative install program wishing to install custom icons may do so by adding the icons to the
DESKICON.RSC file and adding information to NEWDESK.INF which points to the new icons.
The install application must be careful to avoid disturbing the original information and icons and
must not reorder the icons in the DESKICON.RSC file. The following two lines show example
entries in NEWDESK.INF that identify an icon for a file and folder respectively.

#1 2C 2C 000 @ *TXT@ @
#D 1A 1A 000 @ FOLDER@ @

The ‘#I’ identifies a file icon and the ‘#D’ identifies a folder icon. The next two numbers should
be identical hexadecimal indexes to the icon in the DESKICON.RSC file. The entry ‘000’ is
unused and should be included only as a placeholder.

The filename specified on the line can contain wildcard characters and identify the file or folder
name(s) which are to be linked. All spaces and ‘@’ characters must appear exactly as above ol
the system may behave strangely.

DESKICON.RSC
The DESKICON.RSC file is a standd&dEM resource file (seAppendix CNative File
Formats) with one object tree containindgBX object at thdROOT (object #0) with the icons

as children. The position of the icons in the object tree determine their index as referenced by
the NEWDESK.INF file.

DESKCICN.RSC

This file is supported as dfOS 4.0 and is looked for before DESKICON.RSC. It has an
identical format except that it supports the new resource file format and contains color icons
rather than monochrome ones.

THE ATARI COMPENDIUM



— CHAPTER 10 —

XCONTROL

THE ATARI COMPENDIUM



The Extensible Control Panel — 10.3

The Extensible Control Panel

Overview
XCONTROL is a desk accessory which provides a shell for Control Panel Extensions
(CPX’s). Typical uses for CPX'’s include:

* System Configuration (volume, keyial, etc.)
* Hardware Configuration (serial port speed, disk access rate, etc.)
* TSR Configuration

Most CPX’s require only 512 bytes of system memory for header storage when not being
executed as they are loaded only when selected by the user.

Applications, games, and other programs not used for configuration purposeqishbeld
created as CPX’s.

CPX Executable Format
A CPX executable is identical to a stand&dMDOS executable with the exception of an
additional 512 byte header which precedes the standard 26 bM&O0S header. When
XCONTROL is initialized at boot time, the header of each CPX contained in the user’s
designated CPX directory is loaded and stored. The header data contains the following
information:

typedef struct _cpxhead

UWORD magic; /* Magic = 100 dec */
struct {
unsigned reserved : 13;  /* Reserved */
unsigned resident : 1; /* Resident CPX if set */
unsigned bootinit : 1; /* Boot initialize if set*/
unsigned setonly : 1; /* Set only CPX if set */
} flags;
LONG cpx_id; /* CPX ID Value */
UWORD cpx_version; /* CPX Version */
char i_text[14]; /* lcon Text */
UWORD sm_icon[48]; /* Icon Bitmap 32x24 */
UWORD i_color; /* Icon Color */
char title[18]; /* Title (16 char max) */
UWORD t_color; [* Title text color */
char buffer[64]; [* User-storage */
char reserved[306]; /* Reserved */
} CPXHEAD;

Following the 512-byte CPX header the 28-yfeMDOS header and executable follow.
CPX’s do not have anain()’ function. Execution begins at the first instruction of the TEXT
segment. The first source file you should link should resemble the following:

xref _cpx_init

THE ATARI COMPENDIUM



10.4 — XCONTROL

text
cpxstart:
jmp _cpx_init

.end

Every CPX must haveepx_init() function.

If you plan to store defaults back into the CPX usift)<_Save()(described later) you should
add to the first source file a statement allocating as much storage as you will need at the
beginning of the DATA segment. For example, the following is a complete stub for a CPX
requiring 10LONGs of data for permanent storage.

xref _cpx_init
.globl _save_vars
text
cpxstart:
jmp _cpx_init
.data
_save_vars:
de.l 0,0,0,0,0,0,0,0,0,0
.end

XCONTROL Structures

CPXINFO
A pointer to a CPX'€PXINFO structure must be returned by thgx_init() function (‘Set

Only’ CPX'’s returnNULL ). TheCPXINFO structure is filled in with pointers to user functions
as follows:

typedef struct

WORD (*cpx_call)( GRECT *);
VOID (*cpx_draw)( GRECT *);
VOID (*cpx_wmove)( GRECT *);
VOID (*cpx_timer)( WORD *);
VOID (*cpx_key)( WORD, WORD, WORD *);
VOID (*cpx_button)( MRETS *, WORD *);
VOID (*cpx_m1)( MRETS *, WORD *);
VOID (*cpx_m2)( MRETS *, WORD *);
WORD (*cpx_hook)( WORD, WORD *, MRETS *, WORD *, WORD *);
WORD (*cpx_close)( WORD );

} CPXINFO;

Form CPX's use onlgpx_call() and (optionallycpx_close() Event CPX's use the remaining
members. Members not being used should be $éttd. .

THE ATARI COMPENDIUM



XCONTROL Structures — 10.5

XCPB

A pointer to the “XControl Parameter Block” is passed tocthe call() function. This pointer
should be copied to a static variable on entry so that other functions may utilize its members.
XCPB is defined as follows:

typedef struct

} XCPB;

WORD handle;
WORD booting;
WORD reserved,
WORD SkipRshFix;
VOID *reservel;
VOID *reservez;
VOID (*rsh_fix)( WORD, WORD, WORD, WORD, OBJECT *, TEDINFO *, char *,
ICONBLK *, BITBLK *, LONG *, LONG *, LONG *, VOID *);
VOID (*rsh_obfix)( OBJECT *, WORD );
WORD (*Popup)( char *items[], WORD, WORD, WORD,
GRECT *, GRECT *);
VOID (*Sl_size)( OBJECT *, WORD, WORD, WORD, WORD,
WORD, WORD );
VOID (*Sl_x)( OBJECT *, WORD, WORD, WORD, WORD, WORD,
void (*)();
VOID (*Sl_y)( OBJECT *, WORD, WORD, WORD, WORD, WORD,
void (*)() );
VOID (*Sl_arrow)( OBJECT *, WORD, WORD, WORD, WORD,
WORD, WORD, WORD *, WORD, void (*)() );
VOID (*Sl_dragx)( OBJECT *, WORD, WORD, WORD, WORD,
WORD *, void (*)() );
VOID (*Sl_dragy)( OBJECT *, WORD, WORD, WORD, WORD,
WORD *, void (*)() );
WORD (*Xform_do)( OBJECT *, WORD, WORD *);

GRECT * (*GetFirstRect)( GRECT *);
GRECT * (*GetNextRect)( VOID );

VOID (*Set_Evnt_Mask)( WORD, MOBLK *, MOBLK *, LONG );
WORD (*XGen_Alert)( WORD );

WORD (*CPX_Save)( VOID *, LONG );

VOID * (*Get_Buffer)( VOID );

WORD (*getcookie)( LONG, LONG *);

WORD Country_Code;

VOID (*MFSave)( WORD, MFORM * );

Almost all of XCPB’s members are pointers to utility functions covered intGONTROL
Function Reference at the end of this chapter. The remaining utilized members have the
following meaning:

XCPB Member Meaning

handle This value contains the physical workstation
handle returned by graf_handle() to the Control
Panel for use in calling v_opnvwk() .

booting When XCONTROL is initializing as the result of a
power-on, reset, or resolution change, it loads
each CPX and calls its cpx_init() function with
booting set to TRUE. At all other times,
XCONTROL sets booting to FALSE.

THE ATARI COMPENDIUM



10.6 — XCONTROL

SkipRshFix When a CPX is first called after being loaded, its
SkipRshFix flag is set to FALSE. The application
should then use xcpb->rsh_fix() to fix its internal
resource tree. xcpb->rsh_fix() sets the CPX'’s
SkipRshFlag to TRUE so that the CPX can skip
this step on subsequent calls.

Country_Code This value indicates the country which this version
of the Control Panel was compiled for as follows:

Country Code Country
0 USA
1 Germany
2 France
3 United Kingdom
4 Spain
5 Italy
6 Sweden
7 Swiss (French)
8 Swiss (German)
9 Turkey
10 Finland
11 Norway
12 Denmark
13 Saudi Arabia
14 Holland

CPX Flavors

Boot Initialization
Any CPX which has its cpxhead.bootiniflag set will have it€px_init() function called when
XCONTROL initializes upon bootup. This provides a way for CPX’s to set system
configuration from data the user has saved in previous sessions.

cpx_init() is always called each time the user selects your CPX froXGRNTROL CPX list
prior to callingcpx_call(). If the CPX is being initialized at boot time, tkepb->bootingflag
will be TRUE,

Resident CPX’s
CPX’s which have theircpxhead.residerlag set will be retained in memory after being
initialized at bootup. In general, this option should not be used unless absolutely necessary.

Resident CPX'’s should be aware that variables stored in their DATA and BSS segments will
not be reinitialized each time the CPX is called.

THE ATARI COMPENDIUM



CPX Flavors — 10.7

Set-Only CPX’s
Set-Only CPX’s are designed to initialize system configuration options eacK@@BTROL
initializes (during boot-ups and resolution changes) by callingfkeinit() function. These
CPX’s will notappear in th CONTROL list of CPX’s.

Form CPX’s
Every CPX must be either a ‘Form’ or ‘Event’ CPX. Most CPX’s will be Form CPX’s.

In a Form CPXXCONTROL handles most user-interaction and messaging by relaying
messages through a callback functti8@ONTROL is responsible for redraws (although the
CPX does have a hook to do nbk<S object redraws) and form handling. A simple ‘C’ outline
for a Form CPX follows:

/* Example Form CPX Skeleton */
#include “skel.h”

#include “skel.rsh”

#include <cpxdata.h>

CPXINFO *cpx_init();
BOOLEAN cpx_call();

XCPB *xcpb;
CPXINFO cpxinfo;

CPXINFO
*cpx_init( Xcpb )
XCPB *Xcpb;
{
xcpb = Xcpb;
appl_init();

if(xcpb->booting)
{

/* CPX’s that do boot-time initialization do it here */
/* Returning TRUE here tells XCONTROL to retain the header
* for later access by the user. If CPX is Set-Only,
* return FALSE.
*/
return ( (CPXINFO *) TRUE )
else
/* If you haven't already done so, fix resource tree.
*
* DEFINE’s and variables are from an RSH file generated
* by the Atari Resource Construction Set.
*
/

if(!SkipRshFix)

THE ATARI COMPENDIUM



10.8 — XCONTROL

}

BOOLEAN

rs_object,
rs_frstr, rs_frimg,

(*xcpb->rsh_fix)( NUM_OBS, NUM_FRSTR, NUM_FRIMG,
rs_tedinfo, rs_strings, rs_iconblk, rs_bitblk,
rs_trindex, rs_imdope );

cpxinfo.cpx_call = cpx_call;
cpxinfo.cpx_draw = NULL;
cpxinfo.cpx_wmove = NULL;
cpxinfo.cpx_timer = NULL;
cpxinfo.cpx_key = NULL;
cpxinfo.cpx_button = NULL;
cpxinfo.cpx_m1 = NULL;
cpxinfo.cpx_m2 = NULL;
cpxinfo.cpx_hook = NULL;
cpxinfo.cpx_close = NULL;

/* Tell XCONTROL to send generic and keyboard
* messages.
*/

return ( &cpxinfo );

cpx_call( rect)
GRECT *rect;

{

/* Put MAINFORM tree in *tree for object macros */
OBJECT *tree = (OBJECT *)rs_trindex[ MAINFORM J;
WORD button, quit = FALSE;

WORD msg[8];

ObX( ROOT ) = rect->g_x;
ObY( ROOT ) = rect->g_y;

objc_draw( tree, ROOT, MAX_DEPTH, PTRS(rect) );

do

button = (*xcpb->Xform_do)( tree, 0, msg );

/* Be sure and mask off double-clicks if you're
* not interested in them.

*

/

if( ( button & 0x8000 ) && ( button != OXFFFF ) ) {
button &= Ox7FFF;

button &= OX7FFF;
switch( button )
/* Check for EXIT or TOUCHEXIT resource objects */
case OK:
break;
case CANCEL:

break;
case -1:

THE ATARI COMPENDIUM

NUM_TREE,



CPX Flavors — 10.9

switch( msg[0] )
{

case WM_REDRAW:
break;

case AC_CLOSE:
quit = TRUE;
break;

case WM_CLOSED:
quit = TRUE;
break;

case CT_KEY:
break;

}

break;
}
} while( !quit );

return( FALSE );
}

Event CPX’s
CPX’s which are not possible as Form CPX’s may be designed as Event CPX’s.

Event CPX's accomplish most of their work in several callback functions identified to the
Control Panel by th€PXINFO structure and called when the appropriate message is received.
An outline for a typical Event CPX follows:

/* Example Event CPX Skeleton */

#include “skel.h”
#include “skel.rsh”
#include <cpxdata.h>

CPXINFO *cpx_init();
BOOLEAN cpx_call();
void cpx_draw(), cpx_wmove(), cpx_key();

XCPB *xcpb;
CPXINFO cpxinfo;

CPXINFO
*cpx_init( Xcpb )
XCPB *Xcpb;

{

xcpb = Xcpb;
appl_init();

if(xcpb->booting)
{

/* CPX’s that do boot-time initialization do it here */

/* Returning TRUE here tells XCONTROL to retain the header
* for later access by the user. If CPX is Set-Only,

* return FALSE.

*/

THE ATARI COMPENDIUM



10.10 - XCONTROL

return ( (CPXINFO *) TRUE )

else
/* If you haven't already done so, fix resource tree.
*

* DEFINE’s and variables are from RSH file generated
* by the Atari Resource Construction Set.
*/

if(!SkipRshFix)
(*xcpb->rsh_fix)( NUM_OBS, NUM_FRSTR, NUM_FRIMG, NUM_TREE,
rs_object, rs_tedinfo, rs_strings, rs_iconblk, rs_bitblk,
rs_frstr, rs_frimg, rs_trindex, rs_imdope );

cpxinfo.cpx_call = cpx_call;
cpxinfo.cpx_draw = cpx_draw;
cpxinfo.cpx_wmove = cpx_wmove;
cpxinfo.cpx_timer = NULL;
cpxinfo.cpx_key = cpx_key;
cpxinfo.cpx_button = NULL;
cpxinfo.cpx_m1 = NULL;
cpxinfo.cpx_m2 = NULL;
cpxinfo.cpx_hook = NULL;
cpxinfo.cpx_close = NULL;

/* Tell XCONTROL to send generic and keyboard
* messages.
*/

(*xcpb->Set_Evnt_Mask)( MU_MESAG | MU_KEYBD, NULL, NULL, -1L);
return ( &cpxinfo );

}

BOOLEAN
cpx_call( rect)
GRECT *rect;

{
/* Put MAINFORM tree in *tree for object macros */
OBJECT *tree = (OBJECT *)rs_trindex] MAINFORM J;
ObX( ROOT ) = rect->g_x;
ObY( ROOT ) =rect->g_y;
objc_draw( tree, ROOT, MAX_DEPTH, PTRS( rect) );
return ( TRUE );

}

VOID

cpx_draw( rect)
GRECT *rect;

{
OBJECT *tree = (OBJECT *)rs_trindex]| MAINFORM J;

GRECT *xrect, rect;

xrect = (*xcpb->GetFirstRect)( rect );

THE ATARI COMPENDIUM



CPX File Formats — 10.11

while( xrect )

{

rect = *xrect;
objc_draw( tree, ROOT, MAX_DEPTH, ELTS(rect) );
xrect = (*xcpb->GetNextRect)();
}
}

VOID
cpx_wmove( work )
GRECT *work;

{
OBJECT *tree = (OBJECT *)rs_trindex[ MAINFORM 1[;
ObX( tree ) = work->g_X;
ObY( tree ) = work->g_y;

}

VOID

cpx_key( kstate, key, quit )
WORD kstate, key;
WORD *quit;
{
/* Substitute case values for values you're interested
*in.
*

switch( key )
{

case KEY_1:
case KEY_2:

CPX File Formats

-
-

File Naming

Several standard naming conventions for CPX executables and development files follow:

File Name Meaning

must be in this format.

*.CPX Standard CPX ready for execution by the
Control Panel.

*.CP CPX missing the 512 byte header.

* R.CPX A resident CPX.

* S.CPX A “Set-only” CPX.

*HDR A 512 byte CPX header file.

*.CPZ An inactive CPX.

* RSH An “embeddable” resource file. CPX’s can't

execute arsrc_load() so all resource files

THE ATARI COMPENDIUM



10.12 - XCONTROL

The CPX File Format
A CPX file can be represented graphically as follows:

CPX Header Record
(512 bytes)

GEMDOS Executable
Header
(28 bytes)

CPX TEXT Segment

(cpx_init() must begin at
offset 0 of this segment)

CPX DATA Segment
(any data to be saved back
into the CPX must begin at

offset 0 of this segment)

CPX Symbol Table (if any)

XCONTROL Function Calling Procedure

Calling Conventions
XCONTROL uses “right-left” stack-based parameter passing for all of its functions and
expects that user defined callback functions are similarly “right—left” stack-based. Compilers

which do not default to this method should use either the ‘cdecl’ or *_stdargs’ keyword
depending on your compiler.

Function entry stubs must also consider the longword return code placed on the stack by the
68x00 ‘JSR’ function. ‘C’ compilers always expect this. For example, the pointerX&thig

passed to thepx_init() function can be stored through the following machine language
statement:

_cpx_init:
move.l 4(sp),xcpb

THE ATARI COMPENDIUM



XCONTROL Function Calling Procedure — 10.13

Stack Space
CPX programmers should note that all CPX operations use the default Control Panel stack spac
(2048 bytes) and should therefore restrict heavy usage of automatic variables and other large
consumers of stack space.

THE ATARI COMPENDIUM



XCONTROL Function Reference

THE ATARI COMPENDIUM



XCONTROL Callback Functions

TheXCONTROL callback functions are user-supplied functions which are identified to the Control
Panel in thécPXINFO structure returned by tlgx_init() function which is also described in this
section. When creating a Form CPX, the only callback function that is utiliged_isall(). The
remaining functions are used only when creating Event CPX'sXTR¥NTROL callback functions are:

cpx_button()
cpx_call()
cpx_close()
cpx_draw()
cpx_hook()
cpx_init()
cpx_key()
cpx_m1()
cpx_m2()
cpx_timer()
cpx_wmove()

THE ATARI COMPENDIUM



cpx_button() — 10.19

cpx_button()

VOID (*cpx_button)( mrets nclicks, event)

MRETS *mrets
WORD nclicks;
WORD *event
cpx_button() is called in an Event CPX wherMU_BUTTON event has
occurred.
PARAMETERS mretspoints to a structure containing the mouse event which triggered the function
as follows:
typedef struct
WORD x; /* X position of mouse */
WORD y; /* Y position of mouse */
WORD buttons; /* Mask of buttons depressed */
WORD kstate; /* Keyboard shift state */
} MRETS;
nclicksspecifies the number of clicks processed. If this event should terminate the
CPX, the function should place a 1 in W&RD pointed to byevent
BINDING cpxinfo.cpx_button = cpx_button;
return ( &cpxinfo );
COMMENTS This function will only be called iBet_Evnt_Mask()is called with
MU_BUTTON specified as an event to wait for.
cpx_call()
BOOLEAN (*cpx_call)( work )
GRECT *work;
cpx_call() is called immediately after trex_init() function when the user
activates the CPX.
PARAMETERS Upon entry, th&sRECT structure pointed to by work contains the current
rectangular extent of the control panel window work area.
BINDING cpxinfo.cpx_call = cpx_call;

return ( &cpxinfo );

THE ATARI COMPENDIUM



10.20 — XCONTROL Callback Functions

RETURN VALUE Thecpx_call() function should returfRUE if it wants to continue processing
events through the event handlers specified ifCINFO structure oFALSE
to indicate the CPX is finished.

COMMENTS When exiting thepx_call() function, the CPX must deallocate any allocated
memory and close arMDI workstations opened.

cpx_close()

VOID (*cpx_close)(flag )
BOOLEAN flag;

cpx_close()is called in an Event CPX whendM_CLOSED or AC_CLOSE
message is received by the control panel.

PARAMETERS flag containsTRUE if a WM_CLOSED message was receivedFfALSE if
AC_CLOSE was received.

BINDING cpxinfo.cpx_close = cpx_close;

return ( &cpxinfo );

COMMENTS This function will only be called iBet_Evnt_Mask()is called with
MU_MESAG specified as an event to wait for.

WM_CLOSED messages should be treated as equivalent to ‘OK’ whereas
AC_CLOSE messages should be treated as ‘Cancel’.

cpx_draw()

VOID (*cpx_draw)( clip)
GRECT *clip;

cpx_draw() is called when 8VM_REDRAW message is received by the control
panel in an Event CPX.

PARAMETERS clip points to &5RECT structure specifiying the dirtied area.

BINDING cpxinfo.cpx_draw = cpx_draw;

return ( &cpxinfo );

COMMENTS This routine should utiliz&etFirstRect() andGetNextRect()to obtain the true
rectangles of the area to redraw.

THE ATARI COMPENDIUM



cpx_hook() — 10.21

This function will only be called iBet_Evnt_Mask()is called with
MU_MESAG specified as an event to wait for.

cpx_hook()

BOOLEAN (*cpx_hook)( event msg mrets key, nclicks)

WORD event
WORD *msg
WORD *mrets
WORD key; nclicks;

PARAMETERS

BINDING

RETURN VALUE

cpx_hook()is called in an Event CPX immediately after the Control Panel's
evnt_multi() function returns before the message is processed.

All parameters share counterparts withekst_multi() function. For a detailed
explanation of the return values please consult the documentation for that function.
eventcontains the event mask of one or more events that occmsggoints to

an array of eigh?VORDs containing the message buff@retsandnclickspoint

to the mouse event (if any) as describedx_button(). keypoints to aVORD
containing the keyboard scancode of the key pressed (if any).

cpxinfo.cpx_hook = cpx_hook;

return ( &cpxinfo );

The function should returhRUE to override default event handlingfeALSE to
continue processing the message.

cpx_init()

CPXINFO (*cpx_init)( xcpb)

XCPB *xcpby

PARAMETERS

BINDING

cpx_init() is called upon bootup and every subsequent time the CPX is opened by
the user.

xcpbpoints to an XControl Parameter Block structure as described in the
beginning of this chapter.

Thecpx_init() function is called by JSR’ing to the first location in the CPX’s

TEXT segment. ‘C’ programmers should assemble and link the following code as
the first object file in the link to ensure that the correct function is properly called:

THE ATARI COMPENDIUM



10.22 — XCONTROL Callback Functions

; Startup stub for CPX’s without save area

xref _cpx_init
text

cpxstart: N
jmp _cpx_init
.end

If the CPX has default data which is to be saved back into the CPX with the
CPX_Save()function, the following stub should be used (substitute the ‘.dc.w 1’
statement with the appropriate amount of space required to store your data):

; Startup stub for CPX’s with save area

xref _cpx_init
.globl  _save_vars
text

cpxstart:
jmp _cpx_init
.data

_save_vars:
.dec.w 1
.end

RETURN VALUE Thecpx_init() function returns a pointer to EPXINFO structure to allow the
Control Panel to access its other routines. If it is a ‘Set-Only’ CPX, it should
returnNULL .

COMMENTS A CPX can distunguish when a CPX is booting by checkingehb->booting
structure member.

It is recommended that the CPX to create a copglbeach timespx_init() is
called for the other callback functions to utilize.

cpx_key()

VOID (*cpx_key)( kstate key, event)
WORD kstate

WORD key,

WORD *event

cpx_key()is called in an Event CPX wherMU_KEYBD event has occurred.

THE ATARI COMPENDIUM



cpx_ml() — 10.23

PARAMETERS kstatespecifies the state of the keyboard shift keys asnt_keybd(). key
specifies the keyboard scan code of the key struckWiBRD pointed to by
eventshould be filled in with a 1 if this event should terminate the CPX.

BINDING cpxinfo.cpx_key = cpx_key;

return ( &cpxinfo );

COMMENTS This function will only be called iBet_Evnt_Mask()is called with
MU_KEYBD specified as an event to wait for.

cpx_ml()

VOID (*cpx_m1)( mrets event)

MRETS *mrets
WORD event
cpx_m1()is called when #MU_M1 event has occurred in an Event CPX.
PARAMETERS mretswill contain a pointer to MRETS structure as specified #px_button()
which contains the mouse state as it satisfied the conditionVHeD pointed to
by event should be filled in with 1 if this event should terminate the CPX.
BINDING cpxinfo.cpx_m1 = cpx_m1;
return ( &cpxinfo );
COMMENTS This function will only be called iBet_Evnt_Mask()is called withMU_M1
specified as an event to wait for.
SEE ALSO cpx_m2()

cpx_m2()

VOID (*cpx_m2)( mrets event)

MRETS *mrets
WORD event
cpx_m2()is called when #MU_M2 event has occurred in an Event CPX.
PARAMETERS Seecpx_m1()
BINDING cpxinfo.cpx_m2 = cpx_m2,;

return ( &cpxinfo );

THE ATARI COMPENDIUM



10.24 — XCONTROL Callback Functions

COMMENTS This function will only be called iBet_Evnt_Mask()is called withMU_M2
specified as an event to wait for.

SEE ALSO cpx_ml()

cpx_timer()

VOID (*cpx_timer)( event)
WORD *event

cpx_timer() is called when MU_TIMER event has occurred in an Event CPX.

PARAMETERS TheWORD pointed to by event should be filled in with 1 if this event should
terminate the CPX.

BINDING cpxinfo.cpx_timer = cpx_timer;

return ( &cpxinfo );

COMMENTS This function will only be called iSet_Evnt_Mask()is called with
MU_TIMER specified as an event to wait for.

cpx_wmove()

VOID (*cpx_wmove)(work )

GRECT *work;
cpx_wmove()is called when &VM_MOVED message is received by the
Control Panel in an Event CPX.

PARAMETERS work is a pointer to &RECT containing the new coordinates of the window
work area.

BINDING cpxinfo.cpx_wmove = cpx_wmove;
return ( &cpxinfo );

COMMENTS This function will only be called iBet_Evnt_Mask()is called with

MU_MESAG specified as an event to wait for.

THE ATARI COMPENDIUM



XCONTROL Utility Functions

TheXCONTROL utility functions are accessed via tl€PB (XControl Parameter Block) in the
following format for users of ‘C’:

ret = (*xcpb->Function)( paraml, param2, ...)

These functions provide functions useful mostly to CPX's as well as functions that closely rédefhble
functions better suited for CPX's. TREONTROL Utility Functions are:

(*xcpb->CPX_Save)()
(*xcpb->Get_Buffer)()
(*xcpb->getcookie)()
(*xcpb->GetFirstRect)()
(*xcpb->GetNextRect)()
(*xcpb->MFsave)()
(*xcpb->Popup)()
(*xcpb->rsh_fix)()
(*xcpb->rsh_obfix)()
(*xcpb->Set_Evnt_Mask)()
(*xcpb->SI_arrow)()
(*xcpb->SI_dragx)()
(*xcpb->SI_dragy)()
(*xcpb->SI_size)()
(*xcpb->SI_x)()
(*xcpb->S1_y)()
(*xcpb->Xform_do)()
(*xcpb->XGen_Alert)()

THE ATARI COMPENDIUM



(*xcpb->CPX_Save)() — 10.27

(*xcpb->CPX_Save)()

BOOLEAN (*xcpb->CPX_Save)(ptr , num );

VOIDP ptr;
LONG num;

PARAMETERS
BINDING

RETURN VALUE

COMMENTS

SEE ALSO

CPX_Save()writes the specified data to the CPX on disk at the beginning of the
CPX’s DATA segment.

ptr is a pointer to the data to sam@mspecifies the length of the data in bytes.

(*xcpb->CPX_Save)( ptr, num );

CPX_Save(returnsTRUE if the operation was successfulFéhLSE if an error
occurred.

CPX_Save()stores the specified data on disk in the original CPX file at the start
of the DATA segment of the program. For this reason, enough space should be
allocated to account for this data. $@&_init() for an example method of
accomplishing this.

(*xcpb->Get_Buffer)()

(*xcpb->Get_Buffer)()

VOIDP (*xcpb->Get_Buffer)( VOID )

BINDING

RETURN VALUE

COMMENTS

SEE ALSO

Get_Buffer() returns the address of a 64-byte static storage location for the
calling CPX.

bufptr = (*xcpb->Get_Buffer)();

Get_Buffer() returns a pointer to a 64-byte static storage location which can be
used by the CPX to preserve data between invocations.

Data stored in this area is lost upon a reboot. Permanent data should be stored
usingCPX_Save()

(*xcpb->CPX_Save)()

THE ATARI COMPENDIUM



10.28 — XCONTROL Utility Functions

(*xcpb->getcookie)()

WORD (*xcpb->getcookie)(cookig pvalue)
LONG cookie
LONG * pvalue

getcookie()searches the ‘cookie jar’ for a given cookie and if found returns its
stored longword.

PARAMETERS cookiecontains the longword cookie (usually a packed 4 character ASCII code) to
search for. If found, the value of the cookie is placed il NG pointed to by
pvalue

BINDING err = (*xcpb->getcookie)( cookie, pvalue );

RETURN VALUE getcookie()returnsTRUE if the value placed ipvalueis valid orFALSE if the
cookie was not found.

COMMENTS This function is useful in locating TSR’s or other resident processes which a CPX
is designed to configure.

(*xcpb->GetFirstRect)()

GRECT *(*xcpb->GetFirstRect)( prect)

GRECT *prect
GetFirstRect() returns the first member of the Control Panel’s rectangle list
intersected byprect

PARAMETERS prectpoints to &iB5RECT containing the extent of the dirtied area.

BINDING rdraw = (*xcpb->GetFirstRect)( prect);

RETURN VALUE GetFirstRect() will return a pointer to &RECT containing the first intersecting
rectangle to redraw MULL if none of the CPX's rectangles intersect the dirtied
area.

COMMENTS Xform_do() handles resource object redraws in Form CPX’s. Other objects
requiring a redraw in Form CPX’s and all objects in Event CPX's must be
redrawn with using these functions when a redraw message is generated.

SEE ALSO (*xcpb->GetNextRect)()

THE ATARI COMPENDIUM



(*xcpb->GetNextRect)() — 10.29

(*xcpb->GetNextRect)()

GRECT *(*xcpb->GetNextRect)( VOID )

GetNextRect()returns subsequent rectangles needing to be redrawn after first
calling GetFirstRect().

BINDING rdraw = (*xcpb->GetNextRect)();

RETURN VALUE GetNextRect()returns a pointer to @RECT structure containing a subsequent
rectangle needing to be redrawn.

COMMENTS When a redraw message is received, it should be handled as illustrated below (the
example given is for an Event CPX but it may be applied t¥\ie REDRAW
message handling section of a Form CPX as well):

VOID
cpx_draw( clip )
GRECT *clip;

{

GRECT *rdraw;
rdraw = (*xcpb->GetFirstRect)( clip );
while( rdraw )

/* User redraw function */

my_redraw( rdraw );
rdraw = (*xcpb->GetNextRect)();

}
}

SEE ALSO (*xcpb->GetFirstRect)()

(*xcpb->MFsave)()

VOID (*xcpb->MFsave)( flag, mf)
BOOLEAN flag;

MFORM * mf;
MFsave() saves the current mouse form so that a custom application mouse form
is not destroyed when the CPX ca@leif_mouse()or vsc_form() to change the
shape of the mouse.

PARAMETERS flag specifies the action to take flag is MFSAVE (1), the current mouse form

will be written into theMFORM structure pointed to byf. If flag is
MFRESTORE (0), the mouse form will be restored from MEBORM structure

THE ATARI COMPENDIUM



10.30 — XCONTROL Utility Functions

pointed to bymf, Seevsc_form() for the definition ofMFORM .

BINDING (*xcpb->MFsave)( flag, mf );

(*xcpb->Popup)()

WORD (*xcpb->Popup)(items num_items default, font, button, world );
CHAR *itemd];

WORD num_items default, font

GRECT *button, *world;

Popup() displays and controls user interaction with a popup menu.

PARAMETERS itemspoints to an array of character pointers pointing to the text of the items. Each
string must be padded in front with at least 2 spaces and should be of equal length
(at least as long as the longest string)n_itemsspecifies the number of items to
display in the popup. Hum_itemsexceeds five, the popup will only show three
items with two arrows to allow scrolling.

defaultindicates the default item (the default item is displayed with a checkmark)
or -1 to indicate no default item.

font specifies the font size (3 = large, 5 = small) of the items in the popup.
buttonpoints to &GRECT containing the rectangular extent of the button pressed

to call the popupworld points to &GRECT containing the current extent of the
CPX work area.

BINDING ret = (*xcpb->Popup)( items, num_items, default, font, button,
world );

RETURN VALUE Popup() returns the item selected (0 based ) or -1 if no selection was made (the
user clicked outside of the popup area).

COMMENTS This function is unique to CPX’s and is not the sameeu_popup()

Button objects which are to be used as popups shodl@WEHEXIT objects.
In addition, as a matter of style, popup buttons shoufsHRDOWED.

THE ATARI COMPENDIUM



(*xcpb->rsh_fix)() — 10.31

(*xcpb->rsh_fix)()

VOID (*xcpb->rsh_fix)( num_objs num_frstr, num_frimg, num_tree rs_objectrs_tedinfq
rs_strings rs_iconblk rs_bitblk, rs_frstr, rs_frimg, rs_trindex rs_imdope);

WORD num_objs num_frstr, num_frimg, num_tree

OBJECT *rs_object

TEDINFO * rs_tedinfg

char *rs_stringg];

ICONBLK * rs_iconblk

BITBLK * rs_bitblk;

LONG *rs_frstr, *rs_frimg, *rs_trindex

struct foobar *rs_imdope

rsh_fix() fixes up a resource tree in memory based on an 8x16 character font.

PARAMETERS When using the Atari Resource Construction Set the parameters are generated in
the .RSH file created by the compiler.

When using other resource construction sets you should refer to their instructions
for applying their resource structure to this function or use the CPX function
rsh_obfix() on eacHOBJECT .

BINDING (xcpb->rsh_fix)( num_objs, num_frstr, num_frimg, num_tree,
rs_object, rs_tedinfo, rs_strings, rs_iconblk, rs_bitblk,
rs_frstr, rs_frimg, rs_trindex, rs_imdope );

COMMENTS rsrc_load(), rsrc_obfix(), andrsrc_rcfix() fix up a resource file based upon the
current screen character size. CPX resource data is always fixed up based upon an
8x16 character font.

Resources should be designed on a screen that supports an 8x16 ratio. When using
the Atari Resource Construction Set, the resouce should be designed as a ‘Panel’
rather than a ‘Dialog’. With other resource construction applications the same
effect is acheived by turning snap off.

Resources should only be fixed up whenxgb->SkipRshFiflag is 0. This
prevents resources from being fixed up more than once.

SEE ALSO (*xcpb->rsh_obfix)()

THE ATARI COMPENDIUM



10.32 — XCONTROL Utility Functions

(*xcpb->rsh_obfix)()

VOID (*xcpb->rsh_obfix)( tree curob)

OBJECT *tree

WORD curob;

PARAMETERS
BINDING
COMMENTS

SEE ALSO

rsh_obfix() converts the specified object from character to pixel based
coordinates based on an 8x16 character font.

tree points to thédBJECT tree which contains the objestrobto fix up.
(*xcpb->rsh_obfix)( tree, curob );
Seersh_fix().

(*xcpb->rsh_fix)()

(*xcpb->Set_Evnt_Mask)()

VOID (*xcpb->Set_Evnt_Mask)( mask m1, m2, time)

WORD mask
MOBLK * m1;
MOBLK * m2;
LONG time;

PARAMETERS

Set_Evnt_Mask()defines which events an Event CPX will process with its
callback functions.

maskis a bit mask of eventéfU_MESAG, MU_TIMER | etc... ) that the CPX
wishes to process aséwnt_multi(). m1andm2 point toMOBLK  structures
which define mouse rectangles to wait for if the CPX wishes to waiffbrM1
and/orMU_M2 events as ievnt_mouse() MOBLK is defined as follows:

typedef struct

WORD m_out; /* 0 = enter, 1 = exit */
WORD m_x;
WORD m_y;
WORD m_w;
WORD m_h;
} MOBLK;

time specifies the length of time to specify for MM&_TIMER event if
appropriate.

THE ATARI COMPENDIUM



(*xcpb->SI_arrow)() — 10.33

BINDING (*xcpb->Set_Evnt_Mask)( mask, m1, m2, time );

COMMENTS This function is only valid for Event CPX’s.

(*xcpb->SI_arrow)()

VOID (*xcpb->SI_arrow)( tree, base slider, obj, inc, min, max, numvar, dir, foo )
OBJECT *treg

WORD base slider, obj, inc, min, max;

WORD *numvar;

WORD dir;

VOID (* foo)();

SI_arrow() is called by a CPX when the user clicks on an arrow element of an
‘active’ slider.

PARAMETERS tree points to the object tree containing the slider elembaggis the object
index of the slider ‘track’slider is the object index of the slider ‘elevatarhj is
the index of the arrow element clicked on by the user.

inc specifies the increment amount for each slider step (#ik)specifies the
minimum value the slider can represénaxspecifies the maximum value the
slider can represent.

numvarpoints to AaVORD containing the value which the slider represents and
which is to be updated as the slider is mowidspecifies the direction of the
slider movement(ERTICAL (0) orHORIZONTAL (1) ).

foois a pointer to a user-defined callback function which is called once for each
step of the slider to allow the user’s action to ‘actively’ update the slitfemay
beNULL if no updating is desired.

BINDING (*xcpb->SI_arrow)( tree, base, slider, obj, inc, min, max,
numvar, dir, foo );

COMMENTS Slider paging can be accomplished with this function. To do so use a method
similar to the following (this example is for vertical sliders):

graf_mkstate( &mx, &my, &dum, &dum );

objc_offset( tree, slider, &ox, &oy );

inc=((my<oy)?(-1):(1));

(*xcpb->SI_arrow( tree, base, slider, base, inc, min, max,
&numvar, VERTICAL, foo );

THE ATARI COMPENDIUM



10.34 — XCONTROL Utility Functions

(*xcpb->SI_dragx)()

VOID (*xcpb->SI_dragx)( tree, base slider, min, max, numvar, foo)
OBJECT *tree

WORD base slider, min, max;

WORD *numvar;

VOID (* foo)();

S|_dragx()is called by a CPX when a user clicks on the horizontal slider
‘elevator’ of an ‘active’ slider.

PARAMETERS tree points to afPBJECT tree containing the slider elemeniigseis the object
index of the slider ‘track'slider is the object index of the slider ‘elevator’.

min specifies the minimum value the slider can represefxspecifies the
maximum value the slider can represent.

numvarpoints to aVORD containing the value which the slider represents and
which is to be updated as the slider is moved.

foo points to a user-defined routine which is called each time the slider value
numvaris modified.foo may beNULL if no updating is desired.

BINDING (*xcpb->SI_dragx)( tree, base, slider, min, max, numvar, foo );

COMMENTS It is appropriate to change the shape of the mouskeAd_HAND while the user
is dragging a slider.

SEE ALSO (*xcpb->SI_dragy)()

(*xcpb->SI_dragy)()

VOID (*xcpb->SI_dragx)( tree, base slider, min, max, numvar, foo )
OBJECT *tree

WORD base slider, min, max;

WORD *numvar;

VOID (* foo)();

S| _dragy()is called by a CPX when a user clicks on the vertical slider ‘elevator’
of an ‘active’ slider.

PARAMETERS SeeS|_dragx().

THE ATARI COMPENDIUM



(*xcpb->SI_size)() — 10.35

BINDING (*xcpb->S|_dragy)( tree, base, slider, min, max, numvar, foo );

COMMENTS It is appropriate to change the shape of the mouskAd_HAND while the user
is dragging a slider.

SEE ALSO (*xcpb->SI_dragx)()

(*xcpb->Sl_size)()

VOID (*xcpb->SI_size)(tree, base slider, num_items visible, direction, min_size)
OBJECT *tree
WORD base slider, num_items visible, direction, min_size;

SI_size()adjusts the size of the slider ‘track’ relative to the size of the slider
‘elevator’.

PARAMETERS tree points to th€dBJECT tree containing the slider elemeritaseis the object
index of the slider ‘track’'slider is the object index of the slider ‘elevator’.

num_itemss the total number of items represented by the skiighleis the
number of items actually seen by the user.

direction specifies the direction of the slider as eitdERTICAL (0) or
HORIZONTAL (1). min_sizerepresents the minimum pixel size of the adjusted
slider elevator.

BINDING (*xcpb->SI_size)( tree, base, slider, num_items, visible,
direction, min_size );

COMMENTS This function does not redraw the slider.

(*xcpb->Sl_x)()

VOID (*xcpb->SI_x)( tree, base slider, valug, min, max, foo )
OBJECT *tree

WORD base slider, valug, min, max;

VOID (* foo)();

SI_x() updates the position of a horizontal slider within its base.

PARAMETERS tree points to arDBJECT tree containing the slider elemerigseis the object
index of the slider ‘track'slider is the object index of the slider ‘elevator’.

THE ATARI COMPENDIUM



10.36 — XCONTROL Utility Functions

BINDING

SEE ALSO

valueis the value the slider should represetitt andmaxare the minimum and
maximum values the slider can represent respectively.

If foois notNULL , it points to a user-function which is called to redraw the
slider.

(*xcpb->SI_x)( tree, base, slider, value, min, max, foo );

(*xcpb->SI_y)()

(*xcpb->SI_y)()

VOID (*xcpb->Sl_y)( tree, base slider, valug min, max, foo)

OBJECT *tree

WORD base slider, valug min, max;

VOID (* foo)();

PARAMETERS
BINDING

SEE ALSO

SI_y() updates the position of a vertical slider within its base.
SeeSI_x().

(*xcpb->SI_y)( tree, base, slider, value, min, max, foo );

(*xcpb->SI_x)()

(*xcpb->Xform_do)()

WORD (*xcpb->Xform_do)( tree, editobj msg)

OBJECT *tree
WORD editobj

WORD *msg

PARAMETERS

Xform_do() is a specialized version tfrm_do() designed to handle a CPX
object tree and window messages concurrently.

tree should point to a@BJECT tree containing a form with the root object being
256x176.editobjspecifies the editable text object to initially display the text
cursor at (or 0 if no editable object exists on the form).

msgshould point to an ORD array used by the function to store special
messages returned bynt_multi().

THE ATARI COMPENDIUM



(*xcpb->XGen_Alert)() — 10.37

BINDING

RETURN VALUE

COMMENTS

ret = (*xcpb->Xform_do)( tree, editobj, msg );

Xform_do() returns the positive object number of BT or TOUCHEXIT
object selected. The high bit of this value indicates if the object was double-
clicked and should therefore be masked off if unusetforim_do() returns a -1,
then a message should be processed as contaimsg ihhe structure of
messages are the same agvint_multi(). Possible messages are:

WM_REDRAW
AC_CLOSE
WM_CLOSE
CT_KEY

CT_KEY (53) is a speciakCONTROL message indicating that a key was
pressed. The scancode of the key pressed is containigd] Only special
keyboard keys such &§LP, F1-F10,UNDO, ALT-X, etc... will be returned as the
standard alphabetic keys are processed in editable fields.

TheXform_do() function automatically handles and redraws of the given
OBJECT tree. Any other items needing to be redrawn should be handled at the
appropriate window redraw message.

WM_CLOSED messages should always be treated as ‘OK’ wiileCLOSE
messages should be treated as ‘Cancel'.

(*xcpb->XGen_Alert)()

BOOLEAN (*xcpb->XGen_Alert)( id )

WORD id;

PARAMETERS

BINDING

XGen_Alert() displays a specialized alert centered in the Control Panel’'s work
area.

id specifies the alert to display as follows:

Name id ‘ Alert
SAVE_DEFAULTS 0 Save Defaults?
MEM_ERR 1 Memory Allocation Error
FILE_ERR 2 File I/O Error
FILE_NOT_FOUND 3 File Not Found Error

ret = (*xcpb->XGen_Alert)(id );

THE ATARI COMPENDIUM



10.38 — XCONTROL Utility Functions

RETURN VALUE XGen_Alert() returnsTRUE if ‘OK’ was selected oFALSE if ‘Cancel’ was
selected. Alerts 1-3 always returhiSUE.

THE ATARI COMPENDIUM



— CHAPTER 11 -

GEM USER INTERFACE
GUIDELINES

THE ATARI COMPENDIUM



Overview — 11.3

Overview

Maintaining consistent elements of style in a user-interface is an important aspect of
programming which should not be overlooked. An extremely powerful application will have its
usefulness compromised by an interface that is unlike the majority of other applications a user
will be exposed to.

In an effort to create a more standardized method of application programming, this reference
will diagram many interface elements that every Atari programmer should use, regardless of
whether you are applying them to existing partebM or programmer-defined elements.

In a case where you provide an enhanced interface element that departs from these
specifications, you should at least allow the user to disable the option in a ‘Settings...’ dialog.

The Basics

All GEM applications should contain a menu bar providing access to program features. Desk
accessories should appear in a window.

‘Dialogware’ and ‘Alertware’ applications are strongly discouraged. Each performs user
interaction exclusively in one or more dialogs or alerts respectively. This makes it impossible
for the user to take advantage of other programs or desk accessories while in use.

Document-oriented applications that are launched with one or more valid documents specified
on the command line should launch those documents into their own windows, otherwise the
application should initialize in one of two other ways:

*  Open an empty document window with the default parameters labeled “Untitled.”

* Present a dialog allowing three choices. “New” opens a blank document (as
above), “Open” presents a file selector used to select a document to open,
“Cancel” removes the dialog and leaves the user with the menu bar to make other
selections.

Windows

A window is a viewport through which all or part of an application’s document may be viewed.
Windows are modeless forms of input. This means that they do not restrict the user from
switching to another window or executing a command.

Normal document windows should have a title bar and should be moveable (these

characteristics are set with thénd_create() function — se€hapter 6:AES). The following
illustration shows a window with all window components identified:

THE ATARI COMPENDIUM



11.4 — GEM User Interface Guidelines

Title Bar F lconifier
Closer— (& | — Fuller
Information —— | 1161462 butes used in 62 items.
Line  AUTO 03/15/91 [¢ | — Up Arrow
:': HULTDESK HDX 05/24/92 Vertical
# SPEEDOD 12/15/92 Slider Bar
Work Area — % XBOOT 85/28/92 j
BHPSHAP ACC 4034 08/05/93 — Vertical
COLOR  MLT 47 06/04/92 Slider Elevator
CONTROL INF 24 085/11/93 — Down Arrow
< : {o| k| — Sizer
J Horizontal Horizontal L ;
Left Arrow Slider Slider Right Arrow
Bar Elevator

Here are some other basic rules to use when creating windows:

*  Windows should almost always have M®VE characteristic set.

« Ifitis possible that the contents of the information displayed in the window might
overflow, provide sliders (horizontal and/or vertical) as appropriate. The sliders
should be updated as necessary to ensure that they are proportional in size and
position to the amount of information viewable in the window versus the size of
the entire document.

*  Generally, all document windows will include all window elements (with the
possible exception of the information line). Only exclude an element if its use
would be inappropriate in the current context.

THE ATARI COMPENDIUM



Windows — 11.5

Window Messages
An application’s use of windows depends on eitheeuig_mesag(Jor evnt_multi() functions
of theAES, These functions return messages which in turn must be responded to by the
application for any changes to occur. The following list illustrates all messages that a window
may receive along with an appropriate action(s) that should be taken.

Message Action

WM_REDRAW | Redraw the rectangular portion of the window which was
dirtied (as specified in the message). Always use
wind_get() with WF_FIRSTXYWH and
WF_NEXTXYWH to walk the rectangle list and enable
clipping to the appropriate regions.

If the window had a SMALLER gadget, check prior to
drawing whether you are drawing the actual window
contents or an iconified representation.

If the window has an attached toolbar that requires
special redrawing, use wind_get() with
WF_FTOOLBAR and WF_NTOOLBAR as parameters
to walk the rectangle list and enable clipping to the
returned regions.

In some situations you may want to redraw the entire
window upon each WM_REDRAW call. You must still
walk the rectangle list as specified above.
WM_TOPPED | Call wind_set() with a parameter of WF_TOP to actually
top the window. Do not redraw the window. Your
application will receive WM_REDRAW messages for
portions of the window uncovered by the call.

Also, set the mouse form as desired.

WM_SIZED | Call wind_set() with a parameter of WF_CURRXYWH
to actually change the current size of the window. Update
slider positions as necessary to reflect the new size of the
window.

Applications will automatically receive a redraw message
if any portion of the window was uncovered. If you need to
redraw the entire window each time the window size
changes, send your own application a WM_REDRAW
message with appl_write() to cause a redraw.
WM_MOVED | Call wind_set() with a parameter of WF_CURRXYWH
to actually change the current size of the window. This
message and the message WM_SIZED are usually
handled by common code.

THE ATARI COMPENDIUM



11.6 — GEM User Interface Guidelines

WM_ARROWED

Scroll the contents of the document window as necessary
and redraw the window (using the rectangle list).

When an arrow indicator is clicked, scroll the window by
one ‘line’ (a small increment in a non-text oriented
application). When the exposed area of the slider bar is
clicked, scroll the contents of the document window by
one ‘page’ (current viewable portion of the document)
minus one ‘line’.

WM_VSLID | Scroll the contents of the document window in proportion
with the new position of the slider elevator.
WM_HSLID | Scroll the contents of the document window in proportion
with the new position of the slider elevator.
WM_FULLED | Restore the size of the window using wind_get() with a
parameter of WF_PREVXYWH. Update slider bars as
necessary.
WM_CLOSED | Close the window. If the window context required a

positive or negative answer from the user ("Yes/No’ or
‘OK/Cancel’), assume positive. If the window contains a
document which has been altered since the last time it
was saved to disk, it is appropriate to ask the user if the
document should be saved before proceeding.

WM_BOTTOMED

Call wind_set() with a parameter of WF_BOTTOM to
send the window to the bottom of the window stack.

WM_ICONIFY | See below.
WM_UNICONIFY | See below.
WM_ALLICONIFY | See below.

WM_TOOLBAR

Respond as necessary to the toolbar event.

WM_ONTOP

Set the mouse form appropriately for your application.

WM_UNTOPPED

No action is mandated by this message.

THE ATARI

COMPENDIUM




Windows — 11.7

Clipping Rectangles
In every instance where text or graphics are rendered in a window, you should walk the
rectangle list in order to ensure that the screen is properly updated. This includes all instances
when the contents of the window are updated as a response to a user command (as opposed tc
WM_REDRAW message) or dynamic interaction (i.e. selection or animation).

Window Titles
The title bar of a window should accurately reflect its basic contents. If a window contains a
document the title bar should contain the filename of the document or ‘Untitled’ if it is a new
document that has not been saved yet. If the window does not contain a document, the title bar
should serve to clearly explain the purpose of the menu. For example, if you were to implement
a find and replace dialog in a window, the window should be titled “Find & Replace.”

In some cases you may wish to provide an option (though a menu or keystroke) which allows the
user to open a duplicate copy of the document in another window. This allows the user to select
separate views in each open window yet changes in one window are reflected in others. In this
case, suffix the document name with a colon and the window number such as
“FILENAME.DOC:1". The numbering should only be present when more than one document
window actually exists.

Iconified Windows

AES versions 4.1 and above support $8ALLER gadget for window iconification. The
basic rules for iconification follow:

iconified window

Is a ‘program group’

Action already open? Response

User wishes to iconify a No Iconify the single window.

single window.

User wishes to iconify a Yes Close the window the user wishes to

single window. iconify and add it to those represented
by the ‘program group’ window.

User wishes to iconify alll No Create a new, iconified window as a

windows. ‘program group’ and close all other
windows.

User wishes to iconify all Yes Add all open windows to those

windows. represented by the ‘program group’
window and close all other windows.

User wishes to uniconify a N/A Uniconify the window.

single window.

User wishes to uniconify a Yes Close the iconified window and open all

‘program group’ window. of the windows in the ‘program group’.

Here are some other hints that are helpful when dealing with iconification:

*  Due to the smaller size of the window title line, it may be desirable to adjust the
title text when a window is iconified.

THE ATARI COMPENDIUM



11.8 — GEM User Interface Guidelines

* Draw an icon which represents the contents of the window when drawing a single
iconified window. When drawing a ‘program group’ iconified window, draw an
icon which represents the application.

»  Usegraf_growbox() andgraf_shrinkbox() to graphically show the user the
iconification/uniconification process.

Window Information Line
When appropriate, the addition of O component of a window should serve to provide
additional information about the objects visible in the window. This information should change
to provide the most useful information. A vector graphics editor might display the document size,
statistics, and zoom factor normally, but provide information on the number and extent of
selected objects when at least one object is selected.

Window Colors
AES versions 3.0 and above allow the color of each window component to be modified. An
application should never modify the global settings. Allow the user to use the Window Colors
CPX to choose global colors of his/her choice.

If your application wants to draw a visual distinction between windows by displaying them in
different colors, provide a dialog where the user may choose color preferences or (at least)
enable/disable this option.

Dialog Boxes

A dialog box is the modal counterpart to a window. When a dialog box is displayed, all of the
user’s input is exclusively directed towards it until the user releases control by satisfying the
needs of the dialog. Here are some basic rules regarding dialog boxes:

*  Prior to drawing a dialog and callifigrm_do(), call theAES function
wind_update( BEG_UPDATE ). Do not release control witBND_UPDATE
until the dialog box is removed and input with it is finished.

* If adialog box controls a physical attribute (such as text face or fill type), provide
a ‘Sample’ area where changes are automatically displayed prior to exiting the
dialog.

* Dialogs that position themselves automatically at the center of the active window
or mouse location are convenient to some users, annoying to others. When
providing this feature, allow it to be disabled.

Button Positioning
Most dialogs consist of several resource objects that can be edited or changed by the user and
several exit buttons which terminate the dialog (or cause a supplementary action). Dialogs which
supply information should have an ‘OK’ button and a ‘Help’ button if additional information is
available. Dialogs which manipulate settings should have an ‘OK’ button to accept changes, a
‘Cancel’ button to revert to the state prior to entering the dialog, and an ‘Help’ button if help is
to be provided.

THE ATARI COMPENDIUM



Dialog Boxes — 11.9

Buttons should always appear in the order ‘OK’, ‘Cancel’, ...other buttons..., ‘Help’ when
working left to right or top to bottom. ‘OK’ should be in all capitals. All other buttons should be
capitalized. When other wording is appropriate (such as ‘Yes/No’) the positive answer should
always precede the negative answer.

All dialogs should have a default exit button which exits the dialog. In most cases this will be
the positive ‘OK’ or ‘Yes’ response. In a case where an action is irreversible and data will be
changed (for example, formatting a disk), it is appropriate for the negative response to be made
default rather than the positive one.

Exit buttons should be placed in a dialog so that they are either centered at the bottom of the
dialog or listed from top to bottom starting at the upper-righthand corner of a dialog as pictured
in the following diagrams:

This dialog illustrates the
correct positioning of buttons
placed at the bottom of a dialog.

| oK | | Cancel | | Help |

Dialog w/Horizontal Buttons

This dialog illustrates
the correct positioning

of buttons placed from
top-botton in the

upper-right corner.

Dialog w/Vertical Buttons

When using the ‘top-down’ style, buttons with complementary meanings may be grouped by
inserting one space between groups. The dialog pictured above shows an example of a dialog
with an ‘OK’, ‘Cancel’, and ‘Help’ button correctly positioned.

Unfolding Dialogs

In some cases a dialog may contain features for both the common and advanced user. In this ca
it is recommended that an ‘unfolding’ dialog be presented.

An unfolding dialog contains a button such as ‘Options >>" or ‘More >>" which, when pressed,
expands the dialog to reveal additional features. When this happens the ‘Options >>’ button

THE ATARI COMPENDIUM



11.10 — GEM User Interface Guidelines

becomes ‘<< Options’ (or ‘More >>' becomes ‘<< Less’ which, when pressed, will return the
dialog box to its original state.

User-Defined Controls.
When adding custom objects to dialog boxes usingROGDEF objects or other means, it is
important to keep the interface with these objects consistent with an already existing object. For
instance, a custom text control should respond to keystrokes in the same manner as the
G_FTEXT obiject. If a custom object departs from these standards, its implementation should be
capable of being disabled.

Alerts are special dialog boxes which provide information and/or a limited choice of options to
the user. Alerts are often used to present an error condition to the user or to inform them of a
choice. Some basic rules regarding alert boxes follow:

In general apply rules regarding button text (such as capitalization, the default
object, etc.) to alerts.

Whenever possible, provide the user with more than one option in an alert box.
Alerts with only one button are frustrating and should only be used when only one
possible course of action exists.

Never provide an ‘OK’ button and a ‘Cancel’ button when either button will lead
to the same action/inaction.

Avoid using the word ‘error’ or any other text which might blame the user.

If an error has occurred, suggest a remedy (possibly using a dialog box for data
reentry).

Use ‘Cannot’ instead of ‘Can’t’ or ‘Can not’.

If an error alert might occurring during multi-tasking while another process has
focus, make the first line of the alert text the program name followed by a colon.

A message such as “Not enough memory to load file TEST.DOC.” is much better
than “Insufficient memory.”

Minor warnings to a user might become increasingly apparent by having the
response to the first incorrect action be the system bell and the second occurrence
being a dialog box politely guiding the user along.

Message text should be left-aligned.

If message text is too long to fit into the 5 line/30 character per line limit, consider
downsizing the message for clarity, or if necessary, place the alert in a form.
Never use consecutive alerts.

Alerts should be capitalized by standard grammatical rules and should be
punctuated with a period or question mark (not an exclamation mark).

THE ATARI COMPENDIUM



The File Selector — 11.11

Alerts boxes may be displayed with one of three icons (or no icon at all). The following lists
examples of when to use a specific icon:

Icon Uses

None Program credits, reminders, general help.

Error conditions, conditions requiring immediate
action.

Inquiries, most confirmations.

Potentially program-fatal errors, confirmation of an
irreversible action.

Informational alerts. These usually have only an ‘OK’
button. Alerts with more than one choice might be
better suited for the question mark icon.

General disk errors and requests.

The File Selector

Several important style guidelines are important to follow when using the system calls
fsel_input() or fsel_exinput()to provide the common system file selector to the user. If your
application provides a custom file selector unique to your application, always allow the user the
choice of using the system file selector as opposed to your own. In general, it is better to use the
internal selector rather than provide a customized one. The user may install a third-party file
selector replacement if they want the extra features that custom file selectors usually provide.
This provides more user-interface consistency throughout the system.

If you commonly use a third-party replacement file selector on the system you test applications
on, always test your application with the replacement file selector disabled. Several third-party
file selectors handle screen redraws and pathname parsing differently than the internal file
selector does.

THE ATARI COMPENDIUM



11.12 — GEM User Interface Guidelines

When your application needs to display the file selector, always ensure that the pathname that is
going to be passed to the file selector call is valid. If the pathname becomes invalid, revert to a
system default path such as that of your applications own. It is also courteous to the user to store
the last used path in a global buffer so that each time the file selector is accessed the user
doesn’t have to change directories again.

If your application requires that its files be loaded and saved with a specific file extension,
append that file mask to the end of the pathname so that the user’s choices are restricted. If
during a save operation the user chooses to override your default extension, either allow it or
prompt the user as to their true intention.

When the file selector call returns, if the filename field is blank, treat it as a ‘Cancel’. If a
filename was entered but it contains no file extension, append your default file extension (if
appropriate) to it.

Progress Indicators

When an application begins a task that may require a substantial amount of time to complete, it is
normally appropriate to change the mouseB&&Y_BEE form to indicate to the user a long
action is taking place.

If the screen display does not reflect the actual task in real time, it is helpful to display a
progress bar (sometimes referred to as a thermometer) indicator on screen to remind the user
that an task is indeed taking place and that the computer has not entered a locked state. In this
case, you may leave the mouse form inAREKROW shape so that the user may perform other
functions in a multitasking environment.

It is helpful to place a progress bar for potentially long operations into a window so that other
applications or desk accessories may be accessed. When possible, the exact length of the
operation might be stated like “Time Left: xx:xx".

The progress bar should move as closely as possible to a true proportional representation of
time (i.e. avoid circumstances where it might take ten seconds to move from 25% to 50% but
only a second to move from 50% to 100%).

An example progress bar showing a task in progress is shown below:

THE ATARI COMPENDIUM



Toolboxes — 11.13

Printing...

e o o i i 300 30 e e S 3 e e e ]
]
B 0 o A S R T S R e L

L=k =ZEX EaXx TEXR 12ax

Hit ESC to abort.

Toolboxes

Toolboxes are groups of buttons (usu&lyIMAGE or G_ICON) which either select between
editing modes (often in graphic editors or DTP applications) or choose object properties. A
toolboxes may be contained in its own window or appear ‘attached’ in the document window
aligned with the upper-left corner of the work area. A toolbox in its own window should have
its ‘un-toppable’ characteristic set unddultiTOS (seewind_set() to prevent the user from
having to click twice to select a button.

Buttons on these specialized dialog/window combinations fall into three categories, exclusive
buttons (such as a pointer tool and rectangle tool), non-exclusive buttons (such as zoom on/off),
and style buttons (such as fill style and line style).

Buttons should reflect their state by appearing either inverted or depressed. The currently
selected exclusive button as well as any selected non-exclusive button retains this state until a
new object is chosen or it is deselected. Style buttons are only selected until the user has
completed the operation. When available, toolbox buttons should appear in color using a
G_CICON. An example of a toolbox window follows:

THE ATARI COMPENDIUM



11.14 — GEM User Interface Guidelines

A O ol P>
NEIBIVdEdE4

1] O

ol
Example from Soft-Logic’s Pagestream 2.2.

Toolbars (sometimes referred to as ‘Ribbons’) are single-strip toolboxes placed at the top of the
document work area which contain buttons or combo boxes which are usually used to alter
properties of the document. An example of a control bar embedded in a window follows:

Example from Atari Works.

Newer versions of thBES provide built-in support for toolbars, though they can be
implemented in applications running in an OS that does not support the new calls.

THE ATARI COMPENDIUM



Menus - 11.15

Menus

The Menu Bar
Each application in the system should initialize a menu bar as soon as it is called. The menu bat
consists of several titles which when pointed to by the mouse cause a list of individual menu
items to be displayed.

The leftmost menu title (commonly referred to as the ‘Desk’ menu) should be the application
namé. An example of the first menu title/items are shown below:

PrgHane File

About PrgHame...

The first item in the menu should be “Ab&iRGNAME..”. PRGNAMEshould be substituted
with the name of the application. The lines below are reserved for desk accessories and
applications (when running undéultiTOS ),

An application should cafhenu_register()(underMultiTOS ) to change its entry in the menu
from the filename to the program title.

The second and third menu titles should be “File” and “Edit” as appropriate (though the
inclusion of both of these menus is highly recommended). Application defined menus should be
placed after these. If a “Help” menu is available it should be the rightmost title. A “Window”
menu should be placed rightmost second only to “Help” if it exists. An example title bar
follows:

PrgHame File Edit Options MWindow Help

Menu entries should be grouped by function under appropriate titles and subgrouped by placing
separator bars between them (disabled dashes).

Menu entries which end in an ellipsis should lead to a dialog box. Those without ellipsis should
carry out an action with no further user interaction.

LThis menu title used to be labeled “Desk” or contain the fuji logo. With the adVdnttoFOS , however, placing the application name
here makes it possible for the user to easily determine the application which has the input focus.

THE ATARI COMPENDIUM



11.16 — GEM User Interface Guidelines

The File Menu
The “File” menu should consist of the following items (presented in order):
* New
*  Open...
* Recall (optional — has cascading menu attached with most-recently used file list)
* Save
* Saveas...

* Save all (optional)

* Any other document closing commands apiieed.
Separator

* Import (if applicable)

* Export (if applicable)

Any other file operations as requifed
Separator

* Page Setup... (if applicable)

*  Print (if applicable)

* Any other printing commands as required.
Separator

*  Quit

Following is an example “File” menu:

Hew AN
Open Al
Close AW
Save Ghg
Save as... AS
Save all

Inport

Export

Page Setup...
Print Ap
Muit Al

2This does not refer to operations such as ‘Delete File’ or ‘Rename File’. These commands should not be supported in applications
because they are available from the Desktop running Mud&TOS or from disk utility CPX's and accessories.

THE ATARI COMPENDIUM



Menus - 11.17

The Edit Menu
The next menu, “Edit”, usually contains the following items:

* Undo (if supported)
*  Redo (if supported)

Separator

e Cut

* Copy

* Paste

* Delete

Separator

* Select All (optional)
Separator

* Find... (optional)

* Replace... (optional)

*  Find Next (optional)

Separator

* Any other editing/searching commands.

An example “Edit” menu follows:

Undo Undo
Cut AX
Copy AL
Paste Al
Delete Del

Find AF
Replace Ap
Find Hext Al

Dual-State Menu Items
Menu selections can be designed to represent toggles. There are two methods of accomplishing
this as follows:

* Apply a checkmark to the item to indicate an enabled state.

* Alter the text. For example, when “Hide Toolbar” is clicked, change the text to “Show
Toolbar”.

3Redo’ is used when multiple levels of ‘Undo’ are to be provided.

THE ATARI COMPENDIUM



11.18 — GEM User Interface Guidelines

In addition, some menu item groups may provide a choice between more than two options as
shown in the following example:

Style
Font... F4
Hormal

v Bold AB

J Italic AT
Underline All
Shadowed

Again, checkmarks can be used to indicate the selection.
Here are some other general pointers about using menus:
* Menu items such as “Preferences...” or “Save Preferences” belong in the “Options” menu.

*  Menu items for text styles (like bold, italic) can be m&déJSERDEF objects and made
to reflect their actual state.

* Ifyou add a “Window” menu, items such as “New Window” which opens a new window
for the current document, “Arrange All”, “Tile All", “Cascade All", which positions
windows can optionally be included. Followed by a separator, a generic item “Window”
can be attached to a cascading menu which contains an updated list of all document
windows so that the user can use the menu bar to ‘top’ a window.

* If you add a “Help” menu, different options can provide different levels of help such as
“Contents” or “Index”. Don't list help items for each possible dialog box or mode, instead
provide context sensitive help that is activated through a “Help” button or by pressing the
HELP key.

Popup Menus
Popup menus are menus which can appear anywhere on screen at the request of the user. A
common use of popup menus is for object-specific options which are called upon when an
object is right-clicked on with the mouse.

Popup menus can also be placed in dialog boxes as shown below. Dialog objects which lead to
popup menus should BOUCHEXIT andSHADOWED. If text describing the popup appears
at the left of the button, it should be inverted when the popup is displayed and until it is closed.

When a popup menu contains a list of exclusive options, the option currently selected should be
properly identified to thenenu_popup()command so that it is aligned with the object in

addition to having a checkmark. Popups with no selected option should always start at the first
selection.

THE ATARI COMPENDIUM



Menus — 11.19

Popup menus may contain objects other than text (like fill styles or bitmaps) but will be unable
to scroll.

Drop-Down List Boxes
Drop-down list boxes are handled in the same manner as popup menus with the following
exceptions:

An ‘equivalence’ character (ASCII 240) irBXCHAR object should be displayed
immediately to the right of the box leading to the drop-down list and should also be
TOUCHEXIT andSHADOWED. A click on this object is the same as clicking on the main
object.

No checkmark should be displayed next to the current selection.

The TOUCHEXIT box leading to a drop-down list may be editable, if appropriate, to allow the
user to add items to those currently in the list.

The following illustrations show examples of both a ‘closed’ (prior to being selected) and
‘open’ (during selection) drop-down list:

| Times Hew Roman

Drop-Down List Box (closed)

Hhite
Black

Blue

Havy
Yellow
Mahogany
Sea Green
Teal
Rocket Red

Drop-Down List Box (open)

o I

)
]

-
]

)
RN

]

[
b
B

et

et
S

hE:

&
&
oot

>
.

THE ATARI COMPENDIUM



11.20 — GEM User Interface Guidelines

Hierarchical Menus
Hierarchical menus (or sub-menus) are menus attached to either a main menu item or a popup
menu item. These menus can be nested several levels deep but it is recommended that this
feature not be used because your menu bar, in general, should never be this complex. An
example of a hierarchical menu follows:

Text Style

Font 2
Bold AB

Calor 9 Italic AT
Underline Al
Shadowed

Keyboard Equivalents

Some users prefer to do their program interaction via the mouse while others prefer the
keyboard. Those users who prefer keyboard interaction are often frustrated by a lack of
consistency among programs concerning keyboard equivalents.

The following keyboard equivalents are universal among many platforms (including Atari) and
should be enabled in all cases where a counterpart option exists in an application. Other
keyboard equivalents may be assigned as long as they do not conflict with one of those already
predefined. The use of tAETERNATE key as a modifier in a keyboard equivalent is discouraged
because international users useAlERNATE key to access special keyboard characters.

Menus
Menu keyboard equivalents should be notated next the menu item and flush right (excepting one
space) with the menu. TIRONTROL key should be notated by the caret,AHEERNATE key
should be notated by the window closer character, argHtfekey should be notated by the up
arrow character. Function keys are notated “Fnn” and other keys are notated as, for example,
“Del”, “Bksp”, “Help”, etc.

Menu items with a sub-menu attachment should not have a keyboard equivalent. An example
menu with keyboard equivalents shown correctly follows:

THE ATARI COMPENDIUM



Keyboard Equivalents — 11.21

Test
Hone
W/Ctrl Ay
W/Shift o¥
W/Alt By
W/Ctr1&Shift Ady
W/Ctrl&Alt Ay
w/Ctr1&Shift&alt Aoy

e GERmeg e
Escape Esc
Delete Del
Backspace Bksp
Help Help
Clr/Home ClrHome
Return Ret
Enter Enter

Following is a list of defined keyboard equivalents:

Key Equivalent Operation

CTRL—N New

CTRL-O Open

CTRL-W Close

CTRL-S Save as...

CTRL-SHIFT-S Save

CTRL-P Print

CTRL-SHIFT-P Page Setup

CTRL-Q Quit

CTRL-X Cut

CTRL-C Copy

CTRL-V Paste

CTRL-A Select all

CTRL-F Find

CTRL-R Replace

HELP Access help

SHIFT-HELP Engage context sensitive help. Pointer
should change to arrow/question mark
and help should be provided for any
object clicked on.

UNDO Undo last operation

Windows
When working with text-oriented applications, the following list of keyboard equivalents apply.
Keep in mind tha€TRL is generally a character-based modifier wBH&T is line-based.

Key Equivalent \ Operation
CTRL-B Bold
CTRL-I Italic

THE ATARI COMPENDIUM



11.22 — GEM User Interface Guidelines

CTRL-U

Underline

CTRL-BACKSPACE

Delete word to left.

CTRL-DELETE

Delete word to right.

CTRL-ARROW

Move to the left/right one word.

CTRL-CLRHOME

Move cursor to start of document.

SHIFT-LEFT-ARROW

Move to the beginning of current line.

SHIFT-RIGHT-ARROW

Move to the end of current line.

SHIFT-UP-ARROW

Move up one page.

SHIFT-DOWN-ARROW

Move down one page.

SHIFT-DELETE

Delete line.

SHIFT-CLRHOME

Move cursor to end of document.

ARROW Move one character left/right.
CLRHOME Move cursor to top of window.
BACKSPACE Delete character to left of cursor.
DELETE Delete character to the right of cursor.

When working with object-oriented applications, the following keyboard equivalents are suggested:

Key Equivalent [ Operation

ARROW Deselect current object(s), select
previous/next object.

BACKSPACE Delete selected object.

DELETE Delete selected object.

TAB Deselect current object, select next
object.

Disjoint/Group Selection
When in the context of a text-editing applicati®HIFT-clicking on a point should select the text
from the cursor position to the point clicked or add that region to a current selection (if one
exists). In an object-oriented applicatiSh)FT-clicking should allow the user to select and
deselect multiple objects.

Device Independence

Programming for compatibility on the Atari is a simple task. Here are some basic tips:

* A GEM program should use thPl for all graphical/screen output. Never use
GEMDOS, BIOS, or XBIOS functions to output to the screen or manipulate the
palette.

* Don't make assumptions about the type of display based on any call such as

Getrez(), EsetShift(), or Vsetmode() Only look at the values returned by the
VDI v_opnvwk() call.

*  For printing, always suppo@DOS, It is the only way to ensure that a user has a
printer driver and fonts for the attached printer and that output is consistent among
different printers. As with the screen, never make assumptions about the printer
based on criteria like driver name, etc.

THE ATARI COMPENDIUM



Globalization — 11.23

Globalization

Never write directly to hardware unless it's the documented way to accomplish a
task. This is an almost sure sign that your program will break in future hardware
releases.

Avoid using interrupt vectors. If you must use them,sgtexc()

One of the most effective ways a software marketer can increase his product’s sales is by
ensuring its usability in foreign countries. Programmers can make their software more portable
through the following methods:

Store all language-dependent strings in the application’s resource file. Porting to
other languages may then be accomplished by the modification of the resource file
only.

When creating resource files. Allow at least 50% more space than that is required
for English text. The English language tends to require fewer characters than most
others.

Use the ' IDT' and ‘_AKP’ cookie to globalize references to dates, times, and
currencies. If your application does not have a resource file, you may also use the
‘_AKP’ cookie to select among language specific strings embedded within your
code. When the *_AKP’ cookie is not present you can check for language
information embedded in the program header.

Colors

An application’s proper use of color can greatly enhance its effectiveness. Likewise, improper
use of color can thoroughly confuse a user. Below are some basic rules about the use of color:

Never alter the first 16 colors in modes with 256 colors or more. Only change
system colors in other cases when absolutely necessary. These are system colors
which should be controlled exclusively by the user.

When providing a custom 3D effect to complement the OS Urfd&r4.0 and
above, us@bjc_sysvar()to interrogate color settings to allow your objects to
match.

Make dialogd-L3DBAK objects to allow the user’s selected dialog color to come
through.

Don't use colors to decorate, use them to emphasize or draw attention to an
important screen element. Use colors to display choices relating to color or when a
user expects it in the document.

When using color as a choice indicator, use green as a positive, red as a negative.

THE ATARI COMPENDIUM



11.24 — GEM User Interface Guidelines

Sound

As with color, the proper use of sound can help or hinder an application program. The system
bell should be used as a polite reminder to the user when an operation is being attempted that is
beyond the capabilities of the application (ex: scrolling past the last line in a document). It is
also useful to alert the user to the end of a long operation (during which the user might have
stepped away).

In general, applications should restrict their use of sounds to the system bell. Beyond that,
applications can support sounds through the use of the accessory “System Audio Manager”
(supplied with the Falcon030) or have their custom sounds provided they may be enabled
selectively by the user.

Application Software

Application software programmers writing for the Atari line of computers should follow the
following suggestions:

* Provide an installation program on the distribution floppy calId8TALL.PRG’.
See below for details.

* Usethe ‘_IDT cookie to determine the proper method of displaying dates and
times. Use the *_AKP’ cookie to determine the country’s currency character.

*  Provide help in as many places as possible. Provide context-sensitive help if
possible.

* Your application file, its resource file(s), and any ‘readme’ files should be
together in one directory. Any other application data files should be kept in a child
directory of the application directory.

Installation Software

Every disk distributed for end-user use should have an installation program called
‘INSTALL.PRG’ on the root directory of the floppy or CD-ROM diskette. Even disks containing
only data files should be installable in this manner. Basic guidelines for installation programs
follow:

* The installation program should allow the user to specify a location for the files to be
installed and create a new directory for them if necessary.

* The installation program may (if desired by the user) add icons for the application itself and
data files to the DESKICON.RSC or DESKCICN.RSC file as appropriate. If the application

THE ATARI COMPENDIUM



Entertainment Software — 11.25

requires special GDOS drivers or fonts, the installation should (if desired by the user)
modify the ASSIGN.SYS or EXTEND.SYS files appropriately.

* The installation program may (if desired) modify the system DESKTOP.INF or
NEWDESK.INF, as appropriate, to create references to added icons and to install the
application to the system (creating associated file types, startup directory, etc.). Be careful
not to override existing document associations without the user’s permission.

* If your installation program modifies any system fildgyaysmake a backup prior to the
changes and inform the user where the backups will be located.

* The installation program should visually update the user as to the progress of the installatior
procedure.

* If changes to system files were made, inform the user on exit that the system will need a
reboot for these changes to become effective.

* If removing your application completely from the system involves more than deleting a
single directory’s contents or if relocating the application will cause it to no longer function
properly, provide an additional application that will remove or move your application as
desired by the user.

Entertainment Software

Entertainment software written for Atari computers should follow these minimum standards.
* Allow the user to install your software on the hard dtsiag an
‘INSTALL.PRG'.
* Don't force the user to change resolutions prior to running your software.
* The path to your application should not contain data files, place those in a folder.
* Allow the user to return to the desktop in the same resolution he left.
* If possible, allow the game to be run in a window.

*  Use device-independent graphics paired withvBé call vr_trnfm() to translate
your graphics upon loading to be compatible with the installed video shifter.

*  Support the enhanced analog joystick rather than CX-40 style controls on machines
which have the ports to support them (like the STe and Falcon030). Use the CX-40
controls if four-player play is desired.

THE ATARI COMPENDIUM



— APPENDIX A —

FUNCTIONS BY OPCODE

THE ATARI COMPENDIUM



GEMDOS Functions by Opcode — A.3

GEMDOS Functions by Opcode

Dec \ Hex Function Summary Page
0 0x00 Pterm@() Exit process with a return code of 0. 2.122
1 0x01 Cconin() Fetch a character from the console device and echo it. 2.41
2 0x02 Cconout() Output a character to the console device processing any 2.43

special keys.
3 0x03 Cauxin() Fetch character from the auxiliary device. 2.39
4 0x04 Cauxout() Output a character to the auxiliary device. 2.41
5 0x05 Cprnout() Output a character to the printer device. 2.47
6 0x06 Crawio() Perform input and output on the console device. 2.49
7 0x07 Crawcin() Output a character to the console device. 2.48
8 0x08 Cnecin() Fetch a character from the console device. 2.46
9 0x09 Cconws() Write a string to the console device. 2.45
10 O0x0A Cconrs() Read a string from the console device. 2.44
11 0x0B Cconis() Determine if a character is waiting to be received from the 2.42
console device.
14 O0xO0E Dsetdrv() Set the default drive. 2.62
16 0x10 Cconos() Determine if a character may be sent to the console 2.43
device.
17 0x11 Cprnos() Determine if a character may be sent to the printer device. 2.46
18 0x12 Cauxis() Determine if a character is waiting to be received from the 2.39
auxiliary device.
19 0x13 Cauxos() Determine if a character may be sent to the auxiliary 2.40
device.
20 0x14 Maddalt() Notify GEMDOS of additional memory. 2.97
25 0x19 Dgetdrv() Return the default drive. 2.56
26 Ox1A Fsetdta() Set the address of the DTA. 2.91
32 0x20 Super() Modify user/supervisor status. 2.128
42 0x2A Tgetdate() Get the current date. 2.132
43 0x2B Tsetdate() Set the current date. 2.133
44 0x2C Tgettime() Get the current time. 2.132
45 0x2D Tsettime() Set the current time. 2.133
47 0x2F Fgetdta() Return a pointer to the DTA. 2.79
48 0x30 Sversion() Obtain the current GEMDOS version. 2.129
49 0x31 Ptermres() Exit process leaving some data intact. 2.123
54 0x36 Dfree() Determine the free space on a drive. 2.54
57 0x39 Dcreate() Create a directory. 2.53
58 0x3A Ddelete() Delete a directory. 2.54
59 0x3B Dsetpath() Set the default path. 2.63
60 0x3C Fcreate() Create a file. 2.74
61 0x3D Fopen() Open afile. 2.84
62 0x3E Fclose() Close afile. 2.66
63 0x3F Fread() Read binary data from a file. 2.87
64 0x40 Fwrite() Write binary data to a file. 2.95
65 0x41 Fdelete() Delete a file. 2.76
66 0x42 Fseek() Move a file pointer. 2.89
67 0x43 Fattrib() Get or set the attributes of a file. 2.64
68 0x44 Mxalloc() Allocate memory with preference. 2.100
69 0x45 Fdup() Duplicate a file handle. 2.76

THE ATARI COMPENDIUM



A.4 — Functions by Opcode

Dec Hex Function \ Summary Page
70 0x46 Fforce() Redirect one handle to another. 2.77
71 0x47 Dgetpath() Return the default path. 2.57
72 0x48 Malloc() Allocate memory. 2.98
73 0x49 Mfree() Free allocated memory. 2.99
74 Ox4A Mshrink() Shrink or expand a block of memory. 2.99
75 0x4B Pexec() Execute another process. 2.103
76 0x4C Pterm() Exit process with the specified return code. 2.121
78 Ox4E Fsfirst() Find a file with the specified mask. 2.92
79 0x4F Fsnext() Find subsequent files with the specified mask. 2.93
86 0x56 Frename() Rename a file or directory. 2.89
87 0x57 Fdatime() Get or set the time/date flags of a file. 2.75
92 0x5C Flock() Set or remove a file lock. 2.82

255 OxFF Syield() Surrender the remaining portion of the processes 2.130

timeslice.

256 0x100 Fpipe() Establish a communication pipeline between processes. 2.86

260 0x104 Fentl() Perform a file-system specific file operation. 2.67

261 0x105 Finstat() Determine the input status of a file. 2.80

262 0x106 Foutstat() Determine the output status of a file. 2.85

263 0x107 Fgetchar() Get a character from a file. 2.79

264 0x108 Fputchar() Output a character to a file. 2.86

265 0x109 Pwait() Determine the exit code of a stopped or terminated child 2.125

process.

266 0x10A Pnice() Alter the process priority of the calling process. 2.111

267 0x10B Pgetpid() Obtain the process ID of the calling process. 2.107

268 0x10C Pgetppid() Obtain the process ID of the processes’ parent. 2.108

269 0x10D Pgetparp() Obtain the process group ID of the calling process. 2.107

270 0x10E Psetpgrp() Set the process group ID for the calling process. 2.115

271 0x10F Pgetuid() Obtain the user ID of the calling process. 2.108

272 0x110 Psetuid() Set the user ID for the calling process. 2.116

273 0x111 Pkill() Send a signal to one or more processes. 2.109

274 0x112 Psignal() Determine the action to take when a signal is received. 2.118

275 0x113 Pvfork() Create a duplicate of the current process which shares 2.124

address and data space with its parent.

276 0x114 Pgetgid() Obtain the group ID of the calling process. 2.107

277 0x115 Psetgid() Set the group ID of the calling process. 2.114

278 0x116 Psigblock() Block selected signals from delivery. 2.118

279 0x117 Psigsetmask() Specifies which signals should be blocked and which 2.121

should be received.

280 0x118 Pusrval() Get or set the user-defined value associated with a 2.124

process.

281 0x119 Pdomain() Get or set the processes execution domain. 2.102

282 Ox11A Psigreturn() Clean up from a signal handler. 2.120

283 0x11B Pfork() Create a copy of the current process. 2.105

284 0x11C Pwait3() Determine the exit code of stopped or terminated child 2.126

processes.

285 0x11D Fselect() Enumerate file descriptors which are ready for 2.90

reading/writing.

286 Ox11E Prusage() Return resource usage information on the calling process. 2.112

287 0x11F Psetlimit() Read or modify resource usage limits for a process. 2.114

288 0x120 Talarm() Read or set an alarm for the current process. 2.131

THE ATARI COMPENDIUM




GEMDOS Functions by Opcode — A.5

Dec Hex Function Summary Page

289 0x121 Pause() Suspend the process until a signal is received. 2.101

290 0x122 | Sysconf() Return information regarding current capabilities and 2.130
limitations of processes running under MiNT.

201 0x123 Psigpending() Determines which signals have been sent but not yet 2.120
received to the calling process.

292 0x124 Dpathconf() Return information regarding limitations and capabilities 2.59
of a file system.

293 0x125 Pmsg() Send or receive a message. 2.109

294 0x126 Fmidipipe() Change the file handles which refer to MIDI input and 2.83
output.

295 0x127 Prenice() Alter the process priority of the specified process. 2.111

296 0x128 Dopendir() Open a directory. 2.58

297 0x129 Dreaddir() Read a directory entry. 2.61

298 0x12A | Drewinddir() Reset the directory pointer. 2.62

299 0x12B Dclosedir() Close a directory. 2.50

300 0x12C Fxattr() Return extended attribute information for a file. 2.95

301 0x12D Flink() Create a file link. 2.81

302 0x12E | Fsymlink() Establish a symboalic link to a file. 2.94

303 0x12F Freadlink() Determine the actual file to which a link refers. 2.88

304 0x130 Dcntl() Perform a file-system specific device operation. 2.50

305 0x131 Fchown() Modify the ownership of a file. 2.66

306 0x132 Fchmod() Modify the access permission flags of a file. 2.65

307 0x133 Pumask() Determines the minimum file and/or directory creation 2.123
access permission masks.

308 0x134 Psemaphore() Create a semaphore. 2.113

309 0x135 Dlock() Lock or unlock a BIOS disk device. 2.57

310 0x136 Psigpause() Suspends the process until a specified signal (or signals) 2.119
is received.

311 0x137 Psigaction() Changes the way a signal is handled. 2.116

312 0x138 Pgeteuid() Returns the effective user ID of the caller. 2.106

313 0x139 Pgetegid() Returns the effective group ID of the caller. 2.106

314 0x13A | Pwaitpid() Attempts to determine the exit code of a particular 2.127
process.

315 0x13B Dgetcwd() Returns the current GEMDOS working directory for the 2.56
process on the specified drive.

316 0x13C Salert() Sends an alert to the alert pipe ‘U:\PIPE\ALERT". 2.128

THE ATARI COMPENDIUM




BIOS Functions by Opcode — A.7

BIOS Functionsby Opoode

Dec \ Hex \ Function Summary Page
0 0x00 Getmpb() Return the address of the MPB (Memory Parameter Block) 3.31
structure.
1 0x01 Bconstat() Determine if a character is waiting from a device. 3.28
2 0x02 Bconin() Input a character from a device. 3.27
3 0x03 Bconout() Output a character from a device. 3.28
4 0x04 Rwabs() Read/write sectors to a device. 3.34
5 0x05 Setexc() Set or read a system exception vector. 3.35
6 0x06 Tickcal() Return the current system timer calibration. 3.36
7 0x07 Getbpb() Return the address of the BPB (BIOS Parameter Block). 3.30
8 0x08 Bcostat() Determine if a device is ready to receive a character. 3.29
9 0x09 Mediach() Determine if a drive’s media has been changed. 3.33
10 0x0A Drvmap() Return a bitmap of mounted drives. 3.30
11 0x0B Kbshift() Return the state of the keyboard shift keys. 3.32

THE ATARI COMPENDIUM



XBIOS Functions by Opcode — A.9

XBIOS Functionsby Opcode

Dec \ Hex \ Function Summary Page
0 0x00 Initmous() Initialize the mouse handler. 4.73
1 0x01 Ssbrk() Reserve memory at the top of RAM. 4.102
2 0x02 Physbase() Return the address of the physical screen. 4.85
3 0x03 Logbase() Return the address of the logical screen. 4.80
4 0x04 Getrez() Return the current screen resolution code. 4.68
5 0x05 Setscreen() and Set the current screen address and mode. 4.97

VsetScreen() 4.108
6 0x06 Setpalette() Set entries in the ST compatible palette. 4.95
7 0x07 Setcolor() Set an entry in the ST compatible palette. 4.93
8 0x08 Floprd() Read a sector from a floppy disk. 4.66
9 0x09 Flopwr() Write a sector to a floppy disk. 4.67
10 0x0A Flopfmt() Format a sector on a floppy disk. 4.63
11 0x0B Dbmsg() Send a debugging message to the resident 4.28
debugger.
12 0x0C Midiws() Write a string to the MIDI port. 4.82
13 0x0D Mfpint() Define an MFP interrupt. 4.81
14 Ox0E lorec() Return the address of the system IOREC 4.75
structure.
15 OXOF Rsconf() Configure the currently mapped RS-232 port. 4.89
16 0x10 Keytbl() Return the addresses of the current key 4.78
mapping tables.
17 0x11 Random() Return a random number. 4.89
18 0x12 Protobt() Prototype a floppy boot sector. 4.86
19 0x13 Flopver() Verify a sector on a floppy disk. 4.66
20 0x14 Scrdump() Execute the built-in screen dump code. 4.91
21 0x15 Cursconf() Configure the TOS cursor. 4.27
22 0x16 Settime() Set the time of day and current date. 4.98
23 0x17 Gettime() Get the time of day and current date. 4.69
24 0x18 Bioskeys() Reset the keyboard mapping tables to default. 4.24
25 0x19 Ikbdws() Write a string to the intelligent keyboard 4.72
controller.
26 0x1A | Jdisint() Disable an MFP interrupt. 4.76
27 0x1B Jenabint() Enable an MFP interrupt. 4.76
28 0x1C Giaccess() Modify or set a register on the PSG. 4.70
29 0x1D Offgibit() Toggle bits of the PSG Port A off. 4.84
30 Ox1E Ongibit() Toggle bits of the PSG Port A on. 4.84
31 Ox1F Xbtimer() Set an interrupt on the 68901. 4.113
32 0x20 Dosound() Start an interrupt driven sound routine. 4.33
33 0x21 Setprt() Set or read the printer configuration bits. 4.96
34 0x22 Kbdvbase() Return the address of the current IKBD interrupt 4.77
table.
35 0x23 Kbrate() Set or read the keyboard repeat rate. 4.78
36 0x24 Prtblk() Print a block of memory using the built-in 4.87
screen dump routines.
37 0x25 Vsync() Hold the process until the next vertical blank. 4.110
38 0x26 Supexec() Execute a routine in supervisor mode. 4.103
39 0x27 Puntaes() Discard the AES. 4.88

THE ATARI

COMPENDIUM




A.10 — Functions by Opcode

Dec Hex Function Summary Page
41 0x29 Floprate() Set the floppy drive seek rates. 4.65
42 0x2A DMAread() Read sectors from a DMA/SCSI device. 4.31
43 0x2B DMAwrite() Write sectors to a DMA/SCSI device. 4.32
44 0x2C Bconmap() Modify the BIOS device mapping table. 4.23
46 0x2E NVMaccess() Access non-volatile RAM. 4.83
48 0x30 Metainit() Initialize MetaDOS. 4.80
64 0x40 Blitmode() Get or set the state of the BLITTER chip. 4.25
80 0x50 EsetShift() Set the TTO030 shift mode registers. 4.61
81 0x51 EgetShift() Get the TT030 shift mode registers. 4.57
82 0x52 EsetBank() Set the current TT030 color bank. 4.58
83 0x53 EsetColor() Get or set a color in the TT030 palette. 4.59
84 0x54 EsetPalette() Set the TT030 palette. 4.60
85 0x55 EgetPalette() Get the TT030 palette. 4.56
86 0x56 EsetGray() Set the TT030 gray mode register. 4.60
87 0x57 EsetSmear() Set the TTO30 smear mode register. 4.62
88 0x58 VsetMode() Set the Falcon030 video mode. 4.107
89 0x59 VgetMonitor() Identify the kind of monitor attached to the 4.104
Falcon030.

90 0x5A VsetSync() Set the Falcon030 sync mode. 4.109

91 0x5B VgetSize() Get the size of screen memory in bytes. 4.105

92 0x5C | VsetMask() Set the mask assigned to each true color 4.106
plotted.

93 0x5D | VsetRGB() Set the Falcon030 palette using RGB data. 4.108

94 O0X5E | VgetRGB() Get the Falcon030 palette using RGB data. 4.104

96 0x60 Dsp_DoBlock() Transfer bytewise packed data to/from the 4.38
DSP.

97 0x61 Dsp_BlkHandshake() Handshakes bytewise packed data to/from the 4.35
DSP.

98 0x62 Dsp_BlkUnpacked() Transfers data stored in a longword array 4.36
to/from the DSP.

99 0x63 Dsp_InStream() Transfers data to the DSP via an interrupt 4.45
handler.

100 0x64 Dsp_OutStream() Transfers data from the DSP via an interrupt 4.51

handler.

101 0x65 Dsp_lOStream() Transfers data to/from the DSP via concurrent 4.46

interrupt handlers.

102 0x66 Dsp_Removelnterrupts() Disable the generation of DSP interrupts. 451
103 0x67 Dsp_GetWordSize() Get the current size of a DSP word. 4.41
104 0x68 Dsp_Lock() Lock the DSP system. 4.48
105 0x69 Dsp_Unlock() Unlock the DSP system. 4.55
106 0x6A Dsp_Auvailable() Determines the amount of free X and Y memory 4.34

available in the DSP.

107 0x6B Dsp_Reserve() Reserves a portion of DSP memory for a user 4.53

program
108 0x6C Dsp_LoadProg() Loads a ‘.LOD’ file from disk, transmits it to the 4.47
DSP, and executes it.

109 0x6D | Dsp_ExecProg() Transfers a DSP program in memory to the 4.39
DSP and executes it.

110 Ox6E Dsp_ExecBoot() Resets the DSP and loads a new bootstrap 4.39

program into the first 512 words of DSP
memory.

THE ATARI

COMPENDIUM




XBIOS Functions by Opcode — A.11

Dec \ Hex \ Function Summary Page
111 Ox6F Dsp_LodToBinary() Converts a '.LOD’ file to binary format. 4.49
112 0x70 Dsp_TriggerHC() Causes a host command set aside for DSP 4.55
programs to execute.
113 0x71 Dsp_RequestUniqueAbility() Requests a unigue DSP ability identifier. 4.52
114 0x72 Dsp_GetProgAbility() Returns the ability code for the program 4.40
residing in DSP memory.
115 0x73 Dsp_FlushSubroutines() Removes all DSP subroutines from memory. 4.40
116 0x74 Dsp_LoadSubroutine() Loads a DSP subroutine into memory. 4.48
117 0x75 Dsp_IngSubrAbility() Determines if a subroutine with the specified 4.44
ability code is currently loaded into the DSP.
118 0x76 Dsp_RunSubroutine() Begins execution of the specified subroutine. 4.53
119 ox77 Dsp_Hf0() Reads/writes bit #3 of the HSR. 4.41
120 0x78 Dsp_Hf1() Reads/writes bit #4 of the HSR. 4.42
121 0x79 Dsp_Hf2() Reads bit #5 of the HSR. 4.43
122 0x7A | Dsp_Hf3() Reads bit #6 of the HSR. 4.43
123 0x7B Dsp_BIkWords() Transfers an array of WORDs to/from the DSP. 4.37
124 0x7C Dsp_BIkBytes() Transfers an array of bytes to/from the DSP. 4.34
125 0x7D Dsp_Hstat() Returns the value of the DSP’s ICR register. 4.44
126 OX7E Dsp_SetVectors() Defines interrupt handlers to be called when 4.54
DSP data is ready to be sent or received.
127 Ox7F Dsp_MultBlocks() Transmits multiple blocks to/from the DSP. 4.50
128 0x80 Locksnd() Lock the sound system. 4.79
129 0x81 Unlocksnd() Unlock the sound system. 4.103
130 0x82 Soundcmd() Execute a sound system specific function. 4.100
131 0x83 Setbuffer() Set the record and playback buffers. 4.92
132 0x84 Setmode() Set the playback/record mode. 4.94
133 0x85 Settracks() Set the playback/record tracks. 4.99
134 0x86 Setmontracks() Set the track to be output over the 4.95
speaker/headphone.
135 0x87 Setinterrupt() Set the sound system interrupts. 4.93
136 0x88 Buffoper() Enable or disable playback/recording. 4.25
137 0x89 Dsptristate() Connect or disconnect the DSP from the 4.56
connection matrix.
138 O0x8A Gpio() Read or write data over the general purpose 4.72
pins on the DSP port.
139 0x8B Devconnect() Connect devices in the connection matrix. 4.29
140 0x8C Sndstatus() Obtain the status of the sound system. 4.99
141 0x8D Buffptr() Return the current position of the record or 4.26
playback buffer pointers.
165 0xA5 WavePlay() Playback a DMA sample. 4.110

THE ATARI

COMPENDIUM




AES Functions by Opcode — A.13

AES FunctionsbyOpcode ...

Dec \ Hex Function Summary Page
10 0x0A appl_init() Initializes a GEM application. 6.53
11 0x0B appl_read() Reads data from the message pipe. 6.54
12 0x0C appl_write() Writes data to the message pipe. 6.58
13 0x0D appl_find() Locates a system process. 6.47
14 0X0E appl_tplay() Plays back recorded events. 6.56
15 O0xOF appl_trecord() Records keyboard and mouse events. 6.57
18 0x12 appl_search() Enumerates system processes. 6.55
19 0x13 appl_exit() Prepares a GEM application for termination. 6.47
20 0x14 evnt_keybd() Waits for a keyboard event. 6.63
21 0x15 evnt_button() Waits for a mouse button event. 6.61
22 0x16 evnt_mouse() Waits for a mouse rectangle event. 6.70
23 0x17 evnt_mesag() Waits for an application message. 6.64
24 0x18 evnt_timer() Waits for a timer event. 6.73
25 0x19 evnt_multi() Waits for multiple events. 6.71
26 Ox1A evnt_dclick() Sets the mouse double-click rate. 6.62
30 0x1E menu_bar() Displays/removes a menu bar. 6.105
31 0x1F menu_icheck() Places a checkmark beside a menu item. 6.106
32 0x20 menu_ienable() Enables/disables a menu item. 6.106
33 0x21 menu_tnormal() Selects/deselects a menu item or title. 6.111
34 0x22 menu_text() Changes menu item/title text. 6.111
35 0x23 menu_register() Registers applications in the menu bar. 6.109
36 0x24 menu_popup() Manages a floating popup menu. 6.108
37 0x25 menu_attach() Attaches a sub-menu to a menu item. 6.103
38 0x26 menu_istart() Defines the initial selection of a sub-menu. 6.107
39 0x27 menu_settings() Modifies popup menu settings. 6.110
40 0x28 objc_add() Adds an object to an object tree. 6.115
41 0x29 objc_delete() Deletes an object from an object tree. 6.116
42 0x2A objc_draw() Draws an object tree. 6.117
43 0x2B objc_find() Locates an object based on screen coordinates. 6.119
44 0x2C objc_offset() Determines the offset of child objects in an object 6.120

tree.
45 0x2D objc_order() Reorders objects within an object tree. 6.121
46 O0x2E objc_edit() Manipulates an editable object. 6.118
47 0x2F objc_change() Changes the state of an object. 6.115
48 0x30 objc_sysvar() Reads/modifies the system defaults for 3D effects. 6.121
50 0x32 form_do() Manages a user-defined form. 6.81
51 0x33 form_dial() Reserves/releases screen space for forms. 6.80
52 0x34 form_alert() Manages a generic alert. 6.77
53 0x35 form_error() Manages a generic error alert. 6.82
54 0x36 form_center() Centers an object tree on screen. 6.79
55 0x37 form_keybd() Provides a system-level editable field handler. 6.83
56 0x38 form_button() Provides a system-level button handler. 6.78
70 0x46 graf_rubberbox() Controls the shrinking/enlarging of a box outline. 6.97
71 0x47 graf_dragbox() Controls the moving of a box outline. 6.91
72 0x48 graf_movebox() Draws a moving box. 6.96
73 0x49 graf_growbox() Draws an expanding box. 6.92

THE ATARI COMPENDIUM




A.14 — Functions by Opcode

Dec Hex Function Summary \ Page
74 0x50 graf_shrinkbox() Draws a shrinking box. 6.98
75 0x51 graf_watchbox() Selects/draws an object depending on the position of | 6.100

the mouse.
76 0x52 graf_slidebox() Controls a slider outline. 6.99
77 0x53 graf_handle() Obtains AES workstation attributes. 6.92
78 0x54 graf_mouse() Defines the mouse form. 6.94
79 0x55 graf_mkstate() Provides information about the mouse state. 6.93
80 0x56 scrp_read() Determines the system scrap directory. 6.135
81 0x57 scrp_write() Sets the system scrap directory. 6.136
90 0x58 fsel_input() Manages the file selector. 6.88
91 0x59 fsel_exinput() Manages the extended file selector. 6.87

100 0x64 wind_create() Creates a window. 6.150

101 0x65 wind_open() Opens a window. 6.158

102 0x66 wind_close() Closes a window. 6.150

103 0x67 wind_delete() Deletes a window. 6.152

104 0x68 wind_get() Returns window attributes. 6.153

105 0x69 wind_set() Sets a window attribute. 6.158

106 Ox6A wind_find() Determines the window at given pixel coordinates. 6.152

107 0x6B wind_update() Manages the window update semaphore. 6.161

108 0x6C wind_calc() Calculates window extents. 6.149

109 0x6D wind_new() Removes all windows. 6.157

110 OX6E rsrc_load() Loads a disk-based resource file. 6.128

111 Ox6F rsrc_free() Releases a resource file from memory. 6.127

112 0x70 rsrc_gaddr() Calculates the address of a resource element. 6.127

113 0x71 rsrc_saddr() Sets the address of a resource element. 6.130

114 0x72 rsrc_obfix() Changes the coordinates of an object from 6.129

character-based to pixel-based.

115 0x73 rsrc_rcfix() Changes the coordinates of a resource file from 6.130

character-based to pixel-based.

120 0x78 shel_read() Determine’s the processes parent and command 6.141

tail.

121 0x79 shel_write() Manages process loading and control. 6.142

122 O0x7A shel_get() Copies data from the system’s shell buffer. 6.140

123 0x7B shel_put() Stores data in the system’s shell buffer. 6.141

124 0x7C shel_find() Searches the AES'’s path for a file. 6.139

125 0x7D shel_envrn() Searches the system environment string. 6.139

130 0x82 appl_getinfo() Returns information about the AES. 6.48

THE ATARI COMPENDIUM




VDI Functions by Opcode — A.15

VDI FunctionsbyOpcode ...

Opcode,
Subopcode(s)
(if required) Function Summary
N/A vg_gdos() Test for presence of GDOS. 7.92
-1,6 v_set_app_buff() Reserve bezier workspace. 7.77
1 v_opnwk() Open physical workstation. 7.66
2 v_clswk() Close a physical workstation. 7.35
3 v_clrwk() Close a physical workstation. 7.34
4 v_updwk() Update workstation. 7.78
51 vqg_chcells() Return alpha screen size. 7.87
52 v_exit_cur() Exit text mode. 7.46
53 v_enter_cur() Enter text mode. 7.45
54 v_curup() Move text cursor up one row. 7.40
55 v_curdown() Move text cursor down one row. 7.37
5,6 v_curright() Move text cursor right one row. 7.38
57 v_curleft() Move text cursor up one row. 7.38
5,8 v_curhome() Home text cursor. 7.37
59 v_eeos() Erase to end of screen. 7.42
5,10 v_eeol() Erase to end of line. 7.41
5,11 vs_curaddress() Paosition text cursor. 7.126
5,12 v_curtext() Output text (alpha mode). 7.39
5,13 v_rvon() Reverse text on (alpha mode). 7.75
5 14 v_rvoff() Reverse text off (alpha mode). 7.75
5,15 vq_curaddress() Inquire text cursor location. 7.89
5,16 vq_tabstatus() Get availability of tablet. 7.95
5,17 v_hardcopy() Output screen to printer. 7.57
5,18 v_dspcur() Display text cursor. 7.40
5,19 v_rmcur() Remove text cursor. 7.74
5,20 v_form_adv() Advance printer page. 7.48
5,21 v_output_window() Output window of page to printer. 7.68
5,22 v_clear_disp_list() Clear display list. 7.34
5,23 v_hit_image() Render bit-image file. 7.31
5,24 vg_scan() Return printer scan heights. 7.94
5,25 v_alpha_text() Output printer text (alpha mode). 7.23
5, 60 vs_palette() Set color palette. 7.127
5,81 vt_resolution() Set tablet resolution. 7.165
5, 82 vt_axis() Set tablet axis resolution. 7.164
5,83 vt_origin() Set tablet origin. 7.164
5,84 vq_tdimensions() Return tablet X and Y dimensions. 7.96
5,85 vt_alignment() Set tablet alignment. 7.163
5,91 vap_films() Return camera film types. 7.101
5,92 vgp_state() Return camera driver state. 7.101
5,93 vsp_state() Set camera driver state. 7.145
5,94 vsp_save() Save camera driver state. 7.145
5,95 vsp_message() Supress camera screen messages. 7.144
5, 96 vap_error() Return camera error status. 7.100
5,98 V_meta_extents() Specify metafile bounding box. 7.60

THE ATARI COMPENDIUM



A.16 — Functions by Opcode

Opcode,
Subopcode(s)
(if required) Function Summary
5,997 v_write_meta() Write metafile item. 7.79
5,99, 07 vm_pagesize() Set metafile page size. 7.85
5,99, 17 vm_coords() Set metafile coordinate system. 7.83
599,32, 17 | v bez qual() Set bezier quality. 7.30
5, 100 vm_filename() Set metafile filename. 7.84
5,102 v_fontinit() Select a new system font. 7.48
5, 2000 v_pgcount() Specify laser printer copies. 7.69
6 v_pline() Draw a polyline. 7.71
6,13 v_bez() Draw a bezier curve. 7.26
7 v_pmarker() Draw polymarkers. 7.72
8 v_gtext() Output graphic text. 7.56
9 v_fillarea() Draw a filled polygon. 7.46
9,13 v_bez_fill() Draw a filled bezier curve. 7.27
10 v_cellarray() Draw a cell array. 7.32
11,1 V_bar() Draw a rectangle. 7.25
11,2 v_arc() Draw an arc. 7.24
11,3 v_pieslice() Draw a pieslice. 7.70
11,4 v_circle() Draw a circle. 7.33
11,5 v_ellipse() Draw an ellipse 7.43
11,6 v_ellarc() Draw an elliptical arc. 7.42
11,7 v_ellpie() Draw an elliptical pie segment. 7.44
11,8 v_rbox() Draw a rounded-rectangle. 7.72
11,9 v_rfbox() Draw a filled rounded-rectangle. 7.73
11, 10 v_justified() Output justified text. 7.58
11,137 v_bez_off() Disable bezier drawing. 7.28
11, 137 v_bez_on() Enable bezier drawing. 7.29
12 vst_height() Set graphic text height (in pixels). 7.153
13 vst_rotation() Set graphic text rotation. 7.156
14 vs_color() Set color palette index. 7.126
15 vsl_type() Set line type. 7.135
16 vsl_width() Set line width. 7.137
17 vsl_color() Set line color. 7.134
18 vsm_type() Set marker type. 7.142
19 vsm_height() Set marker height. 7.139
20 vsm_color() Set marker color. 7.138
21 vst_font() Set graphic text font. 7.152
22 vst_color() Set graphic text color. 7.150
23 vsf_interior() Set fill interior type. 7.129
24 vsf_style() Set fill style type. 7.131
25 vsf_color() Set fill color. 7.129
26 vq_color() Inquire palette index. 7.88
27 vqg_cellarray() Inquire cell array. 7.86
287 vrg_locator() Poll for mouse/keyboard input. 7.121
287 vsm_locator() Sample mouse/keyboard input. 7.140
297 vrqg_valuator() Poll for ‘valuator’ input. 7.123
297 vsm_valuator() Sample ‘valuator’ input. 7.143
307 vrg_choice() Poll for ‘choice’ inpu. 7.121
307 vsm_choice() Sample input from ‘choice’ device. 7.138

THE ATARI COMPENDIUM




VDI Functions by Opcode — A.17

Opcode,
Subopcode(s)
(if required) Function Summary
31t vrg_string() Poll for keyboard string input. 7.122
317 vsm_string() Sample keyboard string input. 7.141
32 vswr_mode() Set writing mode. 7.162
33 vsin_mode() Set input mode. 7.133
35 vql_attributes() Return line attributes. 7.98
36 vgm_attributes() Return marker attributes. 7.99
37 vqf_attributes() Return fill area attributes. 7.96
38 vqt_attributes() Return text attributes. 7.104
39 vst_alignment() Set graphic text alignment. 7.146
100 v_opnvwk() Open virtual workstation. 7.61
101 v_clsvwk() Close a virtual workstation. 7.35
102 vg_extnd() Inquire workstation attributes. 7.89
103 v_contourfill() Fill an irregularly shaped region. 7.36
104 vsf_perimeter() Set fill perimeter visibility. 7.130
105 v_get_pixel() Read screen pixel value. 7.55
106 vst_effects() Set graphic text effects. 7.150
107 vst_point() Set graphic text height (by point). 7.155
108 vsl_ends() Set line end style. 7.134
109 vro_cpyfm() Copy raster (opaque mode). 7.119
110 vr_trnfm() Transform raster form. 7.117
111 vsc_form() Set mouse form. 7.128
112 vsf_udpat() Set user defined fill pattern 7.132
113 vsl_udsty() Set user-defined line style. 7.136
114 vr_recfl() Output filled rectangle. 7.117
115 vgin_mode() Return input mode for device. 7.97
116 vat_extent() Return graphic text extent. 7.107
117 vat_width() Return graphic character width. 7.115
118 vex_timv() Install timer tick routine. 7.83
119 vst_load_fonts() Load fonts from disk. 7.154
120 vst_unload_fonts() Unload fonts. 7.160
121 vrt_cpyfm() Copy raster (transparent mode). 7.124
122 v_show_c() Show mouse cursor. 7.77
123 v_hide_c() Hide mouse cursor. 7.57
124 vg_mouse() Get mouse position and state. 7.93
125 vex_butv() Install mouse button routine. 7.80
126 vex_motv() Install mouse movement routine. 7.82
127 vex_curv() Install mouse rendering routine. 7.81
128 vg_key s() Get shift key status. 7.93
129 vs_clip() Set clipping rectangle. 7.125
130 vat_name() Return font name and index. 7.113
131 vqt_fontinfo() Return font size information. 7.111
232 vgt_fontheader() Copy the Speedo font header into a user defined buffer. 7.110
234 vqt_trackkern() Inquire about current track kerning. 7.114
235 vqt_pairkern() Inquire about current pair kerning. 7.115
236 vst_charmap() Set ASCII/Speedo index interpretation mode. 7.149
237 vst_kern() Set kerning modes. 7.154
239 v_getbitmap_info() Return Speedo font bitmap extents. 7.53
2407 vat_f_extent() Return outline text extent. 7.108

THE ATARI COMPENDIUM




A.18 — Functions by Opcode

Opcode,
Subopcode(s)
(if required) Function Summary
2407 vat_f _extent16() Return 16-bit outline text extent. 7.109
2417 v_ftext() Output outlined text. 7.49
2417 v_ftext16() Output 16-bit outlined text. 7.50
2417 v_ftext_offset() Output outlined text with individual character offsets. 7.51
2417 v_ftext_offset16() Output 16-bit outlined text with individual character offsets. 7.52
242 v_killoutline() Free character outline (no longer used with SpeedoGDQOS). 7.59
243 v_getoutline() Return character outline. 7.54
244 vst_scratch() Set outline scratch buffer. 7.157
245 vst_error() Set GDOS error reporting mode. 7.151
2467 vst_arbpt() Set outline text point size. 7.147
2467 vst_arbpt32() Set outline text point size to a fix31 value. 7.148
247 vqt_advance() Return character advance vector. 7.102
247 vat_advance32() Return character advance vector as a fix31 value. 7.103
248 vgt_devinfo() Return device information. 7.106
249 v_savecache() Save bitmap cache to disk. 7.76
250 v_loadcache() Load bitmap cache from disk. 7.59
251 v_flushcache() Flush outline font cache. 7.47
2527 vst_setsize() Set outline text proportion. 7.158
2527 vst_setsize32() Set outline text proportion to a fix31 value. 7.159
253 vst_skew() Set outline text skew factor. 7.160
254 vgt_get_table() Return character mappings. 7.112
255 vgt_cachesize() Return bitmap cache size 7.105

T These functions share an opcode and sub-opcode.

THE ATARI COMPENDIUM




— APPENDIX B —

MEMORY MAP

THE ATARI COMPENDIUM



Memory Map — B.3

The information in this appendix provides a useful reference to the memory locations of the

Atari computer series. While most documented locations have stayed backwardly compatible,
some have changed in meaning. Software programmers directly accessing these locations shou
carefully consider the possibility that a location may move or not even exist in a newer version
of the OS. For this reason many OS functions exist to manipulate system variables, vectors,
interrupts, and devices. These should always be used, if possible, as an alternative to directly
accessing hardware registers, vectors, interrupts, and variables.

WARNING!
In addition to those considerations mentioned above, directly accessing hardware registers can
cause damage to hardware if not done correctly. In particular, improper use of the Falcon030
video registers could damage an attached monitor. Likewise, use of the floppy and hard drive
registers can cause data loss and drive damage. For these reasons, it is strongly recommendec
that you avoid using hardware registers when possible, and when otherwise unavoidable, they
should be used with extreme care.

Memory Map Conventions
For each Atari computer that a specific hardware location is valid for, the appropriate box will
be shaded. Following is a key to several abbreviations and concepts used in this guide:

BYTE QOccupies one byte (8 bits).
WORD Occupies one WORD (16 bits).
LONG Occupies one longword (32 bits).
ow Occupies the odd WORD of a LONG.
EW QOccupies the even WORD of a LONG.
OB Occupies the odd BYTE of a WORD.
EB Occupies the even BYTE of the WORD.
ROM Location is Read-Only Memory
RAM Location is Read-Write Memory
/10 Location is hardware-mapped
VME Location addresses VME address space
N/A Not applicable
RO Read-only location
WO Write-only location
RW Read-write location
RSVD Reserved
Unassigned Either not assigned or undocumented (hardware
developers should always consult Atari before
mapping a third-party device to a hardware location).

THE ATARI COMPENDIUM



B.4 — Memory Map

Ml S| M| T| F
e| T|e|T|a
gle|lglO]l
a al 3| c
0fo
S S n
T T 0
e 3
0
Location(s) Size Type | Meaning
System Boot Variables
0x00000000 LONG ROM Reset: Supervisor Stack Pointer
0x00000004 LONG ROM Reset: Program Counter
68x00 Exception Vectors
0x00000008 LONG RAM Bus Error Vector
0x0000000C LONG RAM Address Error Vector
0x00000010 LONG RAM lllegal Instruction Error Vector
0x00000014 LONG RAM Divide by 0 Error Vector
0x00000018 LONG RAM CHK Instruction Exception Vector
0x0000001C LONG RAM | TRAPV, FTRAPcc, TRAPcc, cpTRAPCcc Instruction
Exception Vector
0x00000020 LONG RAM Privilege Violation Exception Vector
0x00000024 LONG RAM Trace Exception Vector
0x00000028 LONG RAM Line-A Exception Vector
0x0000002C LONG RAM Line-F Exception Vector
0x00000030 LONG RAM Reserved by Motorola
0x00000034 LONG RAM Coprocessor Protocol Violation Vector
0x00000038 LONG RAM Format Error Vector
0x0000003C LONG RAM Uninitialized Interrupt VVector
0x00000040 — LONG RAM Reserved by Motorola
0x0000005C
0x00000060 LONG RAM Spurious Interrupt Vector (taken when an interrupt
occurs during Bus Error handling
Auto-Vector Interrupts
0x00000064 LONG RAM Level 1 Auto-Vector Interrupt (used if Hblank is
enabled)
0x00000068 LONG RAM Level 2 Auto-Vector Interrupt (Hblank)
0x0000006C LONG RAM | Level 3 Auto-Vector Interrupt (Normal processor
interrupt level)
0x00000070 LONG RAM Level 4 Auto-Vector Interrupt (Vblank)
0x00000074 LONG RAM Level 5 Auto-Vector Interrupt (currently unused)
0x00000078 LONG RAM Level 6 Auto-Vector Interrupt (MFP Interrupts)
0x0000007C LONG RAM Level 7 Auto-Vector Interrupt (Non-maskable)
TRAP Exception Vectors
0x00000080 LONG RAM TRAP #0 Handler (Currently Unused)
0x00000084 LONG RAM | TRAP #1 Handler (GEMDOS)
0x00000088 LONG RAM | TRAP #2 Handler (AES and VDI)
THE ATARI COMPENDIUM




68881 Co-processor Exception Vectors — B.5

S| M S| M T|F
Tle|[T|le|T|a
glelg| O]l
a al 3| c
0| o
S S n
T T 0
e 3
0
Location(s) Size Type | Meaning
0x0000008C LONG RAM | TRAP #3 Handler (Currently Unused)
0x00000090 LONG RAM TRAP #4 Handler (Currently Unused)
0x00000094 LONG RAM | TRAP #5 Handler (Currently Unused)
0x00000098 LONG RAM | TRAP #6 Handler (Currently Unused)
0x0000009C LONG RAM | TRAP #7 Handler (Currently Unused)
0x000000A0 LONG RAM | TRAP #8 Handler (Currently Unused)
0x000000A4 LONG RAM | TRAP #9 Handler (Currently Unused)
0x000000A8 LONG RAM | TRAP #10 Handler (Currently Unused)
0x000000AC LONG RAM | TRAP #11 Handler (Currently Unused)
0x000000B0O LONG RAM TRAP #12 Handler (Currently Unused)
0x000000B4 LONG RAM | TRAP #13 Handler (BIOS)
0x000000B8 LONG RAM TRAP #14 Handler (XBIOS)
0x000000BC LONG RAM TRAP #15 Handler (Currently Unused)
68881 Co-processor Exception Vectors
0x000000C0O LONG RAM FPCP Branch or Set on Unordered Condition Vector
0x000000C4 LONG RAM FPCP Inexact Result Vector
0x000000C8 LONG RAM FPCP Floating-Point Divide by Zero Vector
0x000000CC LONG RAM FPCP Underflow Vector
0x000000D0 LONG RAM FPCP Operand Error Vector
0x000000D4 LONG RAM FPCP Overflow Vector
0x000000D8 LONG RAM FPCP Signaling NAN Vector
0x000000DC LONG RAM Unassigned
68851 MMU Exception Vectors
0x000000EO0 LONG RAM MMU Configuration Error Vector
0x000000E4 LONG RAM | MMU lllegal Operation Vector
0x000000E8 LONG RAM MMU Access Violation Vector
0x000000EC — LONG RAM Reserved by Motorola
0x000000FC
ral Port Vectors
0x00000100 LONG RAM MFP #0: Parallel-Port Interrupt Vector
0x00000104 LONG RAM MFP #1: RS-232 Carrier Detect Vector (On a
Falcon030, this MFP interrupt is connected to the
parallel port ‘Acknowledge’ signal, not the RS-232
port.)
0x00000108 LONG RAM MFP #2: RS-232 Clear to Send Vector
0x0000010C LONG RAM MFP #3: BLITTER Operation Complete (when
hardware BLITTER is present)

THE ATARI COMPENDIUM



B.6 — Memory Map

P oz

- W0

SIM T
Tle|T
elg|o0
al 3

0

- W0
OwWoOS o0 —9o9m

Location(s) Size Type | Meaning

0x00000110 LONG RAM | Timer D: RS-232 Baud Rate Generator

0x00000114 LONG RAM | Timer C: 200 Hz System Clock

0x00000118 LONG RAM | MFP #4: Keyboard/MIDI (6850 processor)

0x0000011C LONG RAM MFEP #5: Floppy/Hard Disk Controller

0x00000120 LONG RAM | Timer B: Horizontal Blank Counter

0x00000124 LONG RAM RS-232 Transmit Error Interrupt

0x00000128 LONG RAM RS-232 Transmit Buffer Error Interrupt

0x0000012C LONG RAM RS-232 Receive Error Interrupt

0x00000130 LONG RAM | RS-232 Receive Buffer Full Interrupt

0x00000134 LONG RAM | Timer A: DMA Sound Complete

0x00000138 LONG RAM MFP #6: RS-232 Ring Indicator (On a Falcon030, this
is the only Serial port vector that remains part of the
MFP. All other Serial port functions have been
transferred to the SCC.)

0x0000013C LONG RAM MFP #7: Monochrome Monitor Detect

Multi-F

Vectors (TT)

0x00000140 LONG RAM MFEP #0: General Purpose 1/O Pin
0x00000144 LONG RAM MFEP #1: General Purpose 1/O Pin
0x00000148 LONG RAM MFEP #2: SCC DMAC Interrupt
0x0000014C LONG RAM | MFP #3: RS-232 Ring Indicator
0x00000150 LONG RAM | Timer D: RS-232 Baud Rate Generator
0x00000154 LONG RAM | Timer C: SCC TRxCB
0x00000158 LONG RAM MFP #4: Reserved
0x0000015C LONG RAM | MFP #5: SCSI DMAC Interrupt
0x00000160 LONG RAM | Timer B: Unassigned
0x00000164 LONG RAM RS-232 Transmit Error Interrupt
0x00000168 LONG RAM RS-232 Transmit Buffer Error Interrupt
0x0000016C LONG RAM RS-232 Receive Error Interrupt
0x00000170 LONG RAM RS-232 Receive Buffer Error Interrupt
0x00000174 LONG RAM | Timer A: Reserved
0x00000178 LONG RAM | MFP #6: RTC IRQ
0x0000017C LONG RAM MFP #7: SCSI Controller IRQ

Zilog 85C30 (SCC) Interrupt Vectors
0x00000180 LONG RAM | SCC Port B Transmit Buffer Empty Vector
0x00000184 LONG RAM | Unused
0x00000188 LONG RAM | SCC Port B External Status Change Vector
0x0000018C LONG RAM | Unused

THE ATARI

COMPENDIUM




Processor State Save Area — B.7

S| M S|MT|F
Tle|[T|le|T|a
glelg| O]l
a al 3| c
0| o
S S n
T T 0
e 3
0
Location(s) Size Type | Meaning
0x00000190 LONG RAM | SCC Port B Receive Character Available Vector
0x00000194 LONG RAM | Unused
0x00000198 LONG RAM | SCC Port B Special Receive Condition Vector
0x0000019C LONG RAM | Unused
0x000001A0 LONG RAM SCC Port A Transmit Buffer Empty Vector
0x000001A4 LONG RAM | Unused
0x000001A8 LONG RAM SCC Port A External Status Change Vector
0x000001AC LONG RAM Unused
0x000001B0O LONG RAM | SCC Port A Receive Character Available Vector
0x000001B4 LONG RAM Unused
0x000001B8 LONG RAM SCC Port A Special Receive Condition Vector
0x000001BC LONG RAM | Unused
0x000001CO0 — N/A RAM | Undefined
0x0000037F
Processor State Save Area
0x00000380 LONG RAM | proc_lives: If, after a system failure, the operating
system is able to save the processor state in the
following variables, this value will be 0x12345678.
0x00000384 LONG RAM | proc_dregs: The contents of registers DO through D7
are stored here.
0x000003A4 LONG RAM | proc_aregs: The contents of registers A0 through A7
are stored here.
0x000003C4 LONG RAM | proc_pc: The first byte of this longword indicates the
exception number that occurred.
0x000003C8 LONG RAM | proc_usp: The user stack pointer (USP) is saved
here.
0x000003CC- WORD RAM | proc_stk: The top 16 WORDs of the supervisor stack
0x000003EA are saved here.
0x000003EC — N/A RAM | Unassigned
0x000003FF
System Vectors
0x00000400 LONG RAM etv_timer. System Timer Handoff Vector (see
GEMDOS)
0x00000404 LONG RAM | etv_critic: Critical Error Handoff Vector (see
GEMDOS)
0x00000408 LONG RAM etv_term: Process Termination Handler (see
GEMDOS)
0x0000040C — LONG RAM | Reserved for future vectors.
0x0000041C

THE ATARI

COMPENDIUM




B.8 — Memory Map

Location(s)

Size

DA D Z

- W0

—
LDQ 0
oOwo 44

- W0
OwWoOS o0 —9o9m

Type

Meaning

0x00000420

LONG

System Var
RAM

iables
memvalid: If this variable is equal to $752019F3 and
the value at memval2 ($43A) is also correct, then the
last coldstart was successful and memcntir ($424) is
valid. As of TOS 1.02 memval3 ($51A) must also be
correct.

0x00000424

WORD

RAM

memcntlr. Bits 11-8 of this WORD contains the
memory controller state.

0x00000426

LONG

RAM

resvalid: If this location contains the magic number
$31415926 then the system will jump through
resvector (below) on a system reset.

0x0000042A

LONG

RAM

resvector. If the magic number in resvalid is set
properly, this vector will be jumped through on a
system reset with the return address placed in A6.

0x0000042E

LONG

RAM

phystop: Physical top of ST compatible RAM.

0x00000432

LONG

RAM

_membot: This value points to the lowest memory
location available for the system heap. This value is
used to initialize GEMDOS free memory.

0x00000436

LONG

RAM

_memtop: This value points to the highest memory
location available for the system heap. This value is
used to initialize GEMDOS free memory.

0x0000043A

LONG

RAM

memval2: This value will equal $237698AA if
coldstart was successful. See memvalid ($420).

0x0000043E

WORD

RAM

flock: This variable should be set to non-zero prior to
accessing the DMA registers to prevent the system or
other processes from attempting DMA concurrently.

0x00000440

WORD

RAM

seekrate: This variable sets the floppy drive seek rate
for both floppy drives as follows:
Value  Seek Rate
6 ms
12 ms
2ms
3 ms (default)

W N = O

0x00000442

WORD

RAM

_timr_mes: This value indicates the time between
system timer ticks in milliseconds. Current machines
have the value of 20 (0x14) equating to 50 timer
updates per second. This value is returned by the
BIOS function Tickcal() and is placed on the stack
prior to jumping through the timer handoff vector

($400).

THE ATARI

COMPENDIUM




System Variables — B.9

Location(s)

Size

Qo Z

= W0

= W0
QO Z
ocwo -+

- W0
OWOS o000 —o

Type

Meaning

0x00000444

WORD

RAM

_ fverify. When non-zero, all floppy writes are verified,
otherwise, no verification is done.

0x00000446

WORD

RAM

_bootdev: This value represents the device from which
the system was booted (0 = A:;, 1 = B;, etc.)

0x00000448

WORD

RAM

palmode: A value of 0 indicates that NTSC video is
being used, otherwise, PAL is being is used.

0x0000044A

WORD

RAM

defshftmd: This value indicates the default video
shifter mode.

0x0000044C

WORD

RAM

sshiftmd: This value is a copy of the hardware register
at OxO0FF8260 which indicates the current ST shifter
mode.

0x0000044E

LONG

RAM

_Vv_bas_ad: This indicates the starting address of the
logical screen. Prior to TOS 1.06, this address
needed to be aligned on a 256 byte boundary. As of
TOS 1.06, it may be WORD aligned.

0x00000452

WORD

RAM

vblsem: A value of 0 here disables all vertical blank
processing while a value of 1 enables it.

0x00000454

WORD

RAM

nvbls: This value indicates the number of slots in the
deferred vertical blank handler list. If all table slots are
full and your application needs to install a handler, it
may allocate a new, larger list, update this value and
the pointer below.

0x00000456

LONG

RAM

_vblgueue: This is a pointer to a list of pointers to the
deferred vertical blank handlers. Each pointer in the
list pointed to by this variable which contains a value
other than 0 is ‘JSR’ed’ through at each vertical blank.
This occurs 50 times per second on PAL color
monitors, 60 times per second on NTSC color
monitors and 70 times per second on all monochrome
monitors.

0x0000045A

LONG

RAM

colorptr. If this value is non-zero then at the next
vertical blank, the 16 color registers pointed to by this
value will be loaded into the hardware registers.

0x0000045E

LONG

RAM

screenpt. If this value is non-zero then at the next
vertical blank, the value stored here will be loaded into
the hardware register which points to the base of the
physical screen.

0x00000462

LONG

RAM

_vbclock: This value indicates the number of vertical
blanks that have been processed since the last reset.

THE ATARI COMPENDIUM




B.10 — Memory Map

Location(s)

Size

P oz

- W0

—
LDQ 0
oOwo 44

- W0
OwWoOS o0 —9o9m

Type

Meaning

0x00000466

LONG

RAM

_frlock: This value indicates the number of vertical
blanks regardless of whether they were processed or
not (blocked by vbisem).

0x0000046A

LONG

RAM

hdv_init. This value points the hard disk initialization
routine or is 0 to indicate that no hard disk is installed.

0x0000046E

LONG

RAM

swv_vec: The vector pointed to by this routine is called
when the system detects a change in monitors
(normally this points to the reset handler).

0x00000472

LONG

RAM

hdv_bpb: This vector is used when Getbpb() is called.
A value of 0 indicates that no hard disk is attached.

Applications installing themselves here should expect
parameters to be located on the stack as they would
be for the actual function call beginning at 4(sp). If the
installed process services the call it should RTS,
otherwise, leaving the stack intact, should JMP
through the old vector value.

0x00000476

LONG

RAM

hdv_rw. This vector is used when Rwabs() is called. A
value of 0 here indicates that no hard disk is attached.

Applications installing themselves here should expect
parameters to be located on the stack as they would
be for the actual function call beginning at 4(sp). If the
installed process services the call it should RTS,
otherwise, leaving the stack intact, should JIMP
through the old vector value.

0x0000047A

LONG

RAM

hdv_boot. This vector is JSR’ed through to boot from
the hard disk. A value of 0 here indicates that no hard
disk is attached. If the installed process services the
call it should RTS, otherwise, leaving the stack intact,
should JMP through the old vector value.

0x0000047E

LONG

RAM

hdv_mediach: This vector is used when Mediach() is
called. A value of O here indicates that no hard disk is
attached.

Applications installing themselves here should expect
parameters to be located on the stack as they would
be for the actual function call beginning at 4(sp). If the
installed process services the call it should RTS,
otherwise, leaving the stack intact, should JMP
through the old vector value.

THE ATARI COMPENDIUM




System Variables — B.11

M| S| M| T|F
e| T|le|T|a
glelg| O]l
a al 3| c
0| o
S S n
T T 0
e 3
0
Location(s) Size Type | Meaning
0x00000482 WORD RAM | _cmdload: During boot if this location contains a non-
zero value, the system will attempt to load
“COMMAND.PRG” from the boot device rather than
initializing the GEM Desktop.
0x00000484 BYTE RAM conterm: This location contains a bit array which
determine several system attributes as follows:
Bit Meaning if Set
0 Enable key-click
1 Enable key repeat
2 Enable system bell
3 Cause Bconin () to
return shift status
0x00000485 BYTE RAM Reserved
0x00000486 LONG RAM trpl4ret. This value is used by Trap #14 OS code to
store the return address.
0x0000048A LONG RAM criticret. This value is used by etv_critic handling code
to store the return address.
0x0000048E — BYTE RAM themd. This is the MD (Memory Descriptor structure)
0x0000049D initialized by the BIOS at boot and returned by
Getmpb() .
0x0000049E LONG RAM | md: This is a pointer to additional MD structures.
0x000004A2 LONG RAM | savptr. This is a pointer to the buffer which the BIOS
uses to save internal registers.
0x000004A6 WORD RAM | _nflops: This value indicates the number of floppy
drives currently connected to the system.
0x000004A8 LONG RAM | con_state: This is a vector to internal console output
routines which is set to various VT-52 ESC functions.
0x000004AC WORD RAM save_row. This value contains the row number of the
cursor temporarily when using the ESC-Y VT-52
sequence.
0x000004AE LONG RAM sav_contxt. This points to a temporary buffer where
the processor context is saved.
0x000004B2 — LONG RAM | _buff. The first longword here points to a BCB (Buffer
0x000004B6 Control Block) used to store data sectors. The second
longword points to a BCB which is used to store FAT
and directory sectors.
0x000004BA LONG RAM | _hz_200: This value is an ongoing counter for the
internal 200Hz clock. It is used as a seed value for the
Random() function.

THE ATARI

COMPENDIUM




B.12 — Memory Map

Location(s)

Size

Qo Z

- W0

—
LDQ 0
oOwo 44

- W0
OwWoOS o0 —9o9m

Type

Meaning

0x000004BE

LONG

RAM

the_env: This longword is the default environment
string (four zeros).

0x000004C2

LONG

RAM

_drvbits: Each of 32 bits in this longword represents a
drive connected to the system. Bit #0 is A, Bit #1 is B
and so on. If at least one floppy is connected to the
system, both floppy bits will always be set because of
virtual swapping.

0x000004C6

LONG

RAM

_dskbufp: This variable points to a 1K disk operation
buffer and is also used by some graphics functions.

0x000004CA

LONG

RAM

_autopath: This variable points to the GEMDOS path
specification of the directory to load \AUTO’ folder
programs from (may be NULL to indicate default).

0x000004CE —
0x000004EA

LONG

RAM

_Vbl_list. This area is used by the system for the initial
deferred vertical blank list.

0x000004EE

WORD

RAM

_prt_cnt This value is used by the ALT-HELP screen
dump code and is initialized to OxFFFF. Each time
ALT-HELP is pressed, this value is incremented.
Custom screen dump code should check this value on
entry and if 0 begin a screen dump, otherwise, abort
the dump, reset the value to OxFFFF and return.

0x000004F0

WORD

RAM

_prtabt. Flag is set to abort printing because of a
timeout.

THE ATARI COMPENDIUM




System Variables — B.13

Location(s)

Size

DQ 0 =Z

= W0

—H W0
va o Z
owo 4+

- W0
OwWoOsS o0 —om

Type

Meaning

0x000004F2

LONG

RAM

_sysbase: This value points to the beginning of the
TOS operating system. The beginning of the OS
contains a structure as follows:

typedef struct _osheader

/* BRA to Reset Code */
UWORD os_entry;

/* TOS Version */
UWORD os_version;

/* Reset Code */

VOID *reseth;

/* Pointer to OSBASE */
struct _osheader *os_beg;
/* Pointer to OS end*/
VOID *os_end;

/* Reserved */

LONG os_rsvl;

/* Memory Usage PB */
GEM_MUPB *os_magic;
/* OS Date $YYYYMMDD */
LONG os_date;

/* OS Conf. Bits */
UWORD os_conf;

/* DOS OS Date */
UWORD os_dosdate;

/* As of TOS 1.2 */

/* Base of OS Pool */
char **p_root;
/* Key. Shift State */
char **pkbshift;
/* Current process */
BASEPAGE **p_run;
/* Reserved */
char *p_rsv2;

} OSHEADER;

0x000004F6

LONG

RAM

_shell_p: Normally not utilized, this vector allows a
shell process to be installed which expects to be
called with a pointer to a CLI-type command to be at
4(sp). If a command handler does not exist, this value
will be NULL .

0x000004FA

LONG

RAM

end_os: This value points to the end of RAM utilized
by TOS (copied into membot).

THE ATARI COMPENDIUM




B.14 — Memory Map

P oz

- W0

—
LDQ 0
oOwo 44

- W0
OwWoOS o0 —9o9m

Location(s) Size Type | Meaning

0x000004FE LONG RAM exec_os: This vector is jumped through when
operating system initialization is complete (normally
points to the Desktop/AES startup code).

0x00000502 LONG RAM | scr_dump: The routine pointed to by this value is
called each time the user pressed ALT-HELP.

0x00000506 LONG RAM | prv_Isto: This vector is called to check the status of the
‘PRN:’ output device by the Prtblk() routine.

0x0000050A LONG RAM | prv_Ist. This vector is called to output a byte to the
‘PRN:’ device by the Prtblk() routine..

0x0000050E LONG RAM | prv_auxo: This vector is called to check the status of
the ‘AUX:’ output device by the Prtblk() routine.

0x00000512 LONG RAM | prv_aux: This vector is called to output a byte to the

‘AUX:’ device by the Prtblk() routine.

THE ATARI COMPENDIUM




System Variables — B.15

Location(s)

Size

pa o=z

= W0

= W0
P oz
ocwo -+

- W0
OwWoOsS o0 —om

Type

Meaning

0x00000516

LONG

RAM

pun_ptr. This points to a structure used by AHDI as
follows:

/* # supported drives */
#define MAXUNITS 16
typedef struct

/* Maximum # of drives
* supported by system,
* including floppies.

*

WORD puns;

/* Bit 0-2 indicates
* the physical ACSI unit
* it resides on.

* Bit 7 = 0 indicates
* that the drive exists
*

BYTE pun[MAXUNITS];
/* Indicates offset in
* physical sectors (512
* bytes) to the start of
* partition.

*
LONG prt_startfMAXUNITS];

/* The following are
* only present as of
* AHDI 3.0. */

/* Cookie is $41484449 */

LONG P_cookie;

/* Points to P_cookie */

LONG *P_cookptr;

/* Version of AHDI */

UWORD P_version;

/* Size of the largest

* logical sector. */

UWORD P_max_sector;

/* Reserved */

LONG reserved[MAXUNITS];
} PUN_INFO;

0x0000051A

LONG

RAM

memval3: Will equal $5555AAAA if coldstart was
successful. See memvalid ($420).

THE ATARI COMPENDIUM




B.16 — Memory Map

P oz

- W0

SIM T
Tle|T
elg|o0
al 3

0

- W0
OwWoOS o0 —9o9m

0x000005B4 —
OXO09FFFFF

BYTE

Location(s) Size Type | Meaning

0x0000051E — LONG RAM | xconstat: This location contains eight pointers to the

0x0000053A BIOS Bconstat() functions for eight BIOS devices.

0x0000053E — LONG RAM | xconin: This location contains eight pointers to the

0x0000055A BIOS Bconin() functions for eight BIOS devices.

0x0000055E — LONG RAM | xcostat: This location contains eight pointers to the

0x0000056A BIOS Bcostat() functions for eight BIOS devices.

0x0000057E — LONG RAM | xconout This location contains eight pointers to the

0x0000059A BIOS Bconout() functions for eight BIOS devices.

0x0000059E WORD RAM | _longframe: If this value is 0 then the processor uses
short stack frames, otherwise it uses long stack
frames. This value is of interest to applications which
intercept TRAP handlers. When using short stack
frames, the first parameter will be found at 6(sp),
otherwise at 8(sp).

0x000005A0 LONG RAM | _p cookies: This is a pointer to the system Cookie
Jar.

0x000005A4 LONG RAM ramtop: If ramvalid is correct, this is a pointer to the
end of alternative RAM.

0x000005A8 LONG RAM | ramvalid: This value should be $1357BD13 to
indicate that ramtop is correct.

0x000005AC LONG RAM | bell_hook: This vector is jumped through to sound the
system bell.

0x000005B0 LONG RAM | kcl_hook: This vector is jumped through to sound

system key clicks. The scancode of the current

character is placed in the low byte of DO.
System RAM / Expansion

RAM/
ROM

This area contains whatever remaining ST compatible
RAM is available. Additional space at this location is
utilized by the operating system. Memory locations
below 0XO0E00000 on a machine other than the Mega
STe or below 0XO0A00000 on a Mega STe that are
not part of this RAM may be utilized by hardware
developers.

0x00A00000 —
OxO0ODEFFFF

BYTE

VME/
RAM

On a Mega STe, this area is mapped to VME
A24:D16 address space, otherwise it may be
mapped to additional ST compatible RAM or 1/O
space.

Falcon030 computers use this address space for
RAM.

THE ATARI

COMPENDIUM




IDE Controller — B.17

M| S| M| T|F
e| T|le|T|a
glelg| O]l
a al 3| c
0| o
S S n
T T 0
e 3
0
Location(s) Size Type | Meaning
0x00DF0000 — BYTE VME/ On a Mega STe, this area is mapped to VME
OXOODFFFFF RAM | Al6:D16 address space, otherwise it may be
mapped to additional ST compatible RAM or I/O
space.
Falcon030 computers use this address space for
RAM.
0x00E00000 — BYTE ROM | Operating system ROM's as of TOS 1.06.
OXO0EFFFFF
IDE Controller
0x00F00000 oW I/O Data Register
0x00F00004 OB 110 Error Register as follows:
Bad Block Mark
Uncorrectable Error
I_ ID Field Not Found
eir IO OO O Chio
Command Aborted J
Track 0 Not Found
DAM Not Found
0x00F00006 N/A Unused
0x00F00008 OB I/O Sector Count Register
0xO00FO000A N/A [e] Unused
0x00F0000C OB 110 Sector Number Register
0xO0FO0000E N/A I/O Unused
0x00F00010 OB 110 Cylinder Low Register (this register is written with the
low eight bits of the ten bit cylinder number).
0x00F00012 N/A 11O Unused
0x00F00014 OB 110 Cylinder High Register (this register is written with the
high two bits of the ten bit cylinder number).
0x00F00016 N/A I/O Unused
0x00F00018 OB 110 Drive Head Register as follows:

Drive Select
(0 = Master, 1 = Slave)
Bit 7 Bit 0

ooogogo

Head Number (0-15) J_I_I_'

THE ATARI COMPENDIUM




B.18 — Memory Map

S| M S| M T|F
Tle|T|le|T|a
gle|lglO]l
a al 3| c
0| o
S S n
T T 0
e 3
0
Location(s) Size Type | Meaning
0x00F0001A — N/A l[e] Unused
0x00F0001D
0x00FO0001E OB 1o Status Register (on read) as follows:
Error Code Waiting
Disk Index Passed
Data Error
_DRQ
Bit 7 I_ Bit 0
HiNN NN
Seek Complete J
Write Fault
Drive Ready
Drive Busy
Command Register (on write). The IDE registers must
be completely setup prior to writing the command byte
here.
0x00F00020 — N/A 110 Unused
0x00F00036
0x00F00038 OB l[e} Alternate Status Register (on read)
Alternate Command Register (on write)
0x00F00040 — N/A N/A Unassigned
OXO0F9FFFF
ROM/Reserved Hardware Space
0x00FAQ0000 — BYTE ROM | Cartridge ROM
0x00FBFFFF
0x00FC0000 — BYTE ROM | On pre TOS 2.00 machines, this location marked the
OXO00FEFFFF beginning of the operating system ROM's.
0x00FF0000 — N/A N/A Unassigned
OXO00FF7FFF

THE ATARI

COMPENDIUM




Memory Management Unit/Falcon Processor Control — B.19

S|M SIM T|F
Tle|[T|le|T|a
glelg| O]l
a al 3| c
0| o
S S n
T T 0
e 3
0
Location(s) Size Type | Meaning

Memory Management Unit/Falcon Processor Control

0xO00FF8000 OB 110 Memory Controller Configuration as follows:
Bit 3 Bit 0 .
Settings
OOO0O  o0=12e
01 =512k
Bank 0 J 10 = 2M
Bank 1 11 = Reserved
0x00FF8002 — N/A 110 Unassigned
0x00FF8004
0x00FF8006 BYTE 110 Connected Monitor Type as follows:
Value Monitor
0 Atari Monochrome
1 Atari Color
2 VGA Color
3 Television
0x00FF8007 BYTE l[e} Falcon Processor Control as follows:

STe Bus Emulation
(0 =0n, 1 = 0Off)
Bit 5 Bit 0

Ooooood

Blitter Speed J
(0 = 8MHz, 1 = 16MHz)
68030 Speed
(0 = 8MHz, 1 = 16MHz)

0xO0FF8008 — N/A 110 Unassigned
OXO0FF81FF

Video Registers
0x00FF8200 OB I/O Video Base Address High
0x00FF8202 OB I/O Video Base Address Mid
0x00FF8204 OB I/O Video Address Counter High (R/O)
0XO0FF8206 OB I/O Video Address Counter Mid (R/O)
0xO00FF8208 OB I/O Video Address Counter Low (R/O)

THE ATARI COMPENDIUM




B.20 — Memory Map

M| S| M| T| F
e| T|le|T|a
gle|lglO]l
a al 3| c
0| o
S S n
T T 0
e 3
0
Location(s) Size Type | Meaning
0x00FF820A BYTE 11O Video Shifter Sync Mode as follows:
Bit 7 Bit 0
Hinnnnninn
1=60 Hz, 0 =50 Hz JJ
1 = External, 0 = Internal Sync
0OxO00FF820C OB [l[e} Video Base Address Low
0x00FF820E OB l[e] Line Width Register (width of scanline in WORDSs - 1).
On a Falcon030, this is a WORD value.
0x00FF8210 WORD l[e] Falcon030 Line Width Register (width of scanline in
WORDS)
Ox00FF8212 — N/A I[e} Unassigned
0XO0FF823F
0x00FF8240 WORD l[e} ST/e Compatible Palette Register #0: ST layout is as
follows:
XXXX XRRR XGGG XBBB
STe layout is as follows:
XXXX RRRR GGGG BBBB
For compatibility, STe bit arrangement per nibble is
0-3-2-1. These registers are simulated for
compatibility on newer model machines.
0x00FF8242 WORD 110 ST/e Compatible Palette Register #1
0x00FF8244 WORD l[e} ST/e Compatible Palette Register #2
0x00FF8246 WORD [l[e} ST/e Compatible Palette Register #3
0x00FF8248 WORD [l[e} ST/e Compatible Palette Register #4
0x00FF824A WORD [l[e} ST/e Compatible Palette Register #5
0x00FF824C WORD 110 ST/e Compatible Palette Register #6
Ox00FF824E WORD 110 ST/e Compatible Palette Register #7
0x00FF8250 WORD 11O ST/e Compatible Palette Register #8
O0xO00FF8252 WORD 11O ST/e Compatible Palette Register #9
0x00FF8254 WORD 11O ST/e Compatible Palette Register #10
0x00FF8256 WORD 110 ST/e Compatible Palette Register #11
0x00FF8258 WORD 110 ST/e Compatible Palette Register #12
0x00FF825A WORD 110 ST/e Compatible Palette Register #13

THE ATARI

COMPENDIUM




Video Registers — B.21

4
Pa oz
—H w0

P oz
ocwo -+

- W0
- W0
OwWoOsS o0 —om

Location(s) Size Type | Meaning

0XO00FF825C WORD I/O ST/e Compatible Palette Register #14

0XO0FF825E WORD I/O ST/e Compatible Palette Register #15

0x00FF8260 EB l[e} ST Video Shifter Mode as follows:
Bit 7 Bit 0

Oooooood

00 = 320x200, 4 plane
01 = 640x200, 2 plane
10 = 640x400, 1 plane
11 = Reserved

0x00FF8262 EB e} TTO030 Video Shifter Mode as follows:

Smear Mode

I_
Bit 15 DDDDDDDBHB

000 = 320x200, 4 plane
001 = 640x200, 2 plane
010 = 640x400, 1 plane
100 = 640x480, 4 plane
110 = 1280x960, 1 plane
111 = 320x480, 8 plane

Hyper Mono Mode

Bit 7 DDDDDDDD Bit 0

ST Palette Bank J_l_l_’

0x00FF8264 OB I/O Horizontal Scroll Register

0xO0FF8266 WORD 110 SPSHIFT Control Register as follows:

@
=

Meaning When Set
Enable Bitplane Mode
Use External VSYNC
Use External HSYNC
Enable Truecolor Mode
Enable 2-Color Mode

=
OOO(DU'I-bl

0xO0FF8268 — N/A Unassigned
0XO00FF827D

THE ATARI COMPENDIUM




B.22 — Memory Map

P oz

- W0

SIM T
Tle|T
elg|o0
al 3

0

- W0
OwWoOS o0 —9o9m

Location(s) Size Type | Meaning
0x00FF827E EB l[e] STACY Display State as follows:
Bit 7 Bit 0
Oododoad
1 = Backlight Off J |
1 = Display Off
0x00FF8280 WORD [l[e} Horizontal Hold Counter
OxO0FF8282 WORD [l[e} Horizontal Hold Timer
0x00FF8284 WORD 11O Horizontal Border Begin
0x00FF8286 WORD 110 Horizontal Border End
0x00FF8288 WORD 110 Horizontal Display Begin
0x00FF828A WORD l[e} Horizontal Display End
0x00FF828C WORD 110 HSS
0xO00FF828E WORD 110 HFS
0x00FF8290 WORD 110 HEE
O0x00FF8292 — N/A Unassigned
0x00FF829F
0x00FF82A0 WORD 110 Vertical Frequency Counter
0x00FF82A2 WORD l[e} Vertical Frequency Timer
OxX00FF82A4 WORD 11O Vertical Border Begin
OxO00FF82A6 WORD [l[e} Vertical Border End (in half lines)
OxXO0FF82A8 WORD 110 Vertical Display Begin
OxXO0FF82AA WORD 110 Vertical Display End
0X00FF82AC WORD 110 VSS
OxO0FF82AE N/A Unassigned
0x00FF82C1
Ox00FF82C2 WORD I[e} VCO - Video Control as follows:

Bit 3

Quarter Pixel Width
Halve Pixel Width
Interlace Mode
Line Doubling

l

THE ATARI

COMPENDIUM

Bit0

ooono




ACSI DMA and Floppy Disk Controller — B.23

S| M S| M| T|F
Tle|[T|le|T|a
glelg| O]l
a al 3| c
0| o
S S n
T T 0
e 3
0
Location(s) Size Type | Meaning
0x00FF82C4 — N/A 110 Unassigned
OX00FF83FF
0xO0FF8400 — WORD 11O TTO30 Palette Registers #0 — #255: Each palette
O0xO00FF85FE register is a longword which is arranged as follows:
XXXX RRRR GGGG BBBB
Unlike the ST registers, each nibble is properly
formatted in the manner 3—2—1-0.
ACSI| DMA and Floppy Disk Controller
O0x00FF8600 — WORD 110 Reserved
0x00FF8602
0x00FF8604 WORD 110 DMA Sector Count (on write)
DMA Data Register (on read)
0x00FF8606 WORD 110 DMA Status (on read) as follows:
Bit 2 Bit 0
Data Request Inactive J |
Block Count Zero
ERRO
DMA Mode Control (on write) as follows:
DMAOUT
Destination Select (_DRQ)
0 =Floppy, 1 = ACSI
Select Block Count Register
Bit 8 Bit0
HNN L0
Destination Select (_CS) J
0 = Floppy, 1 = ACSI
A2
AL
0x00FF8608 OB 110 DMA Pointer High
0XO0FF860A OB I/O DMA Pointer Mid
0x00FF860C OB I/O DMA Pointer Low
0x00FF860E — N/A 110 Unassigned
0X00FF86FF

THE ATARI

COMPENDIUM




B.24 — Memory Map

P oz

- W0

SIM T
Tle|T
elg|o0
al 3

0

- W0
OwWoOS o0 —9o9m

Location(s) Size Type | Meaning
SCSI DMA Control
0xO00FF8700 OB 110 SCSI DMA Pointer Upper
Ox00FF8702 OB [l[e} SCSI DMA Pointer Upper-Middle
OxO0FF8704 OB [l[e} SCSI DMA Pointer Lower-Middle
0xO0FF8706 OB [l[e} SCSI DMA Pointer Lower
0xO0FF8708 OB 110 Byte Count Upper
0xXO00FF870A OB 11O Byte Count Upper-Middle
0x00FF870C OB 11O Byte Count Lower-Middle
0x00FF870E OB 110 Byte Count Lower
0x00FF8710 WORD 110 SCSI DMA Data Residue Register High
0x00FF8712 WORD l[e} SCSI DMA Data Residue Register Low
0x00FF8714 OB l[e] SCSI DMA Control Register as follows:
Bus Error During DMA
(cleared when read)
Byte Count Zero
(cleared when read)
| Bit 0
oooooOddn
Enable: 0 = Off, 1 = On JJ
1 = Write, 0 = Read
0x00FF8716 — N/A 110 Unassigned
OXO00FF877F
SCSI Controller Registers
O0xO00FF8780 OB 110 SCSI Controller Data Register
OxXO00FF8782 OB 11O SCSI Controller Initiator Command Register
0xO00FF8784 OB 110 SCSI Controller Mode Register
0x00FF8786 OB 110 SCSI Controller Target Command Register
0xO00FF8788 OB 110 SCSI Controller ID Select/Control Register
0x00FF878A OB 110 SCSI Controller DMA Start/DMA Status
0x00FF878C OB [l[e} SCSI Controller DMA Target Receive/Input Data
0xO00FF878E OB 110 SCSI Controller DMA Initiator Receive/Reset
Ox00FF8790 — N/A l[e} Unassigned
0X00FF879F

THE ATARI

COMPENDIUM




Programmable Sound Generator (YM-2149) — B.25

S|M SIM T|F
Tle|[T|le|T|a
glelg| O]l
a al 3| c
0| o
S S n
T T 0
e 3
0
Location(s) Size Type | Meaning

nerator (YM-2149)

0x00FF8800 EB 110 PSG Read (Read only on I/O port B) / PSG Register
Select (WO). Reading this location yields data from
the parallel interface. Writing to bits 0-3 of this
location selects a PSG register to address as follows:

Value Register
0000 Channel A Fine Tune

0001 Channel A Coarse Tune

0010 Channel B Fine Tune

0011 Channel B Coarse Tune

0100 Channel C Fine Tune

0101 Channel C Coarse Tune

0110 Noise Generator Control

0111  Mixer Control — I/O Enable
1000 Channel A Amplitude

1001 Channel B Amplitude

1010 Channel C Amplitude

1011 Envelope Period Fine Tune
1100 Envelope Period Coarse Tune
1110 I/O Port A Select (Write only)
1111 I/O Port B Select
0x00FF8802 EB e} When I/O Port A is selected, this location contains the
PSG Write Data (WO) register as follows:

Falcon = IDE Drive On/Off
TT=SCCA (0=LAN, 1= Serial2)

Falcon = Internal Speaker On/Off

Others = Monitor Jack GPO Pin
Centronics _STROBE
I— RS232 Data Terminal Ready

e 1OOO00OO0 Dk

RS232 Request to Send _I
Floppy _Drive0 Select
Falcon = Printer Select Pin
Others = Floppy _Drivel Select

Floppy _Side0/1 Select

When I/O Port B is selected, this locations accesses
the Parallel Port Data Register (WO).

0x00FF8804 — N/A 110 Unassigned

0x00FF88FF

THE ATARI COMPENDIUM



B.26 — Memory Map

S| M S| M T|F
T|e|T|le| T|a
gle|lglO]l
a al 3|c
0| o
S S n
T T 0
e 3
0
Location(s) Size Type | Meaning
DMA Sound System
0x00FF8900 BYTE l[e} Sound DMA Control as follows:
Bit 7 Bit 0
(Falcon030 Only) D D D D D D D D
Timer A Int at Record End J
Timer A Int at Playback End
MFP-15 Int at Record End
MFP-15 Int at Playback End
0x00FF8901 BYTE l[e} Additional sound DMA control as follows:
Bit 7 Bit 0
1 = Record Register Select |:| |:| |:| |:| |:| |:| |:| |:|
0 = Playback Register Select J
Repeat Record (Falcon Only)
Record Enable (Falcon Only)
Repeat Playback
Playback Enable
0x00FF8902 OB 110 Frame Base Address High
0x00FF8904 OB l[e} Frame Base Address Mid
0x00FF8906 OB l[e} Frame Base Address Low
0x00FF8908 OB 11O Frame Address Counter High
0x00FF890A OB [l[e} Frame Address Counter Mid
0x00FF890C OB [l[e} Frame Address Counter Low
0x00FF890E OB 110 Frame End Address High
0x00FF8910 OB /10 Frame End Address Mid
0x00FF8912 OB /10 Frame End Address Low
Ox00FF8914 — N/A l[e] Unassigned
0Ox00FF8919

THE ATARI COMPENDIUM




MICROWIRE - B.27

M S| M| T| F
e[ T|e| T|a
glelg| O]l
a al 3| c
0| o
S S n
T T 0
e 3
0
Location(s) Size Type | Meaning
0x00FF8920 BYTE 110 Sound mode control as follows:
00 = Monitor Track 0
01 = Monitor Track 1
10 = Monitor Track 2
11 = Monitor Track 3
Bit 7 Bit 0
00 = Play 1 Track
01 = Play 2 Tracks
10 = Play 3 Tracks
11 = Play 4 Tracks
0x00FF8921 BYTE 110 Additional sound mode control as follows:
00 = 8-bit Stereo
01 = 16-bit Stereo (Falcon)
10 = 8-bit Mono
Bit 7 Bit 0
00 = 6258 Hz J_’
01=12517Hz
10 = 25033 Hz
11 = 50066 Hz
MICROWIRE
0x00FF8922 WORD 110 MICROWIRE Data Register
0x00FF8924 WORD I/O MICROWIRE Mask Register
0XO0FF8926 — N/A 110 Unassigned
0x00FF8929

THE ATARI CO

MPENDIUM




B.28 — Memory Map

S| M S| M T|F
Tle|T|le|T|a
gle|lglO]l
a al 3| c
0| o
S S n
T T 0
e 3
0
Location(s) Size Type | Meaning
Falcon030 DSP/DMA Controller
0x00FF8930 WORD l[e] DMA Crossbar Output Select Controller as follows:

(DMA Out)

(DSP Out)
1 = Connect

00 = 25.175 MHz Clock
01 = External Clock
10 = 32 MHz Clock

|_ Bit 0
000ooooo

i

0 = Handshake Enable

Bit 7

0=DMAIn, 1=All

00 = 25.175MHz Clock
01 = External Clock
10 = 32 MHz Clock

0 = Handshake Enable
(ADC Input)

0 = Internal Sync

‘ 1 = External Sync
Bit 12 Bit 8

Oooood

(External Input)

00 = 25.175 MHz Clock
01 = External Clock
10 = 32 MHz Clock

0 = Enable Handshake

THE ATARI

COMPENDIUM




Falcon030 DSP/DMA Controller — B.29

Location(s)

Size

pa o=z

= W0

= W0
P oz
ocwo -+

- W0
OwWoOsS o0 —om

Type

Meaning

0xO0FF8932

WORD

I/

DMA Crossbar Input Select Controller as follows:

(DSP In)
1 = Connect

00 = DMA Output
01 = DSP Output
10 = External Input
11 = ADC Input

0 = Handshake Enable

Bit 7 |_ Bit 0
oooooood

(DMA In) J
0=DSP Out, 1 = All

00 = DMA Output
01 = DSP Output
10 = External Input
11 = ADC Input

0 = Handshake Enable
(DAC Output)

00 = DMA Output
01 = DSP Output
10 = External Input
11 = ADC Input

Bit 12 Bit 8

OOoOoon

(External Output)

00 = DMA Output
01 = DSP Output
10 = External Input
11 = ADC Input

0 = Enable Handshake

THE ATARI COMPENDIUM




B.30 — Memory Map

P oz

- W0

SIM T
Tle|T
elg|o0
al 3

0

- W0
OwWoOS o0 —9o9m

Location(s) Size Type | Meaning
0x00FF8934 BYTE l[e} Frequency Divider External Sync (0 = STe/TT030
Compatible Prescaler, 1-15 = Divide by 256 and then
the value given)
0x00FF8935 BYTE l[e] Frequency Divider Internal Sync as follows:
Value Meaning
0 STe Compatible Mode
1 49170 Hz
2 32780 Hz
3 24585 Hz
4 19668 Hz
5 16390 Hz
6 14049 Hz
7 12292 Hz
8 10927 Hz
9 9834 Hz
10 8940 Hz
11 8195 Hz
12 7565 Hz
13 7024 Hz
14 6556 Hz
15 6146 Hz
0x00FF8936 BYTE I[e} Record Tracks Select as follows:
Bit 1/0
00 = Record 1 Track
01 = Record 2 Tracks
10 = Record 3 Tracks
11 = Record 4 Tracks
0x00FF8937 BYTE 110 CODEC Input Source as follows:

Multiplexer

ADC/DAC

Bit 1/0

LI

|

THE ATARI COMPENDIUM




Real Time Clock (146818A) — B.31

M| S| M| T|F
e| T|le|T|a
glelg| O]l
a al 3| c
0| o
S S n
T T 0
e 3
0
Location(s) Size Type | Meaning
0xO0FF8938 BYTE 110 CODEC ADC Input as follows:
Bit 1/0
0 = Left Channel Mic |
1 = Left Channel PSG
0 = Right Channel Mic
1 = Right Channel PSG
0xO0FF8939 BYTE 110 Gain settings (0-15 per channel ) as follows:
Bit 7 Bit 0
RIRI[RI[R
0xO0FF893A BYTE 110 Attenuation settings ( 015 per channel ) as follows:
Bit 7 Bit 0
RIRI[RI[R
0xO0FF8940 OB 110 GPIO Data direction as follows:
Bit 2 Bit 0
0 = Read
1 = Write
0x00FF8942 OB 110 GPIO Data (low three bits). Read or write by setting
direction bits above.
O0x00FF8944 — N/A 11O Unassigned
0X00FF895F
Real Time Clock (146818A)
0x00FF8960 OB 11O Real Time Clock Address Register
0XO0FF8962 OB I/O Real Time Clock Data Register
OxO00FF8964 — N/A 110 Unassigned
0X00FF89FF

THE ATARI

COMPENDIUM




B.32 — Memory Map

S| M S| M T|F
Tle|T|le|T|a
gle|lglO]l
a al 3| c
0| o
S S n
T T 0
e 3
0
Location(s) Size Type | Meaning
BLITTER Bit-Block Transfer Processor
0x00FF8AQ0 — WORD l[e} BLITTER Halftone RAM
0x00FF8AL1E
0x00FF8A20 WORD 110 BLITTER Source X Increment
0x00FF8A22 WORD 110 BLITTER Source Y Increment
Ox00FF8A24 WORD l[e} BLITTER Source Address (bits 7-0 are bits 23-16 of
address)
OxO0FF8A26 WORD l[e] BLITTER Source Address (bits 15-1 are bits 15-1 of
address, bit 0 must be 0)
0x00FF8A28 WORD [l[e} BLITTER Endmask 1
OxX00FF8A2A WORD [l[e} BLITTER Endmask 2
0x00FF8A2C WORD [l[e} BLITTER Endmask 3
OxO0FF8A2E WORD [l[e} BLITTER Destination X Increment
OxO0FF8A30 WORD [l[e} BLITTER Destination Y Increment
OxO0FF8A32 WORD l[e] BLITTER Destination (bits 7-0 are bits 23-16 of
address)
Ox00FF8A34 WORD l[e} BLITTER Destination (bits 15-1 are bits 15-1 of
address, bit 0 must be 0)
0x00FF8A36 WORD 11O BLITTER X Count
0x00FF8A38 WORD 110 BLITTER Y Count
0x00FF8A3A BYTE 110 BLITTER HOP
0x00FF8A3B BYTE 11O BLITTER OP
OxO00FF8A3C BYTE l[e] BLITTER Configuration as follows:
BUSY
‘ HOG
| — SMUDGE Bit 0
00000
LINE NUMBER | | |

THE ATARI

COMPENDIUM




SCC DMA Registers — B.33

M| S| M| T|F
e| T|le|T|a
glelg| O]l
a al 3| c
0| o
S S n
T T 0
e 3
0
Location(s) Size Type | Meaning
0xO00FF8A3D BYTE 110 BLITTER Configuration as follows:
FXSR
| NFSR
I Bit 0
Ooooooado
SKEW J_l_l_’
OXOOFF8A3E— N/A 110 Unassigned
0XO0FF8BFF
SCC DMA Registers
0x00FF8C00 OB I/O SCC DMA Pointer Upper
0x00FF8C02 OB I/O SCC DMA Pointer Upper-Middle
0xO0FF8C04 OB I/O SCC DMA Pointer Lower-Middle
0x00FF8C06 OB 11O SCC DMA Pointer Lower
0xO00FF8C08 OB I/O SCC Byte Count Upper
0xO00FF8COA OB [e] SCC Byte Count Upper-Middle
0x00FF8COC OB 110 SCC Byte Count Lower-Middle
0xO00FF8COE OB I/O SCC Byte Count Lower
0XO0FF8C10 WORD I/O SCC Data Residue Register High (RO)
0XO0FF8C12 WORD I/O SCC Data Residue Register Low (RO)
O0x00FF8C14 OB 110 SCC DMA Control Register as follows:
Bus Error During DMA
(cleared when read)
Byte Count Zero
| (cleared when read)
Bit 0
Oooooodn
Enable: 0 = Off, 1 = On JJ
1 = Write, 0 = Read
0XO0FF8C16 — N/A 110 Unassigned
0X00FF8C7E

THE ATARI

COMPENDIUM




B.34 — Memory Map

S| M S| M T|F
Tle|T|le|T|a
gle|lglO]l
a al 3| c
0| o
S S n
T T 0
e 3
0
Location(s) Size Type | Meaning
0x00FF8C80 SCC A Control
0x00FF8C82 OB I/O SCC A Data
0XO0FF8C84 OB [l[e] SCC B Control
0XO0FF8C86 OB [l[e] SCC B Data
OxO0FF8C88 — N/A l[e] Unassigned
0XO0FF8DFF
Syst ControIUn|t
0x00FF8E00 SCU System Interrupt Mask
0xO00FF8E02 OB I/O SCU System Interrupt State (RO)
OxOOFF8E04 OB l[e] SCU System Interrupter: Set Bit #0 to generate VME
interrupt IRQ1.
0x00FF8E06 OB l[e] VME Interrupter: Set Bit #0 to generate VME interrupt
IRQ3.
0xO0FF8E08 OB 110 SCU General Purpose Register 1
O0xXO0FF8EOA OB 110 SCU General Purpose Register 2
0xO00FF8EOC OB 11O VME Interrupt Mask
0x00FF8EQOE OB 110 VME Interrupt State (RO)
0x00FF8E10 — N/A Unassigned
OXO0FF8E1F
Mega STe Cache/Processor Control
0xO00FF8E20 OB l[e] Mega STe Cache/Processor Control Register as
follows:
Value Meaning
OxFF 16 MHz w/Cache
OxFE 16 MHz
OxF4 8 MHz
Ox00FF8E22 — N/A Unassigned
O0XO0FF8EFF
Extended Joystick/Paddle/Light Gun Ports
0x00FF9200 WORD 110 Joystick Fire Button Matrix Register
0x00FF9202 WORD 110 Joystick Direction Matrix Register
0x00FF9204 — N/A l[e} Unassigned
0X00FF920F
0x00FF9210 WORD 11O Paddle 0 X Direction
0x00FF9212 WORD 11O Paddle 0 Y Direction
0x00FF9214 WORD 110 Paddle 1 X Direction
0x00FF9216 WORD 110 Paddle 1 Y Direction
THE ATARI COMPENDIUM




Falcon030 VIDEL Palette Registers — B.35

S|M SIM T|F
Tle|[T|le|T|a
glelg| O]l
a al 3| c
0| o
S S n
T T 0
e 3
0
Location(s) Size Type | Meaning
0x00FF9218 — N/A 110 Unassigned
OXO0FF921F
0x00FF9220 WORD I/O Light Gun/Pen X Position
0X00FF9222 WORD I/O Light Gun/Pen Y Position
0x00FF9224 — N/A Unassigned
OXO0FF97FF
Falcon030 VIDEL Palette Registers
0x00FF9800 — LONG 110 Falcon030 Palette Registers 0-255 as follows:
OX00FFIBFC RRRRRR-- GGGGGG-- - BBBBBB--
0x00FF9CO00 — N/A 110 Unassigned
OXO0FFA1FF

THE ATARI COMPENDIUM




B.36 — Memory Map

P oz

- W0

SIM T
Tle|T
elg|o0
al 3

0

- W0
OwWoOS o0 —9o9m

Location(s) Size Type | Meaning
DSP Host Interface
0x00FFA200 BYTE l[e] Interrupt Control Register (DSP X:$FFE9) as follows:

Bit #7
INIT — Setting this bit forces initialization of the host
interface.

Bits #6-5
DMA Mode Control as follows:

Value Meaning
%00 Interrupt Mode (DMA Off)
%01 24-bit DMA Mode
%10 16-bit DMA Mode
%11 8-bit DMA Mode

Bit #4-3
Host Flags 1 & 0 respectively (HF1 & HFO)

Bit #2
Unused

Bits #1-0
Data Transfer Mode as follows:

Value Meaning in Interrupt Mode
%00 No Interrupts
%01 Enable Receiver Full Interrupts
%10  Enable Transmitter Empty Interrupts
%11 Enable Both Interrupts

Value  Meaning in DMA Mode
%00 No DMA
%01 DSP to Host Request

%10 Host to DSP Request

THE ATARI COMPENDIUM




ST Multi-Function Peripheral Port (68901) — B.37

S| M S| M T|F
Tle|[T|le|T|a
glelg| O]l
a al 3| c
0| o
S S n
T T 0
e 3
0
Location(s) Size Type | Meaning
0x00FFA201 BYTE 110 Command Vector Register (DSP X:$FFE9) as
follows:
Host Command Bit
|_ Bit 0
Bit 7
Host Vector (0-31)
0XO0FFA202 BYTE I/O Interrupt Status Register (DSP X:$FFE8) as follows:
0x00FFA203 BYTE 110 Interrupt Vector Register (This register contains the
680x0 exception vector used for DSP exceptions).
0X00FFA204 BYTE [e] Unused
0xO00FFA205 BYTE I/O DSP WORD High (DSP X:$FFEB)
0XO00FFA206 BYTE I/O DSP WORD Middle (DSP X:$FFEB)
0XO00FFA207 BYTE I/O DSP WORD Low (DSP X:$FFEB)
0XO0FFA208 — N/A N/A Undefined
0XO00FFF9FF
ST Multi-Function Peripheral Port (68901)
0xO00FFFAQ0 OB 110 MFP-ST General Purpose Pins (Parallel port data
register on Atari machines).
O0xO00FFFA02 OB 110 MFP-ST Active Edge Register as follows:

Monochrome Monitor Detect
RS-232 Ring Indicator
FDC/HDC Interrupt
Keyboard/MIDI Interrupt

Bit 0

LoHoogod

Bit7 Unused J
RS-232 Clear To Send
RS-232 Carrier Detect
Centronics Busy

On a Falcon030, the MFP is not actually used for
serial communcations.

O0xO00FFFAO4 OB 110 MFP-ST Data Direction Register. Each bit is
individually programmed (0 = input, 1 = output).

THE ATARI COMPENDIUM




B.38 — Memory Map

Location(s)

Size

P oz

- W0

—
LDQ 0
oOwo 44

- W0
OwWoOS o0 —9o9m

Type

Meaning

0x00FFFA06

OB

110

MFP-ST Interrupt Enable Register A as follows:

Monochrome Monitor Detect
RS-232 Ring Indicator
Timer A (STe/TT Sound)

Receive Buffer Full
Bit 7 |_ Bit 0

Hoooodon
Receive Buffer Empty J
Sender Buffer Empty

Sender Error

Timer B

On a Falcon030, the MFP is not actually used for
serial communcations.

0x00FFFA08

OB

110

MFP-ST Interrupt Enable Register B as follows:

FDC/HDC
Keyboard/MIDI
Timer C (200 Hz Clock)

| Timer D (USART)
Bit 7 I_ Bit 0

Ooooodon

Blitter J |
RS-232 Clear to Send

RS-232 Carrier Detect
Centronics Busy

O0xO00FFFAOQA

OB

lle}

MFP-ST Interrupt Pending Register A (see mapping
at OXOOFFFAQ6).

0x00FFFAOC

OB

110

MFP-ST Interrupt Pending Register B (see mapping
at OXOOFFFAQ8).

O0xO0FFFAOQE

OB

l[e]

MFP-ST Interrupt In-Service Register A (see mapping
at OXOOFFFA06).

0x00FFFA10

OB

110

MFP-ST Interrupt In-Service Register B (see mapping
at OXOOFFFAQ8).

OxO0FFFA12

OB

l[e]

MFP-ST Interrupt Mask Register A (see mapping at
0X00FFFAQ6).

0x00FFFA14

OB

110

MFP-ST Interrupt Mask Register B (see mapping at
0XO0FFFAQ08).

THE ATARI COMPENDIUM




ST Multi-Function Peripheral Port (68901) — B.39

Location(s)

Size

pa o=z

= W0

= W0

P oz

= w0

O wWwo -+

OwWwoOsS oo —o T

Type

Meaning

OxO0FFFA16

OB

I/

MFP-ST Vector Register. Bit 3 is set to 1 to indicate
software End-of-Interrupt mode and 0 to indicate
automatic End-of-Interrupt mode.

O0xO0FFFA18

OB

I/

MFP-ST Timer A Control Register. Interpret bits 3-0
as follows:

Value Meaning

0000 Timer stop.

0001 Delay mode, divide by 4.
0010 Delay mode, divide by 10.
0011 Delay mode, divide by 16.
0100 Delay mode, divide by 50.
0101 Delay mode, divide by 64.
0110 Delay mode, divide by 100.
0111 Delay mode, divide by 200.
1000 Event count mode.

1xxx Pulse extension mode (as above).

O0xX00FFFA1A

OB

I/O

MFP-ST Timer B Control Register (see Timer A).

O0x00FFFA1C

OB

lle}

MFP-ST Timer C & D Control Register. Interpret bits
6-4 for Timer C and bits 2-0 for Timer D as follows:

Value Meaning
000 Timer stop.
001 Delay mode, divide by 4.
010 Delay mode, divide by 10.
011 Delay mode, divide by 16.
100 Delay mode, divide by 50.
101 Delay mode, divide by 64.
110 Delay mode, divide by 100.
111 Delay mode, divide by 200.

O0xX00FFFA1E

OB

I/O

MFP-ST Timer A Data Register.

0xX00FFFA20

OB

I/O

MFP-ST Timer B Data Register.

OxXO00FFFA22

OB

I/O

MFP-ST Timer C Data Register.

0xXO00FFFA24

OB

I/O

MFP-ST Timer D Data Register.

0XO0FFFA26

OB

I/0

MFP-ST Sync Character Register.

THE ATARI

COMPENDIUM




B.40 — Memory Map

Location(s)

Size

P oz

- W0

—

LDQ 0
oOwo 44

- W0
OwWoOS o0 —9o9m

Type

Meaning

O0x00FFFA28

OB

110

MFP-ST USART Control Register as follows:

Clock
(If set, divide by 16.)

00 = 8 bits

01 =7 bits
10 = 6 bits
11 =5 bits

Bit 7 DDDDDDDD Bit 0

00 = Synchronous I_

Unused
01 = 1 Stop, 1 Start )

If set, ignore
10 = 1 Stop, 1% Start

arity.

11 =1 Stop, 2 Start parity
1 = Even parity
0 = Odd parity

O0x00FFFA2A

OB

110

MFP-ST Receiver Status Register as follows:

Buffer Full
Overrun Error
Parity Error

| Frame Error
Bit 7 I_ Bit 0
dooooodd
Search/Break Detected J |
Match/Character in Progress

Synchronous Strip Enable
Receiver Enable Bit

0x00FFFA2C

OB

110

MFP-ST Transmitter Status Register as follows:

Buffer Empty
Underrun Error
Auto Turnaround

| End of Transmission
Bit 7 I_ Bit 0
Oodododn
Break |
High Bit
Low Bit
Transmitter Enable

THE ATARI COMPENDIUM




68881 Math Co-Processor in Peripheral Mode — B.41

S| M S| M T|F
Tle|[T|le|T|a
glelg| O]l
a al 3| c
0| o
S S n
T T 0
e 3
0
Location(s) Size Type | Meaning
O0XO0FFFA2E OB 11O MFP-ST USART Data Register.
O0x00FFFA30 — N/A 110 Unassigned
0XO00FFFA3F
68881 Math Co-Processor in Peripheral Mode
0xO00FFFA40 WORD 110 FPCIR Status Register (available as a Mega Bus card
accessed in 68881 peripheral mode)
OxO00FFFA42 WORD 110 FPCTL Control Register (available as a Mega Bus
card accessed in 68881 peripheral mode)
Ox00FFFA44 WORD 110 FPSAV Save Register (available as a Mega Bus card
accessed in 68881 peripheral mode)
OxO00FFFA46 WORD 110 FPREST Restore Register (available as a Mega Bus
card accessed in 68881 peripheral mode)
Ox00FFFA48 WORD 110 FPOPR Operation Word Register (available as a
Mega Bus card accessed in 68881 peripheral mode)
O0x00FFFA4A WORD 110 FPCMD Command Register (available as a Mega
Bus card accessed in 68881 peripheral mode)
OxO00FFFA4C WORD 110 FPRES Reserved (available as a Mega Bus card
accessed in 68881 peripheral mode)
Ox00FFFA4E WORD 110 FPCCR Condition Code Register (available as a
Mega Bus card accessed in 68881 peripheral mode)
0x00FFFA50 LONG 110 FPOP Operand Register (available as a Mega Bus
card accessed in 68881 peripheral mode)
O0x00FFFA54 WORD 110 FPSLCT Register Select (available as a Mega Bus
card accessed in 68881 peripheral mode)
0x00FFFA56 WORD 11O Reserved
0XO0FFFA58 LONG 110 FPIADR Instruction Address (available as a Mega Bus
card accessed in 68881 peripheral mode)
O0x00FFFA5C LONG l[e] FPOADR Operand Address (available as a Mega
Bus card accessed in 68881 peripheral mode)
0XO0FFFA54 — N/A 110 Unassigned
OXO0FFFA7F
TTO030 Multi-Function Peripheral Port (68901)
0x00FFFA80 OB I/O MFP-TT030 GPIP (see 0XO0FFFAQO).
0XO0FFFA82 OB I/O MFP-TT030 AER (see 0XO0FFFAO02).
0XO00FFFA84 OB I/O MFP-TT030 DDR (see OxO0FFFAOQ4).
0XO0FFFA86 OB [e] MFP-TT030 IERA (see 0xO0FFFAO6).
0XO0FFFA88 OB [e] MFP-TT030 IERB (see 0xO0FFFAOS).
0x00FFFA8A OB 110 MFP-TT030 IPRA (see 0xOOFFFAQA).
0x00FFFA8C OB 11O MFP-TT030 IPRB (see 0xO0FFFAOC).

THE ATARI

COMPENDIUM




B.42 — Memory Map

S| M S{M| T|F
T|e|T|le| T|a
gle|lglO]l
a al 3|c
0| o
S S n
T T 0
e 3
0
Location(s) Size Type Meaning
0x00FFFASE OB /10 MFP-TT030 ISRA (see 0xO0FFFAQE).
0X00FFFA90 OB /10 MFP-TT030 ISRB (see 0XxO0FFFA10).
0X00FFFA92 OB /10 MFP-TT030 IMRA (see OXO0FFFA12).
0OxX00FFFA94 OB /10 MFP-TT030 IMRB (see OXO0FFFA14).
0OX00FFFA96 OB /10 MFP-TT030 VR (see 0XOOFFFA16).
Ox00FFFA98 OB /(@] MFP-TT030 TACR (see OxOOFFFA18).
Ox00FFFA9A OB l[e] MFP-TT030 TBCR (see OXOOFFFAL1A).
OxO00FFFA9C OB l[e] MFP-TT030 TCDCR (see 0XOOFFFA1C).
0Ox00FFFA9E OB I[e] MFP-TT030 TADR (see OXO0FFFALE).
0Ox00FFFAAO OB /10 MFP-TT030 TBDR (see 0xO0FFFA20).
0Ox00FFFAA2 OB l[e] MFP-TT030 TCDR (see 0xO0FFFA22).
Ox00FFFAA4 OB l[e] MFP-TT030 TDDR (see 0xO0FFFA24).
0x00FFFAA6 OB /10 MFP-TT030 SCR (see OXO0FFFA26).
0x00FFFAA8 OB /10 MFP-TT030 UCR (see OXOOFFFA28).
OX00FFFAAA OB /10 MFP-TT030 RSR (see OxO0FFFA2A).
0X00FFFAAC OB /10 MFP-TT030 TSR (see 0xO0FFFA2C).
0OxX00FFFAAE OB /10 MFP-TT030 UDR (see OXOOFFFA2E).
Ox00FFFABO- N/A l[e] Undefined
OX00FFFBFF

THE ATARI COMPENDIUM




Keyboard ACIA (6850) — B.43

M| S| M| T| F
e|T|le|T|a
glelg| O]l
a al| 3|c
0| o
S S n
T T 0
e 3
0
Location(s) Size Type | Meaning
Keyboard ACIA (6850)
0xO00FFFCO00 EB 110 Keyboard ACIA Control (when written) as follows:

Bit #7

Bits #6-5

Value
%00
%01
%10
%11

Bits #4-2

Value

Enables receive interrupts

Configures transmitter interrupts as follows:

Meaning

RTS low, Disable Interrupts
RTS low, Enable Interrupts
RTS high, Disable Interrupts
RTS low, Disable Interrupts
Send a break on Interrupt

Configure Port Settings as follows:

Data Bits—Parity—Stop Bits

%000
%001
%010
%011
%100
%101
%110
%111

Bits #1-0

Value
%00
%01
%10
%11

7-E-2
7-0-2
7-E-1
7-0-1
8-N-2
8-N-1
8-E-1
8-0-1

Set Clock Divisor as follows:

Meaning
Normal
Divide by 16
Divide by 256
Master Reset

THE ATARI COMPENDIUM




B.44 — Memory Map

= W0

P oz
-

LDQ 0

owo -4

- w0
- W0
OwWoOS o0 —9o9m

Location(s) Size Type | Meaning

Keyboard ACIA Control (when read) as follows:

Interrupt Request
Parity Error
Receiver Overrun

| Framing Error

Bit 7 I_ Bit 0
OO0O0000m0m0
Clear to Send J |

Data Carrier Detect

Transmitter Empty
Receiver Full

Ox00FFFC02 EB [l[e} Keyboard ACIA Data
MIDI ACIA (6850)

Ox00FFFCO04 EB I[e} MIDI ACIA Control (see keyboard ACIA control
register for details)

0xO0FFFC06 EB 110 MIDI ACIA Data
Mega ST Real Time Clock (RP5C15)

0x00FFFC20 OB l[e] Bank 0: Seconds-Ones (0-9)
Bank 1: Clock output frequency as follows:

Value Meaning

0 Open-Collector
“CLKOUT”
16384 Hz
1024 Hz
128 Hz
16 Hz
1Hz
1/60 Hz
Open-Collector
“CLKOUT”

~N~No ok~ wWNBE

0X00FFFC22 OB l[e} Bank 0: Seconds-Tens (0-5)

Bank 1: Setting bit #0 will reset the seconds register
to the 0 and, if the seconds register is
currently between 30-59, increment the
minutes register.

0x00FFFC24 OB 110 Bank 0: Minutes-Ones (0-9)
Bank 1: Alarm Minutes-Ones (0-9)

THE ATARI COMPENDIUM



Mega ST Real Time Clock (RP5C15) — B.45

Location(s)

Size

pa o=z

= W0

= W0
P oz
ocwo -+

- W0
OwWoOsS o0 —om

Type

Meaning

O0xO0FFFC26

OB

I/

Bank 0:
Bank 1:

Minutes—Tens (0-5)
Alarm Minutes-Tens (0-5)

0xO0FFFC28

OB

lle}

Bank 0:
Bank 1:

Hour-Ones (0-9)
Alarm Hour-Ones (0-9)

OxO0FFFC2A

OB

I/O

Bank 0:

Bank 1:

Hour-Tens (0-2), in 24 hour mode, otherwise
(0-1) in 12 hour mode with Bit 1 being set for
PM, cleared for AM.

Alarm Hour-Tens (as in bank 0)

0x00FFFC2C

OB

lle}

Bank O:
Bank 1:

Day of Week (0-6), 0 = Sunday
Alarm Day of Week (0-6), 0 = Sunday

OxO00FFFC2E

OB

I/O

Bank 0:
Bank 1:

Date-Ones (0-9)
Alarm Date-Ones (0-9)

0x00FFFC30

OB

I/

Bank 0:
Bank 1:

Date-Tens (0-3)
Alarm Date-Tens (0-3)

O0x00FFFC32

OB

110

Bank 0:
Bank 1:

Month-Ones (0-9)
Not Used

O0xO0FFFC34

OB

I/

Bank 0:
Bank 1:

Month-Tens (0-1)
If Bit #1 is set then clock is in 24 hour mode,
otherwise, it is in 12 hour mode.

0xO0FFFC36

OB

I/

Bank O:

Bank 1:

Year-Ones (0-9). The value for Year
represents the ('Year - 1980 ).
Leap Year Register (0-3), 0 = Leap Year

O0xO0FFFC38

OB

I/

Bank 0:
Bank 1:

Year-Tens (0-9)
Not Used

OxO00FFFC3A

OB

110

Mode Register as follows:

0 = Clock Stop
0 = Alarm off

|_ Bit 0

HiNnin
Bank Select J

O0xO00FFFC3C

OB

110

confirm

Test Register (lower nibble must equal zero to show

proper functioning)

THE ATARI COMPENDIUM




B.46 — Memory Map

S| M S| M T|F
Tle|T|le|T|a
gle|lglO]l
a al 3| c
0| o
S S n
T T 0
e 3
0
Location(s) Size Type | Meaning
O0x00FFFC3E OB l[e] Reset Register as follows:
0 =1 Hz Alarm Pulse
0 =16 Hz Alarm Pulse
|_ Bit 0
HINNIN
1 = Clock Reset J
1 = Alarm Reset
Ox00FFFC40- N/A l[e} Undefined
0X00FFFFFF
Expansion Area
0x01000000 — N/A RAM | TT030 Fast Ram (Unsuitable for direct DMA and
0x01FFFFFF Video Shifter transfers)
0x02000000 — N/A RSVD | Reserved
OXFDFFFFFF
0xFE000000 — N/A VME | VME A24:D16 Addressable Area
OXFEFEFFFF
OxFEFF0000 — N/A VME | VME Al16:D16 Addressable Area
OXFEFFFFFF
Shadow Image
0xFF000000 — N/A Image | This area is a ‘shadow’ image of 0x00000000 —
OXFFFFFFFF 0x00FFFFFF to remain compatible with the ST.

THE ATARI COMPENDIUM




— APPENDIX C -

NATIVE FILE FORMATS

THE ATARI COMPENDIUM



Native File Formats — C.3

The .GEM File Format

Files ending in *.GEM’ are graphic metafiles created3yOS. They are usually used to
represent vector graphics but may also be used to store links to bitmap images and textual
information.

Two primary versions d6EM files exist. Version 1 files are guaranteed not to contain bezier
curves whereas version 3 files may. Version 3.xx files are also commonly referréd&1&3
files.

The Metafile Header
GEM metafiles begin with a header as follows:

WORD \ Contents

0 Magic number (OXFFFF).

Header length in WORDs.

Version number (major * 100 + minor).
NDC Flag as follows:

WIN |-

Value Meaning
0 (0, 0) in lower-left corner (NDC)

2 (0, 0) in upper-left corner (RC)
4 Minimum X extent.

5 Minimum Y extent.

6 Maximum X extent.
7

8

Maximum Y extent.
Page width in tenths of millimeters.

9 Page height in tenths of millimeters.

10 Lower Left X value of coordinate system.
11 Lower Left Y value of coordinate system.
12 Upper Right X value of coordinate system.
13 Upper Right Y value of coordinate system.

Other information may appear in the header
following which is currently undefined. Use
WORD #1 to skip any unknown information.

The definition ofWORDs 4-13 is defined by the creator of the file using three metafile
commandsWORDs 4-7 are set with the meta_extents(¥unction.WORDs 8-9 are defined
with thevm_pagesize(function. WORDs 10-13 are defined wittm_coords() If the creator
fails to specify defaults for any of these values, the appropriate values will be set to 0 in the
header. If zeros appear f8fORDs 10-13, the default NDC coordinate system should be
assumed.

THE ATARI COMPENDIUM



C.4 — Native File Formats

Metafile Records
Following the header will appear a list of records of varying length which, when translated, can
be ‘played back’ on the destinati®®! device. Each record is formatted as follows:

WORD Meaning

0 Opcode of VDI function.
1 Number of PTSIN elements.
2 Number of INTIN elements.
3 Function sub-ID.
4. PTSIN elements.
INTIN elements.

The list of records is terminated with an opcode of OxFFFF (this record is written when a
v_clswk() call is made by the creator).

When playing backsEM files, the application must translate all coordinates from the metafile
coordinate system to that of the destination device. In addition, text metrics should be
appropriately converted. If an unknown opcode is discovered it should be played after any
elements of th€ TSINarray are translated (making the assumption that they should be).

Metafile Sub-Opcodes
GEM metafiles support the use of special sub-opcodes for implementing reserved and user-
defined functionsGEM metafile translators should ignore sub-opcodes they don’t understand.
Each sub-opcode can be identified with the primary opcode of 5, function ID of 99 and the first
(required) member dNTIN being the sub-opcode ID. The currently defined sub-opcodes are as
follows:

INTIN[O Meaning

10 Start Group.

11 End Group.

49 Set No Line Style.

50 Set Attribute Shadow On.

51 Set Attribute Shadow Off.

80 Start Draw Area Type Primitive.
81 End Draw Area Type Primitive.

None of the pre-defined sub-opcodes use additidiEdN or PTSINelements though user-
defined sub-opcodes may.

Opcodes from 0-100 are reserved for use by Atari. Sub-opcodes from 101-65535 are available
for use by developers but should be registered with Atari to avoid possible conflicts.

THE ATARI COMPENDIUM



Native File Formats — C.5

The .IMG File Format

The IMG file format was designed to support raster images with a varying number of planes. In
practice, almost all IMG files currently available are simple black and white single plane
images because the original file format did not specify a method of storing palette information
with the file. To fill this need, several unofficial extensions to the format were put into use
(some of which were incorrectly implemented by applications supporting them). The color
extension which will be discussed here to cover color images is the ‘XIMG’ format.

The IMG Header
Image headers consist of at lea¥¥®RDs as follows:

0 Image file version (Usually 0x0001).
Header length in WORDs.

Number of planes.

Pattern definition length.

Source device pixel width (in microns).
Source device pixel height (in microns).
Scan line width (in pixels).

Number of scan lines.

N[O~ WN|E

Some IMG files will have additional header information which should be skipped or interpreted
as discussed below.

Interpreting Extra Palette Information

If WORD #2 is set to 1, then the image data consists of one plane (i.e. monochrome) and any
extra header information should be ignored.

If WORD #2 is set to 16 or 24 then the image data consists of that many planes of high color or
true color data and any extra header information should be ignored. In a high color image, plane:
appear in the order RRRRR GGGGGG BBBBB. In a true-color image, planes appear in the
order RRRRRRRR GGGGGGGG BBBBBBBB.

If WORD #2 is set to 2, 4, or 8, the image consists of palette based color image data. If no extra
header information is given then the creator did not specify palette data for this image. If extra
headeMWORDs appears they may be useful in determining the color palette. The two primary
extensions to the IMG format are ‘XIMG’ and ‘STTT'. ‘STTT’ will not be discussed here as it
does not serve well as a machine or device independent format. The ‘XIMG’ header extension i
as follows:

THE ATARI COMPENDIUM



C.6 — Native File Formats

WORD Meaning

8&9 ASCII ‘XIMG’
10 Color format (Almost always 0 — RGB).
11... RGB WORD triplets. Three WORDSs appear

for each pen. There are (2 * numplanes)
pens. Each word contains a value from 0 to
1000 for direct passage to vs_color() .

Image Data Format
Each scanline contains datavMP! device independent format which must be converted using
theVDI call vr_trfm() . Each scanline is padded to the nearest byte. Every plane for each
scanline should appear prior to the beginning of data for the next scanline. This allows
interpreters to decompress and transform the image data a scanline at a time to conserve on time
and memory. A sample ordering for a four-plane image is listed below:

Scanline #0 — Plane #0
Scanline #0 — Plane #1
Scanline #0 — Plane #2
Scanline #0 — Plane #3
Scanline #1 — Plane #0
Scanline #1 — Plane #1
Scanline #1 — Plane #2
Scanline #1 — Plane #3
etc.

Image Compression
Each scanline is individually compressed. This means that compression codes should not
transgress over scanline boundaries. This enables decompression routines to work scanline by
scanline.

Scanline data should consist of two components, a vertical replication count and encoded
scanline data. In practice, however, some older .IMG files may not contain a vertical replication
count for each scan line.

The vertical replication count specifies the number of times the following scanline data should
be used to replicate an image row. It is formatted as follows:

BYTE Contents

0 0x00
1 0x00
2 OxFF
3 Replication Count

Immediately following the vertical replication count is the encoded scanline data. This
run-length encoding can by looking for three separate3atEs. A 0x80BYTE indicates the
beginning of a bit-string item. A bit-string item is formatted as follows:

THE ATARI COMPENDIUM



Native File Formats — C.7

BYTE Contents

0 0x80
1 Byte count ‘n’.
2... ‘n’ BYTESs of
unencoded data.

A pattern-run item begins withBYTE of 0x00. It specifies a fixed number of times that the
pattern which follows it should be repeated. It is formatted as follows:

BYTE Contents

0 0x00
1 Length of run.
2. Pattern bytes

(length of pattern is
determined by
header WORD
#3).

Finally, a solid-run item begins with any otf®fTE code. If the high order bit is set then this
indicates a run of black pixels, otherwise it indicates a run of white pixels. The lower 7 bits of
the byte indicates the length of the run in bytes. For exanipfd & code of 0x83 indicates a

run of 24 black pixels (3 bytes).

The .FNT File Format

Filenames ending with the extension ‘.FNT’ represent bitmap font files. These files may be
utilized by loading them through any versiofdPOS, FNT files are composed of a file header,
font data, a character offset table, and (optionally) a horizontal offset table.

The FNT Header
Font files begin with a header 8'TE s long.WORD andLONG format entries in the header
must be byte-swapped as they appear in Intel (‘Little Endian’) format. The font header is
formatted as follows:

BYTE(s) \ Contents Related VDI Call
0-1 Face ID (must be unique). vat_name()
2-3 Face size (in points). vst_point()

4-35 Face name. vgt_name()

36 — 37 Lowest character index in face vqt_fontinfo()

(usually 32 for disk-loaded fonts).

38-39 Highest character index in face. vqt_fontinfo()

40 -41 Top line distance expressed as a vat_fontinfo()

positive offset from baseline.

42 — 43 Ascent line distance expressed as a | vqt_fontinfo()

positive offset from baseline.

44 — 45 Half line distance expressed as a vqt_fontinfo()

positive offset from baseline.

46 — 47 Descent line distance expressed as vat_fontinfo()

a positive offset from baseline.

THE ATARI COMPENDIUM



C.8 — Native File Formats

48 — 49 Bottom line distance expressed as a | vqt_fontinfo()
positive offset from baseline.
50 -51 Width of the widest character. N/A
52 - 53 Width of the widest character cell. vqt_fontinfo()
54 — 55 Left offset. vqt_fontinfo()
56 — 57 Right offset. vqt_fontinfo()
58 — 59 Thickening size (in pixels). vqt_fontinfo()
60 — 61 Underline size (in pixels). vqt_fontinfo()
62 - 63 Lightening mask (used to eliminate N/A
pixels, usually 0x5555).
64 — 65 Skewing mask (rotated to determine | N/A
when to perform additional rotation
on a character when skewing, usually
0x5555).
66 — 67 Font flags as follows: N/A
Bit Meaning (if Set)
0  Contains System Font
1  Horizontal Offset
Tables should be used.
2 Font data need not be
byte-swapped.
3 Fontis mono-spaced.
68-71 Offset from start of file to horizontal vat_width()
offset table.
72-75 Offset from start of file to character vat_width()
offset table.
76 -179 Offset from start of file to font data. N/A
80—-81 Form width (in bytes). N/A
82 -83 Form height (in scanlines). N/A
84 - 87 Pointer to the next font (set by GDOS | N/A
after loading).

Font Data

The binary font data is arranged on a single raster form. The raster’s height is the same as the
font's height. The raster’s width is the sum of the character width’s padded to eNd@RR

boundary.

There is no padding between characters. Each character may &¥¢Fagoundaries. Only
the last character in a font is padded to make the width of the form end on dM@Réh

boundary.

If bit #2 of the font flags header item is cleared, 8&€PRD in the font data must be byte-

swapped.

THE ATARI

COMPENDIUM




Native File Formats — C.9

Character Offset Table
The Character Offset Table is an arrayM$PRDs which specifies the distance (in pixels) from
the previous character to the next. The first entry is the distance from the start of the raster form
to the left side of the first character. One succeeding entry follows for each character in the font
yielding (number of characters + 1) entries in the table. Each entry must be byte-swapped as it
appears in Intel (‘Little Endian’) format.

Horizontal Offset Table
The Horizontal Offset Table is an optional array of positive or negétW&D values which
when added to the values in the character offset table yield the true spacing information for each
character. One entry appears in the table for each character. This table is not often used.

The .RSC File Format

Resource files contain application specific data which is generally loaded at run-time. RSC files
containOBJECT trees (see the discussion of PBJECT structure irChapter 6:AES),
strings, and images.

Two resource file formats are currently supporf€ds versions less than 4.0 support the
original RSC format whild OS 4.0 and greater will now support the older format and a new
extensible format. The original format will be discussed first followed by an explanation of the
changes incurred by the newer format.

The RSC Header
Resource files begin with an Y8ORD header as follows:

WORD \ Field Name \ Contents

0 rsh_vrsn Contains the version number of the
resource file. This value is 0x0000 or
0x0001 in old format RSC files and has
the third bit set (i.e. 0x0004) in the new
file format.

1 rsh_object Contains an offset from the beginning of
the file to the OBJECT structures.

2 rsh_tedinfo Contains an offset from the beginning of
the file to the TEDINFO structures.

3 rsh_iconblk Contains an offset from the beginning of
the file to the ICONBLK structures.

4 rsh_bitblk Contains an offset from the beginning of
the file to the BITBLK structures.

5 rsh_frstr Contains an offset from the beginning of
the file to the string pointer table.

6 rsh_string Contains an offset from the beginning of
the file to the string data.

7 rsh_imdata Contains an offset from the beginning of
the file to the image data.

8 rsh_frimg Contains an offset from the beginning of
the file to the image pointer table.

THE ATARI COMPENDIUM



C.10 — Native File Formats

9 rsh_trindex Contains an offset from the beginning of
- the file to the tree pointer table.

10 rsh_nobs Number of OBJECT s in the file.

11 rsh_ntree Number of object trees in the file.

12 rsh_nted Number of TEDINFOs in the file.

13 rsh_nib Number of ICONBLK s in the file.

14 rsh_nbb Number of BITBLK s in the file.

15 rsh_nstring Number of free strings in the file.

16 rsh_nimages Number of free images in the file.

17 rsh_rssize Size of the resource file (in bytes). Note
that this is the size of the old format
resource file. If the newer format file is
being used then this value can be used
as an offset to the extension array.

Many of the header entries represent offsets from the beginning of the file. These offsets are
expressed as positive unsign&@RDs making the standard file a maximum size of 64k bytes.

Object Trees
Each RSC file may contain a number of object tres#s. objecicontains an offset from the
beginning of the file to the object trees (stored consecutively)L.DNG array pointed to by
rsh_trindexcan be used to separate the object trees in the list. Thesd antreeLONGss in
this array. Each array entry can be used as an array index to a different object tree. After being
loaded in memory bysrc_load(), the members #@sh_trindexare filled in with the absolute
pointers to their respective trees.

Each individualOBJECT is stored differently on disk then in memory. In the file, pointers to
TEDINFO s, BITBLK s, andCONBLK s are stored as absolute indexes into the arrays of these
members stored in the file. Therefor&alEXT OBJECT whoseob_spedield would

normally point alEDINFO in memory would contain the value 0 if tid&DINFO were the

first TEDINFO contained in the file.

String pointers are represented on disk by their absolute offset from the beginning of the file.

Image pointers iBITBLK andICONBLK' structures are likewise pointed to through absolute
file offsets, not indexes.

THE ATARI COMPENDIUM



Native File Formats — C.11

Free Strings and Images
rsh_frstrpoints to a table dfONG s which each specify an offset from the start of the RSC file
to a free stringrsh_frimgpoints to a table dfONG s which each specify an offset from the
start of the file to 8ITBLK structure.

AES 3.30 Resource Format
Beginning withAES 3.30, the resource file format was altered to allow for @8JECT
types. The onlPBJECT which currently takes advantage of this form&8isCICON,
G_CICONSs can only be stored in files of the new format. The new format can be identified by
the third bit ofrsh_vrsnbeing set.

The Extension Array
Immediately following the old resource data (ugislg_rssizeas an offset) an extension array is
added. The first entry in this array i$@NG containing the true size of the RSC file. Notice
that values such as these are now storé®@&> s to allow the size of RSC files to exceed
64k. Due to the method in which some older resource elements were stored many components c
RSC files will still be constrained to 64k.

Following the file size is &ONG word for each extension present followed by a OL which
terminates the array. Currently only one extension eX#6&QNBLK ) and italwaysoccupies

the first extension slot. As additional extensions are added, a value of -1L for any entry will
indicate that there are no resource elements of that type in the file. For example an extension
array that does contaf?lCONBLK s would look like this.

...basic resource file...
LONG filesize
LONG cicon_offset
OL

The CICONBLK Extension
TheG_CICON object type adds the ability to display color icons fromAk&. Theob_spec
of the object indexes@CONBLK  structure stored in the extension area. EA€HONBLK
must contain a monochrome icon and a color icon for as many different resolutions as desired.
When drawn, théES will pick the icon that is the closest match for the current screen display.
If there is no color icon present which ¥hES is able to convert, the monochrome icon is
displayed.

Thecicon_offsepointer gives an offset from the beginning of the resource file to a file segment
which contains th€ICON data. This segment contain€ECONBLK  pointer table followed
by the actuaCICONBLK s,

TheCICONBLK' pointer table is simply a longword OL for edeCONBLK present in the
file. These pointers are filled in by tA&ES when loaded. The list is terminated by a -1L.

THE ATARI COMPENDIUM



C.12 — Native File Formats

Immediately following the pointer table is one of the following variable length structures for

eachCICONBLK :
ICONBLK monoicon; /* This is the standard monochrome resource. */
LONG n_cicons; /* Number of CICONs of different resolutions. */
WORD mono_data[x]; /* Monochrome bitmap data. */
WORD mono_mask[x]; /* Monochrome bitmap mask. */

CHAR icon_text[12]; /* Icon text (maximum of 12 characters). */

/* for each resolution supported (n_cicons) include the following structure */

WORD num_planes; /* Number of planes this icon was intended for */

LONG col_data; /* Placeholder (calculated upon loading). */

LONG col_mask; /* Placeholder (calculated upon loading). */

LONG sel_data; /* Placeholder (must be non-zero if ‘selected’ data exists */

LONG sel_mask; /* Placeholder (calculated upon loadind). */

LONG next_res; /* 1L = more icons follow */

WORD color_data[n]; /* n WORDs of image data (n is num_planes*WORDs in mono
icon).*/

WORD color_mask[n]; /* n WORDs of image mask. */
WORD select_data[n]; /* Only present if sel_data is non-zero. */
WORD select_mask[n]; /* Only present if sel_data is non-zero. */

CICON Images
All color image data is stored MDI device independent format on disk and is automatically

converted byr_trnfm() uponrsrc_load()!.

Ipuetoa bug in some versions of Y@l the seventdVORD of color icon image data may not contain the value 0x0001. If it does, the
VDI may incorrectly display the icon.

THE ATARI COMPENDIUM



— APPENDIX D —

ERROR CODES

THE ATARI COMPENDIUM



GEMDOS/BIOS Errors — D.3

GEMDOS/BIOS Errors

Upon return from mo$6EMDOS andBIOS functions, register DO contains a longword error

code describing the failure or success of an operationBI®8 uses error codes -1 to -31

while GEMDOS uses error codes -32 and lower. A return value of 0 always indicates success.
The error codes and their meanings are as follows:

Name BIOS # Meaning

E OK 0 No error

ERROR -1 Generic error

EDRVNR -2 Drive not ready

EUNCMD -3 Unknown command

E_CRC -4 CRC error

EBADRQ -5 Bad request

E_SEEK -6 Seek error

EMEDIA -7 Unknown media

ESECNF -8 Sector not found

EPAPER -9 Out of paper

EWRITF -10 Write fault

EREADF -11 Read fault

EWRPRO -12 Device is write protected

E_CHNG -14 Media change detected

EUNDEV -15 Unknown device

EBADSF -16 Bad sectors on format

EOTHER -17 Insert other disk (request)
GEMDOS

Name # Meaning

EINVEN -32 Invalid function

EFILNF -33 File not found

EPTHNF -34 Path not found

ENHNDL -35 No more handles

EACCDN -36 Access denied

EIHNDL -37 Invalid handle

ENSMEM -39 Insufficient memory

EIMBA -40 Invalid memory block address

EDRIVE -46 Invalid drive specification

ENSAME -48 Cross device rename

ENMFIL -49 No more files

ELOCKED -58 Record is already locked

ENSLOCK -59 Invalid lock removal request

ERANGE or -64 Range error

ENAMETOOLONG

EINTRN -65 Internal error

EPLFMT -66 Invalid program load format

EGSBF -67 Memory block growth failure

ELOOP -80 Too many symbolic links

EMOUNT -200 Mount point crossed (indicator)

THE ATARI COMPENDIUM



— APPENDIX E —

ATARI ASCII TABLE

THE ATARI COMPENDIUM



Atari ASCIl Table - E.3

AtariASClITable

All Atari operating system calls use the Atari ASCII character set as the default method for
encoding text strings. Strings encoded in this manner are composed of unsigned bytes
representing a uniquely defined character as the following table specifies. Unless otherwise
noted, dNULL character (ASCII 0) is used to indicate the end of string.

Dec Hex Char Dec Hex Char Dec Hex [ Char

0 0x00 34 0x22 n 68 0x44 D
1 0x01 o 35 0x23 H 69 0x45 E
2 0x02 I 36 0x24 [ 70 0x46 F
3 0x03 o 37 0x25 X 71 0x47 1]
4 0x04 <4 38 0x26 & 72 0x48 H
5 0x05 ) 39 ox27 1 73 0x49 I
6 0x06 [ 40 0x28 ( 74 Ox4A J
7 0x07 m 41 0x29 ] 75 0x4B K
8 0x08 W 42 0x2A * 76 0x4C L
9 0x09 © 43 0x2B + 77 0x4D H
10 OX0A L 44 0x2C , 78 Ox4E H
11 0x0B iy 45 0x2D - 79 Ox4F 1]
12 0x0C [ 46 Ox2E . 80 0x50 P
13 0x0D = a7 Ox2F ) 81 0x51 n
14 OXOE ] 48 0x30 1] 82 0x52 R
15 OXOF I 49 0x31 1 83 0x53 <
16 0x10 ] 50 0x32 i 84 0x54 T
17 0x11 H 51 0x33 3 85 0x55 u
18 0x12 = 52 0x34 4 86 0x56 1]
19 0x13 3 53 0x35 5 87 0X57 H
20 0x14 [~ 54 0x36 ] 88 0x58 w
21 0x15 - 55 0x37 7 89 0x59 Y
22 0x16 -4 56 0x38 8 90 OX5A z
23 0x17 (] 57 0x39 9 91 0x5B [
24 0x18 =] 58 0x3A ' 92 0x5C Y
25 0x19 (=] 59 0x3B F 93 0x5D 1
26 Ox1A a 60 0x3C < 94 OX5E A
27 0x1B E 61 0x3D = 95 OX5F _
28 0x1C - 62 OX3E > 96 0x60 ~
29 0x1D - 63 Ox3F 7 97 0x61 a
30 Ox1E * 64 0x40 = 98 0x62 b
31 OX1F F 65 0x41 A 99 0x63 C
32 0x20 66 0x42 B 100 0x64 d
33 ox21 1 67 0x43 C 101 0x65 e

THE ATARI COMPENDIUM



E.4 — Atari ASCII Table

Dec Hex Char Dec Hex Char Dec Hex Char
102 0x66 ¥ 143 Ox8F -3 184 0xB8 o
103 0x67 g | 144 0x90 E 185 0xB9 ”
104 0x68 h 145 0x91 & 186 OxBA -
105 0x69 i 146 0x92 Ik 187 0xBB T
106 OX6A j 147 0x93 i} 188 OxBC q
107 0x6B k 148 0x94 i} 189 0xBD ]
108 0x6C 1 149 0x95 o 190 OXBE ]
109 0x6D m 150 0x96 i 191 OXBF ™
110 OX6E n 151 0x97 u 192 0xCO i
111 Ox6F o 152 0x98 g | 193 0xC1

112 0x70 p 153 0x99 o 194 0xC2 ]
113 0x71 q 154 Ox9A ] 195 0xC3 1
114 0x72 r 155 0x9B [+ 196 0xC4 |
115 0x73 5 156 0x9C £ 197 0xC5 T
116 0x74 1 157 0x9D ¥ 198 0xC6 il
117 0x75 u 158 OX9E B 199 0xC7 1
118 0x76 T, 159 OX9F ¥ 200 0xC8 T
119 ox77 M 160 OxA0 a 201 0xC9 n
120 0x78 ¥ 161 OxA1 i 202 OXCA 1]
121 0x79 y | 162 OxA2 o 203 OxCB -
122 OX7A z 163 OxA3 u 204 0xCC a
123 0x7B 4 164 OxA4 f 205 0xCD P
124 0x7C 165 OXA5 H 206 OXCE 1]
125 0x7D ¥ 166 0xAG a 207 OxCF J
126 OX7E ~ 167 OxA7 o 208 0xDO [u]
127 Ox7F A 168 0xA8 & 209 0xD1 1|
128 0x80 [ 169 OxA9 - 210 0xD2 1]
129 0x81 i 170 OXAA - 211 0xD3 ¥
130 0x82 é 171 OXAB X 212 0xD4 i
131 0x83 a 172 OXAC X 213 0xD5 1
132 0x84 ] 173 OXAD i 214 0xD6 1]
133 0x85 a 174 OXAE = 215 0xD7 n
134 0x86 F 175 OXAF = 216 0xD8 1
135 0x87 C | 176 0xBO a 217 0xD9 |
136 0x88 ] 177 0xB1 o 218 OxXDA [1]
137 0x89 = 178 0xB2 [} 219 0xDB f
138 Ox8A e 179 0xB3 [} 220 0xDC 9
139 0x8B 1 180 0xB4 [ 221 0xDD =
140 0x8C I 181 0xB5 IE

141 0x8D i 182 0xB6 A

142 OX8E =1 183 0xB7 A




Atari ASCIl Table — E.5

Dec Hex Char
222 OxDE ra
223 OxDF ==
224 OXEO o
225 OXE1 B
226 OXE2 T
227 OXE3 T
228 OXE4 =
229 OXE5 ]
230 OXE6 1]
231 OXE7 T
232 OXES8 Q
233 OXE9 [=]
234 OXEA O
235 OXEB =
236 OXEC il
237 OXED ch
238 OXEE E
239 OXEF n
240 OXFO =
241 OxF1 +
242 OxF2 >
243 OxF3 £
244 OxF4 [
245 OXF5 J
246 OxF6 =
247 OXF7 =
248 OxF8 o
249 0xF9 -
250 OXFA -
251 OxFB o
252 OXFC n
253 OXFD z
254 OXFE E
255 OXFF -

THE ATARI

COMPENDIUM



— APPENDIX F —

IKBD ScaAN CODES

THE ATARI COMPENDIUM



IKBD Scan Codes — F.3

IKBD Scan Codes

TheAES, VDI, andBIOS, all contain functions which return scan codes from the Intelligent
Keyboard ControllerlKBD ). These scan codes can be used to determine exactly which key was
struck (not simply the ASCII value).

One thing that must be considered when relying on scan codes is that they identify a physical
vector on the keyboard, not a key definition. The scancode for a letter on an American keyboard,
for instance, may be different than the scancode for the same letter on a German keyboard. The
XBIOS functionKeytbl() can be used to look up the ASCII value assigned to a scancode to
ensure that keystrokes are correctly processed.

Scancodes for keyboard modifieBi(FT, ALT, etc.) are never returned by an OS call. However,
when handling the IKBD directly, the following scancodes may be encountered:

Left-Shift 42 (0x2A)
Right-Shift 54 (0x36)
Control 29 (0x1D)
Alternate 56 (0x38)
Caps Lock 58 (0x3A)

The values shown in the following table containliBD scancode of each keyboard key in the
highBYTE and the ASCII code in the IoBYTE. Keys with no corresponding ASCII value will
always have zero as the low byte. These values are valid for all Atari computers with US

keyboards:

Key | Unshifted | Key | Shifted | WCTRL | wALT
a 0x1E61 A 0x1E41 0x1E01 0x1E00
b 0x3062 B 0x3042 0x3002 0x3000
c 0x2E63 c 0x2E43 0x2E03 0x2E00
d 0x2064 D 0x2044 0x2004 0x2000
e 0x1265 E 0x1245 0x1205 0x1200
f 0x2166 F 0x2146 0x2106 0x2100
g 0x2267 G 0x2247 0x2207 0x2200
h 0x2368 H 0x2348 0x2308 0x2300
i 0x1769 | 0x1749 0x1709 0x1700
j 0x246A J 0x244A 0x240A 0x2400
k 0x256B K 0x254B 0x250B 0x2500
| 0x266C L 0x264C 0x260C 0x2600
m 0x326D M 0x324D 0x320D 0x3200
n 0x316E N 0x314E 0x310E 0x3100
o 0x186F 0 0x184F 0x180F 0x1800
p 0x1970 P 0x1950 0x1910 0x1900
q 0x1071 Q 0x1051 0x1011 0x1000
r 0x1372 R 0x1352 0x1312 0x1300
s 0x1F73 S 0x1F53 0x1F13 0x1F00
t 0x1474 T 0x1454 0x1414 0x1400

THE ATARI COMPENDIUM



F.4 — IKBD Scan Codes

Key Unshifted Key Shifted w/CTRL W/ALT

u 0x1675 U 0x1655 0x1615 0x1600

v 0x2F76 \ 0x2F56 0x2F16 0x2F00

w 0x1177 W 0x1157 0x1117 0x1100
X 0x2D78 X 0x2D58 0x2D18 0x2D00

y 0x1579 Y 0x1559 0x1519 0x1500
z 0x2C7A z 0x2C5A 0x2C1A 0x2C00

1 0x0231 ! 0x0221 0x0211 0x7800

2 0x0332 @ 0x0340 0x0300 0x7900

3 0x0433 # 0x0423 0x0413 0x7A00

4 0x0534 $ 0x0524 0x0514 0x7B00
5 0x0635 % 0x0625 0x0615 0x7C00
6 0x0736 N 0x075E 0x071E 0x7D00

7 0x0837 & 0x0826 0x0817 0x7E00

8 0x0938 * 0x092A 0x0918 0x7F00

9 0x0A39 ( 0x0A28 0x0A19 0x8000

0 0x0B30 ) 0x0B29 0x0B10 0x8100

- 0x0C2D 0x0C5F 0x0C1F 0x8200

= 0x0D3D + 0x0D2B 0x0D1D 0x8300
0x2960 ~ 0x297E 0x2900 0x2960
\ 0x2B5C | 0x2B7C 0x2B1C 0x2B5C

[ 0x1A5B { 0x1A7B 0x1A1B 0x1A5B
] 0x1B5D } 0x1B7D 0x1B1D 0x1B5D

; 0x273B : 0x273A 0x271B 0x273B

' 0x2827 " 0x2822 0x2807 0x2827
, 0x332C < 0x333C 0x330C 0x332C

. 0x342E > 0x343E 0x340E 0x342E

/ 0x352F ? 0x353F 0x250F 0x352E
SPACE 0x3920 0x3920 0x3900 0x3920
ESC 0x011B 0x011B 0x011B 0x011B
BKSP 0xO0E08 0xOE08 0x0E08 0x0E08
DEL 0x537F 0x537F 0x531F 0x537F
RETURN 0x1C0OD 0x1COD 0x1COA 0x1C0OD
TAB 0x0F09 0x0F09 0x0F09 0x0F09
Nmpad ( 0x6328 0x6328 0x6308 0x6328
Nmpad ) 0x6429 0x6429 0x6409 0x6429
Nmpad / 0x652F 0x652F 0x650F 0x652F
Nmpad * 0x662A 0x662A 0x660A 0x662A
Nmpad 0x4A2D 0x4A2D 0x4A1F 0x4A2D
Nmpad + 0x4E2B 0x4E2B 0x3E0B 0x4E2B
Nmpad . Ox712E 0x712E Ox710E 0x712E
Nmpad ENTER 0x720D 0x720D 0x720A 0x720D
Nmpad 0 0x7030 0x7030 0x7010 ox70301
Nmpad 1 0x6D31 0x6D31 0x6D11 ox6D311
Nmpad 2 Ox6E32 Ox6E32 0x6E00 0x6E321
Nmpad 3 0x6F33 0x6F33 O0x6F13 0x6F33!
Nmpad 4 0x6A34 0x6A34 0x6A14 0x6A341
Nmpad 5 0x6B35 0x6B35 0x6B15 0x6B351
Nmpad 6 0x6C36 0x6C36 0x6C1E 0x6C361

Iatari computers witlfOS 2.0 or higher do not generate scancodes for the ALT-Numeric Keypad numbers. Instead they allow the user
to enter any key by holding ALT while typing the ASCII code number and then releasing ALT to generate the keypress.

THE ATARI COMPENDIUM



IKBD Scan Codes — F.5

Key | Unshifted | Key | Shifted | wWCTRL | wALT
Nmpad 7 0x6737 0x6737 0x6717 0x6737%
Nmpad 8 0x6838 0x6838 0x6818 0x68381
Nmpad 9 0x6939 0x6939 0x6919 0x69391

HELP 0x6200 0x6200 0x6200 AIt-HeIpZ

UNDO 0x6100 0x6100 0x6100 0x6100

INSERT 0x5200 0x5230 0x5200 Left Mouse
Button
CLR/ HOME 0x4700 0x4737 0x7700 Right
Mouse
Button3
UP-ARROW 0x4800 0x4838 0x4800 Mouge
Up
DOWN-ARROW 0x5000 0x5032 0x5000 Mouse
Down3
LEFT-ARROW 0x4B00 0x4B34 0x7300 Mouse
Left3
RIGHT-ARROW 0x4D00 0x4D36 0x7400 Mouse
Right3
F1 0x3B00 F11 0x5400 0x3B00 0x3B00
F2 0x3C00 F12 0x5500 0x3C00 0x3C00
F3 0x3D00 F13 0x5600 0x3D00 0x3D00
F4 0x3E00 F14 0x5700 0x3E00 0x3E00
F5 0x3F00 F15 0x5800 0x3F00 0x3F00
F6 0x4000 F16 0x5900 0x4000 0x4000
F7 0x4100 F17 0x5A00 0x4100 0x4100
F8 0x4200 F18 0x5B00 0x4200 0x4200
F9 0x4300 F19 0x5C00 0x4300 0x4300
F10 0x4400 F20 0x5D00 0x4400 0x4400

2This key does not generate a keycode, rather it triggers the screen dump interrupt.
3 Keycodes marked by an asterisk are mouse-equivalent keys and generate mouse events rather than keycodes.

THE ATARI COMPENDIUM



— APPENDIX G -

Speedo Fonts

THE ATARICOMPENDIUM



The Speedo Font Header

This section provides detailed information about the contents of the
buffer returned by the vqt_fontheader() call. First, here are some
general notes about the values you will be using:

Character strings are only NULL terminated if they do not
completely fill their assigned field.

All integers are signed (unless otherwise noted) and in Big-Endian
format (most significant byte first).

Outline Resolution Units (ORUs) are the basic unit of measurement
for Speedo characters. There are usually 1000 ORUs per Em square
(width of the letter 'M') though you can check this value in the font
header itself.

6-byte Transformation Parameters consist of a WORD Y offset
(expressed in ORUs) followed by a UWORD X-scaling factor
(expressed in units of 1/4096) and a similar UWORD Y-scaling
factor (also expressed in units of 1/4096).

The following table details the information returned by the
vqgt_fontheader() function call:

Offset | Field Meaning
0 Format Identifier An 8-byte character string consisting of "D1.0" CR LF NULL NULL
8
Font Size A LONG specifying the size of the font file in bytes.
12

Minimum Font Buffer Size A LONG specifying the minimum size buffer required to load the non-
image data of the font.

16
Minimum Character Buffer Size A WORD specifying the minimum size buffer required to hold
the largest character in the font.
18
Header Size A WORD specifying the size of the font header.
20
Font ID A WORD containing the Bitstream font ID number.
22
Font Version Number A WORD containing the font revision number.
24
Font Full Name A 70-byte character string containing the full name of the font.
94
Manufacturing Date A 10-byte character string containing the manufacturing date of the font
as DD Mon YY.
104
Character Set Name A 66-byte character string containing the name of the character set used

for the font (ex: "Bitstream International Character Set").
170



Vendor ID A 2-byte character string identifying the manufacturer of the font. This is usually
the first two characters in the font filename. Bitstream fonts use 'BX".
172

Character Set ID A 2-byte character string identifying the character set used for this font. This is
usually the second 2 characters in the font filename. The Bitstream International Character Set is '00".
174

Copyright Notice A 78-byte character string containing the copyright notice for the font.
252

Number of Character Indexes in Character Set A WORD specifying the number of character
indexes available in the font's character set. This does not necessarily mean that every index is actually used.
254

Total Number of Character Indexes in Font A WORD indicating the number of character indexes
available in the font's character set in addition to any supplementary characters needed to create compound
characters.

256

Index of First Character A WORD containing the first available character in a font.
258

Number of Kerning Tracks A WORD specifying the total number of kerning tracks.
260

Number of Kerning Pairs A WORD specifying the total number of kerning pairs.
262

Font Flags Bit O of this BYTE is set to indicate extended mode. Extended mode fonts require a
higher quality of font rendering (such as chess pieces). If Bit 0 is clear, the font is in Compact mode (the
default). Bits 1-7 are currently reserved.

263

Classification Flags A BYTE value whose bits indicate the font classification as follows: Bit
Meaning
0 Italic
1 Monospace
2 Serif
3 Display
4-7 Reserved
264

Family Classification A BYTE indicating the family classification of the font as follows: Value
Meaning
0 Don't Care
1 Serif
2 Sans Serif
3 Monospace
4 Script
5 Decorative
265

Font Form Classification A BYTE classifying the width and weight of characters in the font as
follows: Bits 0-3 Meaning
0-3 (Reserved)

4 Condensed
5 (Reserved for 34 condensed)
6 Semi-Condensed

7 (Reserved for 14 condensed)

8 Normal



9 (Reserved for 34 expanded)
10 Semi-Expanded
11 (Reserved for 14 expanded)
12 Expanded
13-15 (Reserved)
Bits 4-7 Meaning
0 (Reserved)

1 Thin

2 Ultralight

3 Extralight

4 Light

5 Book

6 Normal

7 Medium

8 Semibold

9 Demibold

10 Bold

11 Extrabold

12 Ultrabold

13 Heavy

14 Black

15 (Reserved)

266

Short Font Name A 32-byte character string containing the abbreviation of the name of the
Postscript compatible font.

298

Short Face Name A 16-byte character string containing the abbreviation of the typeface family
name.
314

Font Form A 14-byte character string containing the font form classification (as above).
328

Italic Angle A WORD indicating the number of 1/256 degrees that characters are slanted
clockwise.
330

ORUs per Em A WORD indicating the number of Outline Resolution Units (ORUs) per Em.
332

Width of Word Space A WORD value which expresses the width of a 'word space' (i.e. ASCII 32)
in ORUs.
334

Width of Em Space A WORD value which expresses the width of Em space in ORUs (this is not
always the same as the number of ORUs in the letter 'M’).
336

Width of En Space A WORD value which expresses the width of En space in ORUs. This is always half
the width of Em space (not the width of the letter 'N').
338

Width of Thin Space A WORD value which expresses the width of 'thin space' in ORUs. This is
the width applied between two words and is normally the same as 'word space'.



340

Width of Figure Space A WORD value which expresses the width of 'figure space' in ORUs. This
is the width of tabular characters in the font.
342

XMIN (Min X coordinate in font) A WORD indicating the minimum X coordinate used in the font.
344

YMIN (Min Y coordinate in font) A WORD indicating the minimum Y coordinate used in the font.
346

XMAX (Max X coordinate in font) A WORD indicating the maximum X coordinate used in the font.
348

YMAX (Max Y coordinate in font) A WORD indicating the maximum Y coordinate used in the font.
350

Underline Position A WORD value indicating the distance the center of an underline should
be applied from the baseline of the font.
352

Underline Thickness A WORD value indicating the thickness an underline applied to this font
should be (in ORUs).
354

Small Caps A 6-byte Transformation Parameter used for small capitals (eg: abcdefg).
360

Display Superiors A 6-byte Transformation Parameter used for display superiors (eg: $350).
366

Footnote Superiors A 6-byte Transformation Parameter used for footnote superiors (eg: see
footnotel).
372

Alpha Superiors A 6-byte Transformation Parameter used for alpha superiors (eg: Sra).
378

Chemical Inferiors A 6-byte Transformation Parameter used for chemical inferiors (eg: H20).
384

Small Numerators A 6-byte Transformation Parameter used for small numerators (eg: ).
390

Small Denominators A 6-byte Transformation Parameter used for small denominators (see
above).
396

Medium Numerators A 6-byte Transformation Parameter used for medium numerators (eg: ).
402

Medium Denominators A 6-byte Transformation Parameter used for medium denominators (see
above).
408

Large Numerators A 6-byte Transformation Parameter used for large numerators (eg: ).
414

Large Denominators A 6-byte Transformation Parameter used for large denominators (see

above).



Speedo Character Map — G.7

The Bitstream International CharacterSet

Thevst_charmap() andvagt_get_table()functions provide access to the entire Speedo
character set by specifying character$¥§3RD size Bitstream index values rather tRATE
size ASCII values. The following table lists the available Bitstream Speedo index and 1D
numbers.

All current Atari calls refer to Bitstream indexes rather than character ID. There is an important
difference between these two. Characters never change ID numbers between fonts, however the
may change index positions. When specifying character indexes with Atari calls it is important

to note which character set the font was created with to provide accurate mapping. The
following table lists indexes for the most common set, the Bitstream International Character Set
represented in the typeface ‘Swiss 721’

IDX | ID Char IDX | ID Char IDX | ID Char

o | 32 5 | 37 % 10 | 42 *

1 33 ' 6 38 & 11 43 |
n

2 34 I I 7 39 , 12 44
)
3 35 # 8 40 13 45
-
4 36 9 41 14 46

THE ATARI COMPENDIUM



G.8 — Speedo Character Map

IDX ID Char IDX ID Char IDX ID Char
15 47 23 55 7 31 63 f >
| |
16 48 O 24 56 8 32 64 @
17 49 1 25 57 9 33 65 A
18 50 : ! 26 58 | 34 66 B
| |
19 51 3 27 59 | 35 67 ( :
20 52 4 28 60 < 36 68 D
21 53 29 61 — 37 69
I
22 54 6 30 62 > 38 70 F

THE ATARI

COMPENDIUM




Speedo Character Map — G.9

IDX | ID Char IDX | ID Char IDX | ID Char

39 71 47 79 O 55 87 W
40 72 48 80 P 56 88 X
41 73 49 81 Q 57 89 Y
42 74 J 50 82 R 58 90 Z
43 75 K 51 83 S 59 91 [

44 76 L 52 84 T 60 92 \

45 77 M 53 85 U 61 93 ]

46 78 N 54 86 V 62 94 A

THE ATARI COMPENDIUM



G.10 — Speedo Character Map

IDX ID Char IDX ID Char IDX ID Char
63 95 71 103 79 111 O
I

64 96 \ 72 104 80 112 p
|

65 97 a 73 105 I 81 113 q
]

66 98 b 74 106 J 82 114 r

67 99 C 75 107 k 83 115 S

68 100 d 76 108 84 116 t

69 101 e 77 109 m 85 117 l |

70 102 f 78 110 n 86 118 V

THE ATARI

COMPENDIUM




Speedo Character Map — G.11

IDX | ID Char IDX | ID Char IDX | ID Char

- 1
95 129 f I 103 137
96 130 f I 104 138 ‘ ‘

87 119

88 120

8o | 121 97 | 131 105 | 139 )
)
91 | 123 99 | 133 107 | 141
J)

92 124

100 | 134 o 108 | 142
A)O

101 135 / 109 143

93 125

W
X
y
{
|
}

94 126 102 136 110 144

w +H —+

THE ATARI COMPENDIUM



G.12 — Speedo Character Map

IDX ID Char IDX ID Char IDX ID Char
| |
111 145 119 153 g 127 161 :
|
112 146 120 154 m 128 162 l
(o]
y 4
113 147 121 155 129 163
Y 4
114 148 E 122 156 I 130 164
N\
115 149 123 157 < 131 165
N\
116 150 E 124 158 > 132 167
O N
117 151 a 125 159 < < 133 168
N
118 152 % 126 160 >> 134 169

THE ATARI

COMPENDIUM




Speedo Character Map — G.13

IDX | ID Char IDX | ID Char IDX | ID Char

_—
|} |
135 170 143 178 151 186 1 4
[} |
A4
136 171 144 179 152 187 3 8
4
~
137 172 145 180 153 188 1 2
~ o
138 173 146 181 154 189 5 8
\"4
139 174 147 182 155 190 3 4
\"4
140 175 148 183 156 191 7 8
141 176 149 184 157 192 1 3
S
-
142 177 150 185 1 8 158 193 2 3

THE ATARI COMPENDIUM



G.14 — Speedo Character Map

IDX ID Char IDX ID Char IDX ID Char
J

159 194 167 202 175 231
160 195 2 168 203 O 176 233 J
161 196 3 169 225 D 177 234 q
162 197 4 170 226 t 178 235 e
163 198 5 171 227 A 179 236 I n
164 199 6 172 228 E 180 237 -

]
165 200 7 173 229 d. 181 238

]
166 201 8 174 230 * 182 239

THE ATARI

COMPENDIUM




Speedo Character Map — G.15

IDX | ID Char IDX | ID Char IDX | ID Char

V{4 y 4
183 240 191 248 199 326 O
|
V{4 V 4
184 | 241 192 | 249 _ 200 | 327 O
L y 4 AN
185 242 193 320 n 201 328 O
y 4 \
186 243 194 321 N 202 329 O
—_—
~ N
187 244 195 322 n 203 330 O
n
~ N
188 245 196 323 N 204 331 O
b
\V4 1]
189 246 197 324 n 205 332 O
e
\V4 1]
190 247 198 325 N 206 333 O
(4

THE ATARI COMPENDIUM



G.16 — Speedo Character Map

IDX 1D Char IDX 1D Char IDX 1D Char
~ 1] V 4
207 334 O 215 342 l | 223 350 y
~ 1] Y 4
208 335 O 216 343 l ' 224 351 Y
Y 4 ~ 1
209 | 336 l l 217 | 344 l l 225 | 353 1
Y 4 ~
210 | 337 l ' 218 | 345 l ' 226 | 354 l
N\ (o) 3
211 | 338 l l 219 | 346 l l 227 | 355 o
\ o
212 339 l ' 220 347 l ' 228 362 )
N 1]
213 340 l | 221 348 y 229 363 (
N 1]
I
214 341 l ' 222 349 Y 230 366

THE ATARI

COMPENDIUM




Speedo Character Map — G.17

IDX | ID Char IDX | ID Char IDX | ID Char

N\ N
231 | 367 / 239 | 375 247 | 385

232 368 240 376 248 386

~
233 369 I 241 377 249 387

250 388

234 370 I 242 378
[} |

Y 4
\'4
235 | 371 243 | 379 E 251 | 389

>l CD\ m\ CD/ m/ CD>

1] \V4

236 372 I 244 380 e 252 390
N 1]

237 373 I 245 383 E 253 391

N Em

238 374 I 246 384 e 254 392

Qn

THE ATARI COMPENDIUM



G.18 — Speedo Character Map

DX D Char DX D Char DX D Char
| B |
b
255 | 393 263 | 404 n 271 | 424
| N |
256 | 394 a 264 | 410 | 272 | 425
N
257 | 395 A 265 | 411 " 273 | 426
| . |
N
258 | 396 a 266 | 414 Pt 274 | 427 ¥
\
| I |
259 | 397 A 267 | 418 275 | 433 I
AN
260 | 398 a 268 | 421 276 | 434
V 4
261 | 399 A 269 | 422 J 277 | 435 I
V4
262 | 400 a 270 | 423 278 | 436 n
H B N

THE ATARI

COMPENDIUM




Speedo Character Map — G.19

IDX | ID Char IDX | ID Char IDX | ID Char

279 | 442 287 | 453 — 205 | 461 A
I
|
280 | 446 ﬁ I 288 | 454 ¢ 296 | 462 A
| |
281 | 447 289 | 455 P~ 297 | 463
282 | 448 290 | 456 > 208 | 464 €
283 | 449 201 | 457 < 299 | 465 r \
I
284 | 450 X 292 | 458 ‘ 300 | 470 (
285 | 451 ° 293 | 459 5 301 | 471
I
[ ]
286 | 452 _I_ 294 | 460 ; 302 | 476 V-

THE ATARI COMPENDIUM



G.20 — Speedo Character Map

IDX ID Char IDX ID Char IDX ID Char

303 478 w 311 488 — 319 522 a
304 479 - 312 489 —I— 320 523 B
305 480 313 500 r 321 526 6
|
306 481 I 314 501 A 322 527 €
307 482 I 315 505 @ 323 529 r]
308 484 . 316 515 z 324 530 9
309 486 _I 317 518 ¢ 325 534 u
310 487 I_ 318 521 Q 326 538 n

THE ATARI COMPENDIUM



Speedo Character Map — G.21

IDX | ID Char IDX | ID Char

IDX | ID Char

327 | 540 O- 335 | 567 343 | 577 .
328 | 542 T 336 | 568 344 | 579 n
329 | 544 ¢ 337 | 570 ’ 345 | 581 >
330 | 562 ﬁ 338 | 571 , ’ 346 | 582 4
331 | 563 @ 339 | 572 O 347 | 583 v
332 | 564 © 340 | 573 348 | 584 A
333 | 565 ® 341 | 575 . 349 | 585 6\
334 | 566 ™ 342 | 576 ‘ 350 | 586 9

THE ATARI COMPENDIUM



G.22 — Speedo Character Map

DX D Char DX D Char DX D Char
Y 4
351 | 587 ' 359 | 595 367 | 609 Z
y 4
352 | 588 * 360 | 598 Q_ 368 | 610 Z
A4
353 | 589 361 | 599 @ 369 | 611 Z
\V4
354 | 590 A 362 | 600 @ 370 | 612 Z
, | |

355 | 591 363 | 605 371 | 613
t Z
| |

b

356 | 592 I 364 | 606 372 | 614
HENR N A
%7 | 5% | mmm 365 | 607 373 | 619 a

HENR

N |\
358 | 594 366 | 608 Y 374 | 620 A

THE ATARI

COMPENDIUM




Speedo Character Map — G.23

IDX | ID Char IDX | ID Char IDX | ID Char

—-—
V4
375 621 C 383 631 391 643
V4
J
376 622 384 634 g 392 644
)
\"4
377 623 C 385 637 393 645
J J
\4 V4
-
378 624 < 386 638 I 394 646 I
— V 4
J
379 625 387 639 395 647
— -—
| |
380 628 d 388 640 I 396 648 I
[ | | -_—
381 629 D 389 641 397 649 I
— | |
382 630 e 390 642 398 650
J

THE ATARI COMPENDIUM



G.24 — Speedo Character Map

IDX D Char IDX 1D Char IDX 1D Char
399 | 651 I 407 | 662 r 415 | 671 S
J J )
_— [r—
400 | 653 N 408 | 663 416 | 674 t
J)
_—
7/
401 | 654 n 409 | 664 S 417 | 675
)
V4
402 | 655 N 410 | 665 S 418 | 676 t
J J
1 /4 A4
403 | 656 O 411 | 666 S 419 | 677
J
7 A4
_—
404 | 657 O 412 | 667 S 420 | 678 l l
—_— _—
\'4
405 | 660 r 413 | 669 421 | 679
\'4
”
406 | 661 414 | 670 S 422 | 680 l l
)

THE ATARI

COMPENDIUM




Speedo Character Map — G.25

IDX | ID Char IDX | ID Char IDX | ID Char

V{4 (Y]
423 681 431 1223 439 1377
N y 4 ~
424 682 W 432 1364 440 1380
N y 4 ~
425 683 W 433 1365 441 1381
A4 N A4
426 684 y 434 1368 442 1384
A4 AN A4
427 685 Y 435 1369 443 1385
FaN
428 693 436 1372 444 1388
S
FaN
_—
429 695 m 437 1373 445 1392
—_—
[ N
430 797 438 1376 446 1393

THE ATARI COMPENDIUM



G.26 — Speedo Character Map

IDX ID Char IDX ID Char IDX ID Char
A4 r7
447 | 1396 455 | 1747 463 | 1771
e
A4 V{4
448 | 1397 456 | 1748 464 | 1776
(4
o 5
449 | 1400 457 | 1751 465 | 1996
o J
450 | 1401 458 | 1752 466 | 2022
J
451 | 1661 459 | 1753 467 | 2028
452 | 1667 ° 460 | 1756 468 | 2034
- 3
]
453 | 1743 461 | 1761 469 | 2040
. 4
]
454 | 1744 462 | 1766 470 | 2046
; )

THE ATARI

COMPENDIUM




Speedo Character Map — G.27

IDX | ID Char

IDX | ID Char

IDX | ID Char

\"4
471 2052 479 2984 g 487 4472
\"4
472 2058 480 2990 ‘ 488 4488 J
_— ,
473 2064 481 3396 n 489 4489
N\ 5
474 2070 482 3580 r 490 4490
\
475 2076 483 3586 R 491 4524 r
— -—
476 2647 a 484 3704 S 492 4736 I
-—
477 2653 485 3738 493 4744
P~
478 2776 486 3744 S 494 4903 |

THE ATARI

COMPENDIUM




G.28 — Speedo Character Map

IDX ID Char IDX ID Char IDX ID Char

511 | 5423 |
512 | 5424 |

495 | 5042 503 | 5371

496 | 5085

497 | 5147 £ 505 | 5403 O
. 506 | 5408 E 514 | 5428

504 | 5372

513 | 5427

498 | 5196

499 | 5243 O 507 | 5410 515 | 5429

500 | 5244 ‘ 508 | 5418 516 | 5430

501 | 5249 509 | 5421 517 | 5431

502 | 5262 8 510 | 5422 518 | 5432

THE ATARI COMPENDIUM



Speedo Character Map — G.29

IDX | ID Char IDX | ID Char IDX | ID Char

519 | 5434 527 | 5444 : 535 | 5466
520 | 5435 528 | 5445 — 536 | 5467

—| _
521 | 5436 : 529 | 5446 537 | 5468 ]
522 | 5437 — 530 | 5461 538 | 5510 a
523 | 5438 : 531 | 5462 539 | 5514 e

[ ]
524 | 5441 532 | 5463 | | 540 | 5518 I
525 | 5442 533 | 5464 541 | 5521 I
526 | 5443 534 | 5465 542 | 5522 I I I

THE ATARI COMPENDIUM



G.30 — Speedo Character Map

IDX 1D Char ) Char ) Char
543 | 5523 n 551 | 5539 — 559 | 5554 :
544 | 5524 O 552 | 5540 J_l 560 | 5594
545 | 5527 r 553 | 5541 — 561 | 5595
546 | 5528 S 554 | 5542 I_I_ 562 | 5596
547 | 5529 t 555 | 5543 — 563 | 6458 @
548 | 5536 _I_ 556 | 5544
I.l_

549 | 5537 557 | 5545 —

_I_ —
550 | 5538 558 | 5548

il

THE ATARI

COMPENDIUM




— APPENDIX H —

THE DRAG & DROP
PROTOCOL

THE ATARI COMPENDIUM



Overview — H.3

Overview

The drag and drop protocol provides a simple method of data transmission between application
that support it. Because this protocol relies on the use of named pipes, the use of the drag and
drop protocol is only possible unddultiTOS .

A drag and drop operation involves the user selecting a piece of program data (or perhaps
several pieces) in the ‘originator’ application and dragging that piece of data with the mouse to
the window of a ‘recipient’ application. This appendix will detail the drag and drop protocol
from the perspective of the originator and the recipient.

You should note that during a drag and drop operation, neither application should lock the screel
with wind_update().

The Originator

When the user selects an object or group of objects, drags the mouse (and objects), and releas
the mouse button outside one of your application window's work areas, the operation is a
candidate for a drag and drop operation.

When this action is initiated by the user, your application shoulsvisll find() to determine

the window handle of the window at the drop location. From the window handle you can use
wind_get() to determine the owner’s application identifier which will be needed to send an
AES message to the application.

At this point you should udésignal()to causeSIGPIPE (13) signals to be ignored and create a
pipe named DRAGDROP.xx where ‘xx’ is a unique two character combination. The pipe
created should have its ‘hidden’ attribute set. This causes reads td&@ftmhen the other

end of the pipe is closed. To ensure your value is unique, try using the ASCII representation of
your own application ID. If th&create()fails, try a new combination until you find one that is
available.

Now useappl_write() to send a\ES message to the application whose window was targeted
(the recipient) as follows:

WORD Contents

0 AP_DRAGDROP (63)

Originator’s application id.

0

Window handle of the target.

Mouse X position at time of drop.

Mouse Y position at time of drop.

Keyboard shift status at time of drop.

2 character pipe ID packed into a WORD (this is the file
extension of the created pipe).

~N|oO |0~ |WIN (-

THE ATARI COMPENDIUM



H.4 — The Drag & Drop Protocol

The originator application should now Usgelect()to wait for either a write to the pipe or a
timeout (3 to 4 seconds should be sufficient). If the call times out then the drag and drop
operation failed and the pipe should be closed, otherwise, read one byte from the pipe which
should be eithePD_OK (0) orDD_NAK (1).

DD_OK means that the recipient wishes to continue the exch@abg®AK means that the user
dropped the data on a window not prepared to accept data and that the pipe should be closed
and the drag and drop operation aborted.

On receipt of HD_OK, the originator should then read an additionaB32ZEs from the pipe.

These 3BYTESs consist of eight BYTE data type values that the recipient understands in

order of preference. This list is not necessarily complete and the originator should not abort
simply because it can’t handle any of the listed data types. If less than eight data types are listed
by the recipient the 32 bytes will be padded with zeros.

Data type values are four-byte ASCII values that represent data that might be exchanged. When
these values are prefixed with a period, they represent data in a format that might be stored in a
disk file. Examples of these are ".IMG’, ".TXT’, and *.GEM’. Some data types such as ‘ARGS’

or ‘PATH’ are not prefixed with a period because they represent special data.

The desktop sends an ‘ARGS’ drag and drop message to an application window when the user
drags a group of file icons to an application window. The ‘ARGS’ data consists of a standard
command line with the names of each file. ‘ARGS’ data should be translated fobfile

systems. Characters within single quotes should be interpreted as a single filename. Two single
guotes in a row should be interpreted as a single quote.

After the originator has consulted the 32 byte list or preferred file types, it should construct its
own structure consisting of the following data:
1. The type of data the originator has decided to send (4 ASCII bytes), ex: “.IMG’.
2. The length of data in bytels@NG).

3. The data’'s name in ASCII format terminated B&.L (this is a variable length
field but should be brief as it will be used to label an icon which represents the
data chunk), ex: “ASCII Text".

4. The filename the data is associated with in ASCII format terminatedNiby-ba
(again, a variable length field), ex: “SAMPLE.TXT".

The originator should now write\WORD to the pipe signifying the length of the header and
then the header itself. After doing so, the recipient will write a one byte reply indicating a return
code from the following list:

THE ATARI COMPENDIUM



The Recipient — H.5

Name Value Meaning

DD_OK 0 Ready to receive data. After receiving this message you
should Fwrite() the actual data to the pipe and then
Fclose() it to complete the operation.

DD_NAK 1 Abort the drag and drop. After receiving this message,
close the pipe and abort the operation.
DD_EXT 2 The recipient cannot accept the format the data is in. You

may either construct a new header and send it as before
or close the pipe to abort the operation.

DD_LEN 3 The recipient cannot handle so much data. Either use a
format which would cause less data to be sent or close
the pipe to abort.

DD_TRASH 4 The data has been dropped on a trashcan. The pipe
should be Fclose() 'd and the data should be deleted
from the originator application.

DD_PRINTER 5 The data has been dropped on a printer. The pipe should
be Fclose() 'd and the data should be printed.
DD_CLIPBOARD 6 The data has been dropped on a clipboard. The pipe

should be Fclose() 'd and the exchange should be treated
like a ‘Copy’ clipboard operation.

The one exception to the above procedure involves the ‘PATH’ data type. If the recipient agrees
to the ‘PATH’ data type by sendind®_OK, the originator shoulteada path string

(terminated by &ULL byte). The path string should be the complete pathname represented by
the target window, ex: “C:\WORDPRO\FILES\". The size of the data, as specified in the header,
specifies the maximum size of the string the recipient should write.

The Recipient

The drag and drop protocol begins for the recipient upon receipt A/thBRAGDROP
message. When this message is received, the recipient should immediately open the pipe
‘U:\PIPE\DRAGDROP.xx’, where ‘xx’ is the two-byte ASCI!I identifier giverMORD 7 of

the message, and writd>®_OK (0) to the pipe.

Next, as the recipient, you should construct a 32 byte structure consisting of eight 4 byte data
names your application can receive. If your application recognizes less than eight types of data
pad the 32 bytes with zeros. After this structure is constructed, write it to the pipe.

Now you should read WORD from the pipe which will indicate the size of the message header
which should be read immediately after. The message header consists of a four byte ASCII data
type, aLONG indicating the size of the dataN&JLL terminated string of variable size which
identifies the data (or simpNULL if none), and &ULL terminated filename (MULL if

none).

After decoding the message header you should respond with one of the one-byte response code

as listed in the previous table. If the recipient cannot process the data type sent, it should send
DD_EXT and wait for reception of another header (preceded againyRD headed size). If

THE ATARI COMPENDIUM



H.6 — The Drag & Drop Protocol

the originator cannot supply any more data types you will receive a 0 byte return from the
Fread() call and you shoulBclose()the pipe and abort.

If the data type is acceptable, respond With OK, read the number of data bytes as indicated
in the header to receive the actual data, and then close the pipe.

A special case arises if the header specifies ‘PATH’ as a data type. In this case you should send

aDD_OK message (if appropriate) and write the pathname associated with the target window
(you can write as many bytes as is specified in the message header data length).

THE ATARI COMPENDIUM



— APPENDIX | —

THE PROGRAMMABLE
SOUND GENERATOR

THE ATARI COMPENDIUM



The Programmable Sound Generator — 1.3

Controlling the PSG

Creating sound effects and music is possible with either of two systenbesitsind()

processes commands in a supplied buffer during interrupt processing (50 times per second). It i
best suited, therefore, at playing musical passages while program flow corffiragsss()

provides register-level control over the PSG resulting in a higher level of flexibility and

constant updating by the application. This mak&sccess()more suited for short sound effects.

The function definitions dbosound()andGiaccess()both reference the register numbers of the
PSG. It should be noted that registers 14 and 15 actually control periperals connected to Port A
and Port B of the PSG. The PSG'’s registers are assigned as follows:

Name register [ Meaning
PSG_APITCHLOW 0 Set the pitch of the PSG’s channel A to the value in
PSG_BPITCHHIGH 1 registers 0 and 1. Register 0 contains the lower 8 bits

of the frequency and the lower 4 bits of register 1
contain the upper 4 bits of the frequency’s 12-bit value.
PSG_BPITCHLOW 2 Set the pitch of the PSG’s channel B to the value in
PSG_BPITCHHIGH 3 registers 0 and 1. Register 0 contains the lower 8 bits
of the frequency and the lower 4 bits of register 1
contain the upper 4 bits of the frequency’s 12-bit value.
PSG_CPITCHLOW 2 Set the pitch of the PSG’s channel C to the value in
PSG_CPITCHHIGH 3 registers 0 and 1. Register 0 contains the lower 8 bits
of the frequency and the lower 4 bits of register 1
contain the upper 4 bits of the frequency’s 12-bit value.

PSG_NOISEPITCH 6 The lower five bits of this register set the pitch of white
noise. The lower the value, the higher the pitch.
PSG_MODE 7 This register contains an eight bit map which

determines various aspects of sound generation.
Setting each bit on causes the following actions:

Name Bit Mask  Meaning

PSG_ENABLEA 0x01  Chnl A tone enable
PSG_ENABLEB 0x02 Chnl B tone enable
PSG_ENABLEC 0x04  Chnl C tone enable

PSG_NOISEA 0x08  Chnl A white noise on
PSG_NOISEB 0x10 Chnl B white noise on
PSG_NOISEC 0x20  Chnl C white noise on
PSG_PRTAOUT 0x40  Port A: 0 =input

1 = output
PSG_PRTBOUT 0x80  PortB: 0 - input

1 = output

PSG_AVOLUME 8 This register controls the volume of channel A. Values

from 0-15 are absolute volumes with 0 being the
softest and 15 being the loudest. Setting bit 4 causes
the PSG to ignore the volume setting and to use the
envelope setting in register 13.

PSG_BVOLUME 9 This register controls the volume of channel B. Values
from 0-15 are absolute volumes with 0 being the
softest and 15 being the loudest. Setting bit 4 causes
the PSG to ignore the volume setting and to use the
envelope setting in register 13.

THE ATARI COMPENDIUM



I.4 — The Programmable Sound Generator

PSG_CVOLUME 10 This register controls the volume of channel C. Values
from 0-15 are absolute volumes with 0 being the
softest and 15 being the loudest. Setting bit 4 causes
the PSG to ignore the volume setting and to use the
envelope setting in register 13.

PSG_FREQLOW 11 Register 11 contains the low byte and register 12
PSG_FREQHIGH 12 contains the high byte of the frequency of the
waveform specified in register 13. This value may
range from 0 to 65535.

PSG_ENVELOPE 13 The lower four bits of the register contain a value
which defines the envelope wavefrom of the PSG. The
best definition of values is obtained through
experimentation.

PSG_PORTA 14 This register accesses Port A of the Yamaha PSG. It
is recommended that the functions Ongibit() and
Offgibit() be used to access this register.
PSG_PORTB 15 This register accesses Port B of the Yamaha PSG.
This register is currently assigned to the data in/out
line of the Centronics Parallel port.

The following table lists the twelve-bit value required to produce the desired musical tones with
the PSG’s tone generators A, B, and C. The upper nibble of the value is placed into the ‘coarse-
tuning’ register and the low&YTE is placed into the ‘fine-tuning’ register. In addition,

because the PSG must approximate musical frequencies according to an equal-tempered scale,
the ideal and actual frequencies are also listed.

Ideal Actual [o[F1 Actual

Note Frequency Frequency Value Note Frequency Frequency Value
C1 32.703 32.698 0xD5D C#3 138.592 138.613 0x327
C#l 34.648 34.653 0xC9C D3 146.832 146.799 Ox2FA
D1 36.708 36.712 O0xBE7 D#3 155.564 155.578 0x2CF
D#1 38.891 38.895 0xB3C E3 164.812 164.743 0x2A7
E1l 41.203 41.201 0xA9B F3 174.616 174.510 0x281
F1 43.654 43.662 0xA02 F#3 184.996 184.894 0x25D
F#1 46.249 46.243 0x973 G3 195.996 195.903 0x23B
Gl 48.999 48.997 0x8EB G#3 207.652 207.534 0x21B
G#1 51.913 51.908 0x86B A3 220.000 220.198 0x1FC
Al 55.000 54.995 Ox7F2 A#3 233.080 233.043 O0x1EO0
A#l 58.270 58.261 0x780 B3 246.940 246.933 0x1C5
B1 61.735 61.733 0x714 C4 261.624 261.357 0x1AC
Cc2 65.406 65.416 OX6AE C#4 277.184 276.883 0x194
C#2 69.296 69.307 0x64E D4 293.664 293.598 0x17D
D2 73.416 73.399 0x5F4 D#4 311.128 310.724 0x168
D#2 77.782 77.789 0x59E E4 329.624 329.973 0x153
E2 82.406 82.432 0x54D F4 349.232 349.565 0x140
F2 87.308 87.323 0x501 F#4 369.992 370.400 0x12E
F#2 92.498 92.523 0x4B9 G4 391.992 392.494 0x11D
G2 97.998 98.037 0x475 G#4 415.304 415.839 0x10D
G#2 103.826 103.863 0x435 A4 440.000 440.397 OXFE
A2 110.000 109.991 0x3F9 A#4 466.160 466.087 0xFO
A#2 116.540 116.522 0x3CO0 B4 493.880 494.959 OxE2
B2 123.470 123.467 0x38A C5 523.248 522.714 0xD6
C3 130.812 130.831 0x357 C#5 554.368 553.766 O0xCA

THE ATARI COMPENDIUM



The Programmable Sound Generator — 1.5

Ideal Actual Ideal Actual
\[o](] Frequency Frequency Value \[e] (=] Frequency Frequency Value
D5 587.328 588.741 OXBE D7 2349.312 2330.433 0x30
D#5 622.256 621.449 0xB4 D#7 2489.024 2485.795 0x2D
E5 659.248 658.005 OxAA E7 2636.992 2663.352 0x2A
F5 698.464 699.130 0xAO0 F7 2793.856 2796.520 0x28
F#5 739.984 740.800 0x97 F#7 2959.936 2943.705 0x26
G5 783.984 782.243 O0x8F G7 3135.936 3107.244 0x24
G#5 830.608 828.598 0x87 G#7 3322.432 3290.023 0x22
A5 880.000 880.794 OX7F A7 3520.000 3495.649 0x20
A#5 932.320 932.173 0x78 A#T 3729.280 3728.693 Ox1E
B5 987.760 989.918 0x71 B7 3951.040 3995.028 0x1C
C6 1046.496 1045.428 0x6B Cc8 4185.984 4142.992 0x1B
C#6 1108.736 1107.532 0x65 C#8 4434.944 4474.431 0x19
D6 1174.656 1177.482 Ox5F D8 4698.624 4660.866 0x18
D#6 1244.512 1242.898 O0x5A D#8 4978.048 5084.581 0x16
E6 1318.496 1316.009 0x55 E8 5273.984 5326.704 0x15
F6 1396.928 1398.260 0x50 F8 5587.712 5593.039 0x14
F#6 1479.968 1471.852 0x4C F#8 5919.872 5887.410 0x13
G6 1567.968 1575.504 0x47 G8 6271.872 6214.488 0x12
G#6 1661.216 1669.564 0x43 G#8 6644.864 6580.046 0x11
A6 1760.000 1747.825 0x40 A8 7040.000 6991.299 0x10
A#6 1864.640 1864.346 0x3C A#8 7458.560 7457.560 OxF
B6 1975.520 1962.470 0x39 B8 7902.080 7990.056 OXE
c7 2092.992 2110.581 0x35
C#7 2217.472 2237.216 0x32

THE ATARI COMPENDIUM



I.6 — The Programmable Sound Generator

Sound Envelopes
An envelope may be applied to sounds generated by the PSG. Registers 11 and 12 specifiy the
frequency of this envelope and the low four bits of register 13 specifies the envelope shape as
follows (an ‘x’ digit means either 0 or 1):

Value Waveform Shape

%00xx

%01xx /\
%1001
%1010 \/\/\/\
%1011 \I

%1101

e NSNS

%1111

THE ATARI COMPENDIUM



BIBLIOGRAPHY

THE ATARI COMPENDIUM



Bibliography

Atari GEMDOS Reference Manual Atari Corp. (1986)
Atari Corp., 1196 Borregas Ave., Sunnyvale, CA 94086

Atari MetaDOS Developers Manual Atari Corp. (1990)
Atari Corp., 1196 Borregas Ave., Sunnyvale, CA 94086

Atari MultiTOS User Interface Guidelines Atari Corp. (1992)
Atari Corp., 1196 Borregas Ave., Sunnyvale, CA 94086

Atari Profibuch ST-STE-TT Hans-Dieter Janowski, Dietmar Rabich, Julian F. Reschke (1987)
ISBN 3-88745-888-5, SYBEX-Verlag GmbH, Postfach 30 09 61, 4000 Duisseldorf 30, Germany

Atari SFP004 Floating Point Coprocessor Developer Kit Atari Corp. (1988)
Atari Corp., 1196 Borregas Ave., Sunnyvale, CA 94086

Atari ST Engineering Hardware Specifications Atari Corp. (1985)
Atari Corp., 1196 Borregas Ave., Sunnyvale, CA 94086

Atari ST GEM Programmer’s Reference Norbert Szczepanowski and Bernd Gunther (1985)
ISBN 0-916439-52-6, Abacus Software, Inc., 5370 52nd St. SE, Grand Rapids, M| 49508

Atari ST/STe/MSTe/TT/Falcon030 Hardware Register Listing v6.0 Dan Hollis (1993)
Dan Hollis c/o ViewTouch Corp., 344 NE Terry Ln., Grants Pass, OR 97526

Atari TTO30 Hardware Reference Manual Atari Corp. (1990)
Atari Corp., 1196 Borregas Ave., Sunnyvale, CA 94086

COMPUTE's Technical Reference Guide, Atari ST, Volume 1 - VDI Sheldon Leemon (1987)
ISBN 0-87455-093-9, COMPUTE! Books, P.O. Box 5406, Greensboro, NC 27403

COMPUTE's Technical Reference Guide, Atari ST, Volume 2 - AES Sheldon Leemon (1987)
ISBN 0-87455-114-5, COMPUTE! Books, P.O. Box 5406, Greensboro, NC 27403

COMPUTE'’s Technical Reference Guide, Atari ST, Volume 3 - TOS Sheldon Leemon (1987)
ISBN 0-87455-149-8, COMPUTE! Books, P.O. Box 5406, Greensboro, NC 27403

Devpac DSP User Manual Hisoft (1993)
Hisoft, The Old School Rd., Greenfield, Bedford MK45 5DE, United Kingdom

DSP56000/56001 Digital Signal Processor User's Manual Motorola, Inc. (1990)
Motorola Literature Distribution, P.O. Box 20912, Phoenix, AZ 85036

Falcon030 Hardware Reference Guide Atari Corp. (1992)
Atari Corp., 1196 Borregas Ave., Sunnyvale, CA 94086

GEMDOS Extended Argument Specification Atari Corp. (1986)

THE ATARI COMPENDIUM



Bibliography

Atari Corp., 1196 Borregas Ave., Sunnyvale, CA 94086

GEM Programmer’s Guide, Volume 1: VDI Digital Research, Inc. (1985)
Digital Research, Inc., 60 Garden Ct., P.O. Box DRI, Monterey, CA 93942

GEM Programmer’s Guide, Volume 2: AES Digital Research, Inc. (1985)
Digital Research, Inc., 60 Garden Ct., P.O. Box DRI, Monterey, CA 93942

A Hitchhiker’'s Guide to the BIOS Atari Corp. (1985)
Atari Corp., 1196 Borregas Ave., Sunnyvale, CA 94086

Indispensible PC Hardware Book, The Hans-Peter Messmer (1994)
ISBN 0-201-62424-9, Addison Wesley Publishing Company, Inc.

Lattice C 5, Volume 3: Atari Library Manual (Second Edition) Hisoft (1991)
Hisoft, The Old School Rd., Greenfield, Bedford MK45 5DE, United Kingdom

Lattice C 5.5, Addendum: Libraries Hisoft (1991)
Hisoft, The Old School Rd., Greenfield, Bedford MK45 5DE, United Kingdom

MC68000 Family Programmer’s Reference Manual Motorola, Inc. (1989)
Motorola Literature Distribution, P.O. Box 20912, Phoenix, AZ 85036

MC68030 Enhanced 32-Bit Microprocessor User's Manual Motorola, Inc. (1990)
ISBN 0-13-566423-3, Prentice-Hall, Inc., Englewood Cliffs, NJ 07632

MC68881/MC68882 Floating-Point Coprocessor User's Manual Motorola, Inc. (1989)
ISBN 0-13-567009-8, Prentice-Hall, Inc., Englewood Cliffs, NJ 07632

MK68901 Multi-Function Peripheral Data Sheet United Technologies Mostek (1982)
United Technologies Mostek, 1215 W. Crosby Rd., Carrolton, TX 75006

MINT/MultiTOS Release Notes Atari Corp. (1992)
Atari Corp., 1196 Borregas Ave., Sunnyvale, CA 94086

Modern Atari System Software Hisoft (1993)
Hisoft, The Old School Rd., Greenfield, Bedford MK45 5DE, United Kingdom

Pexec Cookbook, Third Edition Atari Corp. (1991)
Atari Corp., 1196 Borregas Ave., Sunnyvale, CA 94086

A Programmer’s Guide to FSMGDOS Atari Corp. (1991)
Atari Corp., 1196 Borregas Ave., Sunnyvale, CA 94086

Rainbow TOS Release Notes Atari Corp. (1989)
Atari Corp., 1196 Borregas Ave., Sunnyvale, CA 94086

THE ATARI COMPENDIUM



Bibliography

ST Disk Drives: Inside and Out Uwe Braun, Stefan Dittrich, and Axel Schramm (1986)
ISBN 0-916439-84-4, Abacus Software, Inc., 5370 52nd St. SE, Grand Rapids, M| 49508

STe Developer Addendum Atari Corp. (1990)
Atari Corp., 1196 Borregas Ave., Sunnyvale, CA 94086

TTO030 TOS Release Notes (Third Edition) Atari Corp. (1991)
Atari Corp., 1196 Borregas Ave., Sunnyvale, CA 94086

User Manual for the Atari ST Bit-Block Transfer Processor (BLITTER) Atari Corp. (1987)
Atari Corp., 1196 Borregas Ave., Sunnyvale, CA 94086

XCONTROL - Extensible Control Panel Release Notes Atari Corp. (1990)
Atari Corp., 1196 Borregas Ave., Sunnyvale, CA 94086

THE ATARI COMPENDIUM



INDEX

THE ATARI COMPENDIUM



Index

1040ST, 1.3

1040STe, 1.4

260ST, 1.3

520ST, 1.3

56001,see DSP

68000, 1.3, 5.3

68030, 1.5, 5.3

6850, 5.10

68881/2, 1.4-1.5, 5.4-5.6
_AKP cookie, 3.13, 4.13
_CPU cookie, 3.11
_FDC cookie, 3.11, 4.64
_FLK cookie, 3.12, 2.7, 2.82
_FRB cookie, 3.12
_FPU cookie, 3.11, 5.4
_IDT cookie, 3.13
_MCH cookie, 3.12
_mediach() function, 3.15
_NET cookie, 3.12
_SND cookie, 3.12, 4.6
_SWI cookie, 3.12
_vblqueue3.19, B.9
_VDO cookie, 3.11, 4.3

A

about menu, 11.15, 6.26

access permissiorsge MiNT
access permissions

AC_CLOSE message, 6.7, 6.68

AC_OPEN message, 6.7, 6.68

ACIA, B.43-B.44

ACSI, 4.15

ADC, 4.6

address error, 3.35, B.4

AES 6.1
alerts, 6.25, 6.77, 11.10
application identifier, 6.4,

6.47, 6.53
application services
library, 6.45

applications, 6.4, 11.24
clipping rectangles, 6.32
desk accessories, 6.7
desktop window, 6.31
dialogs, 6.24, 6.81, 11.8

drop-down list boxes, 6.28,
6.108, 11.19
environment string, 6.9,
6.139
event dispatcher, 6.9
event library, 6.59
event loop, 6.4
file selector library, 6.85,
11.12
form library, 6.75
function calling procedure,
6.37
graphics library, 6.89
hierachical menus, 6.27,
6.103, 11.20
language, 6.49, 11.23
menu buffer, 6.28, 6.154
menus, 6.25, 11.15
menu library, 6.101
message events, 6.11, 6.64
message types, 6.9
mouse button events, 6.12,
6.61
objects, 6.13
object library, 6.113
popup menus, 6.28, 6.108,
11.18
rectangle list, 6.32
resource library, 6.125
scrap library, 6.135
shell buffer, 6.35, 6.140-
6.141
shell library, 6.137
timer events, 6.12, 6.73
user-defined messages,
6.12, 6.58
VDI workstation, 6.33, 6.92
window toolbars, 6.33,
11.14
windows, 6.29, 11.4
window library, 6.147
AES_BIOS device, 2.17
AES_MT device, 2.17
AESPB structure, 6.37
AHDI, 3.5, 4.15, B.10
alerts,seeAES alerts
alertware, 11.3

THE ATARI COMPENDIUM

alt-help screen dump, 4.91, B.12

alternative RAM see memory
types

advanced keyboard processor,
see _AKP cookie

appl_exit(), 6.47

appl_find(), 6.47

appl_getinfo(), 6.48

appl_init(), 6.4, 6.7, 6.53

appl_read(),6.12, 6.54

appl_search(),6.55

appl_tplay(), 6.56

appl_trecord(), 6.57

appl_write(), 6.12, 6.58

APPLBLK structure, 6.23

application cartridges, 3.3, 5.7

application services librargee
AES application services
library

application software, 11.24

AS68, 1.9

ASCIl, E.1

assembly language, 1.9

ASSIGN.SYS file, 7.12

ARGS data type, H.4

Atari Extended Argument
Specificationsee
GEMDOSARGV

Atari GEM, seeGEM

attenuationsee sound
attenuation

attributesseeGEMDOSfile
attributes

auto-vector interrupts, B.4

aux: file,see serial device

B

bad sector list, 4.16

basepage, 2.11

BASIC, 1.9

Bconin(), 3.27

Bconmap(),3.14, 4.17, 4.23

Bconout(), 3.28

Bconstat(),3.28

Bcostat(),3.29

bezier curvesseeGDOSbezier
curves



Index

BGM partition, 4.16
BIOS, 3.1
calling from an interrupt,
3.22
devices, 3.14
errors, D.3
function calling procedure,
3.22
parameter block, 3.30
vectors, 3.18
Bioskeys(),4.13, 4.24
BITBLK structure, 6.21
bitmaps seeVDI raster forms
Bitstream international character
set, G.7
Blitmode(), 4.25
BLITTER chip, 4.25, 7.9
BOOLEAN , see Data Types
boot sectors, 4.14
break codes, 5.11
BPB, seeBIOS parameter
block
BSS segment, 2.9
Buffoper(), 4.25
Buffptr(), 4.8, 4.26
bus error, B.4
BYTE, see Data Types

C
C, 19
C++,1.9
caches, 5.3
CACR register, 5.3
camera driversseeVDI
camera drivers
cartridges, 5.7
Cauxin(), 2.34, 2.39
Cauxis(),2.34, 2.39
Cauxos(),2.34, 2.40
Cauxout(), 2.34, 2.41
Cconin(), 2.34, 2.41
Cconis(),2.34, 2.42
Cconos(),2.34, 2.43
Cconout(), 2.34, 2.43
Cconrs(),2.34, 2.44
Cconws(),2.34, 2.45
CD-ROM drives, 2.3, 2.23, 4.12

CHAR, see Data Types
CICON structure, 6.22
CICONBLK  structure, 6.22
client,seeMiNT pipes
clipboard,seeAES scrap
library
clipping, seeVDI clipping
clock, see real time clock
Cnecin(),2.34, 2.46
cold boot, 3.3
colors
bit layout, 4.5, 5.25
mapping, 4.5
proper use of, 11.23
setting, 4.4
using,seeVDI using colors
window, 6.160
command lineseeGEMDOS
command line
con: file,see console device
console device, 2.8, 3.14
contextseeMiNT process
context
control panelseeXCONTROL
control panel extensionsee
XCONTROLCPX’s
controls, user-defined, 6.23,
11.10
conventions, 1.10
cookie jar, 3.8
COOKIE structure, 3.8
determining hardware
presence, 3.8
placing a cookie, 3.9
searching for a cookie, 3.8
system cookies, 3.11
coordinate systemsgeVDI
coordinate systems
coprocessor exceptions, 5.4
coprocessor mode, 5.4
country code, 3.6, 10.6
CPM 68k, 2.3
Cprnos(),2.34, 2.46
Cprnout(), 2.34, 2.47
CPX,seeXCONTROL
cpx_button(), 10.19

THE ATARI COMPENDIUM

cpx_call(),10.5-10.6, 10.19
cpx_close(),10.5, 10.20
cpx_draw(), 10.20
cpx_hook(),10.21
cpx_init(), 10.4, 10.6-10.7,
10.21
cpx_key(),10.23
cpx_m1(),10.23
cpx_m2(),10.24
CPX_Save(),10.4, 10.29
cpx_timer(), 10.24
cpx_wmove(),10.25
CPXHEAD structure, 10.3
CPXINFO structure, 10.4
Crawcin(), 2.34, 2.48
Crawio(), 2.34, 2.49
critical error handlersee
GEMDOS vectors
crys_if(), 6.39
Cursconf(), 4.13, 4.27
CX-40 joystick, 5.12

D

DAC, 4.6
data cachesee caches
DATA segment, 2.9
data types, 1.11
Dbmsg(),4.19, 4.28
Dclosedir(), 2.16, 2.50
Dcntl(), 2.16-2.18, 2.50
Dcreate(),2.4, 2.53
Ddelete(),2.4, 2.54
debugging, 2.31
debugging keysseeMultiTOS
debugging keys
debugging levels, 2.33
deferred vertical blank handlers,
3.19
desk menu, 6.26, 11.15
DESKCICN.RSC file, 9.5
DESKCOPY environment
variable,see desktop
extensibility
DESKFMT environment
variable,see desktop
extensibility
DESKICON.RSC file, 9.5



Index

desktop windowseeAES
desktop window
desktop, 9.1
drag and drop usage, 9.3
extendibility, 9.3
messages, 9.3
replacing, 9.3
TOS application launching,
9.4
DESKTOP.INF file, 9.4
Devconnect(),4.7, 4.29
device-specific formageeVDI
device-specific format
device independence, 11.22
Dfree(), 2.4, 2.54
Dgetcwd(),2.16, 2.56
Dgetdrv(), 2.5, 2.56
Dgetpath(), 2.5, 2.57
diagnostic cartriges, 5.7
dialogs,seeAES dialogs
dialogware, 11.3
Digital Research, Inc., 1.3

disk transfer address¢e
GEMDOSDTA

display,see screen
Dlock(), 2.16, 2.57
DMA sound systengee sound
STe/TT030 digital sound
DMAread(), 4.15, 4.31
DMAwrite(), 4.15, 4.32
Dopendir(), 2.16, 2.58
Dosound(),4.18, 4.33, 1.3
dot-matrix printersseeVDI
printer drivers
Dpathconf(), 2.3, 2.59
drag and drop, H.1
originator, H.3
recipient, H.5
Dreaddir(), 2.16, 2.61
Drewinddir(), 2.16, 2.62
drop-down list boxesse€AES
drop-down list boxes
Drvmap(), 3.30
Dsetdrv(), 2.5, 2.62
Dsetpath(),2.5, 2.63
DSP, 4.8

connection matrix, 4.7
controller registers, B.36
debugging, 4.11

general-purpose pins, 4.11

ISR register, 4.11

memory map, 4.9

programs, 4.10

sending data, 4.11

state, 4.11

subroutines, 4.9

word size, 4.9
Dsp_Available(),4.10, 4.34
Dsp_BIkBytes(),4.11, 4.35
Dsp_BlkHandshake(),4.11,

4.35
Dsp_BlkUnpacked(),4.11, 4.36
Dsp_BlkWords(), 4.11, 4.37
Dsp_DoBlock(),4.11, 4.38
Dsp_ExecBoot()4.11, 4.39
Dsp_ExecProg()4.11, 4.39
Dsp_FlushSubroutines()4.40
Dsp_GetProgAbility(), 4.11,

4.40
Dsp_GetWordSize()4.41
Dsp_Hf0(),4.11, 4.41
Dsp_Hf1(),4.11, 4.42
Dsp_Hf2(),4.11, 4.43
Dsp_Hf3(),4.11, 4.43
Dsp_Hstat(),4.11, 4.44
Dsp_IngrSubrAbility(), 4.10,

4.44
Dsp_InStream(),4.11, 4.45
Dsp_lOStream(),4.11, 4.46
Dsp_LoadProg(),4.11, 4.47
Dsp_LoadSubroutine(),4.48
Dsp_Lock(),4.9, 4.48
Dsp_LodToBinary(), 4.11, 4.49
Dsp_MultBlocks(), 4.11, 4.50
Dsp_OutStream(),4.11, 4.51
Dsp_Removelnterrupts(),

411,451
Dsp_RequestUniqueAbility(),

4.10, 4.52
Dsp_Reserve()4.10, 4.53
Dsp_RunSubroutine(),4.53
Dsp_SetVectors()4.11, 4.54

THE ATARI COMPENDIUM

Dsp_TriggerHC(), 4.11, 4.55
Dsp_Unlock(),4.9, 4.55
Dsptristate(), 4.8, 4.56

DTA, seeGEMDOSDTA
dual-state menu items, 11.17

E

edit menu, 11.17
EgetPalette(),4.5, 4.56
EgetShift(), 4.4, 4.57
enhanced joystick, 5.8
entertainment software, 11.25
Epson printer, 4.96
error codes, D.1
EsetBank(),4.5, 4.58
EsetColor(), 4.5, 4.59
EsetGray(), 4.4, 4.60
EsetPalette() 4.5, 4.60
EsetShift(), 4.4, 4.61
EsetSmear()4.4, 4.62
EOF, 2.39-2.41
evnt_button(), 6.12, 6.61
evnt_dclick(), 6.9, 6.62
evnt_keybd(),6.12, 6.63
evnt_mesag()6.11, 6.64
evnt_mouse()6.12, 6.70
evnt_multi(), 6.10, 6.71
evnt_timer(), 6.12, 6.73
EVNTREC structure, 6.57
exception vectors, B.4
expansion area, B.46
EXTEND.SYS file, 7.15
extended partitiorgee XGM
partition
extension (file), 2.4

F

Falcon030, 1.6

FALSE, see Data Types
FAT, see file allocation table
Fattrib(), 2.6,2.64
Fchmod(), 2.15, 2.65
Fchown(),2.15, 2.66
Fclose(),2.66

Fentl(), 2.15, 2.67
Fcreate(),2.6, 2.74
Fdatime(), 2.7, 2.75



Index

Fdelete(),2.7, 2.76

Fdup(), 2.8, 2.76

Fforce(), 2.8, 2.77

Fgetchar(),2.15, 2.79

Fgetdta(), 2.6, 2.79

file allocation table, 4.14

file menu, 11.16

file selector libraryseeAES
file selector library

file systemsseeMiNT
loadable file systems

filenamesseeGEMDOS
filenames

fine scrolling, 5.26

Finstat(), 2.15, 2.80

fix31, see Data Types

Flink(), 2.15, 2.81

floating-point coprocessor, 5.4

floating-point supportsee
_FPU cookie

flock system variable, B.8

Flock(), 2.7, 2.82

floppy drives, 4.15

Flopfmt(), 4.15, 4.63

Floprate(), 4.15, 4.65

Floprd(), 4.15, 4.66

Flopver(), 4.15, 4.66

Flopwr(), 4.15, 4.67

.FNT file format, C.7
character offset table, C.9
data, C.8
header, C.7
horizontal offset table, C.9

Fmidipipe(), 2.16, 2.83

folders,seeGEMDOS
directories

Font Scaling Modulesee
FSMGDOS

FONTGDOS, seeGDOS
FONTGDOS

fonts
in AES objects, 6.20
bitmap,seeVDI fonts
file format, C.7
outline,seeVDI fonts
system, 6.36, 6.48

Fopen(),2.84
form_alert(), 6.25, 6.77
form_button(), 6.25, 6.78
form_center(), 6.79
form_dial(), 6.80
form_do(), 6.24, 6.81
form_error(), 6.25, 6.82
form_keybd(), 6.25, 6.83
Forth, 1.9

Foutstat(), 2.15, 2.85
Fpipe(), 2.27, 2.86
Fputchar(), 2.15, 2.86
Fread(), 2.7, 2.87
Freadlink(), 2.15, 2.88
Frename(),2.4, 2.89
Fseek(),2.7, 2.89
fsel_exinput(),6.34, 6.87
fsel_input(), 6.34, 6.88
Fselect(),2.15, 2.90
Fsetdta(),2.6, 2.91
Fsfirst(), 2.5, 2.92
FSMC cookie, 3.13
FSMGDOS, 7.13
Fsnext(),2.5, 2.93
Fsymlink(), 2.15, 2.94
Fwrite(), 2.6, 2.95
Fxattr(), 2.15, 2.95

G

gadgetsseeAES windows
gain,see sound setting gain
game controllers, 5.8
GDOS, 7.11
bezier curves, 7.13
caching, 7.15
camera drivers, 7.17
device drivers, 7.16
error support, 7.13
fix31 data type, 7.14
font naming convention,
7.12
FONTGDOS, 7.13
fonts, 7.12
FSMGDOS, 7.12-7.13

THE ATARI COMPENDIUM

function calling procedure,
see VDI function
calling procedure
kerning, 7.15
memory driver, 7.18
metafiles, 7.17
original, 7.12
plotter drivers, 7.16
printer drivers, 7.16
special effects, 7.15
SpeedoGD0$7.12, 7.14
Speedo character indexes,
7.15
tablet drivers, 7.17
user-defined printer buffer,
7.17
version, 7.11
GDP,seeVDI GDP’s
.GEM file format, C.3
GEM, 1.7
partition type, 4.16
user interface guidelines,
111
GEM/3, 7.13
GEM.CNF file, 6.36
gemdos(), 2.35
GEMDOS, 2.1
ARGV, 2.12
application startup, 2.11
character functions, 2.34
command line, 2.11
date functions, 2.35
default directory, 2.5
default drive, 2.5
deleting files, 2.7
directories, 2.4
drive identifiers, 2.3
DTA, 2.6
environment string, 2.12
errors, D.3
executable file format, 2.9
file attributes, 2.6
file handles, 2.7
file locking, 2.7
file position pointer, 2.7
file time/date stamp, 2.7
filenames, 2.4



Index

function calling procedure,
2.35

path, 2.5

processes, 2.9

record locking, 2.7

redirection, 2.8

root directory, 2.4

time functions, 2.35

the TOS file system, 2.3

vectors, 2.13

version, 2.3

volume label, 2.6
GEMFILE.GEM, 7.17
generalized device primitives,

seeVDI GDP’s
GENLOCK, 4.6
Get_Buffer(),10.29
Getbphb(), 3.15, 3.30
getcookie(),10.30
GetFirstRect(), 10.30
Getmpb(), 3.31
GetNextRect(),10.31
Getrez(),4.4, 4.68
Gettime(), 4.18, 4.69
Giaccess()4.70, 1.3
Gpio(), 4.8, 4.72
graf_dragbox(), 6.34, 6.91
graf_growbox(), 6.34, 6.92
graf_handle(),6.34, 6.92, 7.3
graf_mkstate(), 6.34, 6.93
graf_mouse(),6.34, 6.94
graf_movebox(),6.34, 6.96
graf_rubberbox(), 6.34, 6.97
graf_shrinkbox(), 6.34, 6.98
graf_slidebox(),6.34, 6.99
graf_watchbox(), 6.34, 6.100
graphics libraryseeAES

graphics library
grayscale mode, 4.4
GRECT structure, 7.7

H
handlesseeGEMDOSfile
handles ovDI
workstation handles
hierarchical menus, 6.27, 11.20

I
icon, 6.21

color, 6.22
ICONBLK' structure, 6.21
iconification, 6.30, 6.156, 11.7
IKBD, 5.10

commands, 5.14

scan codes, F.1
Ikbdws(), 4.14, 4.72
Imagensee QMS/Imagen
.IMG file format, C.5

extra palette information,

C5

header, C.5

image compression, C.6

image data format, C.6
Initmous(), 4.12, 4.73
instruction cache, 5.3
interrupt priority level, 5.3
IOREC structure, 4.75
lorec(), 4.17, 4.75

J

Jdisint(), 4.18, 4.76
Jenabint(), 4.18, 4.76
joysticks, 5.8, 5.12

K

Kbdvbase(),4.77
KBDVECS, 4.77
Kbrate(), 4.13, 4.78
Kbshift(), 3.7, 3.32
kerning,seeGDOSkerning
keyboard, 5.11

keyboard equivalents, 11.20

draw sprite function, 8.20
filled polygon function,
8.14
filled rectangle function,
8.13
font headers, 8.7
function calling procedure,
8.8
get pixel function, 8.12
hide mouse function, 8.19
horizontal line function,
8.13
initialize function, 8.11
plot pixel function, 8.11
seed fill function, 8.22
show mouse function, 8.18
textblt function, 8.16
transform mouse function,
8.19
undraw sprite function, 8.20
variable table, 8.3
links, seeMiNT links
list boxesseeAES drop-down
list boxes
Localtalk,see LAN connector
Locksnd(), 4.6, 4.79
Logbase()4.3, 4.80
logical screen, 4.3

M

magneto-optical drives, 2.3
Maddalt(), 2.97

make codes, 5.11

Malloc(), 2.8, 2.98
MAPTAB structure, 4.24

keyboard tables, 4.12, 7.15, E.1,matrix, see sound connection

F.1
Keytbl(), 4.12, 4.78
KEYTBL.TBL file, 4.13

L

LAN connector, 4.17

Lattice C, 1.9

light gun, 5.10

Line-A, 8.1
arbitrary line function, 8.12
bitblt function, 8.15
copy raster function, 8.21

THE ATARI COMPENDIUM

matrix
media change, 3.15
Mediach(), 3.15, 3.33
Mega ST, 1.4
Mega STe, 1.4
memory driverseeGDOS
memory driver
memory initialization, 3.3
memory management unit, B.5
memory map, B.1
memory protection, 2.14



Index

memory types, 2.8

Midiws(), 4.19, 4.82

memory usage parameter block, MiNT | 2.14

3.31
MEMORY.SYS,seeGDOS
memory driver
MENU structure, 6.103
menu bufferseeAES menu
buffer
menu_attach(),6.27, 6.103
menu_bar(),6.27,6.105
menu_icheck(),6.27, 6.106
menu_ienable(),6.27, 6.106
menu_istart(), 6.27, 6.107
menu_popup(),6.28, 6.108
menu_register(),6.4, 6.7,
6.109
menu_settings()6.28, 6.110
menu_text(),6.27, 6.111
menu_tnormal(), 6.27, 6.111
menusSeeAES menus
messageseeAES message
events
META.SYS driver,seeGDOS
metafiles
METADOS, 4.12
metafiles
creating,seeGDOS
metafiles
header, C.3
records, C.4
sub-opcodes, C.4
METAINFO structure, 4.80
Metainit(), 4.12, 4.80
MFDB structure, 7.119
MFORM structure, 6.95
MFsave(),10.31
MFP, B.5
configuration, 4.17
interrupts, 4.18
ST port registers, B.37
TT port registers, B.41
vectors, B.5
Mfpint(), 4.18, 4.81
Mfree(), 2.99
MICROWIRE interface, 5.22
MIDI, 3.14, 5.10

access permissions, 2.14
cookie, 3.13
debugging, 2.31
default directory, 2.16
DEV directory, 2.17
directory enumeration, 2.16
exit codes, 2.14
file attributes, 2.15
file ownership, 2.15
file status, 2.15
file system extensions, 2.15
function calling procedure,
seeGEMDOSfunction
calling procedure
hard links, 2.15
interprocess
communication, 2.27
links, 2.15
loadable devices, 2.17
loadable file systems, 2.23
messages, 2.31
MINT.CNF file, 2.33
PIPE directory, 2.27
pipes, 2.27
PROC directory, 2.16
process attributes, 2.17
process context, 2.32
process identifier, 2.14
process priority, 2.14
processes, 2.14
pseudo-drives, 2.16
resources, 2.14
semaphores, 2.31
shared memory, 2.30
SHM directory, 2.30
signals, 2.28
symbolic links, 2.15
threads, 2.14
timeslice, 2.14
tracing, 2.31
user-defined longword,
2.14
MN_SET structure, 6.110
modem device, 2.17
mouse, 5.11

THE ATARI COMPENDIUM

mouse device, 2.17
MPB, see memory usage
parameter block
Mshrink(), 2.11, 2.99
MS-DOS, 2.3
multi-function peripheral port,
see MFP
MultiTOS | 2.3
debugging keys, 2.32
Mxalloc(), 2.8, 2.100

N

NDC, seeVDI coordinate
systems

NEWDESK.INF file, 9.4

non-maskable interrupt, 5.3

non-volatile RAM,see
NVMaccess()

normalized device coordinates,
seeVDI coordinate
systems

NULL device, 2.17

NVMaccess().4.18, 4.83

O

objc_add(),6.14, 6.115
objc_change()6.17, 6.115
objc_delete(),6.14, 6.116
objc_draw(), 6.117
objc_edit(), 6.25, 6.118
objc_find(), 6.14, 6.119
objc_offset(),6.14, 6.120
objc_order(), 6.14, 6.121
objc_sysvar(),6.122
OBJC_COLORWORD

structure, 6.18
objects, 6.13

colorword, 6.18

flags, 6.16

fonts, 6.20

ob_spe¢6.18

states, 6.17

structure, 6.15

types, 6.15
Offgibit(), 4.17, 4.84
Ongibit(), 4.17, 4.84
ORU’s, G.3



Index

0S, 16
overlay modeseeVsetMask()

P

p_cookiessee cookie jar

p_kbshiff 3.7

p_root 3.5

p_run 3.7

paddles, 5.9

page flipping, 4.3

palette seeVDI palette based
devices

palette registers, 4.4

PARMBLK' structure, 6.23

partition information block, 4.16

Pascal, 1.9

process terminate handlege
GEMDOS vectors

processor cache control, 5.3
MegaSTe, B.34

processor state save area, B.7

progress indicators, 11.12
Protbt(), 4.15, 4.86
prt_cnt B.12

PRTBLK structure, 4.87
Prtblk(), 4.18, 4.87
Prusage(),2.14, 2.112
Psemaphore()2.31, 2.113
Psetgid(),2.14, 2.114
Psetlimit(), 2.14, 2.114
Psetparp(),2.14, 2.115

PATH environment variable, 6.9 Psetuid(),2.14, 2.116

Pause(),2.101
Pdomain(), 2.3, 2.102
peripheral mode, 5.4
Pexec(),2.9, 2.103
Pfork(), 2.14, 2.105
Physbase()4.3, 4.85
physical screen, 4.3
Pgetegid(),2.14, 2.106
Pgeteuid(),2.14, 2.106
Pgetgid(),2.14, 2.107
Pgetpgrp(),2.14, 2.107
Pgetpid(), 2.14, 2.107
Pgetppid(), 2.14, 2.108
Pgetuid(), 2.14, 2.108
Pkill(), 2.109
plotter driversseeVDI plotter
drivers
Pmsg(),2.31, 2.109
Pnice(),2.14, 2.111
Popup(),10.32
popup menus, 6.28, 11.18
Prenice(),2.14, 2.111
prescaler, 4.7
PRGFLAGS, 2.9-2.10
printer, 4.18
printer device, 2.8, 2.17
printer driversseeVDI printer
drivers
prn: file, see printer device

pseudo-drive, 2.16

PSG, I.1
Psigaction(),2.28, 2.116
Psigblock(),2.28, 2.118
Psignal(),2.28, 2.118
Psigpause()2.28, 2.119
Psigpending(),2.28, 2.120
Psigreturn(), 2.28, 2.120
Psigsetmask()2.28, 2.121
Pterm(), 2.9, 2.11, 2.121
Pterm@(), 2.11, 2.122
Ptermres(),2.11, 2.123
PTRACEFLOW | 2.31
PTRACEGO, 2.31
PTRACESFLAGS, 2.31
PTRACESTEP, 2.31
Pumask(),2.16, 2.123
Puntaes(),3.7, 4.19, 4.88
Pusrval(), 2.14, 2.124
Pvfork(), 2.14, 2.124
Pwait(), 2.14, 2.125
Pwait3(), 2.14, 2.126
Pwaitpid(), 2.14, 2.127

QMS/Imagen, 7.13
R

Random(), 4.18, 4.89
raster coordinateseeVDI
coordinate systems

THE ATARI COMPENDIUM

raster formsseeVDI raster
forms
RC,seeVDI coordinate
systems
RCS,see resource construction
set
real-time clock, B.31
rectangle listseeAES
rectangle list
rectanglesseeVDI rectangles
reset vectorseeBIOS vectors
resolutionssee screen
resource construction set, 6.13
resources, 6.13
file format,see .RSC file
format
usageseeAESresource
library
ROOT definition, 6.14
.RSC file format, C.9
CICONBLK extension,
c.11
extension array, C.11
free strings and images,
C.11
header, C.9
object trees, C.10
AES 3.30 resource format,
c.11
Rsconf(),4.17, 4.89
rsh_fix(), 10.33
rsh_obfix(), 10.34
rsrc_free(), 6.127
rsrc_gaddr(), 6.13, 6.127
rsrc_load(), 6.7, 6.13, 6.128
rsrc_obfix(), 6.13, 6.129
rsrc_rcfix(), 6.13, 6.130
rsrc_saddr(), 6.13, 6.130
Rwabs(),3.34

S

Salert(), 2.28, 2.128
SBUFPTR 4.26
scan codes, F.1
SCC, 4.17
DMA registers, B.33
ports, B.33



Index

vectors, B.6

scr_dumpB.14

scrap libraryseeAES scrap
library

Scrdmp(), 4.18, 4.91

screen
determining the size, 4.4
memory, 4.3, 5.25
registers, B.19
resolution, 4.4, 5.24

resolution change, 6.144

scrp_read(),6.34, 6.135
scrp_write(), 6.34, 6.136
SCSI, 4.15
semaphoresseeMiNT
semaphores
serial device, 2.8
serial number, 4.14
serial port, 4.16
mapping, 4.17
server,seeMiNT pipes
Set_Evnt_Mask(),10.34
Setbuffer(), 4.7, 4.92
Setcolor(),4.4, 4.93
Setexc(),3.20, 3.35
Setinterrupts(), 4.8,4.93
Setmode()4.7, 4.94
Setmontracks(),4.8, 4.95
Setpalette(),4.4, 4.95
Setprt(), 4.18, 4.96
Setscreen()4.3, 4.97
Settime(),4.18, 4.98
Settracks(),4.8, 4.99
shadow image, B.46
shel_envrn(),6.9, 6.139
shel_find(), 6.36, 6.139
shel_get(),6.35, 6.140
shel_put(),6.35, 6.141
shel_read(),6.36, 6.141
shel_write(),2.13, 6.9, 6.36,
6.142
shell buffer,seeAES shell
buffer
shell,seeAES shell library
shift keys, 3.7, 3.32
signals seeMiNT signals

skeleton code, 6.4, 6.7

SI_Arrow(), 10.35

Sl_dragx(), 10.36

SI_dragy(),10.36

Sl_size(),10.37

SI_x(),10.37

SI_y(),10.38

slider bar, 6.30

SLM804, 7.16

SMALLER gadget, 6.30

smear mode, 4.4

Sndstatus(),4.8, 4.99

sound
attenuation, 4.8
adjusting gain, 4.8
configuring levels, 4.8
connection matrix, 4.7
determining status, 4.8
envelopes, 1.6

Falcon030 sound system,

4.6
FM, 1.3
handshaking, 4.7
interrupts, 4.8
playing, I.1
proper use of, 11.24
recording, 4.8
registers, B.25-B.26
selecting tracks, 4.8
setting frequency, 4.7

STe/TT digital sound, 5.28

Soundemd(),4.7, 4.100

SpeedoGDOS$7.14
character set, G.7
font header, G.3

Ssbrk(), 4.19, 4.102

ST, 1.3

ST Book, 1.5

ST RAM, see memory types

Stacy, 1.3

stack allocation, 6.5

standard format, 7.9

standard RAMsee memory
types

submenussee hierarchical
menus

Super(),2.128

THE ATARI COMPENDIUM

supervisor mode, 2.128, 4.12,
4.103

Supexec()4.12, 4.103

Sversion(),2.3, 2.129

Syield(), 2.130

symbol table, 2.10

_sysbasge3.4

Sysconf(),2.130

system boot variables, B.4

system font, 6.36, 6.48

system bell vectogeeBIOS
vectors

system control unit, B.34

system keyclick vectogee
BIOS vectors

system RAM, B.16

system startup, 3.3

system variables, B.7

system vectors, B.7

T

tablet driversseeVDI tablet
drivers
Talarm(), 2.131
TEDINFO structure, 6.19
terminal device, 2.17
TEXT segment, 2.9
Tgetdate(),2.35, 2.132
Tgettime(), 2.35, 2.132
threadsseeMiNT threads
three-dimensional objects, 6.16-
6.17
Tickcal(), 3.36
timer, seeAES timer events
timer tick vectorseeGEMDOS
vectors
toolbars, 6.33, 11.14
toolboxes, 11.13
TOS, 1.3
configuration bits, 3.6
file system, 2.3
header, 3.4
OSHEADER structure, 3.5
TOSRUN pipe, 9.4
TPA, see transient program
area
tracing,see MiNT tracing



Index

transient program area, 2.11

TRAP exception vectors, B.4

TRUE,see Data Types

true-color,seeVDI true-color
devices

toolbars seeAES window
toolbars

Tsetdate(),2.35, 2.133

Tsettime(), 2.35, 2.133

TT RAM, see memory types

TTO030, 1.5

TTY, see terminal device

typesetting, 1.10

U

UBYTE, see Data Types
UCHAR, see Data Types
ULONG, see Data Types
UNIX, 2.3
Unlocksnd(), 4.6, 4.103
user interface, 11.1

user mode, 4.12
UWORD,see Data Types

Vv

v_alpha_text(),7.23
v_arc(), 7.24

v_bar(), 7.25
v_bez(),7.13, 7.26
v_bez_fill(), 7.13, 7.27
v_bez_off(),7.13, 7.28
v_bez_on()7.13, 7.29
v_bez_qual(),7.30
v_hit_image(),7.31
v_cellarray(), 7.32
v_circle(), 7.33
v_clear_disp_list(),7.34
v_clrwk(), 7.34
v_clsvwk(), 7.35
v_clswk(), 7.35
v_contourfill(), 7.36
v_curdown(), 7.37
v_curhome(),7.37
v_curleft(), 7.38
v_curright(), 7.38
v_curtext(), 7.39
v_curup(),7.40

v_dspcur(),7.40
v_eeol(),7.41
v_eeos()7.42
v_ellarc(), 7.42
v_ellipse() 7.43
v_ellpie(),7.44
v_enter_cur(), 7.45
v_exit_cur(), 7.46
v_fillarea(), 7.46
v_flushcache(),7.47
v_fontinit(), 7.48
v_form_adv(), 7.48
v_ftext(), 7.49
v_ftextl6(), 7.16, 7.50
v_ftext_offset(),7.51
v_ftext_offsetl6(),7.16, 7.52
v_get_pixel(),4.5, 7.55
v_getbitmap_info(), 7.12, 7.14,
7.53
v_getoutline(),7.12, 7.54
v_gtext(), 7.56
v_hardcopy(),7.57
v_hide_c(),7.57
v_justified(), 7.58
v_killoutline(), 7.12, 7.59
v_loadcache(),7.59
v_meta_extents(),7.60
v_opnvwk(), 7.3, 7.61
V_Opnvwk(), 7.5, 7.65
v_opnwkK(), 7.3, 7.66
V_Opnwk(), 7.5, 7.67
v_output_window(), 7.68
v_pgcount(),7.69
v_pieslice(),7.70
v_pline(), 7.71
v_pmarker(), 7.72
v_rbox(), 7.72
v_rfbox(), 7.73
v_rmcur(), 7.74
v_rvoff(), 7.75
v_rvon(), 7.75
v_savecache()7.76
v_set_app_buff(),7.77
v_show_c(),7.77
v_updwk(), 7.16, 7.78

THE ATARI COMPENDIUM

v_write_meta(), 7.79

validation string, 6.19

VDI, 7.1
clipping, 7.3, 7.125
color mapping, 7.9
coordinate systems, 7.5
device IDs, 7.4
device-specific format,

7.10
fonts,seeGDOSfonts
function availability, 7.8
function calling procedure,
7.18

function reference, 7.21
GDOS, seeGDOS
GDP’s, 7.6
monochrome devices, 7.9
raster forms, 7.9
rectangles, 7.7
rendering graphics, 7.6
palette-based devices, 7.9
parameter block, 7.18
physical workstations, 7.3
standard format, 7.10
true-color devices, 7.9
using color, 7.8
vector handling, 7.10
virtual workstations, 7.4
workstations, 7.3
workstation handles, 7.3
write modes, 7.8, 7.162

VDI_Workstation structure,
7.65

vertical blank
handlers, 3.19
interrupt, 3.19

vex_butv(),7.10, 7.80

vex_curv(),7.10, 7.81

vex_motv(),7.10, 7.82

vex_timv(), 7.10, 7.83

VgetMonitor(), 4.4, 4.104

VgetRGB(), 4.6, 4.104

VgetSize(),4.4, 4.105

video control, 4.3

video registers, B.19

video modesee screen



Index

vm_coords(),7.17, 7.83
vm_filename(),7.17, 7.84
vm_pagesize()7.17, 7.85
VOID, see Data Types
VOIDP, see Data Types
VOIDPP, see Data Types
volume labelseeGEMDOS
volume label
vg_cellarray(), 7.86
vq_chcells(),7.87
vg_color(), 7.88
vq_curaddress(),7.89
vg_extnd(), 7.8, 7.89
vg_gdos(),7.11, 7.92
vg_key_s(),7.93
vg_mouse(),7.93
vg_scan(),7.94
vq_tabstatus(),7.95
v(_tdimensions(),7.96
vqgf_attributes(), 7.96
vgin_mode(),7.97
vqgl_attributes(), 7.98
vgm_attributes(), 7.99
vgp_error(), 7.100
vap_films(), 7.101
vgp_state(),7.101
vqt_advance(),7.102
vqt_advance32(),7.14, 7.103
vqt_attributes(), 7.104
vgt_cachesize()y.15, 7.105
vqt_devinfo(), 7.106
vqt_extent(),7.107
vqt_f_extent(),7.108
vat_f_extent16(),7,109
vqt_fontheader(),7.12, 7.110
vqt_fontinfo(), 7.111
vat_get_table(),7.12, 7.15,
7.112
vqt_name(),7.16, 7.113
vqgt_pairkern(), 7.12, 7.15,
7.114
vqt_trackkern(), 7.12, 7.15,
7.115
vgt_width(), 7.115
vr_recfl(), 7.117

vr_trnfm(), 4.5, 7.9, 7.117
vro_cpyfm(), 7.8-7.9, 7.119
vrg_choice(),7.121
vrg_locator(), 7.121
vrg_string(), 7.122
vrg_valuator(), 7.123
vrt_cpyfm(), 7.9, 7.124
vs_clip(), 7.125
vs_color(),7.126
vs_curaddress(),7.126
vs_palette(),7.127
vsc_form(),7.128
VsetMask(), 4.6, 4.106
VsetMode(),4.4, 4.107
VsetRGB(), 4.6, 4.108
VsetScreen()4.108
VsetSync(),4.6, 4.109
vsf_color(),7.129
vsf_interior(), 7.129
vsf_perimeter(),7.130
vsf_style(),7.131
vsf_udpat(),7.132
vsin_mode(),7.133
vsl_color(),7.134
vsl_ends(),7.134
vsl_type(),7.135
vsl_udsty(),7.136
vsl_width(), 7.137
vsm_choice(),7.138
vsm_color(), 7.138
vsm_height(),7.139
vsm_locator(),7.140
vsm_string(), 7.141
vsm_type(),7.142
vsm_valuator(), 7.143
vsp_message()7.144
vsp_save(),7.145
vsp_state(),7.145
vst_alignment(),7.146
vst_arbpt(), 7.147
vst_arbpt32(), 7.14, 7.148
vst_charmap(),7.15, 7.149
vst_color(),7.150
vst_effects(),7.150
vst_error(), 7.13, 7.151

THE ATARI COMPENDIUM

vst_font(), 7.152
vst_height(),7.153
vst_kern(), 7.12, 7.15, 7.154
vst_load_fonts(),7.13, 7.155
vst_point(), 7.155
vst_rotation(), 7.156
vst_scratch(),7.15, 7.157
vst_setsize()7.158
vst_setsize32()7.14, 7.159
vst_skew(),7.160
vst_unload_fonts(),7.161
vswr_mode(),7.8, 7.162
Vsync(),4.110

VT-52 emulator, 3.14
vt_alignment(), 7.163
vt_axis(),7.164

vt_origin(), 7.164
vt_resolution(), 7.165

W

warm boot, 3.3

WavePlay(),4.110

wildcards, 2.5

wind_calc(), 6.33, 6.149

wind_close(),6.31, 6.150

wind_create(),6.29, 6.150

wind_delete(),6.31, 6.152

wind_find(), 6.31, 6.152

wind_get(),6.31, 6.153

wind_new(),6.157

wind_open(),6.31, 6.158

wind_set(),6.31, 6.158

wind_update(),6.32, 6.161

windows,seeAES windows

WORD, see Data Types

workstationsseeVDI
workstations

WORM drives, 2.3

write modesseeVDI write
modes

WYSIWYG, 7.14

X

XBIOS, 4.1

calling from an interrupt,
4.20



Index

function calling procedure,
4.19
Xbtimer(), 4.113
XCPB structure, 10.5
XCONTROL, 10.1
boot-only CPX’s, 10.6
callback functions, 10.17
cpx flavors, 10.6
CPX types, 10.6
event CPX’s, 10.9
executable format, 10.3
file formats, 10.12
file naming, 10.12
form CPX’s, 10.6
function calling procedure,
10.13
function reference, 10.15
parameter block, 10.5
resident CPX'’s, 10.7
set-only CPX’s, 10.7
stack space, 10.13
utility functions, 10.27
Xform_do(), 10.38
XGen_Alert(), 10.39
XGM partition, 4.16

THE ATARI COMPENDIUM



	The Atari Compendium
	Table of Contents
	Foreward
	Chapter 1: Introduction to Atari Programming
	Chapter 2: GEMDOS
	   2.37: GEMDOS Function Reference
	Chapter 3: BIOS
	  3.24: BIOS Function Reference
	Chapter 4: XBIOS
	  4.21: XBIOS Function Reference
	Chapter 5: Hardware
	Chapter 6: AES
	  6.43: AES Function Reference
	Chapter 7: VDI
	  7.21: VDI/GDOS Function Reference
	Chapter 8: Line-A
	  8.9: Line-A Function Reference
	Chapter 9: The Desktop
	Chapter 10: XCONTROL
	  10.15: XCONTROL Function Reference
	Chapter 11: GEM User Interface Guidelines
	Appendix A: Functions by Opcode
	Appendix B: Memory Map
	Appendix C: Native File Formats
	Appendix D: Error Codes
	Appendix E: Atari ASCII Table
	Appendix F: IKBD Scan Codes
	Appendix G: Speedo Fonts
	  G.7: The Bitstream International Character Set
	Appendix H: The Drag & Drop Protocol
	Appendix I: The Programmable Sound Generator
	Bibliography
	Index

